87c6c223503b46b113f9d83f6f521bca1b859c81
[mesa.git] / src / gallium / drivers / panfrost / pan_job.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig
3 * Copyright (C) 2014-2017 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include <assert.h>
27
28 #include "drm-uapi/panfrost_drm.h"
29
30 #include "pan_bo.h"
31 #include "pan_context.h"
32 #include "util/hash_table.h"
33 #include "util/ralloc.h"
34 #include "util/format/u_format.h"
35 #include "util/u_pack_color.h"
36 #include "util/rounding.h"
37 #include "pan_util.h"
38 #include "pan_blending.h"
39 #include "pandecode/decode.h"
40 #include "panfrost-quirks.h"
41
42 /* panfrost_bo_access is here to help us keep track of batch accesses to BOs
43 * and build a proper dependency graph such that batches can be pipelined for
44 * better GPU utilization.
45 *
46 * Each accessed BO has a corresponding entry in the ->accessed_bos hash table.
47 * A BO is either being written or read at any time (see if writer != NULL).
48 * When the last access is a write, the batch writing the BO might have read
49 * dependencies (readers that have not been executed yet and want to read the
50 * previous BO content), and when the last access is a read, all readers might
51 * depend on another batch to push its results to memory. That's what the
52 * readers/writers keep track off.
53 * There can only be one writer at any given time, if a new batch wants to
54 * write to the same BO, a dependency will be added between the new writer and
55 * the old writer (at the batch level), and panfrost_bo_access->writer will be
56 * updated to point to the new writer.
57 */
58 struct panfrost_bo_access {
59 struct util_dynarray readers;
60 struct panfrost_batch_fence *writer;
61 };
62
63 static struct panfrost_batch_fence *
64 panfrost_create_batch_fence(struct panfrost_batch *batch)
65 {
66 struct panfrost_batch_fence *fence;
67
68 fence = rzalloc(NULL, struct panfrost_batch_fence);
69 assert(fence);
70 pipe_reference_init(&fence->reference, 1);
71 fence->batch = batch;
72
73 return fence;
74 }
75
76 static void
77 panfrost_free_batch_fence(struct panfrost_batch_fence *fence)
78 {
79 ralloc_free(fence);
80 }
81
82 void
83 panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence)
84 {
85 if (pipe_reference(&fence->reference, NULL))
86 panfrost_free_batch_fence(fence);
87 }
88
89 void
90 panfrost_batch_fence_reference(struct panfrost_batch_fence *fence)
91 {
92 pipe_reference(NULL, &fence->reference);
93 }
94
95 static struct panfrost_batch *
96 panfrost_create_batch(struct panfrost_context *ctx,
97 const struct pipe_framebuffer_state *key)
98 {
99 struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch);
100
101 batch->ctx = ctx;
102
103 batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer,
104 _mesa_key_pointer_equal);
105
106 batch->minx = batch->miny = ~0;
107 batch->maxx = batch->maxy = 0;
108
109 batch->out_sync = panfrost_create_batch_fence(batch);
110 util_copy_framebuffer_state(&batch->key, key);
111
112 batch->pool = panfrost_create_pool(batch, pan_device(ctx->base.screen));
113
114 return batch;
115 }
116
117 static void
118 panfrost_freeze_batch(struct panfrost_batch *batch)
119 {
120 struct panfrost_context *ctx = batch->ctx;
121 struct hash_entry *entry;
122
123 /* Remove the entry in the FBO -> batch hash table if the batch
124 * matches. This way, next draws/clears targeting this FBO will trigger
125 * the creation of a new batch.
126 */
127 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
128 if (entry && entry->data == batch)
129 _mesa_hash_table_remove(ctx->batches, entry);
130
131 /* If this is the bound batch, the panfrost_context parameters are
132 * relevant so submitting it invalidates those parameters, but if it's
133 * not bound, the context parameters are for some other batch so we
134 * can't invalidate them.
135 */
136 if (ctx->batch == batch) {
137 panfrost_invalidate_frame(ctx);
138 ctx->batch = NULL;
139 }
140 }
141
142 #ifdef PAN_BATCH_DEBUG
143 static bool panfrost_batch_is_frozen(struct panfrost_batch *batch)
144 {
145 struct panfrost_context *ctx = batch->ctx;
146 struct hash_entry *entry;
147
148 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
149 if (entry && entry->data == batch)
150 return false;
151
152 if (ctx->batch == batch)
153 return false;
154
155 return true;
156 }
157 #endif
158
159 static void
160 panfrost_free_batch(struct panfrost_batch *batch)
161 {
162 if (!batch)
163 return;
164
165 #ifdef PAN_BATCH_DEBUG
166 assert(panfrost_batch_is_frozen(batch));
167 #endif
168
169 hash_table_foreach(batch->bos, entry)
170 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
171
172 hash_table_foreach(batch->pool.bos, entry)
173 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
174
175 util_dynarray_foreach(&batch->dependencies,
176 struct panfrost_batch_fence *, dep) {
177 panfrost_batch_fence_unreference(*dep);
178 }
179
180 /* The out_sync fence lifetime is different from the the batch one
181 * since other batches might want to wait on a fence of already
182 * submitted/signaled batch. All we need to do here is make sure the
183 * fence does not point to an invalid batch, which the core will
184 * interpret as 'batch is already submitted'.
185 */
186 batch->out_sync->batch = NULL;
187 panfrost_batch_fence_unreference(batch->out_sync);
188
189 util_unreference_framebuffer_state(&batch->key);
190 ralloc_free(batch);
191 }
192
193 #ifdef PAN_BATCH_DEBUG
194 static bool
195 panfrost_dep_graph_contains_batch(struct panfrost_batch *root,
196 struct panfrost_batch *batch)
197 {
198 if (!root)
199 return false;
200
201 util_dynarray_foreach(&root->dependencies,
202 struct panfrost_batch_fence *, dep) {
203 if ((*dep)->batch == batch ||
204 panfrost_dep_graph_contains_batch((*dep)->batch, batch))
205 return true;
206 }
207
208 return false;
209 }
210 #endif
211
212 static void
213 panfrost_batch_add_dep(struct panfrost_batch *batch,
214 struct panfrost_batch_fence *newdep)
215 {
216 if (batch == newdep->batch)
217 return;
218
219 /* We might want to turn ->dependencies into a set if the number of
220 * deps turns out to be big enough to make this 'is dep already there'
221 * search inefficient.
222 */
223 util_dynarray_foreach(&batch->dependencies,
224 struct panfrost_batch_fence *, dep) {
225 if (*dep == newdep)
226 return;
227 }
228
229 #ifdef PAN_BATCH_DEBUG
230 /* Make sure the dependency graph is acyclic. */
231 assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch));
232 #endif
233
234 panfrost_batch_fence_reference(newdep);
235 util_dynarray_append(&batch->dependencies,
236 struct panfrost_batch_fence *, newdep);
237
238 /* We now have a batch depending on us, let's make sure new draw/clear
239 * calls targeting the same FBO use a new batch object.
240 */
241 if (newdep->batch)
242 panfrost_freeze_batch(newdep->batch);
243 }
244
245 static struct panfrost_batch *
246 panfrost_get_batch(struct panfrost_context *ctx,
247 const struct pipe_framebuffer_state *key)
248 {
249 /* Lookup the job first */
250 struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key);
251
252 if (entry)
253 return entry->data;
254
255 /* Otherwise, let's create a job */
256
257 struct panfrost_batch *batch = panfrost_create_batch(ctx, key);
258
259 /* Save the created job */
260 _mesa_hash_table_insert(ctx->batches, &batch->key, batch);
261
262 return batch;
263 }
264
265 /* Get the job corresponding to the FBO we're currently rendering into */
266
267 struct panfrost_batch *
268 panfrost_get_batch_for_fbo(struct panfrost_context *ctx)
269 {
270 /* If we're wallpapering, we special case to workaround
271 * u_blitter abuse */
272
273 if (ctx->wallpaper_batch)
274 return ctx->wallpaper_batch;
275
276 /* If we already began rendering, use that */
277
278 if (ctx->batch) {
279 assert(util_framebuffer_state_equal(&ctx->batch->key,
280 &ctx->pipe_framebuffer));
281 return ctx->batch;
282 }
283
284 /* If not, look up the job */
285 struct panfrost_batch *batch = panfrost_get_batch(ctx,
286 &ctx->pipe_framebuffer);
287
288 /* Set this job as the current FBO job. Will be reset when updating the
289 * FB state and when submitting or releasing a job.
290 */
291 ctx->batch = batch;
292 return batch;
293 }
294
295 struct panfrost_batch *
296 panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx)
297 {
298 struct panfrost_batch *batch;
299
300 batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
301
302 /* The batch has no draw/clear queued, let's return it directly.
303 * Note that it's perfectly fine to re-use a batch with an
304 * existing clear, we'll just update it with the new clear request.
305 */
306 if (!batch->scoreboard.first_job)
307 return batch;
308
309 /* Otherwise, we need to freeze the existing one and instantiate a new
310 * one.
311 */
312 panfrost_freeze_batch(batch);
313 return panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
314 }
315
316 static void
317 panfrost_bo_access_gc_fences(struct panfrost_context *ctx,
318 struct panfrost_bo_access *access,
319 const struct panfrost_bo *bo)
320 {
321 if (access->writer) {
322 panfrost_batch_fence_unreference(access->writer);
323 access->writer = NULL;
324 }
325
326 struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers);
327 struct panfrost_batch_fence **new_readers = readers_array;
328
329 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
330 reader) {
331 if (!(*reader))
332 continue;
333
334 panfrost_batch_fence_unreference(*reader);
335 *reader = NULL;
336 }
337
338 if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *,
339 new_readers - readers_array) &&
340 new_readers != readers_array)
341 unreachable("Invalid dynarray access->readers");
342 }
343
344 /* Collect signaled fences to keep the kernel-side syncobj-map small. The
345 * idea is to collect those signaled fences at the end of each flush_all
346 * call. This function is likely to collect only fences from previous
347 * batch flushes not the one that have just have just been submitted and
348 * are probably still in flight when we trigger the garbage collection.
349 * Anyway, we need to do this garbage collection at some point if we don't
350 * want the BO access map to keep invalid entries around and retain
351 * syncobjs forever.
352 */
353 static void
354 panfrost_gc_fences(struct panfrost_context *ctx)
355 {
356 hash_table_foreach(ctx->accessed_bos, entry) {
357 struct panfrost_bo_access *access = entry->data;
358
359 assert(access);
360 panfrost_bo_access_gc_fences(ctx, access, entry->key);
361 if (!util_dynarray_num_elements(&access->readers,
362 struct panfrost_batch_fence *) &&
363 !access->writer) {
364 ralloc_free(access);
365 _mesa_hash_table_remove(ctx->accessed_bos, entry);
366 }
367 }
368 }
369
370 #ifdef PAN_BATCH_DEBUG
371 static bool
372 panfrost_batch_in_readers(struct panfrost_batch *batch,
373 struct panfrost_bo_access *access)
374 {
375 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
376 reader) {
377 if (*reader && (*reader)->batch == batch)
378 return true;
379 }
380
381 return false;
382 }
383 #endif
384
385 static void
386 panfrost_batch_update_bo_access(struct panfrost_batch *batch,
387 struct panfrost_bo *bo, bool writes,
388 bool already_accessed)
389 {
390 struct panfrost_context *ctx = batch->ctx;
391 struct panfrost_bo_access *access;
392 bool old_writes = false;
393 struct hash_entry *entry;
394
395 entry = _mesa_hash_table_search(ctx->accessed_bos, bo);
396 access = entry ? entry->data : NULL;
397 if (access) {
398 old_writes = access->writer != NULL;
399 } else {
400 access = rzalloc(ctx, struct panfrost_bo_access);
401 util_dynarray_init(&access->readers, access);
402 _mesa_hash_table_insert(ctx->accessed_bos, bo, access);
403 /* We are the first to access this BO, let's initialize
404 * old_writes to our own access type in that case.
405 */
406 old_writes = writes;
407 }
408
409 assert(access);
410
411 if (writes && !old_writes) {
412 /* Previous access was a read and we want to write this BO.
413 * We first need to add explicit deps between our batch and
414 * the previous readers.
415 */
416 util_dynarray_foreach(&access->readers,
417 struct panfrost_batch_fence *, reader) {
418 /* We were already reading the BO, no need to add a dep
419 * on ourself (the acyclic check would complain about
420 * that).
421 */
422 if (!(*reader) || (*reader)->batch == batch)
423 continue;
424
425 panfrost_batch_add_dep(batch, *reader);
426 }
427 panfrost_batch_fence_reference(batch->out_sync);
428
429 if (access->writer)
430 panfrost_batch_fence_unreference(access->writer);
431
432 /* We now are the new writer. */
433 access->writer = batch->out_sync;
434
435 /* Release the previous readers and reset the readers array. */
436 util_dynarray_foreach(&access->readers,
437 struct panfrost_batch_fence *,
438 reader) {
439 if (!*reader)
440 continue;
441 panfrost_batch_fence_unreference(*reader);
442 }
443
444 util_dynarray_clear(&access->readers);
445 } else if (writes && old_writes) {
446 /* First check if we were the previous writer, in that case
447 * there's nothing to do. Otherwise we need to add a
448 * dependency between the new writer and the old one.
449 */
450 if (access->writer != batch->out_sync) {
451 if (access->writer) {
452 panfrost_batch_add_dep(batch, access->writer);
453 panfrost_batch_fence_unreference(access->writer);
454 }
455 panfrost_batch_fence_reference(batch->out_sync);
456 access->writer = batch->out_sync;
457 }
458 } else if (!writes && old_writes) {
459 /* First check if we were the previous writer, in that case
460 * we want to keep the access type unchanged, as a write is
461 * more constraining than a read.
462 */
463 if (access->writer != batch->out_sync) {
464 /* Add a dependency on the previous writer. */
465 panfrost_batch_add_dep(batch, access->writer);
466
467 /* The previous access was a write, there's no reason
468 * to have entries in the readers array.
469 */
470 assert(!util_dynarray_num_elements(&access->readers,
471 struct panfrost_batch_fence *));
472
473 /* Add ourselves to the readers array. */
474 panfrost_batch_fence_reference(batch->out_sync);
475 util_dynarray_append(&access->readers,
476 struct panfrost_batch_fence *,
477 batch->out_sync);
478 access->writer = NULL;
479 }
480 } else {
481 /* We already accessed this BO before, so we should already be
482 * in the reader array.
483 */
484 #ifdef PAN_BATCH_DEBUG
485 if (already_accessed) {
486 assert(panfrost_batch_in_readers(batch, access));
487 return;
488 }
489 #endif
490
491 /* Previous access was a read and we want to read this BO.
492 * Add ourselves to the readers array and add a dependency on
493 * the previous writer if any.
494 */
495 panfrost_batch_fence_reference(batch->out_sync);
496 util_dynarray_append(&access->readers,
497 struct panfrost_batch_fence *,
498 batch->out_sync);
499
500 if (access->writer)
501 panfrost_batch_add_dep(batch, access->writer);
502 }
503 }
504
505 void
506 panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo,
507 uint32_t flags)
508 {
509 if (!bo)
510 return;
511
512 struct hash_entry *entry;
513 uint32_t old_flags = 0;
514
515 entry = _mesa_hash_table_search(batch->bos, bo);
516 if (!entry) {
517 entry = _mesa_hash_table_insert(batch->bos, bo,
518 (void *)(uintptr_t)flags);
519 panfrost_bo_reference(bo);
520 } else {
521 old_flags = (uintptr_t)entry->data;
522
523 /* All batches have to agree on the shared flag. */
524 assert((old_flags & PAN_BO_ACCESS_SHARED) ==
525 (flags & PAN_BO_ACCESS_SHARED));
526 }
527
528 assert(entry);
529
530 if (old_flags == flags)
531 return;
532
533 flags |= old_flags;
534 entry->data = (void *)(uintptr_t)flags;
535
536 /* If this is not a shared BO, we don't really care about dependency
537 * tracking.
538 */
539 if (!(flags & PAN_BO_ACCESS_SHARED))
540 return;
541
542 /* All dependencies should have been flushed before we execute the
543 * wallpaper draw, so it should be harmless to skip the
544 * update_bo_access() call.
545 */
546 if (batch == batch->ctx->wallpaper_batch)
547 return;
548
549 assert(flags & PAN_BO_ACCESS_RW);
550 panfrost_batch_update_bo_access(batch, bo, flags & PAN_BO_ACCESS_WRITE,
551 old_flags != 0);
552 }
553
554 static void
555 panfrost_batch_add_resource_bos(struct panfrost_batch *batch,
556 struct panfrost_resource *rsrc,
557 uint32_t flags)
558 {
559 panfrost_batch_add_bo(batch, rsrc->bo, flags);
560
561 for (unsigned i = 0; i < MAX_MIP_LEVELS; i++)
562 if (rsrc->slices[i].checksum_bo)
563 panfrost_batch_add_bo(batch, rsrc->slices[i].checksum_bo, flags);
564
565 if (rsrc->separate_stencil)
566 panfrost_batch_add_bo(batch, rsrc->separate_stencil->bo, flags);
567 }
568
569 void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch)
570 {
571 uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE |
572 PAN_BO_ACCESS_VERTEX_TILER |
573 PAN_BO_ACCESS_FRAGMENT;
574
575 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
576 struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture);
577 panfrost_batch_add_resource_bos(batch, rsrc, flags);
578 }
579
580 if (batch->key.zsbuf) {
581 struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture);
582 panfrost_batch_add_resource_bos(batch, rsrc, flags);
583 }
584 }
585
586 struct panfrost_bo *
587 panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size,
588 uint32_t create_flags, uint32_t access_flags)
589 {
590 struct panfrost_bo *bo;
591
592 bo = panfrost_bo_create(pan_device(batch->ctx->base.screen), size,
593 create_flags);
594 panfrost_batch_add_bo(batch, bo, access_flags);
595
596 /* panfrost_batch_add_bo() has retained a reference and
597 * panfrost_bo_create() initialize the refcnt to 1, so let's
598 * unreference the BO here so it gets released when the batch is
599 * destroyed (unless it's retained by someone else in the meantime).
600 */
601 panfrost_bo_unreference(bo);
602 return bo;
603 }
604
605 /* Returns the polygon list's GPU address if available, or otherwise allocates
606 * the polygon list. It's perfectly fast to use allocate/free BO directly,
607 * since we'll hit the BO cache and this is one-per-batch anyway. */
608
609 mali_ptr
610 panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size)
611 {
612 if (batch->polygon_list) {
613 assert(batch->polygon_list->size >= size);
614 } else {
615 /* Create the BO as invisible, as there's no reason to map */
616 size = util_next_power_of_two(size);
617
618 batch->polygon_list = panfrost_batch_create_bo(batch, size,
619 PAN_BO_INVISIBLE,
620 PAN_BO_ACCESS_PRIVATE |
621 PAN_BO_ACCESS_RW |
622 PAN_BO_ACCESS_VERTEX_TILER |
623 PAN_BO_ACCESS_FRAGMENT);
624 }
625
626 return batch->polygon_list->gpu;
627 }
628
629 struct panfrost_bo *
630 panfrost_batch_get_scratchpad(struct panfrost_batch *batch,
631 unsigned shift,
632 unsigned thread_tls_alloc,
633 unsigned core_count)
634 {
635 unsigned size = panfrost_get_total_stack_size(shift,
636 thread_tls_alloc,
637 core_count);
638
639 if (batch->scratchpad) {
640 assert(batch->scratchpad->size >= size);
641 } else {
642 batch->scratchpad = panfrost_batch_create_bo(batch, size,
643 PAN_BO_INVISIBLE,
644 PAN_BO_ACCESS_PRIVATE |
645 PAN_BO_ACCESS_RW |
646 PAN_BO_ACCESS_VERTEX_TILER |
647 PAN_BO_ACCESS_FRAGMENT);
648 }
649
650 return batch->scratchpad;
651 }
652
653 struct panfrost_bo *
654 panfrost_batch_get_shared_memory(struct panfrost_batch *batch,
655 unsigned size,
656 unsigned workgroup_count)
657 {
658 if (batch->shared_memory) {
659 assert(batch->shared_memory->size >= size);
660 } else {
661 batch->shared_memory = panfrost_batch_create_bo(batch, size,
662 PAN_BO_INVISIBLE,
663 PAN_BO_ACCESS_PRIVATE |
664 PAN_BO_ACCESS_RW |
665 PAN_BO_ACCESS_VERTEX_TILER);
666 }
667
668 return batch->shared_memory;
669 }
670
671 struct panfrost_bo *
672 panfrost_batch_get_tiler_heap(struct panfrost_batch *batch)
673 {
674 if (batch->tiler_heap)
675 return batch->tiler_heap;
676
677 batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096,
678 PAN_BO_INVISIBLE |
679 PAN_BO_GROWABLE,
680 PAN_BO_ACCESS_PRIVATE |
681 PAN_BO_ACCESS_RW |
682 PAN_BO_ACCESS_VERTEX_TILER |
683 PAN_BO_ACCESS_FRAGMENT);
684 assert(batch->tiler_heap);
685 return batch->tiler_heap;
686 }
687
688 mali_ptr
689 panfrost_batch_get_tiler_meta(struct panfrost_batch *batch, unsigned vertex_count)
690 {
691 if (!vertex_count)
692 return 0;
693
694 if (batch->tiler_meta)
695 return batch->tiler_meta;
696
697 struct panfrost_bo *tiler_heap;
698 tiler_heap = panfrost_batch_get_tiler_heap(batch);
699
700 struct bifrost_tiler_heap_meta tiler_heap_meta = {
701 .heap_size = tiler_heap->size,
702 .tiler_heap_start = tiler_heap->gpu,
703 .tiler_heap_free = tiler_heap->gpu,
704 .tiler_heap_end = tiler_heap->gpu + tiler_heap->size,
705 .unk1 = 0x1,
706 .unk7e007e = 0x7e007e,
707 };
708
709 struct bifrost_tiler_meta tiler_meta = {
710 .hierarchy_mask = 0x28,
711 .flags = 0x0,
712 .width = MALI_POSITIVE(batch->key.width),
713 .height = MALI_POSITIVE(batch->key.height),
714 .tiler_heap_meta = panfrost_pool_upload(&batch->pool, &tiler_heap_meta, sizeof(tiler_heap_meta)),
715 };
716
717 batch->tiler_meta = panfrost_pool_upload(&batch->pool, &tiler_meta, sizeof(tiler_meta));
718 return batch->tiler_meta;
719 }
720
721 struct panfrost_bo *
722 panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch)
723 {
724 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
725
726 uint32_t create_flags = 0;
727
728 if (batch->tiler_dummy)
729 return batch->tiler_dummy;
730
731 if (!(dev->quirks & MIDGARD_NO_HIER_TILING))
732 create_flags = PAN_BO_INVISIBLE;
733
734 batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096,
735 create_flags,
736 PAN_BO_ACCESS_PRIVATE |
737 PAN_BO_ACCESS_RW |
738 PAN_BO_ACCESS_VERTEX_TILER |
739 PAN_BO_ACCESS_FRAGMENT);
740 assert(batch->tiler_dummy);
741 return batch->tiler_dummy;
742 }
743
744 mali_ptr
745 panfrost_batch_reserve_framebuffer(struct panfrost_batch *batch)
746 {
747 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
748
749 /* If we haven't, reserve space for the framebuffer */
750
751 if (!batch->framebuffer.gpu) {
752 unsigned size = (dev->quirks & MIDGARD_SFBD) ?
753 sizeof(struct mali_single_framebuffer) :
754 sizeof(struct mali_framebuffer);
755
756 batch->framebuffer = panfrost_pool_alloc(&batch->pool, size);
757
758 /* Tag the pointer */
759 if (!(dev->quirks & MIDGARD_SFBD))
760 batch->framebuffer.gpu |= MALI_MFBD;
761 }
762
763 return batch->framebuffer.gpu;
764 }
765
766
767
768 static void
769 panfrost_load_surface(struct panfrost_batch *batch, struct pipe_surface *surf, unsigned loc)
770 {
771 if (!surf)
772 return;
773
774 struct panfrost_resource *rsrc = pan_resource(surf->texture);
775 unsigned level = surf->u.tex.level;
776
777 if (!rsrc->slices[level].initialized)
778 return;
779
780 if (!rsrc->damage.inverted_len)
781 return;
782
783 /* Clamp the rendering area to the damage extent. The
784 * KHR_partial_update() spec states that trying to render outside of
785 * the damage region is "undefined behavior", so we should be safe.
786 */
787 unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx);
788 unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny);
789
790 if (damage_width && damage_height) {
791 panfrost_batch_intersection_scissor(batch,
792 rsrc->damage.extent.minx,
793 rsrc->damage.extent.miny,
794 rsrc->damage.extent.maxx,
795 rsrc->damage.extent.maxy);
796 }
797
798 /* XXX: Native blits on Bifrost */
799 if (batch->pool.dev->quirks & IS_BIFROST) {
800 if (loc != FRAG_RESULT_DATA0)
801 return;
802
803 /* XXX: why align on *twice* the tile length? */
804 batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1);
805 batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1);
806 batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2),
807 rsrc->base.width0);
808 batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2),
809 rsrc->base.height0);
810
811 struct pipe_box rect;
812 batch->ctx->wallpaper_batch = batch;
813 u_box_2d(batch->minx, batch->miny, batch->maxx - batch->minx,
814 batch->maxy - batch->miny, &rect);
815 panfrost_blit_wallpaper(batch->ctx, &rect);
816 batch->ctx->wallpaper_batch = NULL;
817 return;
818 }
819
820 enum pipe_format format = rsrc->base.format;
821
822 if (loc == FRAG_RESULT_DEPTH) {
823 if (!util_format_has_depth(util_format_description(format)))
824 return;
825
826 format = util_format_get_depth_only(format);
827 } else if (loc == FRAG_RESULT_STENCIL) {
828 if (!util_format_has_stencil(util_format_description(format)))
829 return;
830
831 if (rsrc->separate_stencil) {
832 rsrc = rsrc->separate_stencil;
833 format = rsrc->base.format;
834 }
835
836 format = util_format_stencil_only(format);
837 }
838
839 enum mali_texture_type type =
840 panfrost_translate_texture_type(rsrc->base.target);
841
842 unsigned nr_samples = surf->nr_samples;
843
844 if (!nr_samples)
845 nr_samples = surf->texture->nr_samples;
846
847 struct pan_image img = {
848 .width0 = rsrc->base.width0,
849 .height0 = rsrc->base.height0,
850 .depth0 = rsrc->base.depth0,
851 .format = format,
852 .type = type,
853 .layout = rsrc->layout,
854 .array_size = rsrc->base.array_size,
855 .first_level = level,
856 .last_level = level,
857 .first_layer = surf->u.tex.first_layer,
858 .last_layer = surf->u.tex.last_layer,
859 .nr_samples = nr_samples,
860 .cubemap_stride = rsrc->cubemap_stride,
861 .bo = rsrc->bo,
862 .slices = rsrc->slices
863 };
864
865 mali_ptr blend_shader = 0;
866
867 if (loc >= FRAG_RESULT_DATA0 && !panfrost_can_fixed_blend(rsrc->base.format)) {
868 struct panfrost_blend_shader *b =
869 panfrost_get_blend_shader(batch->ctx, &batch->ctx->blit_blend, rsrc->base.format, loc - FRAG_RESULT_DATA0);
870
871 struct panfrost_bo *bo = panfrost_batch_create_bo(batch, b->size,
872 PAN_BO_EXECUTE,
873 PAN_BO_ACCESS_PRIVATE |
874 PAN_BO_ACCESS_READ |
875 PAN_BO_ACCESS_FRAGMENT);
876
877 memcpy(bo->cpu, b->buffer, b->size);
878 assert(b->work_count <= 4);
879
880 blend_shader = bo->gpu | b->first_tag;
881 }
882
883 struct panfrost_transfer transfer = panfrost_pool_alloc(&batch->pool,
884 4 * 4 * 6 * rsrc->damage.inverted_len);
885
886 for (unsigned i = 0; i < rsrc->damage.inverted_len; ++i) {
887 float *o = (float *) (transfer.cpu + (4 * 4 * 6 * i));
888 struct pan_rect r = rsrc->damage.inverted_rects[i];
889
890 float rect[] = {
891 r.minx, rsrc->base.height0 - r.miny, 0.0, 1.0,
892 r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
893 r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
894
895 r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
896 r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
897 r.maxx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
898 };
899
900 assert(sizeof(rect) == 4 * 4 * 6);
901 memcpy(o, rect, sizeof(rect));
902 }
903
904 panfrost_load_midg(&batch->pool, &batch->scoreboard,
905 blend_shader,
906 batch->framebuffer.gpu, transfer.gpu,
907 rsrc->damage.inverted_len * 6,
908 &img, loc);
909
910 panfrost_batch_add_bo(batch, batch->pool.dev->blit_shaders.bo,
911 PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | PAN_BO_ACCESS_FRAGMENT);
912 }
913
914 static void
915 panfrost_batch_draw_wallpaper(struct panfrost_batch *batch)
916 {
917 panfrost_batch_reserve_framebuffer(batch);
918
919 /* Assume combined. If either depth or stencil is written, they will
920 * both be written so we need to be careful for reloading */
921
922 unsigned draws = batch->draws;
923
924 if (draws & PIPE_CLEAR_DEPTHSTENCIL)
925 draws |= PIPE_CLEAR_DEPTHSTENCIL;
926
927 /* Mask of buffers which need reload since they are not cleared and
928 * they are drawn. (If they are cleared, reload is useless; if they are
929 * not drawn and also not cleared, we can generally omit the attachment
930 * at the framebuffer descriptor level */
931
932 unsigned reload = ~batch->clear & draws;
933
934 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
935 if (reload & (PIPE_CLEAR_COLOR0 << i))
936 panfrost_load_surface(batch, batch->key.cbufs[i], FRAG_RESULT_DATA0 + i);
937 }
938
939 if (reload & PIPE_CLEAR_DEPTH)
940 panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_DEPTH);
941
942 if (reload & PIPE_CLEAR_STENCIL)
943 panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_STENCIL);
944 }
945
946 static void
947 panfrost_batch_record_bo(struct hash_entry *entry, unsigned *bo_handles, unsigned idx)
948 {
949 struct panfrost_bo *bo = (struct panfrost_bo *)entry->key;
950 uint32_t flags = (uintptr_t)entry->data;
951
952 assert(bo->gem_handle > 0);
953 bo_handles[idx] = bo->gem_handle;
954
955 /* Update the BO access flags so that panfrost_bo_wait() knows
956 * about all pending accesses.
957 * We only keep the READ/WRITE info since this is all the BO
958 * wait logic cares about.
959 * We also preserve existing flags as this batch might not
960 * be the first one to access the BO.
961 */
962 bo->gpu_access |= flags & (PAN_BO_ACCESS_RW);
963 }
964
965 static int
966 panfrost_batch_submit_ioctl(struct panfrost_batch *batch,
967 mali_ptr first_job_desc,
968 uint32_t reqs,
969 uint32_t out_sync)
970 {
971 struct panfrost_context *ctx = batch->ctx;
972 struct pipe_context *gallium = (struct pipe_context *) ctx;
973 struct panfrost_device *dev = pan_device(gallium->screen);
974 struct drm_panfrost_submit submit = {0,};
975 uint32_t *bo_handles;
976 int ret;
977
978 /* If we trace, we always need a syncobj, so make one of our own if we
979 * weren't given one to use. Remember that we did so, so we can free it
980 * after we're done but preventing double-frees if we were given a
981 * syncobj */
982
983 bool our_sync = false;
984
985 if (!out_sync && dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
986 drmSyncobjCreate(dev->fd, 0, &out_sync);
987 our_sync = false;
988 }
989
990 submit.out_sync = out_sync;
991 submit.jc = first_job_desc;
992 submit.requirements = reqs;
993
994 bo_handles = calloc(batch->pool.bos->entries + batch->bos->entries, sizeof(*bo_handles));
995 assert(bo_handles);
996
997 hash_table_foreach(batch->bos, entry)
998 panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
999
1000 hash_table_foreach(batch->pool.bos, entry)
1001 panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
1002
1003 submit.bo_handles = (u64) (uintptr_t) bo_handles;
1004 ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit);
1005 free(bo_handles);
1006
1007 if (ret) {
1008 if (dev->debug & PAN_DBG_MSGS)
1009 fprintf(stderr, "Error submitting: %m\n");
1010
1011 return errno;
1012 }
1013
1014 /* Trace the job if we're doing that */
1015 if (dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
1016 /* Wait so we can get errors reported back */
1017 drmSyncobjWait(dev->fd, &out_sync, 1,
1018 INT64_MAX, 0, NULL);
1019
1020 /* Trace gets priority over sync */
1021 bool minimal = !(dev->debug & PAN_DBG_TRACE);
1022 pandecode_jc(submit.jc, dev->quirks & IS_BIFROST, dev->gpu_id, minimal);
1023 }
1024
1025 /* Cleanup if we created the syncobj */
1026 if (our_sync)
1027 drmSyncobjDestroy(dev->fd, out_sync);
1028
1029 return 0;
1030 }
1031
1032 /* Submit both vertex/tiler and fragment jobs for a batch, possibly with an
1033 * outsync corresponding to the later of the two (since there will be an
1034 * implicit dep between them) */
1035
1036 static int
1037 panfrost_batch_submit_jobs(struct panfrost_batch *batch, uint32_t out_sync)
1038 {
1039 bool has_draws = batch->scoreboard.first_job;
1040 bool has_frag = batch->scoreboard.tiler_dep || batch->clear;
1041 int ret = 0;
1042
1043 if (has_draws) {
1044 ret = panfrost_batch_submit_ioctl(batch, batch->scoreboard.first_job,
1045 0, has_frag ? 0 : out_sync);
1046 assert(!ret);
1047 }
1048
1049 if (has_frag) {
1050 /* Whether we program the fragment job for draws or not depends
1051 * on whether there is any *tiler* activity (so fragment
1052 * shaders). If there are draws but entirely RASTERIZER_DISCARD
1053 * (say, for transform feedback), we want a fragment job that
1054 * *only* clears, since otherwise the tiler structures will be
1055 * uninitialized leading to faults (or state leaks) */
1056
1057 mali_ptr fragjob = panfrost_fragment_job(batch,
1058 batch->scoreboard.tiler_dep != 0);
1059 ret = panfrost_batch_submit_ioctl(batch, fragjob,
1060 PANFROST_JD_REQ_FS, out_sync);
1061 assert(!ret);
1062 }
1063
1064 return ret;
1065 }
1066
1067 static void
1068 panfrost_batch_submit(struct panfrost_batch *batch, uint32_t out_sync)
1069 {
1070 assert(batch);
1071 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
1072
1073 /* Submit the dependencies first. Don't pass along the out_sync since
1074 * they are guaranteed to terminate sooner */
1075 util_dynarray_foreach(&batch->dependencies,
1076 struct panfrost_batch_fence *, dep) {
1077 if ((*dep)->batch)
1078 panfrost_batch_submit((*dep)->batch, 0);
1079 }
1080
1081 int ret;
1082
1083 /* Nothing to do! */
1084 if (!batch->scoreboard.first_job && !batch->clear)
1085 goto out;
1086
1087 panfrost_batch_draw_wallpaper(batch);
1088
1089 /* Now that all draws are in, we can finally prepare the
1090 * FBD for the batch */
1091
1092 if (batch->framebuffer.gpu && batch->scoreboard.first_job) {
1093 struct panfrost_context *ctx = batch->ctx;
1094 struct pipe_context *gallium = (struct pipe_context *) ctx;
1095 struct panfrost_device *dev = pan_device(gallium->screen);
1096
1097 if (dev->quirks & MIDGARD_SFBD)
1098 panfrost_attach_sfbd(batch, ~0);
1099 else
1100 panfrost_attach_mfbd(batch, ~0);
1101 }
1102
1103 mali_ptr polygon_list = panfrost_batch_get_polygon_list(batch,
1104 MALI_TILER_MINIMUM_HEADER_SIZE);
1105
1106 panfrost_scoreboard_initialize_tiler(&batch->pool, &batch->scoreboard, polygon_list);
1107
1108 ret = panfrost_batch_submit_jobs(batch, out_sync);
1109
1110 if (ret && dev->debug & PAN_DBG_MSGS)
1111 fprintf(stderr, "panfrost_batch_submit failed: %d\n", ret);
1112
1113 /* We must reset the damage info of our render targets here even
1114 * though a damage reset normally happens when the DRI layer swaps
1115 * buffers. That's because there can be implicit flushes the GL
1116 * app is not aware of, and those might impact the damage region: if
1117 * part of the damaged portion is drawn during those implicit flushes,
1118 * you have to reload those areas before next draws are pushed, and
1119 * since the driver can't easily know what's been modified by the draws
1120 * it flushed, the easiest solution is to reload everything.
1121 */
1122 for (unsigned i = 0; i < batch->key.nr_cbufs; i++) {
1123 if (!batch->key.cbufs[i])
1124 continue;
1125
1126 panfrost_resource_set_damage_region(NULL,
1127 batch->key.cbufs[i]->texture, 0, NULL);
1128 }
1129
1130 out:
1131 panfrost_freeze_batch(batch);
1132 panfrost_free_batch(batch);
1133 }
1134
1135 /* Submit all batches, applying the out_sync to the currently bound batch */
1136
1137 void
1138 panfrost_flush_all_batches(struct panfrost_context *ctx, uint32_t out_sync)
1139 {
1140 struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx);
1141 panfrost_batch_submit(batch, out_sync);
1142
1143 hash_table_foreach(ctx->batches, hentry) {
1144 struct panfrost_batch *batch = hentry->data;
1145 assert(batch);
1146
1147 panfrost_batch_submit(batch, 0);
1148 }
1149
1150 assert(!ctx->batches->entries);
1151
1152 /* Collect batch fences before returning */
1153 panfrost_gc_fences(ctx);
1154 }
1155
1156 bool
1157 panfrost_pending_batches_access_bo(struct panfrost_context *ctx,
1158 const struct panfrost_bo *bo)
1159 {
1160 struct panfrost_bo_access *access;
1161 struct hash_entry *hentry;
1162
1163 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1164 access = hentry ? hentry->data : NULL;
1165 if (!access)
1166 return false;
1167
1168 if (access->writer && access->writer->batch)
1169 return true;
1170
1171 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1172 reader) {
1173 if (*reader && (*reader)->batch)
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
1180 /* We always flush writers. We might also need to flush readers */
1181
1182 void
1183 panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx,
1184 struct panfrost_bo *bo,
1185 bool flush_readers)
1186 {
1187 struct panfrost_bo_access *access;
1188 struct hash_entry *hentry;
1189
1190 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1191 access = hentry ? hentry->data : NULL;
1192 if (!access)
1193 return;
1194
1195 if (access->writer && access->writer->batch)
1196 panfrost_batch_submit(access->writer->batch, 0);
1197
1198 if (!flush_readers)
1199 return;
1200
1201 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1202 reader) {
1203 if (*reader && (*reader)->batch)
1204 panfrost_batch_submit((*reader)->batch, 0);
1205 }
1206 }
1207
1208 void
1209 panfrost_batch_set_requirements(struct panfrost_batch *batch)
1210 {
1211 struct panfrost_context *ctx = batch->ctx;
1212
1213 if (ctx->rasterizer && ctx->rasterizer->base.multisample)
1214 batch->requirements |= PAN_REQ_MSAA;
1215
1216 if (ctx->depth_stencil && ctx->depth_stencil->depth.writemask) {
1217 batch->requirements |= PAN_REQ_DEPTH_WRITE;
1218 batch->draws |= PIPE_CLEAR_DEPTH;
1219 }
1220
1221 if (ctx->depth_stencil && ctx->depth_stencil->stencil[0].enabled)
1222 batch->draws |= PIPE_CLEAR_STENCIL;
1223 }
1224
1225 void
1226 panfrost_batch_adjust_stack_size(struct panfrost_batch *batch)
1227 {
1228 struct panfrost_context *ctx = batch->ctx;
1229
1230 for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) {
1231 struct panfrost_shader_state *ss;
1232
1233 ss = panfrost_get_shader_state(ctx, i);
1234 if (!ss)
1235 continue;
1236
1237 batch->stack_size = MAX2(batch->stack_size, ss->stack_size);
1238 }
1239 }
1240
1241 /* Helper to smear a 32-bit color across 128-bit components */
1242
1243 static void
1244 pan_pack_color_32(uint32_t *packed, uint32_t v)
1245 {
1246 for (unsigned i = 0; i < 4; ++i)
1247 packed[i] = v;
1248 }
1249
1250 static void
1251 pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi)
1252 {
1253 for (unsigned i = 0; i < 4; i += 2) {
1254 packed[i + 0] = lo;
1255 packed[i + 1] = hi;
1256 }
1257 }
1258
1259 static void
1260 pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format)
1261 {
1262 /* Alpha magicked to 1.0 if there is no alpha */
1263
1264 bool has_alpha = util_format_has_alpha(format);
1265 float clear_alpha = has_alpha ? color->f[3] : 1.0f;
1266
1267 /* Packed color depends on the framebuffer format */
1268
1269 const struct util_format_description *desc =
1270 util_format_description(format);
1271
1272 if (util_format_is_rgba8_variant(desc) && desc->colorspace != UTIL_FORMAT_COLORSPACE_SRGB) {
1273 pan_pack_color_32(packed,
1274 ((uint32_t) float_to_ubyte(clear_alpha) << 24) |
1275 ((uint32_t) float_to_ubyte(color->f[2]) << 16) |
1276 ((uint32_t) float_to_ubyte(color->f[1]) << 8) |
1277 ((uint32_t) float_to_ubyte(color->f[0]) << 0));
1278 } else if (format == PIPE_FORMAT_B5G6R5_UNORM) {
1279 /* First, we convert the components to R5, G6, B5 separately */
1280 unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
1281 unsigned g6 = _mesa_roundevenf(SATURATE(color->f[1]) * 63.0);
1282 unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
1283
1284 /* Then we pack into a sparse u32. TODO: Why these shifts? */
1285 pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5));
1286 } else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) {
1287 /* Convert to 4-bits */
1288 unsigned r4 = _mesa_roundevenf(SATURATE(color->f[0]) * 15.0);
1289 unsigned g4 = _mesa_roundevenf(SATURATE(color->f[1]) * 15.0);
1290 unsigned b4 = _mesa_roundevenf(SATURATE(color->f[2]) * 15.0);
1291 unsigned a4 = _mesa_roundevenf(SATURATE(clear_alpha) * 15.0);
1292
1293 /* Pack on *byte* intervals */
1294 pan_pack_color_32(packed, (a4 << 28) | (b4 << 20) | (g4 << 12) | (r4 << 4));
1295 } else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) {
1296 /* Scale as expected but shift oddly */
1297 unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
1298 unsigned g5 = _mesa_roundevenf(SATURATE(color->f[1]) * 31.0);
1299 unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
1300 unsigned a1 = _mesa_roundevenf(SATURATE(clear_alpha) * 1.0);
1301
1302 pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5));
1303 } else {
1304 /* Otherwise, it's generic subject to replication */
1305
1306 union util_color out = { 0 };
1307 unsigned size = util_format_get_blocksize(format);
1308
1309 util_pack_color(color->f, format, &out);
1310
1311 if (size == 1) {
1312 unsigned b = out.ui[0];
1313 unsigned s = b | (b << 8);
1314 pan_pack_color_32(packed, s | (s << 16));
1315 } else if (size == 2)
1316 pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16));
1317 else if (size == 3 || size == 4)
1318 pan_pack_color_32(packed, out.ui[0]);
1319 else if (size == 6)
1320 pan_pack_color_64(packed, out.ui[0], out.ui[1] | (out.ui[1] << 16)); /* RGB16F -- RGBB */
1321 else if (size == 8)
1322 pan_pack_color_64(packed, out.ui[0], out.ui[1]);
1323 else if (size == 16)
1324 memcpy(packed, out.ui, 16);
1325 else
1326 unreachable("Unknown generic format size packing clear colour");
1327 }
1328 }
1329
1330 void
1331 panfrost_batch_clear(struct panfrost_batch *batch,
1332 unsigned buffers,
1333 const union pipe_color_union *color,
1334 double depth, unsigned stencil)
1335 {
1336 struct panfrost_context *ctx = batch->ctx;
1337
1338 if (buffers & PIPE_CLEAR_COLOR) {
1339 for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) {
1340 if (!(buffers & (PIPE_CLEAR_COLOR0 << i)))
1341 continue;
1342
1343 enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format;
1344 pan_pack_color(batch->clear_color[i], color, format);
1345 }
1346 }
1347
1348 if (buffers & PIPE_CLEAR_DEPTH) {
1349 batch->clear_depth = depth;
1350 }
1351
1352 if (buffers & PIPE_CLEAR_STENCIL) {
1353 batch->clear_stencil = stencil;
1354 }
1355
1356 batch->clear |= buffers;
1357
1358 /* Clearing affects the entire framebuffer (by definition -- this is
1359 * the Gallium clear callback, which clears the whole framebuffer. If
1360 * the scissor test were enabled from the GL side, the gallium frontend
1361 * would emit a quad instead and we wouldn't go down this code path) */
1362
1363 panfrost_batch_union_scissor(batch, 0, 0,
1364 ctx->pipe_framebuffer.width,
1365 ctx->pipe_framebuffer.height);
1366 }
1367
1368 static bool
1369 panfrost_batch_compare(const void *a, const void *b)
1370 {
1371 return util_framebuffer_state_equal(a, b);
1372 }
1373
1374 static uint32_t
1375 panfrost_batch_hash(const void *key)
1376 {
1377 return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state));
1378 }
1379
1380 /* Given a new bounding rectangle (scissor), let the job cover the union of the
1381 * new and old bounding rectangles */
1382
1383 void
1384 panfrost_batch_union_scissor(struct panfrost_batch *batch,
1385 unsigned minx, unsigned miny,
1386 unsigned maxx, unsigned maxy)
1387 {
1388 batch->minx = MIN2(batch->minx, minx);
1389 batch->miny = MIN2(batch->miny, miny);
1390 batch->maxx = MAX2(batch->maxx, maxx);
1391 batch->maxy = MAX2(batch->maxy, maxy);
1392 }
1393
1394 void
1395 panfrost_batch_intersection_scissor(struct panfrost_batch *batch,
1396 unsigned minx, unsigned miny,
1397 unsigned maxx, unsigned maxy)
1398 {
1399 batch->minx = MAX2(batch->minx, minx);
1400 batch->miny = MAX2(batch->miny, miny);
1401 batch->maxx = MIN2(batch->maxx, maxx);
1402 batch->maxy = MIN2(batch->maxy, maxy);
1403 }
1404
1405 /* Are we currently rendering to the dev (rather than an FBO)? */
1406
1407 bool
1408 panfrost_batch_is_scanout(struct panfrost_batch *batch)
1409 {
1410 /* If there is no color buffer, it's an FBO */
1411 if (batch->key.nr_cbufs != 1)
1412 return false;
1413
1414 /* If we're too early that no framebuffer was sent, it's scanout */
1415 if (!batch->key.cbufs[0])
1416 return true;
1417
1418 return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET ||
1419 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT ||
1420 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED;
1421 }
1422
1423 void
1424 panfrost_batch_init(struct panfrost_context *ctx)
1425 {
1426 ctx->batches = _mesa_hash_table_create(ctx,
1427 panfrost_batch_hash,
1428 panfrost_batch_compare);
1429 ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer,
1430 _mesa_key_pointer_equal);
1431 }