panfrost: Introduce invisible pool
[mesa.git] / src / gallium / drivers / panfrost / pan_job.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig
3 * Copyright (C) 2014-2017 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include <assert.h>
27
28 #include "drm-uapi/panfrost_drm.h"
29
30 #include "pan_bo.h"
31 #include "pan_context.h"
32 #include "util/hash_table.h"
33 #include "util/ralloc.h"
34 #include "util/format/u_format.h"
35 #include "util/u_pack_color.h"
36 #include "util/rounding.h"
37 #include "pan_util.h"
38 #include "pan_blending.h"
39 #include "decode.h"
40 #include "panfrost-quirks.h"
41
42 /* panfrost_bo_access is here to help us keep track of batch accesses to BOs
43 * and build a proper dependency graph such that batches can be pipelined for
44 * better GPU utilization.
45 *
46 * Each accessed BO has a corresponding entry in the ->accessed_bos hash table.
47 * A BO is either being written or read at any time (see if writer != NULL).
48 * When the last access is a write, the batch writing the BO might have read
49 * dependencies (readers that have not been executed yet and want to read the
50 * previous BO content), and when the last access is a read, all readers might
51 * depend on another batch to push its results to memory. That's what the
52 * readers/writers keep track off.
53 * There can only be one writer at any given time, if a new batch wants to
54 * write to the same BO, a dependency will be added between the new writer and
55 * the old writer (at the batch level), and panfrost_bo_access->writer will be
56 * updated to point to the new writer.
57 */
58 struct panfrost_bo_access {
59 struct util_dynarray readers;
60 struct panfrost_batch_fence *writer;
61 };
62
63 static struct panfrost_batch_fence *
64 panfrost_create_batch_fence(struct panfrost_batch *batch)
65 {
66 struct panfrost_batch_fence *fence;
67
68 fence = rzalloc(NULL, struct panfrost_batch_fence);
69 assert(fence);
70 pipe_reference_init(&fence->reference, 1);
71 fence->batch = batch;
72
73 return fence;
74 }
75
76 static void
77 panfrost_free_batch_fence(struct panfrost_batch_fence *fence)
78 {
79 ralloc_free(fence);
80 }
81
82 void
83 panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence)
84 {
85 if (pipe_reference(&fence->reference, NULL))
86 panfrost_free_batch_fence(fence);
87 }
88
89 void
90 panfrost_batch_fence_reference(struct panfrost_batch_fence *fence)
91 {
92 pipe_reference(NULL, &fence->reference);
93 }
94
95 static void
96 panfrost_batch_add_fbo_bos(struct panfrost_batch *batch);
97
98 static struct panfrost_batch *
99 panfrost_create_batch(struct panfrost_context *ctx,
100 const struct pipe_framebuffer_state *key)
101 {
102 struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch);
103 struct panfrost_device *dev = pan_device(ctx->base.screen);
104
105 batch->ctx = ctx;
106
107 batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer,
108 _mesa_key_pointer_equal);
109
110 batch->minx = batch->miny = ~0;
111 batch->maxx = batch->maxy = 0;
112
113 batch->out_sync = panfrost_create_batch_fence(batch);
114 util_copy_framebuffer_state(&batch->key, key);
115
116 /* Preallocate the main pool, since every batch has at least one job
117 * structure so it will be used */
118 batch->pool = panfrost_create_pool(batch, dev, 0, true);
119
120 /* Don't preallocate the invisible pool, since not every batch will use
121 * the pre-allocation, particularly if the varyings are larger than the
122 * preallocation and a reallocation is needed after anyway. */
123 batch->invisible_pool =
124 panfrost_create_pool(batch, dev, PAN_BO_INVISIBLE, false);
125
126 panfrost_batch_add_fbo_bos(batch);
127
128 return batch;
129 }
130
131 static void
132 panfrost_freeze_batch(struct panfrost_batch *batch)
133 {
134 struct panfrost_context *ctx = batch->ctx;
135 struct hash_entry *entry;
136
137 /* Remove the entry in the FBO -> batch hash table if the batch
138 * matches and drop the context reference. This way, next draws/clears
139 * targeting this FBO will trigger the creation of a new batch.
140 */
141 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
142 if (entry && entry->data == batch)
143 _mesa_hash_table_remove(ctx->batches, entry);
144
145 if (ctx->batch == batch)
146 ctx->batch = NULL;
147 }
148
149 #ifdef PAN_BATCH_DEBUG
150 static bool panfrost_batch_is_frozen(struct panfrost_batch *batch)
151 {
152 struct panfrost_context *ctx = batch->ctx;
153 struct hash_entry *entry;
154
155 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
156 if (entry && entry->data == batch)
157 return false;
158
159 if (ctx->batch == batch)
160 return false;
161
162 return true;
163 }
164 #endif
165
166 static void
167 panfrost_free_batch(struct panfrost_batch *batch)
168 {
169 if (!batch)
170 return;
171
172 #ifdef PAN_BATCH_DEBUG
173 assert(panfrost_batch_is_frozen(batch));
174 #endif
175
176 hash_table_foreach(batch->bos, entry)
177 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
178
179 hash_table_foreach(batch->pool.bos, entry)
180 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
181
182 hash_table_foreach(batch->invisible_pool.bos, entry)
183 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
184
185 util_dynarray_foreach(&batch->dependencies,
186 struct panfrost_batch_fence *, dep) {
187 panfrost_batch_fence_unreference(*dep);
188 }
189
190 /* The out_sync fence lifetime is different from the the batch one
191 * since other batches might want to wait on a fence of already
192 * submitted/signaled batch. All we need to do here is make sure the
193 * fence does not point to an invalid batch, which the core will
194 * interpret as 'batch is already submitted'.
195 */
196 batch->out_sync->batch = NULL;
197 panfrost_batch_fence_unreference(batch->out_sync);
198
199 util_unreference_framebuffer_state(&batch->key);
200 ralloc_free(batch);
201 }
202
203 #ifdef PAN_BATCH_DEBUG
204 static bool
205 panfrost_dep_graph_contains_batch(struct panfrost_batch *root,
206 struct panfrost_batch *batch)
207 {
208 if (!root)
209 return false;
210
211 util_dynarray_foreach(&root->dependencies,
212 struct panfrost_batch_fence *, dep) {
213 if ((*dep)->batch == batch ||
214 panfrost_dep_graph_contains_batch((*dep)->batch, batch))
215 return true;
216 }
217
218 return false;
219 }
220 #endif
221
222 static void
223 panfrost_batch_add_dep(struct panfrost_batch *batch,
224 struct panfrost_batch_fence *newdep)
225 {
226 if (batch == newdep->batch)
227 return;
228
229 /* We might want to turn ->dependencies into a set if the number of
230 * deps turns out to be big enough to make this 'is dep already there'
231 * search inefficient.
232 */
233 util_dynarray_foreach(&batch->dependencies,
234 struct panfrost_batch_fence *, dep) {
235 if (*dep == newdep)
236 return;
237 }
238
239 #ifdef PAN_BATCH_DEBUG
240 /* Make sure the dependency graph is acyclic. */
241 assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch));
242 #endif
243
244 panfrost_batch_fence_reference(newdep);
245 util_dynarray_append(&batch->dependencies,
246 struct panfrost_batch_fence *, newdep);
247
248 /* We now have a batch depending on us, let's make sure new draw/clear
249 * calls targeting the same FBO use a new batch object.
250 */
251 if (newdep->batch)
252 panfrost_freeze_batch(newdep->batch);
253 }
254
255 static struct panfrost_batch *
256 panfrost_get_batch(struct panfrost_context *ctx,
257 const struct pipe_framebuffer_state *key)
258 {
259 /* Lookup the job first */
260 struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key);
261
262 if (entry)
263 return entry->data;
264
265 /* Otherwise, let's create a job */
266
267 struct panfrost_batch *batch = panfrost_create_batch(ctx, key);
268
269 /* Save the created job */
270 _mesa_hash_table_insert(ctx->batches, &batch->key, batch);
271
272 return batch;
273 }
274
275 /* Get the job corresponding to the FBO we're currently rendering into */
276
277 struct panfrost_batch *
278 panfrost_get_batch_for_fbo(struct panfrost_context *ctx)
279 {
280 /* If we're wallpapering, we special case to workaround
281 * u_blitter abuse */
282
283 if (ctx->wallpaper_batch)
284 return ctx->wallpaper_batch;
285
286 /* If we already began rendering, use that */
287
288 if (ctx->batch) {
289 assert(util_framebuffer_state_equal(&ctx->batch->key,
290 &ctx->pipe_framebuffer));
291 return ctx->batch;
292 }
293
294 /* If not, look up the job */
295 struct panfrost_batch *batch = panfrost_get_batch(ctx,
296 &ctx->pipe_framebuffer);
297
298 /* Set this job as the current FBO job. Will be reset when updating the
299 * FB state and when submitting or releasing a job.
300 */
301 ctx->batch = batch;
302 return batch;
303 }
304
305 struct panfrost_batch *
306 panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx)
307 {
308 struct panfrost_batch *batch;
309
310 batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
311
312 /* The batch has no draw/clear queued, let's return it directly.
313 * Note that it's perfectly fine to re-use a batch with an
314 * existing clear, we'll just update it with the new clear request.
315 */
316 if (!batch->scoreboard.first_job)
317 return batch;
318
319 /* Otherwise, we need to freeze the existing one and instantiate a new
320 * one.
321 */
322 panfrost_freeze_batch(batch);
323 return panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
324 }
325
326 static void
327 panfrost_bo_access_gc_fences(struct panfrost_context *ctx,
328 struct panfrost_bo_access *access,
329 const struct panfrost_bo *bo)
330 {
331 if (access->writer) {
332 panfrost_batch_fence_unreference(access->writer);
333 access->writer = NULL;
334 }
335
336 struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers);
337 struct panfrost_batch_fence **new_readers = readers_array;
338
339 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
340 reader) {
341 if (!(*reader))
342 continue;
343
344 panfrost_batch_fence_unreference(*reader);
345 *reader = NULL;
346 }
347
348 if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *,
349 new_readers - readers_array) &&
350 new_readers != readers_array)
351 unreachable("Invalid dynarray access->readers");
352 }
353
354 /* Collect signaled fences to keep the kernel-side syncobj-map small. The
355 * idea is to collect those signaled fences at the end of each flush_all
356 * call. This function is likely to collect only fences from previous
357 * batch flushes not the one that have just have just been submitted and
358 * are probably still in flight when we trigger the garbage collection.
359 * Anyway, we need to do this garbage collection at some point if we don't
360 * want the BO access map to keep invalid entries around and retain
361 * syncobjs forever.
362 */
363 static void
364 panfrost_gc_fences(struct panfrost_context *ctx)
365 {
366 hash_table_foreach(ctx->accessed_bos, entry) {
367 struct panfrost_bo_access *access = entry->data;
368
369 assert(access);
370 panfrost_bo_access_gc_fences(ctx, access, entry->key);
371 if (!util_dynarray_num_elements(&access->readers,
372 struct panfrost_batch_fence *) &&
373 !access->writer) {
374 ralloc_free(access);
375 _mesa_hash_table_remove(ctx->accessed_bos, entry);
376 }
377 }
378 }
379
380 #ifdef PAN_BATCH_DEBUG
381 static bool
382 panfrost_batch_in_readers(struct panfrost_batch *batch,
383 struct panfrost_bo_access *access)
384 {
385 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
386 reader) {
387 if (*reader && (*reader)->batch == batch)
388 return true;
389 }
390
391 return false;
392 }
393 #endif
394
395 static void
396 panfrost_batch_update_bo_access(struct panfrost_batch *batch,
397 struct panfrost_bo *bo, bool writes,
398 bool already_accessed)
399 {
400 struct panfrost_context *ctx = batch->ctx;
401 struct panfrost_bo_access *access;
402 bool old_writes = false;
403 struct hash_entry *entry;
404
405 entry = _mesa_hash_table_search(ctx->accessed_bos, bo);
406 access = entry ? entry->data : NULL;
407 if (access) {
408 old_writes = access->writer != NULL;
409 } else {
410 access = rzalloc(ctx, struct panfrost_bo_access);
411 util_dynarray_init(&access->readers, access);
412 _mesa_hash_table_insert(ctx->accessed_bos, bo, access);
413 /* We are the first to access this BO, let's initialize
414 * old_writes to our own access type in that case.
415 */
416 old_writes = writes;
417 }
418
419 assert(access);
420
421 if (writes && !old_writes) {
422 /* Previous access was a read and we want to write this BO.
423 * We first need to add explicit deps between our batch and
424 * the previous readers.
425 */
426 util_dynarray_foreach(&access->readers,
427 struct panfrost_batch_fence *, reader) {
428 /* We were already reading the BO, no need to add a dep
429 * on ourself (the acyclic check would complain about
430 * that).
431 */
432 if (!(*reader) || (*reader)->batch == batch)
433 continue;
434
435 panfrost_batch_add_dep(batch, *reader);
436 }
437 panfrost_batch_fence_reference(batch->out_sync);
438
439 if (access->writer)
440 panfrost_batch_fence_unreference(access->writer);
441
442 /* We now are the new writer. */
443 access->writer = batch->out_sync;
444
445 /* Release the previous readers and reset the readers array. */
446 util_dynarray_foreach(&access->readers,
447 struct panfrost_batch_fence *,
448 reader) {
449 if (!*reader)
450 continue;
451 panfrost_batch_fence_unreference(*reader);
452 }
453
454 util_dynarray_clear(&access->readers);
455 } else if (writes && old_writes) {
456 /* First check if we were the previous writer, in that case
457 * there's nothing to do. Otherwise we need to add a
458 * dependency between the new writer and the old one.
459 */
460 if (access->writer != batch->out_sync) {
461 if (access->writer) {
462 panfrost_batch_add_dep(batch, access->writer);
463 panfrost_batch_fence_unreference(access->writer);
464 }
465 panfrost_batch_fence_reference(batch->out_sync);
466 access->writer = batch->out_sync;
467 }
468 } else if (!writes && old_writes) {
469 /* First check if we were the previous writer, in that case
470 * we want to keep the access type unchanged, as a write is
471 * more constraining than a read.
472 */
473 if (access->writer != batch->out_sync) {
474 /* Add a dependency on the previous writer. */
475 panfrost_batch_add_dep(batch, access->writer);
476
477 /* The previous access was a write, there's no reason
478 * to have entries in the readers array.
479 */
480 assert(!util_dynarray_num_elements(&access->readers,
481 struct panfrost_batch_fence *));
482
483 /* Add ourselves to the readers array. */
484 panfrost_batch_fence_reference(batch->out_sync);
485 util_dynarray_append(&access->readers,
486 struct panfrost_batch_fence *,
487 batch->out_sync);
488 access->writer = NULL;
489 }
490 } else {
491 /* We already accessed this BO before, so we should already be
492 * in the reader array.
493 */
494 #ifdef PAN_BATCH_DEBUG
495 if (already_accessed) {
496 assert(panfrost_batch_in_readers(batch, access));
497 return;
498 }
499 #endif
500
501 /* Previous access was a read and we want to read this BO.
502 * Add ourselves to the readers array and add a dependency on
503 * the previous writer if any.
504 */
505 panfrost_batch_fence_reference(batch->out_sync);
506 util_dynarray_append(&access->readers,
507 struct panfrost_batch_fence *,
508 batch->out_sync);
509
510 if (access->writer)
511 panfrost_batch_add_dep(batch, access->writer);
512 }
513 }
514
515 void
516 panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo,
517 uint32_t flags)
518 {
519 if (!bo)
520 return;
521
522 struct hash_entry *entry;
523 uint32_t old_flags = 0;
524
525 entry = _mesa_hash_table_search(batch->bos, bo);
526 if (!entry) {
527 entry = _mesa_hash_table_insert(batch->bos, bo,
528 (void *)(uintptr_t)flags);
529 panfrost_bo_reference(bo);
530 } else {
531 old_flags = (uintptr_t)entry->data;
532
533 /* All batches have to agree on the shared flag. */
534 assert((old_flags & PAN_BO_ACCESS_SHARED) ==
535 (flags & PAN_BO_ACCESS_SHARED));
536 }
537
538 assert(entry);
539
540 if (old_flags == flags)
541 return;
542
543 flags |= old_flags;
544 entry->data = (void *)(uintptr_t)flags;
545
546 /* If this is not a shared BO, we don't really care about dependency
547 * tracking.
548 */
549 if (!(flags & PAN_BO_ACCESS_SHARED))
550 return;
551
552 /* All dependencies should have been flushed before we execute the
553 * wallpaper draw, so it should be harmless to skip the
554 * update_bo_access() call.
555 */
556 if (batch == batch->ctx->wallpaper_batch)
557 return;
558
559 assert(flags & PAN_BO_ACCESS_RW);
560 panfrost_batch_update_bo_access(batch, bo, flags & PAN_BO_ACCESS_WRITE,
561 old_flags != 0);
562 }
563
564 static void
565 panfrost_batch_add_resource_bos(struct panfrost_batch *batch,
566 struct panfrost_resource *rsrc,
567 uint32_t flags)
568 {
569 panfrost_batch_add_bo(batch, rsrc->bo, flags);
570
571 for (unsigned i = 0; i < MAX_MIP_LEVELS; i++)
572 if (rsrc->slices[i].checksum_bo)
573 panfrost_batch_add_bo(batch, rsrc->slices[i].checksum_bo, flags);
574
575 if (rsrc->separate_stencil)
576 panfrost_batch_add_bo(batch, rsrc->separate_stencil->bo, flags);
577 }
578
579 static void
580 panfrost_batch_add_fbo_bos(struct panfrost_batch *batch)
581 {
582 uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE |
583 PAN_BO_ACCESS_VERTEX_TILER |
584 PAN_BO_ACCESS_FRAGMENT;
585
586 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
587 struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture);
588 panfrost_batch_add_resource_bos(batch, rsrc, flags);
589 }
590
591 if (batch->key.zsbuf) {
592 struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture);
593 panfrost_batch_add_resource_bos(batch, rsrc, flags);
594 }
595 }
596
597 struct panfrost_bo *
598 panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size,
599 uint32_t create_flags, uint32_t access_flags)
600 {
601 struct panfrost_bo *bo;
602
603 bo = panfrost_bo_create(pan_device(batch->ctx->base.screen), size,
604 create_flags);
605 panfrost_batch_add_bo(batch, bo, access_flags);
606
607 /* panfrost_batch_add_bo() has retained a reference and
608 * panfrost_bo_create() initialize the refcnt to 1, so let's
609 * unreference the BO here so it gets released when the batch is
610 * destroyed (unless it's retained by someone else in the meantime).
611 */
612 panfrost_bo_unreference(bo);
613 return bo;
614 }
615
616 /* Returns the polygon list's GPU address if available, or otherwise allocates
617 * the polygon list. It's perfectly fast to use allocate/free BO directly,
618 * since we'll hit the BO cache and this is one-per-batch anyway. */
619
620 mali_ptr
621 panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size)
622 {
623 if (batch->polygon_list) {
624 assert(batch->polygon_list->size >= size);
625 } else {
626 /* Create the BO as invisible, as there's no reason to map */
627 size = util_next_power_of_two(size);
628
629 batch->polygon_list = panfrost_batch_create_bo(batch, size,
630 PAN_BO_INVISIBLE,
631 PAN_BO_ACCESS_PRIVATE |
632 PAN_BO_ACCESS_RW |
633 PAN_BO_ACCESS_VERTEX_TILER |
634 PAN_BO_ACCESS_FRAGMENT);
635 }
636
637 return batch->polygon_list->gpu;
638 }
639
640 struct panfrost_bo *
641 panfrost_batch_get_scratchpad(struct panfrost_batch *batch,
642 unsigned shift,
643 unsigned thread_tls_alloc,
644 unsigned core_count)
645 {
646 unsigned size = panfrost_get_total_stack_size(shift,
647 thread_tls_alloc,
648 core_count);
649
650 if (batch->scratchpad) {
651 assert(batch->scratchpad->size >= size);
652 } else {
653 batch->scratchpad = panfrost_batch_create_bo(batch, size,
654 PAN_BO_INVISIBLE,
655 PAN_BO_ACCESS_PRIVATE |
656 PAN_BO_ACCESS_RW |
657 PAN_BO_ACCESS_VERTEX_TILER |
658 PAN_BO_ACCESS_FRAGMENT);
659 }
660
661 return batch->scratchpad;
662 }
663
664 struct panfrost_bo *
665 panfrost_batch_get_shared_memory(struct panfrost_batch *batch,
666 unsigned size,
667 unsigned workgroup_count)
668 {
669 if (batch->shared_memory) {
670 assert(batch->shared_memory->size >= size);
671 } else {
672 batch->shared_memory = panfrost_batch_create_bo(batch, size,
673 PAN_BO_INVISIBLE,
674 PAN_BO_ACCESS_PRIVATE |
675 PAN_BO_ACCESS_RW |
676 PAN_BO_ACCESS_VERTEX_TILER);
677 }
678
679 return batch->shared_memory;
680 }
681
682 struct panfrost_bo *
683 panfrost_batch_get_tiler_heap(struct panfrost_batch *batch)
684 {
685 if (batch->tiler_heap)
686 return batch->tiler_heap;
687
688 batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096,
689 PAN_BO_INVISIBLE |
690 PAN_BO_GROWABLE,
691 PAN_BO_ACCESS_PRIVATE |
692 PAN_BO_ACCESS_RW |
693 PAN_BO_ACCESS_VERTEX_TILER |
694 PAN_BO_ACCESS_FRAGMENT);
695 assert(batch->tiler_heap);
696 return batch->tiler_heap;
697 }
698
699 mali_ptr
700 panfrost_batch_get_tiler_meta(struct panfrost_batch *batch, unsigned vertex_count)
701 {
702 if (!vertex_count)
703 return 0;
704
705 if (batch->tiler_meta)
706 return batch->tiler_meta;
707
708 struct panfrost_bo *tiler_heap;
709 tiler_heap = panfrost_batch_get_tiler_heap(batch);
710
711 struct bifrost_tiler_heap_meta tiler_heap_meta = {
712 .heap_size = tiler_heap->size,
713 .tiler_heap_start = tiler_heap->gpu,
714 .tiler_heap_free = tiler_heap->gpu,
715 .tiler_heap_end = tiler_heap->gpu + tiler_heap->size,
716 .unk1 = 0x1,
717 .unk7e007e = 0x7e007e,
718 };
719
720 struct bifrost_tiler_meta tiler_meta = {
721 .hierarchy_mask = 0x28,
722 .flags = 0x0,
723 .width = MALI_POSITIVE(batch->key.width),
724 .height = MALI_POSITIVE(batch->key.height),
725 .tiler_heap_meta = panfrost_pool_upload(&batch->pool, &tiler_heap_meta, sizeof(tiler_heap_meta)),
726 };
727
728 batch->tiler_meta = panfrost_pool_upload(&batch->pool, &tiler_meta, sizeof(tiler_meta));
729 return batch->tiler_meta;
730 }
731
732 struct panfrost_bo *
733 panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch)
734 {
735 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
736
737 uint32_t create_flags = 0;
738
739 if (batch->tiler_dummy)
740 return batch->tiler_dummy;
741
742 if (!(dev->quirks & MIDGARD_NO_HIER_TILING))
743 create_flags = PAN_BO_INVISIBLE;
744
745 batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096,
746 create_flags,
747 PAN_BO_ACCESS_PRIVATE |
748 PAN_BO_ACCESS_RW |
749 PAN_BO_ACCESS_VERTEX_TILER |
750 PAN_BO_ACCESS_FRAGMENT);
751 assert(batch->tiler_dummy);
752 return batch->tiler_dummy;
753 }
754
755 mali_ptr
756 panfrost_batch_reserve_framebuffer(struct panfrost_batch *batch)
757 {
758 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
759
760 /* If we haven't, reserve space for the framebuffer */
761
762 if (!batch->framebuffer.gpu) {
763 unsigned size = (dev->quirks & MIDGARD_SFBD) ?
764 sizeof(struct mali_single_framebuffer) :
765 sizeof(struct mali_framebuffer);
766
767 batch->framebuffer = panfrost_pool_alloc(&batch->pool, size);
768
769 /* Tag the pointer */
770 if (!(dev->quirks & MIDGARD_SFBD))
771 batch->framebuffer.gpu |= MALI_MFBD;
772 }
773
774 return batch->framebuffer.gpu;
775 }
776
777
778
779 static void
780 panfrost_load_surface(struct panfrost_batch *batch, struct pipe_surface *surf, unsigned loc)
781 {
782 if (!surf)
783 return;
784
785 struct panfrost_resource *rsrc = pan_resource(surf->texture);
786 unsigned level = surf->u.tex.level;
787
788 if (!rsrc->slices[level].initialized)
789 return;
790
791 if (!rsrc->damage.inverted_len)
792 return;
793
794 /* Clamp the rendering area to the damage extent. The
795 * KHR_partial_update() spec states that trying to render outside of
796 * the damage region is "undefined behavior", so we should be safe.
797 */
798 unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx);
799 unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny);
800
801 if (damage_width && damage_height) {
802 panfrost_batch_intersection_scissor(batch,
803 rsrc->damage.extent.minx,
804 rsrc->damage.extent.miny,
805 rsrc->damage.extent.maxx,
806 rsrc->damage.extent.maxy);
807 }
808
809 /* XXX: Native blits on Bifrost */
810 if (batch->pool.dev->quirks & IS_BIFROST) {
811 if (loc != FRAG_RESULT_DATA0)
812 return;
813
814 /* XXX: why align on *twice* the tile length? */
815 batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1);
816 batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1);
817 batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2),
818 rsrc->base.width0);
819 batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2),
820 rsrc->base.height0);
821
822 struct pipe_box rect;
823 batch->ctx->wallpaper_batch = batch;
824 u_box_2d(batch->minx, batch->miny, batch->maxx - batch->minx,
825 batch->maxy - batch->miny, &rect);
826 panfrost_blit_wallpaper(batch->ctx, &rect);
827 batch->ctx->wallpaper_batch = NULL;
828 return;
829 }
830
831 enum pipe_format format = rsrc->base.format;
832
833 if (loc == FRAG_RESULT_DEPTH) {
834 if (!util_format_has_depth(util_format_description(format)))
835 return;
836
837 format = util_format_get_depth_only(format);
838 } else if (loc == FRAG_RESULT_STENCIL) {
839 if (!util_format_has_stencil(util_format_description(format)))
840 return;
841
842 if (rsrc->separate_stencil) {
843 rsrc = rsrc->separate_stencil;
844 format = rsrc->base.format;
845 }
846
847 format = util_format_stencil_only(format);
848 }
849
850 enum mali_texture_dimension dim =
851 panfrost_translate_texture_dimension(rsrc->base.target);
852
853 struct pan_image img = {
854 .width0 = rsrc->base.width0,
855 .height0 = rsrc->base.height0,
856 .depth0 = rsrc->base.depth0,
857 .format = format,
858 .dim = dim,
859 .modifier = rsrc->modifier,
860 .array_size = rsrc->base.array_size,
861 .first_level = level,
862 .last_level = level,
863 .first_layer = surf->u.tex.first_layer,
864 .last_layer = surf->u.tex.last_layer,
865 .nr_samples = rsrc->base.nr_samples,
866 .cubemap_stride = rsrc->cubemap_stride,
867 .bo = rsrc->bo,
868 .slices = rsrc->slices
869 };
870
871 mali_ptr blend_shader = 0;
872
873 if (loc >= FRAG_RESULT_DATA0 && !panfrost_can_fixed_blend(rsrc->base.format)) {
874 struct panfrost_blend_shader *b =
875 panfrost_get_blend_shader(batch->ctx, &batch->ctx->blit_blend, rsrc->base.format, loc - FRAG_RESULT_DATA0);
876
877 struct panfrost_bo *bo = panfrost_batch_create_bo(batch, b->size,
878 PAN_BO_EXECUTE,
879 PAN_BO_ACCESS_PRIVATE |
880 PAN_BO_ACCESS_READ |
881 PAN_BO_ACCESS_FRAGMENT);
882
883 memcpy(bo->cpu, b->buffer, b->size);
884 assert(b->work_count <= 4);
885
886 blend_shader = bo->gpu | b->first_tag;
887 }
888
889 struct panfrost_transfer transfer = panfrost_pool_alloc(&batch->pool,
890 4 * 4 * 6 * rsrc->damage.inverted_len);
891
892 for (unsigned i = 0; i < rsrc->damage.inverted_len; ++i) {
893 float *o = (float *) (transfer.cpu + (4 * 4 * 6 * i));
894 struct pan_rect r = rsrc->damage.inverted_rects[i];
895
896 float rect[] = {
897 r.minx, rsrc->base.height0 - r.miny, 0.0, 1.0,
898 r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
899 r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
900
901 r.maxx, rsrc->base.height0 - r.miny, 0.0, 1.0,
902 r.minx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
903 r.maxx, rsrc->base.height0 - r.maxy, 0.0, 1.0,
904 };
905
906 assert(sizeof(rect) == 4 * 4 * 6);
907 memcpy(o, rect, sizeof(rect));
908 }
909
910 panfrost_load_midg(&batch->pool, &batch->scoreboard,
911 blend_shader,
912 batch->framebuffer.gpu, transfer.gpu,
913 rsrc->damage.inverted_len * 6,
914 &img, loc);
915
916 panfrost_batch_add_bo(batch, batch->pool.dev->blit_shaders.bo,
917 PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | PAN_BO_ACCESS_FRAGMENT);
918 }
919
920 static void
921 panfrost_batch_draw_wallpaper(struct panfrost_batch *batch)
922 {
923 panfrost_batch_reserve_framebuffer(batch);
924
925 /* Assume combined. If either depth or stencil is written, they will
926 * both be written so we need to be careful for reloading */
927
928 unsigned draws = batch->draws;
929
930 if (draws & PIPE_CLEAR_DEPTHSTENCIL)
931 draws |= PIPE_CLEAR_DEPTHSTENCIL;
932
933 /* Mask of buffers which need reload since they are not cleared and
934 * they are drawn. (If they are cleared, reload is useless; if they are
935 * not drawn and also not cleared, we can generally omit the attachment
936 * at the framebuffer descriptor level */
937
938 unsigned reload = ~batch->clear & draws;
939
940 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
941 if (reload & (PIPE_CLEAR_COLOR0 << i))
942 panfrost_load_surface(batch, batch->key.cbufs[i], FRAG_RESULT_DATA0 + i);
943 }
944
945 if (reload & PIPE_CLEAR_DEPTH)
946 panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_DEPTH);
947
948 if (reload & PIPE_CLEAR_STENCIL)
949 panfrost_load_surface(batch, batch->key.zsbuf, FRAG_RESULT_STENCIL);
950 }
951
952 static void
953 panfrost_batch_record_bo(struct hash_entry *entry, unsigned *bo_handles, unsigned idx)
954 {
955 struct panfrost_bo *bo = (struct panfrost_bo *)entry->key;
956 uint32_t flags = (uintptr_t)entry->data;
957
958 assert(bo->gem_handle > 0);
959 bo_handles[idx] = bo->gem_handle;
960
961 /* Update the BO access flags so that panfrost_bo_wait() knows
962 * about all pending accesses.
963 * We only keep the READ/WRITE info since this is all the BO
964 * wait logic cares about.
965 * We also preserve existing flags as this batch might not
966 * be the first one to access the BO.
967 */
968 bo->gpu_access |= flags & (PAN_BO_ACCESS_RW);
969 }
970
971 static int
972 panfrost_batch_submit_ioctl(struct panfrost_batch *batch,
973 mali_ptr first_job_desc,
974 uint32_t reqs,
975 uint32_t out_sync)
976 {
977 struct panfrost_context *ctx = batch->ctx;
978 struct pipe_context *gallium = (struct pipe_context *) ctx;
979 struct panfrost_device *dev = pan_device(gallium->screen);
980 struct drm_panfrost_submit submit = {0,};
981 uint32_t *bo_handles;
982 int ret;
983
984 /* If we trace, we always need a syncobj, so make one of our own if we
985 * weren't given one to use. Remember that we did so, so we can free it
986 * after we're done but preventing double-frees if we were given a
987 * syncobj */
988
989 bool our_sync = false;
990
991 if (!out_sync && dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
992 drmSyncobjCreate(dev->fd, 0, &out_sync);
993 our_sync = false;
994 }
995
996 submit.out_sync = out_sync;
997 submit.jc = first_job_desc;
998 submit.requirements = reqs;
999
1000 bo_handles = calloc(batch->pool.bos->entries + batch->invisible_pool.bos->entries + batch->bos->entries, sizeof(*bo_handles));
1001 assert(bo_handles);
1002
1003 hash_table_foreach(batch->bos, entry)
1004 panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
1005
1006 hash_table_foreach(batch->pool.bos, entry)
1007 panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
1008
1009 hash_table_foreach(batch->invisible_pool.bos, entry)
1010 panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++);
1011
1012 submit.bo_handles = (u64) (uintptr_t) bo_handles;
1013 ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit);
1014 free(bo_handles);
1015
1016 if (ret) {
1017 if (dev->debug & PAN_DBG_MSGS)
1018 fprintf(stderr, "Error submitting: %m\n");
1019
1020 return errno;
1021 }
1022
1023 /* Trace the job if we're doing that */
1024 if (dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) {
1025 /* Wait so we can get errors reported back */
1026 drmSyncobjWait(dev->fd, &out_sync, 1,
1027 INT64_MAX, 0, NULL);
1028
1029 /* Trace gets priority over sync */
1030 bool minimal = !(dev->debug & PAN_DBG_TRACE);
1031 pandecode_jc(submit.jc, dev->quirks & IS_BIFROST, dev->gpu_id, minimal);
1032 }
1033
1034 /* Cleanup if we created the syncobj */
1035 if (our_sync)
1036 drmSyncobjDestroy(dev->fd, out_sync);
1037
1038 return 0;
1039 }
1040
1041 /* Submit both vertex/tiler and fragment jobs for a batch, possibly with an
1042 * outsync corresponding to the later of the two (since there will be an
1043 * implicit dep between them) */
1044
1045 static int
1046 panfrost_batch_submit_jobs(struct panfrost_batch *batch, uint32_t out_sync)
1047 {
1048 bool has_draws = batch->scoreboard.first_job;
1049 bool has_frag = batch->scoreboard.tiler_dep || batch->clear;
1050 int ret = 0;
1051
1052 if (has_draws) {
1053 ret = panfrost_batch_submit_ioctl(batch, batch->scoreboard.first_job,
1054 0, has_frag ? 0 : out_sync);
1055 assert(!ret);
1056 }
1057
1058 if (has_frag) {
1059 /* Whether we program the fragment job for draws or not depends
1060 * on whether there is any *tiler* activity (so fragment
1061 * shaders). If there are draws but entirely RASTERIZER_DISCARD
1062 * (say, for transform feedback), we want a fragment job that
1063 * *only* clears, since otherwise the tiler structures will be
1064 * uninitialized leading to faults (or state leaks) */
1065
1066 mali_ptr fragjob = panfrost_fragment_job(batch,
1067 batch->scoreboard.tiler_dep != 0);
1068 ret = panfrost_batch_submit_ioctl(batch, fragjob,
1069 PANFROST_JD_REQ_FS, out_sync);
1070 assert(!ret);
1071 }
1072
1073 return ret;
1074 }
1075
1076 static void
1077 panfrost_batch_submit(struct panfrost_batch *batch, uint32_t out_sync)
1078 {
1079 assert(batch);
1080 struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
1081
1082 /* Submit the dependencies first. Don't pass along the out_sync since
1083 * they are guaranteed to terminate sooner */
1084 util_dynarray_foreach(&batch->dependencies,
1085 struct panfrost_batch_fence *, dep) {
1086 if ((*dep)->batch)
1087 panfrost_batch_submit((*dep)->batch, 0);
1088 }
1089
1090 int ret;
1091
1092 /* Nothing to do! */
1093 if (!batch->scoreboard.first_job && !batch->clear) {
1094 if (out_sync)
1095 drmSyncobjSignal(dev->fd, &out_sync, 1);
1096 goto out;
1097 }
1098
1099 panfrost_batch_draw_wallpaper(batch);
1100
1101 /* Now that all draws are in, we can finally prepare the
1102 * FBD for the batch */
1103
1104 if (batch->framebuffer.gpu && batch->scoreboard.first_job) {
1105 struct panfrost_context *ctx = batch->ctx;
1106 struct pipe_context *gallium = (struct pipe_context *) ctx;
1107 struct panfrost_device *dev = pan_device(gallium->screen);
1108
1109 if (dev->quirks & MIDGARD_SFBD)
1110 panfrost_attach_sfbd(batch, ~0);
1111 else
1112 panfrost_attach_mfbd(batch, ~0);
1113 }
1114
1115 mali_ptr polygon_list = panfrost_batch_get_polygon_list(batch,
1116 MALI_TILER_MINIMUM_HEADER_SIZE);
1117
1118 panfrost_scoreboard_initialize_tiler(&batch->pool, &batch->scoreboard, polygon_list);
1119
1120 ret = panfrost_batch_submit_jobs(batch, out_sync);
1121
1122 if (ret && dev->debug & PAN_DBG_MSGS)
1123 fprintf(stderr, "panfrost_batch_submit failed: %d\n", ret);
1124
1125 /* We must reset the damage info of our render targets here even
1126 * though a damage reset normally happens when the DRI layer swaps
1127 * buffers. That's because there can be implicit flushes the GL
1128 * app is not aware of, and those might impact the damage region: if
1129 * part of the damaged portion is drawn during those implicit flushes,
1130 * you have to reload those areas before next draws are pushed, and
1131 * since the driver can't easily know what's been modified by the draws
1132 * it flushed, the easiest solution is to reload everything.
1133 */
1134 for (unsigned i = 0; i < batch->key.nr_cbufs; i++) {
1135 if (!batch->key.cbufs[i])
1136 continue;
1137
1138 panfrost_resource_set_damage_region(NULL,
1139 batch->key.cbufs[i]->texture, 0, NULL);
1140 }
1141
1142 out:
1143 panfrost_freeze_batch(batch);
1144 panfrost_free_batch(batch);
1145 }
1146
1147 /* Submit all batches, applying the out_sync to the currently bound batch */
1148
1149 void
1150 panfrost_flush_all_batches(struct panfrost_context *ctx, uint32_t out_sync)
1151 {
1152 struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx);
1153 panfrost_batch_submit(batch, out_sync);
1154
1155 hash_table_foreach(ctx->batches, hentry) {
1156 struct panfrost_batch *batch = hentry->data;
1157 assert(batch);
1158
1159 panfrost_batch_submit(batch, 0);
1160 }
1161
1162 assert(!ctx->batches->entries);
1163
1164 /* Collect batch fences before returning */
1165 panfrost_gc_fences(ctx);
1166 }
1167
1168 bool
1169 panfrost_pending_batches_access_bo(struct panfrost_context *ctx,
1170 const struct panfrost_bo *bo)
1171 {
1172 struct panfrost_bo_access *access;
1173 struct hash_entry *hentry;
1174
1175 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1176 access = hentry ? hentry->data : NULL;
1177 if (!access)
1178 return false;
1179
1180 if (access->writer && access->writer->batch)
1181 return true;
1182
1183 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1184 reader) {
1185 if (*reader && (*reader)->batch)
1186 return true;
1187 }
1188
1189 return false;
1190 }
1191
1192 /* We always flush writers. We might also need to flush readers */
1193
1194 void
1195 panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx,
1196 struct panfrost_bo *bo,
1197 bool flush_readers)
1198 {
1199 struct panfrost_bo_access *access;
1200 struct hash_entry *hentry;
1201
1202 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1203 access = hentry ? hentry->data : NULL;
1204 if (!access)
1205 return;
1206
1207 if (access->writer && access->writer->batch)
1208 panfrost_batch_submit(access->writer->batch, 0);
1209
1210 if (!flush_readers)
1211 return;
1212
1213 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1214 reader) {
1215 if (*reader && (*reader)->batch)
1216 panfrost_batch_submit((*reader)->batch, 0);
1217 }
1218 }
1219
1220 void
1221 panfrost_batch_set_requirements(struct panfrost_batch *batch)
1222 {
1223 struct panfrost_context *ctx = batch->ctx;
1224
1225 if (ctx->rasterizer->base.multisample)
1226 batch->requirements |= PAN_REQ_MSAA;
1227
1228 if (ctx->depth_stencil && ctx->depth_stencil->base.depth.writemask) {
1229 batch->requirements |= PAN_REQ_DEPTH_WRITE;
1230 batch->draws |= PIPE_CLEAR_DEPTH;
1231 }
1232
1233 if (ctx->depth_stencil && ctx->depth_stencil->base.stencil[0].enabled)
1234 batch->draws |= PIPE_CLEAR_STENCIL;
1235 }
1236
1237 void
1238 panfrost_batch_adjust_stack_size(struct panfrost_batch *batch)
1239 {
1240 struct panfrost_context *ctx = batch->ctx;
1241
1242 for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) {
1243 struct panfrost_shader_state *ss;
1244
1245 ss = panfrost_get_shader_state(ctx, i);
1246 if (!ss)
1247 continue;
1248
1249 batch->stack_size = MAX2(batch->stack_size, ss->stack_size);
1250 }
1251 }
1252
1253 /* Helper to smear a 32-bit color across 128-bit components */
1254
1255 static void
1256 pan_pack_color_32(uint32_t *packed, uint32_t v)
1257 {
1258 for (unsigned i = 0; i < 4; ++i)
1259 packed[i] = v;
1260 }
1261
1262 static void
1263 pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi)
1264 {
1265 for (unsigned i = 0; i < 4; i += 2) {
1266 packed[i + 0] = lo;
1267 packed[i + 1] = hi;
1268 }
1269 }
1270
1271 static void
1272 pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format)
1273 {
1274 /* Alpha magicked to 1.0 if there is no alpha */
1275
1276 bool has_alpha = util_format_has_alpha(format);
1277 float clear_alpha = has_alpha ? color->f[3] : 1.0f;
1278
1279 /* Packed color depends on the framebuffer format */
1280
1281 const struct util_format_description *desc =
1282 util_format_description(format);
1283
1284 if (util_format_is_rgba8_variant(desc) && desc->colorspace != UTIL_FORMAT_COLORSPACE_SRGB) {
1285 pan_pack_color_32(packed,
1286 ((uint32_t) float_to_ubyte(clear_alpha) << 24) |
1287 ((uint32_t) float_to_ubyte(color->f[2]) << 16) |
1288 ((uint32_t) float_to_ubyte(color->f[1]) << 8) |
1289 ((uint32_t) float_to_ubyte(color->f[0]) << 0));
1290 } else if (format == PIPE_FORMAT_B5G6R5_UNORM) {
1291 /* First, we convert the components to R5, G6, B5 separately */
1292 unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
1293 unsigned g6 = _mesa_roundevenf(SATURATE(color->f[1]) * 63.0);
1294 unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
1295
1296 /* Then we pack into a sparse u32. TODO: Why these shifts? */
1297 pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5));
1298 } else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) {
1299 /* Convert to 4-bits */
1300 unsigned r4 = _mesa_roundevenf(SATURATE(color->f[0]) * 15.0);
1301 unsigned g4 = _mesa_roundevenf(SATURATE(color->f[1]) * 15.0);
1302 unsigned b4 = _mesa_roundevenf(SATURATE(color->f[2]) * 15.0);
1303 unsigned a4 = _mesa_roundevenf(SATURATE(clear_alpha) * 15.0);
1304
1305 /* Pack on *byte* intervals */
1306 pan_pack_color_32(packed, (a4 << 28) | (b4 << 20) | (g4 << 12) | (r4 << 4));
1307 } else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) {
1308 /* Scale as expected but shift oddly */
1309 unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0);
1310 unsigned g5 = _mesa_roundevenf(SATURATE(color->f[1]) * 31.0);
1311 unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0);
1312 unsigned a1 = _mesa_roundevenf(SATURATE(clear_alpha) * 1.0);
1313
1314 pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5));
1315 } else {
1316 /* Otherwise, it's generic subject to replication */
1317
1318 union util_color out = { 0 };
1319 unsigned size = util_format_get_blocksize(format);
1320
1321 util_pack_color(color->f, format, &out);
1322
1323 if (size == 1) {
1324 unsigned b = out.ui[0];
1325 unsigned s = b | (b << 8);
1326 pan_pack_color_32(packed, s | (s << 16));
1327 } else if (size == 2)
1328 pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16));
1329 else if (size == 3 || size == 4)
1330 pan_pack_color_32(packed, out.ui[0]);
1331 else if (size == 6)
1332 pan_pack_color_64(packed, out.ui[0], out.ui[1] | (out.ui[1] << 16)); /* RGB16F -- RGBB */
1333 else if (size == 8)
1334 pan_pack_color_64(packed, out.ui[0], out.ui[1]);
1335 else if (size == 16)
1336 memcpy(packed, out.ui, 16);
1337 else
1338 unreachable("Unknown generic format size packing clear colour");
1339 }
1340 }
1341
1342 void
1343 panfrost_batch_clear(struct panfrost_batch *batch,
1344 unsigned buffers,
1345 const union pipe_color_union *color,
1346 double depth, unsigned stencil)
1347 {
1348 struct panfrost_context *ctx = batch->ctx;
1349
1350 if (buffers & PIPE_CLEAR_COLOR) {
1351 for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) {
1352 if (!(buffers & (PIPE_CLEAR_COLOR0 << i)))
1353 continue;
1354
1355 enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format;
1356 pan_pack_color(batch->clear_color[i], color, format);
1357 }
1358 }
1359
1360 if (buffers & PIPE_CLEAR_DEPTH) {
1361 batch->clear_depth = depth;
1362 }
1363
1364 if (buffers & PIPE_CLEAR_STENCIL) {
1365 batch->clear_stencil = stencil;
1366 }
1367
1368 batch->clear |= buffers;
1369
1370 /* Clearing affects the entire framebuffer (by definition -- this is
1371 * the Gallium clear callback, which clears the whole framebuffer. If
1372 * the scissor test were enabled from the GL side, the gallium frontend
1373 * would emit a quad instead and we wouldn't go down this code path) */
1374
1375 panfrost_batch_union_scissor(batch, 0, 0,
1376 ctx->pipe_framebuffer.width,
1377 ctx->pipe_framebuffer.height);
1378 }
1379
1380 static bool
1381 panfrost_batch_compare(const void *a, const void *b)
1382 {
1383 return util_framebuffer_state_equal(a, b);
1384 }
1385
1386 static uint32_t
1387 panfrost_batch_hash(const void *key)
1388 {
1389 return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state));
1390 }
1391
1392 /* Given a new bounding rectangle (scissor), let the job cover the union of the
1393 * new and old bounding rectangles */
1394
1395 void
1396 panfrost_batch_union_scissor(struct panfrost_batch *batch,
1397 unsigned minx, unsigned miny,
1398 unsigned maxx, unsigned maxy)
1399 {
1400 batch->minx = MIN2(batch->minx, minx);
1401 batch->miny = MIN2(batch->miny, miny);
1402 batch->maxx = MAX2(batch->maxx, maxx);
1403 batch->maxy = MAX2(batch->maxy, maxy);
1404 }
1405
1406 void
1407 panfrost_batch_intersection_scissor(struct panfrost_batch *batch,
1408 unsigned minx, unsigned miny,
1409 unsigned maxx, unsigned maxy)
1410 {
1411 batch->minx = MAX2(batch->minx, minx);
1412 batch->miny = MAX2(batch->miny, miny);
1413 batch->maxx = MIN2(batch->maxx, maxx);
1414 batch->maxy = MIN2(batch->maxy, maxy);
1415 }
1416
1417 /* Are we currently rendering to the dev (rather than an FBO)? */
1418
1419 bool
1420 panfrost_batch_is_scanout(struct panfrost_batch *batch)
1421 {
1422 /* If there is no color buffer, it's an FBO */
1423 if (batch->key.nr_cbufs != 1)
1424 return false;
1425
1426 /* If we're too early that no framebuffer was sent, it's scanout */
1427 if (!batch->key.cbufs[0])
1428 return true;
1429
1430 return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET ||
1431 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT ||
1432 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED;
1433 }
1434
1435 void
1436 panfrost_batch_init(struct panfrost_context *ctx)
1437 {
1438 ctx->batches = _mesa_hash_table_create(ctx,
1439 panfrost_batch_hash,
1440 panfrost_batch_compare);
1441 ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer,
1442 _mesa_key_pointer_equal);
1443 }