panfrost: Pipe the GPU ID into compiler and disassembler
[mesa.git] / src / gallium / drivers / panfrost / pan_job.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig
3 * Copyright (C) 2014-2017 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include <assert.h>
27
28 #include "drm-uapi/panfrost_drm.h"
29
30 #include "pan_bo.h"
31 #include "pan_context.h"
32 #include "util/hash_table.h"
33 #include "util/ralloc.h"
34 #include "util/u_format.h"
35 #include "util/u_pack_color.h"
36 #include "pan_util.h"
37 #include "pandecode/decode.h"
38
39 /* panfrost_bo_access is here to help us keep track of batch accesses to BOs
40 * and build a proper dependency graph such that batches can be pipelined for
41 * better GPU utilization.
42 *
43 * Each accessed BO has a corresponding entry in the ->accessed_bos hash table.
44 * A BO is either being written or read at any time, that's what the type field
45 * encodes.
46 * When the last access is a write, the batch writing the BO might have read
47 * dependencies (readers that have not been executed yet and want to read the
48 * previous BO content), and when the last access is a read, all readers might
49 * depend on another batch to push its results to memory. That's what the
50 * readers/writers keep track off.
51 * There can only be one writer at any given time, if a new batch wants to
52 * write to the same BO, a dependency will be added between the new writer and
53 * the old writer (at the batch level), and panfrost_bo_access->writer will be
54 * updated to point to the new writer.
55 */
56 struct panfrost_bo_access {
57 uint32_t type;
58 struct util_dynarray readers;
59 struct panfrost_batch_fence *writer;
60 };
61
62 static struct panfrost_batch_fence *
63 panfrost_create_batch_fence(struct panfrost_batch *batch)
64 {
65 struct panfrost_batch_fence *fence;
66 ASSERTED int ret;
67
68 fence = rzalloc(NULL, struct panfrost_batch_fence);
69 assert(fence);
70 pipe_reference_init(&fence->reference, 1);
71 fence->ctx = batch->ctx;
72 fence->batch = batch;
73 ret = drmSyncobjCreate(pan_screen(batch->ctx->base.screen)->fd, 0,
74 &fence->syncobj);
75 assert(!ret);
76
77 return fence;
78 }
79
80 static void
81 panfrost_free_batch_fence(struct panfrost_batch_fence *fence)
82 {
83 drmSyncobjDestroy(pan_screen(fence->ctx->base.screen)->fd,
84 fence->syncobj);
85 ralloc_free(fence);
86 }
87
88 void
89 panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence)
90 {
91 if (pipe_reference(&fence->reference, NULL))
92 panfrost_free_batch_fence(fence);
93 }
94
95 void
96 panfrost_batch_fence_reference(struct panfrost_batch_fence *fence)
97 {
98 pipe_reference(NULL, &fence->reference);
99 }
100
101 static struct panfrost_batch *
102 panfrost_create_batch(struct panfrost_context *ctx,
103 const struct pipe_framebuffer_state *key)
104 {
105 struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch);
106
107 batch->ctx = ctx;
108
109 batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer,
110 _mesa_key_pointer_equal);
111
112 batch->minx = batch->miny = ~0;
113 batch->maxx = batch->maxy = 0;
114 batch->transient_offset = 0;
115
116 util_dynarray_init(&batch->headers, batch);
117 util_dynarray_init(&batch->gpu_headers, batch);
118 util_dynarray_init(&batch->dependencies, batch);
119 batch->out_sync = panfrost_create_batch_fence(batch);
120 util_copy_framebuffer_state(&batch->key, key);
121
122 return batch;
123 }
124
125 static void
126 panfrost_freeze_batch(struct panfrost_batch *batch)
127 {
128 struct panfrost_context *ctx = batch->ctx;
129 struct hash_entry *entry;
130
131 /* Remove the entry in the FBO -> batch hash table if the batch
132 * matches. This way, next draws/clears targeting this FBO will trigger
133 * the creation of a new batch.
134 */
135 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
136 if (entry && entry->data == batch)
137 _mesa_hash_table_remove(ctx->batches, entry);
138
139 /* If this is the bound batch, the panfrost_context parameters are
140 * relevant so submitting it invalidates those parameters, but if it's
141 * not bound, the context parameters are for some other batch so we
142 * can't invalidate them.
143 */
144 if (ctx->batch == batch) {
145 panfrost_invalidate_frame(ctx);
146 ctx->batch = NULL;
147 }
148 }
149
150 #ifndef NDEBUG
151 static bool panfrost_batch_is_frozen(struct panfrost_batch *batch)
152 {
153 struct panfrost_context *ctx = batch->ctx;
154 struct hash_entry *entry;
155
156 entry = _mesa_hash_table_search(ctx->batches, &batch->key);
157 if (entry && entry->data == batch)
158 return false;
159
160 if (ctx->batch == batch)
161 return false;
162
163 return true;
164 }
165 #endif
166
167 static void
168 panfrost_free_batch(struct panfrost_batch *batch)
169 {
170 if (!batch)
171 return;
172
173 assert(panfrost_batch_is_frozen(batch));
174
175 hash_table_foreach(batch->bos, entry)
176 panfrost_bo_unreference((struct panfrost_bo *)entry->key);
177
178 util_dynarray_foreach(&batch->dependencies,
179 struct panfrost_batch_fence *, dep) {
180 panfrost_batch_fence_unreference(*dep);
181 }
182
183 /* The out_sync fence lifetime is different from the the batch one
184 * since other batches might want to wait on a fence of already
185 * submitted/signaled batch. All we need to do here is make sure the
186 * fence does not point to an invalid batch, which the core will
187 * interpret as 'batch is already submitted'.
188 */
189 batch->out_sync->batch = NULL;
190 panfrost_batch_fence_unreference(batch->out_sync);
191
192 util_unreference_framebuffer_state(&batch->key);
193 ralloc_free(batch);
194 }
195
196 #ifndef NDEBUG
197 static bool
198 panfrost_dep_graph_contains_batch(struct panfrost_batch *root,
199 struct panfrost_batch *batch)
200 {
201 if (!root)
202 return false;
203
204 util_dynarray_foreach(&root->dependencies,
205 struct panfrost_batch_fence *, dep) {
206 if ((*dep)->batch == batch ||
207 panfrost_dep_graph_contains_batch((*dep)->batch, batch))
208 return true;
209 }
210
211 return false;
212 }
213 #endif
214
215 static void
216 panfrost_batch_add_dep(struct panfrost_batch *batch,
217 struct panfrost_batch_fence *newdep)
218 {
219 if (batch == newdep->batch)
220 return;
221
222 /* We might want to turn ->dependencies into a set if the number of
223 * deps turns out to be big enough to make this 'is dep already there'
224 * search inefficient.
225 */
226 util_dynarray_foreach(&batch->dependencies,
227 struct panfrost_batch_fence *, dep) {
228 if (*dep == newdep)
229 return;
230 }
231
232 /* Make sure the dependency graph is acyclic. */
233 assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch));
234
235 panfrost_batch_fence_reference(newdep);
236 util_dynarray_append(&batch->dependencies,
237 struct panfrost_batch_fence *, newdep);
238
239 /* We now have a batch depending on us, let's make sure new draw/clear
240 * calls targeting the same FBO use a new batch object.
241 */
242 if (newdep->batch)
243 panfrost_freeze_batch(newdep->batch);
244 }
245
246 static struct panfrost_batch *
247 panfrost_get_batch(struct panfrost_context *ctx,
248 const struct pipe_framebuffer_state *key)
249 {
250 /* Lookup the job first */
251 struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key);
252
253 if (entry)
254 return entry->data;
255
256 /* Otherwise, let's create a job */
257
258 struct panfrost_batch *batch = panfrost_create_batch(ctx, key);
259
260 /* Save the created job */
261 _mesa_hash_table_insert(ctx->batches, &batch->key, batch);
262
263 return batch;
264 }
265
266 /* Get the job corresponding to the FBO we're currently rendering into */
267
268 struct panfrost_batch *
269 panfrost_get_batch_for_fbo(struct panfrost_context *ctx)
270 {
271 /* If we're wallpapering, we special case to workaround
272 * u_blitter abuse */
273
274 if (ctx->wallpaper_batch)
275 return ctx->wallpaper_batch;
276
277 /* If we already began rendering, use that */
278
279 if (ctx->batch) {
280 assert(util_framebuffer_state_equal(&ctx->batch->key,
281 &ctx->pipe_framebuffer));
282 return ctx->batch;
283 }
284
285 /* If not, look up the job */
286 struct panfrost_batch *batch = panfrost_get_batch(ctx,
287 &ctx->pipe_framebuffer);
288
289 /* Set this job as the current FBO job. Will be reset when updating the
290 * FB state and when submitting or releasing a job.
291 */
292 ctx->batch = batch;
293 return batch;
294 }
295
296 struct panfrost_batch *
297 panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx)
298 {
299 struct panfrost_batch *batch;
300
301 batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
302
303 /* The batch has no draw/clear queued, let's return it directly.
304 * Note that it's perfectly fine to re-use a batch with an
305 * existing clear, we'll just update it with the new clear request.
306 */
307 if (!batch->last_job.gpu)
308 return batch;
309
310 /* Otherwise, we need to freeze the existing one and instantiate a new
311 * one.
312 */
313 panfrost_freeze_batch(batch);
314 return panfrost_get_batch(ctx, &ctx->pipe_framebuffer);
315 }
316
317 static bool
318 panfrost_batch_fence_is_signaled(struct panfrost_batch_fence *fence)
319 {
320 if (fence->signaled)
321 return true;
322
323 /* Batch has not been submitted yet. */
324 if (fence->batch)
325 return false;
326
327 int ret = drmSyncobjWait(pan_screen(fence->ctx->base.screen)->fd,
328 &fence->syncobj, 1, 0, 0, NULL);
329
330 /* Cache whether the fence was signaled */
331 fence->signaled = ret >= 0;
332 return fence->signaled;
333 }
334
335 static void
336 panfrost_bo_access_gc_fences(struct panfrost_context *ctx,
337 struct panfrost_bo_access *access,
338 const struct panfrost_bo *bo)
339 {
340 if (access->writer && panfrost_batch_fence_is_signaled(access->writer)) {
341 panfrost_batch_fence_unreference(access->writer);
342 access->writer = NULL;
343 }
344
345 unsigned nreaders = 0;
346 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
347 reader) {
348 if (!(*reader))
349 continue;
350
351 if (panfrost_batch_fence_is_signaled(*reader)) {
352 panfrost_batch_fence_unreference(*reader);
353 *reader = NULL;
354 } else {
355 nreaders++;
356 }
357 }
358
359 if (!nreaders)
360 util_dynarray_clear(&access->readers);
361 }
362
363 /* Collect signaled fences to keep the kernel-side syncobj-map small. The
364 * idea is to collect those signaled fences at the end of each flush_all
365 * call. This function is likely to collect only fences from previous
366 * batch flushes not the one that have just have just been submitted and
367 * are probably still in flight when we trigger the garbage collection.
368 * Anyway, we need to do this garbage collection at some point if we don't
369 * want the BO access map to keep invalid entries around and retain
370 * syncobjs forever.
371 */
372 static void
373 panfrost_gc_fences(struct panfrost_context *ctx)
374 {
375 hash_table_foreach(ctx->accessed_bos, entry) {
376 struct panfrost_bo_access *access = entry->data;
377
378 assert(access);
379 panfrost_bo_access_gc_fences(ctx, access, entry->key);
380 if (!util_dynarray_num_elements(&access->readers,
381 struct panfrost_batch_fence *) &&
382 !access->writer)
383 _mesa_hash_table_remove(ctx->accessed_bos, entry);
384 }
385 }
386
387 #ifndef NDEBUG
388 static bool
389 panfrost_batch_in_readers(struct panfrost_batch *batch,
390 struct panfrost_bo_access *access)
391 {
392 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
393 reader) {
394 if (*reader && (*reader)->batch == batch)
395 return true;
396 }
397
398 return false;
399 }
400 #endif
401
402 static void
403 panfrost_batch_update_bo_access(struct panfrost_batch *batch,
404 struct panfrost_bo *bo, uint32_t access_type,
405 bool already_accessed)
406 {
407 struct panfrost_context *ctx = batch->ctx;
408 struct panfrost_bo_access *access;
409 uint32_t old_access_type;
410 struct hash_entry *entry;
411
412 assert(access_type == PAN_BO_ACCESS_WRITE ||
413 access_type == PAN_BO_ACCESS_READ);
414
415 entry = _mesa_hash_table_search(ctx->accessed_bos, bo);
416 access = entry ? entry->data : NULL;
417 if (access) {
418 old_access_type = access->type;
419 } else {
420 access = rzalloc(ctx, struct panfrost_bo_access);
421 util_dynarray_init(&access->readers, access);
422 _mesa_hash_table_insert(ctx->accessed_bos, bo, access);
423 /* We are the first to access this BO, let's initialize
424 * old_access_type to our own access type in that case.
425 */
426 old_access_type = access_type;
427 access->type = access_type;
428 }
429
430 assert(access);
431
432 if (access_type == PAN_BO_ACCESS_WRITE &&
433 old_access_type == PAN_BO_ACCESS_READ) {
434 /* Previous access was a read and we want to write this BO.
435 * We first need to add explicit deps between our batch and
436 * the previous readers.
437 */
438 util_dynarray_foreach(&access->readers,
439 struct panfrost_batch_fence *, reader) {
440 /* We were already reading the BO, no need to add a dep
441 * on ourself (the acyclic check would complain about
442 * that).
443 */
444 if (!(*reader) || (*reader)->batch == batch)
445 continue;
446
447 panfrost_batch_add_dep(batch, *reader);
448 }
449 panfrost_batch_fence_reference(batch->out_sync);
450
451 /* We now are the new writer. */
452 access->writer = batch->out_sync;
453 access->type = access_type;
454
455 /* Release the previous readers and reset the readers array. */
456 util_dynarray_foreach(&access->readers,
457 struct panfrost_batch_fence *,
458 reader) {
459 if (!*reader)
460 continue;
461 panfrost_batch_fence_unreference(*reader);
462 }
463
464 util_dynarray_clear(&access->readers);
465 } else if (access_type == PAN_BO_ACCESS_WRITE &&
466 old_access_type == PAN_BO_ACCESS_WRITE) {
467 /* Previous access was a write and we want to write this BO.
468 * First check if we were the previous writer, in that case
469 * there's nothing to do. Otherwise we need to add a
470 * dependency between the new writer and the old one.
471 */
472 if (access->writer != batch->out_sync) {
473 if (access->writer) {
474 panfrost_batch_add_dep(batch, access->writer);
475 panfrost_batch_fence_unreference(access->writer);
476 }
477 panfrost_batch_fence_reference(batch->out_sync);
478 access->writer = batch->out_sync;
479 }
480 } else if (access_type == PAN_BO_ACCESS_READ &&
481 old_access_type == PAN_BO_ACCESS_WRITE) {
482 /* Previous access was a write and we want to read this BO.
483 * First check if we were the previous writer, in that case
484 * we want to keep the access type unchanged, as a write is
485 * more constraining than a read.
486 */
487 if (access->writer != batch->out_sync) {
488 /* Add a dependency on the previous writer. */
489 panfrost_batch_add_dep(batch, access->writer);
490
491 /* The previous access was a write, there's no reason
492 * to have entries in the readers array.
493 */
494 assert(!util_dynarray_num_elements(&access->readers,
495 struct panfrost_batch_fence *));
496
497 /* Add ourselves to the readers array. */
498 panfrost_batch_fence_reference(batch->out_sync);
499 util_dynarray_append(&access->readers,
500 struct panfrost_batch_fence *,
501 batch->out_sync);
502 access->type = PAN_BO_ACCESS_READ;
503 }
504 } else {
505 /* We already accessed this BO before, so we should already be
506 * in the reader array.
507 */
508 if (already_accessed) {
509 assert(panfrost_batch_in_readers(batch, access));
510 return;
511 }
512
513 /* Previous access was a read and we want to read this BO.
514 * Add ourselves to the readers array and add a dependency on
515 * the previous writer if any.
516 */
517 panfrost_batch_fence_reference(batch->out_sync);
518 util_dynarray_append(&access->readers,
519 struct panfrost_batch_fence *,
520 batch->out_sync);
521
522 if (access->writer)
523 panfrost_batch_add_dep(batch, access->writer);
524 }
525 }
526
527 void
528 panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo,
529 uint32_t flags)
530 {
531 if (!bo)
532 return;
533
534 struct hash_entry *entry;
535 uint32_t old_flags = 0;
536
537 entry = _mesa_hash_table_search(batch->bos, bo);
538 if (!entry) {
539 entry = _mesa_hash_table_insert(batch->bos, bo,
540 (void *)(uintptr_t)flags);
541 panfrost_bo_reference(bo);
542 } else {
543 old_flags = (uintptr_t)entry->data;
544
545 /* All batches have to agree on the shared flag. */
546 assert((old_flags & PAN_BO_ACCESS_SHARED) ==
547 (flags & PAN_BO_ACCESS_SHARED));
548 }
549
550 assert(entry);
551
552 if (old_flags == flags)
553 return;
554
555 flags |= old_flags;
556 entry->data = (void *)(uintptr_t)flags;
557
558 /* If this is not a shared BO, we don't really care about dependency
559 * tracking.
560 */
561 if (!(flags & PAN_BO_ACCESS_SHARED))
562 return;
563
564 /* All dependencies should have been flushed before we execute the
565 * wallpaper draw, so it should be harmless to skip the
566 * update_bo_access() call.
567 */
568 if (batch == batch->ctx->wallpaper_batch)
569 return;
570
571 /* Only pass R/W flags to the dep tracking logic. */
572 assert(flags & PAN_BO_ACCESS_RW);
573 flags = (flags & PAN_BO_ACCESS_WRITE) ?
574 PAN_BO_ACCESS_WRITE : PAN_BO_ACCESS_READ;
575 panfrost_batch_update_bo_access(batch, bo, flags, old_flags != 0);
576 }
577
578 void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch)
579 {
580 uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE |
581 PAN_BO_ACCESS_VERTEX_TILER |
582 PAN_BO_ACCESS_FRAGMENT;
583
584 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
585 struct panfrost_resource *rsrc = pan_resource(batch->key.cbufs[i]->texture);
586 panfrost_batch_add_bo(batch, rsrc->bo, flags);
587 }
588
589 if (batch->key.zsbuf) {
590 struct panfrost_resource *rsrc = pan_resource(batch->key.zsbuf->texture);
591 panfrost_batch_add_bo(batch, rsrc->bo, flags);
592 }
593 }
594
595 struct panfrost_bo *
596 panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size,
597 uint32_t create_flags, uint32_t access_flags)
598 {
599 struct panfrost_bo *bo;
600
601 bo = panfrost_bo_create(pan_screen(batch->ctx->base.screen), size,
602 create_flags);
603 panfrost_batch_add_bo(batch, bo, access_flags);
604
605 /* panfrost_batch_add_bo() has retained a reference and
606 * panfrost_bo_create() initialize the refcnt to 1, so let's
607 * unreference the BO here so it gets released when the batch is
608 * destroyed (unless it's retained by someone else in the meantime).
609 */
610 panfrost_bo_unreference(bo);
611 return bo;
612 }
613
614 /* Returns the polygon list's GPU address if available, or otherwise allocates
615 * the polygon list. It's perfectly fast to use allocate/free BO directly,
616 * since we'll hit the BO cache and this is one-per-batch anyway. */
617
618 mali_ptr
619 panfrost_batch_get_polygon_list(struct panfrost_batch *batch, unsigned size)
620 {
621 if (batch->polygon_list) {
622 assert(batch->polygon_list->size >= size);
623 } else {
624 /* Create the BO as invisible, as there's no reason to map */
625
626 batch->polygon_list = panfrost_batch_create_bo(batch, size,
627 PAN_BO_INVISIBLE,
628 PAN_BO_ACCESS_PRIVATE |
629 PAN_BO_ACCESS_RW |
630 PAN_BO_ACCESS_VERTEX_TILER |
631 PAN_BO_ACCESS_FRAGMENT);
632 }
633
634 return batch->polygon_list->gpu;
635 }
636
637 struct panfrost_bo *
638 panfrost_batch_get_scratchpad(struct panfrost_batch *batch)
639 {
640 if (batch->scratchpad)
641 return batch->scratchpad;
642
643 batch->scratchpad = panfrost_batch_create_bo(batch, 64 * 4 * 4096,
644 PAN_BO_INVISIBLE,
645 PAN_BO_ACCESS_PRIVATE |
646 PAN_BO_ACCESS_RW |
647 PAN_BO_ACCESS_VERTEX_TILER |
648 PAN_BO_ACCESS_FRAGMENT);
649 assert(batch->scratchpad);
650 return batch->scratchpad;
651 }
652
653 struct panfrost_bo *
654 panfrost_batch_get_tiler_heap(struct panfrost_batch *batch)
655 {
656 if (batch->tiler_heap)
657 return batch->tiler_heap;
658
659 batch->tiler_heap = panfrost_batch_create_bo(batch, 4096 * 4096,
660 PAN_BO_INVISIBLE |
661 PAN_BO_GROWABLE,
662 PAN_BO_ACCESS_PRIVATE |
663 PAN_BO_ACCESS_RW |
664 PAN_BO_ACCESS_VERTEX_TILER |
665 PAN_BO_ACCESS_FRAGMENT);
666 assert(batch->tiler_heap);
667 return batch->tiler_heap;
668 }
669
670 struct panfrost_bo *
671 panfrost_batch_get_tiler_dummy(struct panfrost_batch *batch)
672 {
673 struct panfrost_screen *screen = pan_screen(batch->ctx->base.screen);
674
675 uint32_t create_flags = 0;
676
677 if (batch->tiler_dummy)
678 return batch->tiler_dummy;
679
680 if (!screen->require_sfbd)
681 create_flags = PAN_BO_INVISIBLE;
682
683 batch->tiler_dummy = panfrost_batch_create_bo(batch, 4096,
684 create_flags,
685 PAN_BO_ACCESS_PRIVATE |
686 PAN_BO_ACCESS_RW |
687 PAN_BO_ACCESS_VERTEX_TILER |
688 PAN_BO_ACCESS_FRAGMENT);
689 assert(batch->tiler_dummy);
690 return batch->tiler_dummy;
691 }
692
693 static void
694 panfrost_batch_draw_wallpaper(struct panfrost_batch *batch)
695 {
696 /* Color 0 is cleared, no need to draw the wallpaper.
697 * TODO: MRT wallpapers.
698 */
699 if (batch->clear & PIPE_CLEAR_COLOR0)
700 return;
701
702 /* Nothing to reload? TODO: MRT wallpapers */
703 if (batch->key.cbufs[0] == NULL)
704 return;
705
706 /* No draw calls, and no clear on the depth/stencil bufs.
707 * Drawing the wallpaper would be useless.
708 */
709 if (!batch->last_tiler.gpu &&
710 !(batch->clear & PIPE_CLEAR_DEPTHSTENCIL))
711 return;
712
713 /* Check if the buffer has any content on it worth preserving */
714
715 struct pipe_surface *surf = batch->key.cbufs[0];
716 struct panfrost_resource *rsrc = pan_resource(surf->texture);
717 unsigned level = surf->u.tex.level;
718
719 if (!rsrc->slices[level].initialized)
720 return;
721
722 batch->ctx->wallpaper_batch = batch;
723
724 /* Clamp the rendering area to the damage extent. The
725 * KHR_partial_update() spec states that trying to render outside of
726 * the damage region is "undefined behavior", so we should be safe.
727 */
728 unsigned damage_width = (rsrc->damage.extent.maxx - rsrc->damage.extent.minx);
729 unsigned damage_height = (rsrc->damage.extent.maxy - rsrc->damage.extent.miny);
730
731 if (damage_width && damage_height) {
732 panfrost_batch_intersection_scissor(batch,
733 rsrc->damage.extent.minx,
734 rsrc->damage.extent.miny,
735 rsrc->damage.extent.maxx,
736 rsrc->damage.extent.maxy);
737 }
738
739 /* FIXME: Looks like aligning on a tile is not enough, but
740 * aligning on twice the tile size seems to works. We don't
741 * know exactly what happens here but this deserves extra
742 * investigation to figure it out.
743 */
744 batch->minx = batch->minx & ~((MALI_TILE_LENGTH * 2) - 1);
745 batch->miny = batch->miny & ~((MALI_TILE_LENGTH * 2) - 1);
746 batch->maxx = MIN2(ALIGN_POT(batch->maxx, MALI_TILE_LENGTH * 2),
747 rsrc->base.width0);
748 batch->maxy = MIN2(ALIGN_POT(batch->maxy, MALI_TILE_LENGTH * 2),
749 rsrc->base.height0);
750
751 struct pipe_scissor_state damage;
752 struct pipe_box rects[4];
753
754 /* Clamp the damage box to the rendering area. */
755 damage.minx = MAX2(batch->minx, rsrc->damage.biggest_rect.x);
756 damage.miny = MAX2(batch->miny, rsrc->damage.biggest_rect.y);
757 damage.maxx = MIN2(batch->maxx,
758 rsrc->damage.biggest_rect.x +
759 rsrc->damage.biggest_rect.width);
760 damage.maxy = MIN2(batch->maxy,
761 rsrc->damage.biggest_rect.y +
762 rsrc->damage.biggest_rect.height);
763
764 /* One damage rectangle means we can end up with at most 4 reload
765 * regions:
766 * 1: left region, only exists if damage.x > 0
767 * 2: right region, only exists if damage.x + damage.width < fb->width
768 * 3: top region, only exists if damage.y > 0. The intersection with
769 * the left and right regions are dropped
770 * 4: bottom region, only exists if damage.y + damage.height < fb->height.
771 * The intersection with the left and right regions are dropped
772 *
773 * ____________________________
774 * | | 3 | |
775 * | |___________| |
776 * | | damage | |
777 * | 1 | rect | 2 |
778 * | |___________| |
779 * | | 4 | |
780 * |_______|___________|______|
781 */
782 u_box_2d(batch->minx, batch->miny, damage.minx - batch->minx,
783 batch->maxy - batch->miny, &rects[0]);
784 u_box_2d(damage.maxx, batch->miny, batch->maxx - damage.maxx,
785 batch->maxy - batch->miny, &rects[1]);
786 u_box_2d(damage.minx, batch->miny, damage.maxx - damage.minx,
787 damage.miny - batch->miny, &rects[2]);
788 u_box_2d(damage.minx, damage.maxy, damage.maxx - damage.minx,
789 batch->maxy - damage.maxy, &rects[3]);
790
791 for (unsigned i = 0; i < 4; i++) {
792 /* Width and height are always >= 0 even if width is declared as a
793 * signed integer: u_box_2d() helper takes unsigned args and
794 * panfrost_set_damage_region() is taking care of clamping
795 * negative values.
796 */
797 if (!rects[i].width || !rects[i].height)
798 continue;
799
800 /* Blit the wallpaper in */
801 panfrost_blit_wallpaper(batch->ctx, &rects[i]);
802 }
803 batch->ctx->wallpaper_batch = NULL;
804 }
805
806 static int
807 panfrost_batch_submit_ioctl(struct panfrost_batch *batch,
808 mali_ptr first_job_desc,
809 uint32_t reqs)
810 {
811 struct panfrost_context *ctx = batch->ctx;
812 struct pipe_context *gallium = (struct pipe_context *) ctx;
813 struct panfrost_screen *screen = pan_screen(gallium->screen);
814 struct drm_panfrost_submit submit = {0,};
815 uint32_t *bo_handles, *in_syncs = NULL;
816 bool is_fragment_shader;
817 int ret;
818
819 is_fragment_shader = (reqs & PANFROST_JD_REQ_FS) && batch->first_job.gpu;
820 if (is_fragment_shader)
821 submit.in_sync_count = 1;
822 else
823 submit.in_sync_count = util_dynarray_num_elements(&batch->dependencies,
824 struct panfrost_batch_fence *);
825
826 if (submit.in_sync_count) {
827 in_syncs = calloc(submit.in_sync_count, sizeof(*in_syncs));
828 assert(in_syncs);
829 }
830
831 /* The fragment job always depends on the vertex/tiler job if there's
832 * one
833 */
834 if (is_fragment_shader) {
835 in_syncs[0] = batch->out_sync->syncobj;
836 } else {
837 unsigned int i = 0;
838
839 util_dynarray_foreach(&batch->dependencies,
840 struct panfrost_batch_fence *, dep)
841 in_syncs[i++] = (*dep)->syncobj;
842 }
843
844 submit.in_syncs = (uintptr_t)in_syncs;
845 submit.out_sync = batch->out_sync->syncobj;
846 submit.jc = first_job_desc;
847 submit.requirements = reqs;
848
849 bo_handles = calloc(batch->bos->entries, sizeof(*bo_handles));
850 assert(bo_handles);
851
852 hash_table_foreach(batch->bos, entry) {
853 struct panfrost_bo *bo = (struct panfrost_bo *)entry->key;
854 uint32_t flags = (uintptr_t)entry->data;
855
856 assert(bo->gem_handle > 0);
857 bo_handles[submit.bo_handle_count++] = bo->gem_handle;
858
859 /* Update the BO access flags so that panfrost_bo_wait() knows
860 * about all pending accesses.
861 * We only keep the READ/WRITE info since this is all the BO
862 * wait logic cares about.
863 * We also preserve existing flags as this batch might not
864 * be the first one to access the BO.
865 */
866 bo->gpu_access |= flags & (PAN_BO_ACCESS_RW);
867 }
868
869 submit.bo_handles = (u64) (uintptr_t) bo_handles;
870 ret = drmIoctl(screen->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit);
871 free(bo_handles);
872 free(in_syncs);
873
874 if (ret) {
875 fprintf(stderr, "Error submitting: %m\n");
876 return errno;
877 }
878
879 /* Trace the job if we're doing that */
880 if (pan_debug & PAN_DBG_TRACE) {
881 /* Wait so we can get errors reported back */
882 drmSyncobjWait(screen->fd, &batch->out_sync->syncobj, 1,
883 INT64_MAX, 0, NULL);
884 pandecode_jc(submit.jc, FALSE, screen->gpu_id);
885 }
886
887 return 0;
888 }
889
890 static int
891 panfrost_batch_submit_jobs(struct panfrost_batch *batch)
892 {
893 bool has_draws = batch->first_job.gpu;
894 int ret = 0;
895
896 if (has_draws) {
897 ret = panfrost_batch_submit_ioctl(batch, batch->first_job.gpu, 0);
898 assert(!ret);
899 }
900
901 if (batch->first_tiler.gpu || batch->clear) {
902 mali_ptr fragjob = panfrost_fragment_job(batch, has_draws);
903
904 ret = panfrost_batch_submit_ioctl(batch, fragjob, PANFROST_JD_REQ_FS);
905 assert(!ret);
906 }
907
908 return ret;
909 }
910
911 static void
912 panfrost_batch_submit(struct panfrost_batch *batch)
913 {
914 assert(batch);
915
916 /* Submit the dependencies first. */
917 util_dynarray_foreach(&batch->dependencies,
918 struct panfrost_batch_fence *, dep) {
919 if ((*dep)->batch)
920 panfrost_batch_submit((*dep)->batch);
921 }
922
923 int ret;
924
925 /* Nothing to do! */
926 if (!batch->last_job.gpu && !batch->clear) {
927 /* Mark the fence as signaled so the fence logic does not try
928 * to wait on it.
929 */
930 batch->out_sync->signaled = true;
931 goto out;
932 }
933
934 panfrost_batch_draw_wallpaper(batch);
935
936 panfrost_scoreboard_link_batch(batch);
937
938 ret = panfrost_batch_submit_jobs(batch);
939
940 if (ret)
941 fprintf(stderr, "panfrost_batch_submit failed: %d\n", ret);
942
943 out:
944 panfrost_freeze_batch(batch);
945 panfrost_free_batch(batch);
946 }
947
948 void
949 panfrost_flush_all_batches(struct panfrost_context *ctx, bool wait)
950 {
951 struct util_dynarray fences, syncobjs;
952
953 if (wait) {
954 util_dynarray_init(&fences, NULL);
955 util_dynarray_init(&syncobjs, NULL);
956 }
957
958 hash_table_foreach(ctx->batches, hentry) {
959 struct panfrost_batch *batch = hentry->data;
960
961 assert(batch);
962
963 if (wait) {
964 panfrost_batch_fence_reference(batch->out_sync);
965 util_dynarray_append(&fences, struct panfrost_batch_fence *,
966 batch->out_sync);
967 util_dynarray_append(&syncobjs, uint32_t,
968 batch->out_sync->syncobj);
969 }
970
971 panfrost_batch_submit(batch);
972 }
973
974 assert(!ctx->batches->entries);
975
976 /* Collect batch fences before returning */
977 panfrost_gc_fences(ctx);
978
979 if (!wait)
980 return;
981
982 drmSyncobjWait(pan_screen(ctx->base.screen)->fd,
983 util_dynarray_begin(&syncobjs),
984 util_dynarray_num_elements(&syncobjs, uint32_t),
985 INT64_MAX, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL, NULL);
986
987 util_dynarray_foreach(&fences, struct panfrost_batch_fence *, fence)
988 panfrost_batch_fence_unreference(*fence);
989
990 util_dynarray_fini(&fences);
991 util_dynarray_fini(&syncobjs);
992 }
993
994 bool
995 panfrost_pending_batches_access_bo(struct panfrost_context *ctx,
996 const struct panfrost_bo *bo)
997 {
998 struct panfrost_bo_access *access;
999 struct hash_entry *hentry;
1000
1001 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1002 access = hentry ? hentry->data : NULL;
1003 if (!access)
1004 return false;
1005
1006 if (access->writer && access->writer->batch)
1007 return true;
1008
1009 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1010 reader) {
1011 if (*reader && (*reader)->batch)
1012 return true;
1013 }
1014
1015 return false;
1016 }
1017
1018 void
1019 panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx,
1020 struct panfrost_bo *bo,
1021 uint32_t access_type)
1022 {
1023 struct panfrost_bo_access *access;
1024 struct hash_entry *hentry;
1025
1026 /* It doesn't make any to flush only the readers. */
1027 assert(access_type == PAN_BO_ACCESS_WRITE ||
1028 access_type == PAN_BO_ACCESS_RW);
1029
1030 hentry = _mesa_hash_table_search(ctx->accessed_bos, bo);
1031 access = hentry ? hentry->data : NULL;
1032 if (!access)
1033 return;
1034
1035 if (access_type & PAN_BO_ACCESS_WRITE && access->writer &&
1036 access->writer->batch)
1037 panfrost_batch_submit(access->writer->batch);
1038
1039 if (!(access_type & PAN_BO_ACCESS_READ))
1040 return;
1041
1042 util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *,
1043 reader) {
1044 if (*reader && (*reader)->batch)
1045 panfrost_batch_submit((*reader)->batch);
1046 }
1047 }
1048
1049 void
1050 panfrost_batch_set_requirements(struct panfrost_batch *batch)
1051 {
1052 struct panfrost_context *ctx = batch->ctx;
1053
1054 if (ctx->rasterizer && ctx->rasterizer->base.multisample)
1055 batch->requirements |= PAN_REQ_MSAA;
1056
1057 if (ctx->depth_stencil && ctx->depth_stencil->depth.writemask)
1058 batch->requirements |= PAN_REQ_DEPTH_WRITE;
1059 }
1060
1061 /* Helper to smear a 32-bit color across 128-bit components */
1062
1063 static void
1064 pan_pack_color_32(uint32_t *packed, uint32_t v)
1065 {
1066 for (unsigned i = 0; i < 4; ++i)
1067 packed[i] = v;
1068 }
1069
1070 static void
1071 pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi)
1072 {
1073 for (unsigned i = 0; i < 4; i += 2) {
1074 packed[i + 0] = lo;
1075 packed[i + 1] = hi;
1076 }
1077 }
1078
1079 static void
1080 pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format)
1081 {
1082 /* Alpha magicked to 1.0 if there is no alpha */
1083
1084 bool has_alpha = util_format_has_alpha(format);
1085 float clear_alpha = has_alpha ? color->f[3] : 1.0f;
1086
1087 /* Packed color depends on the framebuffer format */
1088
1089 const struct util_format_description *desc =
1090 util_format_description(format);
1091
1092 if (util_format_is_rgba8_variant(desc)) {
1093 pan_pack_color_32(packed,
1094 (float_to_ubyte(clear_alpha) << 24) |
1095 (float_to_ubyte(color->f[2]) << 16) |
1096 (float_to_ubyte(color->f[1]) << 8) |
1097 (float_to_ubyte(color->f[0]) << 0));
1098 } else if (format == PIPE_FORMAT_B5G6R5_UNORM) {
1099 /* First, we convert the components to R5, G6, B5 separately */
1100 unsigned r5 = CLAMP(color->f[0], 0.0, 1.0) * 31.0;
1101 unsigned g6 = CLAMP(color->f[1], 0.0, 1.0) * 63.0;
1102 unsigned b5 = CLAMP(color->f[2], 0.0, 1.0) * 31.0;
1103
1104 /* Then we pack into a sparse u32. TODO: Why these shifts? */
1105 pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5));
1106 } else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) {
1107 /* We scale the components against 0xF0 (=240.0), rather than 0xFF */
1108 unsigned r4 = CLAMP(color->f[0], 0.0, 1.0) * 240.0;
1109 unsigned g4 = CLAMP(color->f[1], 0.0, 1.0) * 240.0;
1110 unsigned b4 = CLAMP(color->f[2], 0.0, 1.0) * 240.0;
1111 unsigned a4 = CLAMP(clear_alpha, 0.0, 1.0) * 240.0;
1112
1113 /* Pack on *byte* intervals */
1114 pan_pack_color_32(packed, (a4 << 24) | (b4 << 16) | (g4 << 8) | r4);
1115 } else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) {
1116 /* Scale as expected but shift oddly */
1117 unsigned r5 = round(CLAMP(color->f[0], 0.0, 1.0)) * 31.0;
1118 unsigned g5 = round(CLAMP(color->f[1], 0.0, 1.0)) * 31.0;
1119 unsigned b5 = round(CLAMP(color->f[2], 0.0, 1.0)) * 31.0;
1120 unsigned a1 = round(CLAMP(clear_alpha, 0.0, 1.0)) * 1.0;
1121
1122 pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5));
1123 } else {
1124 /* Try Gallium's generic default path. Doesn't work for all
1125 * formats but it's a good guess. */
1126
1127 union util_color out;
1128
1129 if (util_format_is_pure_integer(format)) {
1130 memcpy(out.ui, color->ui, 16);
1131 } else {
1132 util_pack_color(color->f, format, &out);
1133 }
1134
1135 unsigned size = util_format_get_blocksize(format);
1136
1137 if (size == 1) {
1138 unsigned b = out.ui[0];
1139 unsigned s = b | (b << 8);
1140 pan_pack_color_32(packed, s | (s << 16));
1141 } else if (size == 2)
1142 pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16));
1143 else if (size == 3 || size == 4)
1144 pan_pack_color_32(packed, out.ui[0]);
1145 else if (size == 8)
1146 pan_pack_color_64(packed, out.ui[0], out.ui[1]);
1147 else if (size == 16)
1148 memcpy(packed, out.ui, 16);
1149 else
1150 unreachable("Unknown generic format size packing clear colour");
1151 }
1152 }
1153
1154 void
1155 panfrost_batch_clear(struct panfrost_batch *batch,
1156 unsigned buffers,
1157 const union pipe_color_union *color,
1158 double depth, unsigned stencil)
1159 {
1160 struct panfrost_context *ctx = batch->ctx;
1161
1162 if (buffers & PIPE_CLEAR_COLOR) {
1163 for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) {
1164 if (!(buffers & (PIPE_CLEAR_COLOR0 << i)))
1165 continue;
1166
1167 enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format;
1168 pan_pack_color(batch->clear_color[i], color, format);
1169 }
1170 }
1171
1172 if (buffers & PIPE_CLEAR_DEPTH) {
1173 batch->clear_depth = depth;
1174 }
1175
1176 if (buffers & PIPE_CLEAR_STENCIL) {
1177 batch->clear_stencil = stencil;
1178 }
1179
1180 batch->clear |= buffers;
1181
1182 /* Clearing affects the entire framebuffer (by definition -- this is
1183 * the Gallium clear callback, which clears the whole framebuffer. If
1184 * the scissor test were enabled from the GL side, the state tracker
1185 * would emit a quad instead and we wouldn't go down this code path) */
1186
1187 panfrost_batch_union_scissor(batch, 0, 0,
1188 ctx->pipe_framebuffer.width,
1189 ctx->pipe_framebuffer.height);
1190 }
1191
1192 static bool
1193 panfrost_batch_compare(const void *a, const void *b)
1194 {
1195 return util_framebuffer_state_equal(a, b);
1196 }
1197
1198 static uint32_t
1199 panfrost_batch_hash(const void *key)
1200 {
1201 return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state));
1202 }
1203
1204 /* Given a new bounding rectangle (scissor), let the job cover the union of the
1205 * new and old bounding rectangles */
1206
1207 void
1208 panfrost_batch_union_scissor(struct panfrost_batch *batch,
1209 unsigned minx, unsigned miny,
1210 unsigned maxx, unsigned maxy)
1211 {
1212 batch->minx = MIN2(batch->minx, minx);
1213 batch->miny = MIN2(batch->miny, miny);
1214 batch->maxx = MAX2(batch->maxx, maxx);
1215 batch->maxy = MAX2(batch->maxy, maxy);
1216 }
1217
1218 void
1219 panfrost_batch_intersection_scissor(struct panfrost_batch *batch,
1220 unsigned minx, unsigned miny,
1221 unsigned maxx, unsigned maxy)
1222 {
1223 batch->minx = MAX2(batch->minx, minx);
1224 batch->miny = MAX2(batch->miny, miny);
1225 batch->maxx = MIN2(batch->maxx, maxx);
1226 batch->maxy = MIN2(batch->maxy, maxy);
1227 }
1228
1229 /* Are we currently rendering to the screen (rather than an FBO)? */
1230
1231 bool
1232 panfrost_batch_is_scanout(struct panfrost_batch *batch)
1233 {
1234 /* If there is no color buffer, it's an FBO */
1235 if (batch->key.nr_cbufs != 1)
1236 return false;
1237
1238 /* If we're too early that no framebuffer was sent, it's scanout */
1239 if (!batch->key.cbufs[0])
1240 return true;
1241
1242 return batch->key.cbufs[0]->texture->bind & PIPE_BIND_DISPLAY_TARGET ||
1243 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SCANOUT ||
1244 batch->key.cbufs[0]->texture->bind & PIPE_BIND_SHARED;
1245 }
1246
1247 void
1248 panfrost_batch_init(struct panfrost_context *ctx)
1249 {
1250 ctx->batches = _mesa_hash_table_create(ctx,
1251 panfrost_batch_hash,
1252 panfrost_batch_compare);
1253 ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer,
1254 _mesa_key_pointer_equal);
1255 }