6ce009e4668a115a108151b07c3a35e344bb23c6
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_framebuffer.h"
27 #include "util/u_half.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_mm.h"
31 #include "util/u_memory.h"
32 #include "util/u_pack_color.h"
33 #include "util/u_transfer.h"
34
35 #include "tgsi/tgsi_parse.h"
36
37 #include "pipe/p_config.h"
38
39 #include "r300_cb.h"
40 #include "r300_context.h"
41 #include "r300_emit.h"
42 #include "r300_reg.h"
43 #include "r300_screen.h"
44 #include "r300_screen_buffer.h"
45 #include "r300_state_inlines.h"
46 #include "r300_fs.h"
47 #include "r300_texture.h"
48 #include "r300_vs.h"
49
50 /* r300_state: Functions used to intialize state context by translating
51 * Gallium state objects into semi-native r300 state objects. */
52
53 #define UPDATE_STATE(cso, atom) \
54 if (cso != atom.state) { \
55 atom.state = cso; \
56 r300_mark_atom_dirty(r300, &(atom)); \
57 }
58
59 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
60 unsigned dstRGB, unsigned dstA)
61 {
62 /* If the blend equation is ADD or REVERSE_SUBTRACT,
63 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
64 * will not be changed.
65 * Notice that the dst factors are the src factors inverted. */
66 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
67 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
68 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
69 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
71 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
72 srcA == PIPE_BLENDFACTOR_ZERO) &&
73 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
74 dstRGB == PIPE_BLENDFACTOR_ONE) &&
75 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
76 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
77 dstA == PIPE_BLENDFACTOR_ONE);
78 }
79
80 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
81 unsigned dstRGB, unsigned dstA)
82 {
83 /* If the blend equation is ADD or REVERSE_SUBTRACT,
84 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
85 * will not be changed.
86 * Notice that the dst factors are the src factors inverted. */
87 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
88 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
89 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
90 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
91 srcA == PIPE_BLENDFACTOR_ZERO) &&
92 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
93 dstRGB == PIPE_BLENDFACTOR_ONE) &&
94 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
95 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
96 dstA == PIPE_BLENDFACTOR_ONE);
97 }
98
99 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
100 unsigned dstRGB, unsigned dstA)
101 {
102 /* If the blend equation is ADD or REVERSE_SUBTRACT,
103 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
104 * will not be changed.
105 * Notice that the dst factors are the src factors inverted. */
106 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
107 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
108 (srcA == PIPE_BLENDFACTOR_ZERO) &&
109 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
110 dstRGB == PIPE_BLENDFACTOR_ONE) &&
111 (dstA == PIPE_BLENDFACTOR_ONE);
112 }
113
114 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
115 unsigned dstRGB, unsigned dstA)
116 {
117 /* If the blend equation is ADD or REVERSE_SUBTRACT,
118 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
119 * will not be changed.
120 * Notice that the dst factors are the src factors inverted. */
121 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
122 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
123 (srcA == PIPE_BLENDFACTOR_ZERO) &&
124 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
125 dstRGB == PIPE_BLENDFACTOR_ONE) &&
126 (dstA == PIPE_BLENDFACTOR_ONE);
127 }
128
129 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
130 unsigned dstRGB, unsigned dstA)
131 {
132 /* If the blend equation is ADD or REVERSE_SUBTRACT,
133 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
134 * the colorbuffer will not be changed.
135 * Notice that the dst factors are the src factors inverted. */
136 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
138 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
139 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
140 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
142 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
143 srcA == PIPE_BLENDFACTOR_ZERO) &&
144 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
145 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
146 dstRGB == PIPE_BLENDFACTOR_ONE) &&
147 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
148 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
149 dstA == PIPE_BLENDFACTOR_ONE);
150 }
151
152 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
153 unsigned dstRGB, unsigned dstA)
154 {
155 /* If the blend equation is ADD or REVERSE_SUBTRACT,
156 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
157 * the colorbuffer will not be changed.
158 * Notice that the dst factors are the src factors inverted. */
159 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
160 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
161 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
162 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
163 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
164 srcA == PIPE_BLENDFACTOR_ZERO) &&
165 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
166 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
167 dstRGB == PIPE_BLENDFACTOR_ONE) &&
168 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
169 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
170 dstA == PIPE_BLENDFACTOR_ONE);
171 }
172
173 static unsigned blend_discard_conditionally(unsigned eqRGB, unsigned eqA,
174 unsigned dstRGB, unsigned dstA,
175 unsigned srcRGB, unsigned srcA)
176 {
177 unsigned blend_control = 0;
178
179 /* Optimization: discard pixels which don't change the colorbuffer.
180 *
181 * The code below is non-trivial and some math is involved.
182 *
183 * Discarding pixels must be disabled when FP16 AA is enabled.
184 * This is a hardware bug. Also, this implementation wouldn't work
185 * with FP blending enabled and equation clamping disabled.
186 *
187 * Equations other than ADD are rarely used and therefore won't be
188 * optimized. */
189 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
190 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
191 /* ADD: X+Y
192 * REVERSE_SUBTRACT: Y-X
193 *
194 * The idea is:
195 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
196 * then CB will not be changed.
197 *
198 * Given the srcFactor and dstFactor variables, we can derive
199 * what src and dst should be equal to and discard appropriate
200 * pixels.
201 */
202 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
203 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
204 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
205 dstRGB, dstA)) {
206 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
207 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
208 dstRGB, dstA)) {
209 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
210 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
211 dstRGB, dstA)) {
212 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
213 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
214 dstRGB, dstA)) {
215 blend_control |=
216 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
217 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
218 dstRGB, dstA)) {
219 blend_control |=
220 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
221 }
222 }
223 return blend_control;
224 }
225
226 /* The hardware colormask is clunky a must be swizzled depending on the format.
227 * This was figured out by trial-and-error. */
228 static unsigned bgra_cmask(unsigned mask)
229 {
230 return ((mask & PIPE_MASK_R) << 2) |
231 ((mask & PIPE_MASK_B) >> 2) |
232 (mask & (PIPE_MASK_G | PIPE_MASK_A));
233 }
234
235 static unsigned rgba_cmask(unsigned mask)
236 {
237 return mask & PIPE_MASK_RGBA;
238 }
239
240 static unsigned rrrr_cmask(unsigned mask)
241 {
242 return (mask & PIPE_MASK_R) |
243 ((mask & PIPE_MASK_R) << 1) |
244 ((mask & PIPE_MASK_R) << 2) |
245 ((mask & PIPE_MASK_R) << 3);
246 }
247
248 static unsigned aaaa_cmask(unsigned mask)
249 {
250 return ((mask & PIPE_MASK_A) >> 3) |
251 ((mask & PIPE_MASK_A) >> 2) |
252 ((mask & PIPE_MASK_A) >> 1) |
253 (mask & PIPE_MASK_A);
254 }
255
256 static unsigned grrg_cmask(unsigned mask)
257 {
258 return ((mask & PIPE_MASK_R) << 1) |
259 ((mask & PIPE_MASK_R) << 2) |
260 ((mask & PIPE_MASK_G) >> 1) |
261 ((mask & PIPE_MASK_G) << 2);
262 }
263
264 static unsigned arra_cmask(unsigned mask)
265 {
266 return ((mask & PIPE_MASK_R) << 1) |
267 ((mask & PIPE_MASK_R) << 2) |
268 ((mask & PIPE_MASK_A) >> 3) |
269 (mask & PIPE_MASK_A);
270 }
271
272 static unsigned blend_read_enable(unsigned eqRGB, unsigned eqA,
273 unsigned dstRGB, unsigned dstA,
274 unsigned srcRGB, unsigned srcA,
275 boolean src_alpha_optz)
276 {
277 unsigned blend_control = 0;
278
279 /* Optimization: some operations do not require the destination color.
280 *
281 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
282 * otherwise blending gives incorrect results. It seems to be
283 * a hardware bug. */
284 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
285 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
286 dstRGB != PIPE_BLENDFACTOR_ZERO ||
287 dstA != PIPE_BLENDFACTOR_ZERO ||
288 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
289 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
290 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
291 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
292 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
293 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
294 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
295 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
296 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
297 /* Enable reading from the colorbuffer. */
298 blend_control |= R300_READ_ENABLE;
299
300 if (src_alpha_optz) {
301 /* Optimization: Depending on incoming pixels, we can
302 * conditionally disable the reading in hardware... */
303 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
304 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
305 /* Disable reading if SRC_ALPHA == 0. */
306 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
307 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
308 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
309 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
310 dstA == PIPE_BLENDFACTOR_ZERO) &&
311 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
312 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
313 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
314 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
315 blend_control |= R500_SRC_ALPHA_0_NO_READ;
316 }
317
318 /* Disable reading if SRC_ALPHA == 1. */
319 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
320 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
321 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
322 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
323 dstA == PIPE_BLENDFACTOR_ZERO) &&
324 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
325 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
326 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
327 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
328 blend_control |= R500_SRC_ALPHA_1_NO_READ;
329 }
330 }
331 }
332 }
333 return blend_control;
334 }
335
336 /* Create a new blend state based on the CSO blend state.
337 *
338 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
339 static void* r300_create_blend_state(struct pipe_context* pipe,
340 const struct pipe_blend_state* state)
341 {
342 struct r300_screen* r300screen = r300_screen(pipe->screen);
343 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
344 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
345 uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
346 uint32_t blend_control_noalpha = 0; /* R300_RB3D_CBLEND: 0x4e04 */
347 uint32_t blend_control_noalpha_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
348 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
349 uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
350 uint32_t alpha_blend_control_noalpha = 0; /* R300_RB3D_ABLEND: 0x4e08 */
351 uint32_t alpha_blend_control_noalpha_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
352 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
353 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
354 int i;
355
356 const unsigned eqRGB = state->rt[0].rgb_func;
357 const unsigned srcRGB = state->rt[0].rgb_src_factor;
358 const unsigned dstRGB = state->rt[0].rgb_dst_factor;
359
360 const unsigned eqA = state->rt[0].alpha_func;
361 const unsigned srcA = state->rt[0].alpha_src_factor;
362 const unsigned dstA = state->rt[0].alpha_dst_factor;
363
364 unsigned srcRGBX = srcRGB;
365 unsigned dstRGBX = dstRGB;
366 CB_LOCALS;
367
368 blend->state = *state;
369
370 /* force DST_ALPHA to ONE where we can */
371 switch (srcRGBX) {
372 case PIPE_BLENDFACTOR_DST_ALPHA:
373 srcRGBX = PIPE_BLENDFACTOR_ONE;
374 break;
375 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
376 srcRGBX = PIPE_BLENDFACTOR_ZERO;
377 break;
378 }
379
380 switch (dstRGBX) {
381 case PIPE_BLENDFACTOR_DST_ALPHA:
382 dstRGBX = PIPE_BLENDFACTOR_ONE;
383 break;
384 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
385 dstRGBX = PIPE_BLENDFACTOR_ZERO;
386 break;
387 }
388
389 /* Get blending register values. */
390 if (state->rt[0].blend_enable) {
391 unsigned blend_eq, blend_eq_noclamp;
392
393 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
394 * this is just the crappy D3D naming */
395 blend_control = blend_control_noclamp =
396 R300_ALPHA_BLEND_ENABLE |
397 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
398 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
399
400 blend_control_noalpha = blend_control_noalpha_noclamp =
401 R300_ALPHA_BLEND_ENABLE |
402 ( r300_translate_blend_factor(srcRGBX) << R300_SRC_BLEND_SHIFT) |
403 ( r300_translate_blend_factor(dstRGBX) << R300_DST_BLEND_SHIFT);
404
405 blend_eq = r300_translate_blend_function(eqRGB, TRUE);
406 blend_eq_noclamp = r300_translate_blend_function(eqRGB, FALSE);
407
408 blend_control |= blend_eq;
409 blend_control_noalpha |= blend_eq;
410 blend_control_noclamp |= blend_eq_noclamp;
411 blend_control_noalpha_noclamp |= blend_eq_noclamp;
412
413 /* Optimization: some operations do not require the destination color. */
414 blend_control |= blend_read_enable(eqRGB, eqA, dstRGB, dstA,
415 srcRGB, srcA, r300screen->caps.is_r500);
416 blend_control_noclamp |= blend_read_enable(eqRGB, eqA, dstRGB, dstA,
417 srcRGB, srcA, FALSE);
418 blend_control_noalpha |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA,
419 srcRGBX, srcA, r300screen->caps.is_r500);
420 blend_control_noalpha_noclamp |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA,
421 srcRGBX, srcA, FALSE);
422
423 /* Optimization: discard pixels which don't change the colorbuffer.
424 * It cannot be used with FP16 AA. */
425 blend_control |= blend_discard_conditionally(eqRGB, eqA, dstRGB, dstA,
426 srcRGB, srcA);
427 blend_control_noalpha |= blend_discard_conditionally(eqRGB, eqA, dstRGBX, dstA,
428 srcRGBX, srcA);
429
430 /* separate alpha */
431 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
432 blend_control |= R300_SEPARATE_ALPHA_ENABLE;
433 blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
434
435 alpha_blend_control = alpha_blend_control_noclamp =
436 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
437 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
438 alpha_blend_control |= r300_translate_blend_function(eqA, TRUE);
439 alpha_blend_control_noclamp |= r300_translate_blend_function(eqA, FALSE);
440 }
441 if (srcA != srcRGBX || dstA != dstRGBX || eqA != eqRGB) {
442 blend_control_noalpha |= R300_SEPARATE_ALPHA_ENABLE;
443 blend_control_noalpha_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
444
445 alpha_blend_control_noalpha = alpha_blend_control_noalpha_noclamp =
446 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
447 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
448 alpha_blend_control_noalpha |= r300_translate_blend_function(eqA, TRUE);
449 alpha_blend_control_noalpha_noclamp |= r300_translate_blend_function(eqA, FALSE);
450 }
451 }
452
453 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
454 if (state->logicop_enable) {
455 rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
456 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
457 }
458
459 /* Neither fglrx nor classic r300 ever set this, regardless of dithering
460 * state. Since it's an optional implementation detail, we can leave it
461 * out and never dither.
462 *
463 * This could be revisited if we ever get quality or conformance hints.
464 *
465 if (state->dither) {
466 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
467 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
468 }
469 */
470
471 /* Build a command buffer. */
472 {
473 unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = {
474 bgra_cmask,
475 rgba_cmask,
476 rrrr_cmask,
477 aaaa_cmask,
478 grrg_cmask,
479 arra_cmask,
480 bgra_cmask,
481 rgba_cmask
482 };
483
484 for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) {
485 boolean has_alpha = i != COLORMASK_RGBX && i != COLORMASK_BGRX;
486
487 BEGIN_CB(blend->cb_clamp[i], 8);
488 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
489 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
490 OUT_CB(has_alpha ? blend_control : blend_control_noalpha);
491 OUT_CB(has_alpha ? alpha_blend_control : alpha_blend_control_noalpha);
492 OUT_CB(func[i](state->rt[0].colormask));
493 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
494 END_CB;
495 }
496 }
497
498 /* Build a command buffer (for RGBA16F). */
499 BEGIN_CB(blend->cb_noclamp, 8);
500 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
501 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
502 OUT_CB(blend_control_noclamp);
503 OUT_CB(alpha_blend_control_noclamp);
504 OUT_CB(rgba_cmask(state->rt[0].colormask));
505 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
506 END_CB;
507
508 /* Build a command buffer (for RGB16F). */
509 BEGIN_CB(blend->cb_noclamp_noalpha, 8);
510 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
511 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
512 OUT_CB(blend_control_noalpha_noclamp);
513 OUT_CB(alpha_blend_control_noalpha_noclamp);
514 OUT_CB(rgba_cmask(state->rt[0].colormask));
515 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
516 END_CB;
517
518 /* The same as above, but with no colorbuffer reads and writes. */
519 BEGIN_CB(blend->cb_no_readwrite, 8);
520 OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
521 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
522 OUT_CB(0);
523 OUT_CB(0);
524 OUT_CB(0);
525 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
526 END_CB;
527
528 return (void*)blend;
529 }
530
531 /* Bind blend state. */
532 static void r300_bind_blend_state(struct pipe_context* pipe,
533 void* state)
534 {
535 struct r300_context* r300 = r300_context(pipe);
536 struct r300_blend_state *blend = (struct r300_blend_state*)state;
537 boolean last_alpha_to_one = r300->alpha_to_one;
538 boolean last_alpha_to_coverage = r300->alpha_to_coverage;
539
540 UPDATE_STATE(state, r300->blend_state);
541
542 if (!blend)
543 return;
544
545 r300->alpha_to_one = blend->state.alpha_to_one;
546 r300->alpha_to_coverage = blend->state.alpha_to_coverage;
547
548 if (r300->alpha_to_one != last_alpha_to_one && r300->msaa_enable &&
549 r300->fs_status == FRAGMENT_SHADER_VALID) {
550 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY;
551 }
552
553 if (r300->alpha_to_coverage != last_alpha_to_coverage &&
554 r300->msaa_enable) {
555 r300_mark_atom_dirty(r300, &r300->dsa_state);
556 }
557 }
558
559 /* Free blend state. */
560 static void r300_delete_blend_state(struct pipe_context* pipe,
561 void* state)
562 {
563 FREE(state);
564 }
565
566 /* Convert float to 10bit integer */
567 static unsigned float_to_fixed10(float f)
568 {
569 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
570 }
571
572 /* Set blend color.
573 * Setup both R300 and R500 registers, figure out later which one to write. */
574 static void r300_set_blend_color(struct pipe_context* pipe,
575 const struct pipe_blend_color* color)
576 {
577 struct r300_context* r300 = r300_context(pipe);
578 struct pipe_framebuffer_state *fb = r300->fb_state.state;
579 struct r300_blend_color_state *state =
580 (struct r300_blend_color_state*)r300->blend_color_state.state;
581 struct pipe_blend_color c;
582 enum pipe_format format = fb->nr_cbufs ? fb->cbufs[0]->format : 0;
583 float tmp;
584 CB_LOCALS;
585
586 state->state = *color; /* Save it, so that we can reuse it in set_fb_state */
587 c = *color;
588
589 /* The blend color is dependent on the colorbuffer format. */
590 if (fb->nr_cbufs) {
591 switch (format) {
592 case PIPE_FORMAT_R8_UNORM:
593 case PIPE_FORMAT_L8_UNORM:
594 case PIPE_FORMAT_I8_UNORM:
595 c.color[1] = c.color[0];
596 break;
597
598 case PIPE_FORMAT_A8_UNORM:
599 c.color[1] = c.color[3];
600 break;
601
602 case PIPE_FORMAT_R8G8_UNORM:
603 c.color[2] = c.color[1];
604 break;
605
606 case PIPE_FORMAT_L8A8_UNORM:
607 case PIPE_FORMAT_R8A8_UNORM:
608 c.color[2] = c.color[3];
609 break;
610
611 case PIPE_FORMAT_R8G8B8A8_UNORM:
612 case PIPE_FORMAT_R8G8B8X8_UNORM:
613 tmp = c.color[0];
614 c.color[0] = c.color[2];
615 c.color[2] = tmp;
616 break;
617
618 default:;
619 }
620 }
621
622 if (r300->screen->caps.is_r500) {
623 BEGIN_CB(state->cb, 3);
624 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
625
626 switch (format) {
627 case PIPE_FORMAT_R16G16B16A16_FLOAT:
628 case PIPE_FORMAT_R16G16B16X16_FLOAT:
629 OUT_CB(util_float_to_half(c.color[2]) |
630 (util_float_to_half(c.color[3]) << 16));
631 OUT_CB(util_float_to_half(c.color[0]) |
632 (util_float_to_half(c.color[1]) << 16));
633 break;
634
635 default:
636 OUT_CB(float_to_fixed10(c.color[0]) |
637 (float_to_fixed10(c.color[3]) << 16));
638 OUT_CB(float_to_fixed10(c.color[2]) |
639 (float_to_fixed10(c.color[1]) << 16));
640 }
641
642 END_CB;
643 } else {
644 union util_color uc;
645 util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
646
647 BEGIN_CB(state->cb, 2);
648 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
649 END_CB;
650 }
651
652 r300_mark_atom_dirty(r300, &r300->blend_color_state);
653 }
654
655 static void r300_set_clip_state(struct pipe_context* pipe,
656 const struct pipe_clip_state* state)
657 {
658 struct r300_context* r300 = r300_context(pipe);
659 struct r300_clip_state *clip =
660 (struct r300_clip_state*)r300->clip_state.state;
661 CB_LOCALS;
662
663 if (r300->screen->caps.has_tcl) {
664 BEGIN_CB(clip->cb, r300->clip_state.size);
665 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
666 (r300->screen->caps.is_r500 ?
667 R500_PVS_UCP_START : R300_PVS_UCP_START));
668 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
669 OUT_CB_TABLE(state->ucp, 6 * 4);
670 END_CB;
671
672 r300_mark_atom_dirty(r300, &r300->clip_state);
673 } else {
674 draw_set_clip_state(r300->draw, state);
675 }
676 }
677
678 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
679 *
680 * This contains the depth buffer, stencil buffer, alpha test, and such.
681 * On the Radeon, depth and stencil buffer setup are intertwined, which is
682 * the reason for some of the strange-looking assignments across registers. */
683 static void* r300_create_dsa_state(struct pipe_context* pipe,
684 const struct pipe_depth_stencil_alpha_state* state)
685 {
686 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
687 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
688 CB_LOCALS;
689 uint32_t alpha_value_fp16 = 0;
690 uint32_t z_buffer_control = 0;
691 uint32_t z_stencil_control = 0;
692 uint32_t stencil_ref_mask = 0;
693 uint32_t stencil_ref_bf = 0;
694
695 dsa->dsa = *state;
696
697 /* Depth test setup. - separate write mask depth for decomp flush */
698 if (state->depth.writemask) {
699 z_buffer_control |= R300_Z_WRITE_ENABLE;
700 }
701
702 if (state->depth.enabled) {
703 z_buffer_control |= R300_Z_ENABLE;
704
705 z_stencil_control |=
706 (r300_translate_depth_stencil_function(state->depth.func) <<
707 R300_Z_FUNC_SHIFT);
708 }
709
710 /* Stencil buffer setup. */
711 if (state->stencil[0].enabled) {
712 z_buffer_control |= R300_STENCIL_ENABLE;
713 z_stencil_control |=
714 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
715 R300_S_FRONT_FUNC_SHIFT) |
716 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
717 R300_S_FRONT_SFAIL_OP_SHIFT) |
718 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
719 R300_S_FRONT_ZPASS_OP_SHIFT) |
720 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
721 R300_S_FRONT_ZFAIL_OP_SHIFT);
722
723 stencil_ref_mask =
724 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
725 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
726
727 if (state->stencil[1].enabled) {
728 dsa->two_sided = TRUE;
729
730 z_buffer_control |= R300_STENCIL_FRONT_BACK;
731 z_stencil_control |=
732 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
733 R300_S_BACK_FUNC_SHIFT) |
734 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
735 R300_S_BACK_SFAIL_OP_SHIFT) |
736 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
737 R300_S_BACK_ZPASS_OP_SHIFT) |
738 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
739 R300_S_BACK_ZFAIL_OP_SHIFT);
740
741 stencil_ref_bf =
742 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
743 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
744
745 if (is_r500) {
746 z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
747 } else {
748 dsa->two_sided_stencil_ref =
749 (state->stencil[0].valuemask != state->stencil[1].valuemask ||
750 state->stencil[0].writemask != state->stencil[1].writemask);
751 }
752 }
753 }
754
755 /* Alpha test setup. */
756 if (state->alpha.enabled) {
757 dsa->alpha_function =
758 r300_translate_alpha_function(state->alpha.func) |
759 R300_FG_ALPHA_FUNC_ENABLE;
760
761 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
762 alpha_value_fp16 = util_float_to_half(state->alpha.ref_value);
763 }
764
765 BEGIN_CB(&dsa->cb_begin, 8);
766 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
767 OUT_CB(z_buffer_control);
768 OUT_CB(z_stencil_control);
769 OUT_CB(stencil_ref_mask);
770 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, stencil_ref_bf);
771 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16);
772 END_CB;
773
774 BEGIN_CB(dsa->cb_zb_no_readwrite, 8);
775 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
776 OUT_CB(0);
777 OUT_CB(0);
778 OUT_CB(0);
779 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
780 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16);
781 END_CB;
782
783 return (void*)dsa;
784 }
785
786 static void r300_dsa_inject_stencilref(struct r300_context *r300)
787 {
788 struct r300_dsa_state *dsa =
789 (struct r300_dsa_state*)r300->dsa_state.state;
790
791 if (!dsa)
792 return;
793
794 dsa->stencil_ref_mask =
795 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
796 r300->stencil_ref.ref_value[0];
797 dsa->stencil_ref_bf =
798 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
799 r300->stencil_ref.ref_value[1];
800 }
801
802 /* Bind DSA state. */
803 static void r300_bind_dsa_state(struct pipe_context* pipe,
804 void* state)
805 {
806 struct r300_context* r300 = r300_context(pipe);
807
808 if (!state) {
809 return;
810 }
811
812 UPDATE_STATE(state, r300->dsa_state);
813
814 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
815 r300_dsa_inject_stencilref(r300);
816 }
817
818 /* Free DSA state. */
819 static void r300_delete_dsa_state(struct pipe_context* pipe,
820 void* state)
821 {
822 FREE(state);
823 }
824
825 static void r300_set_stencil_ref(struct pipe_context* pipe,
826 const struct pipe_stencil_ref* sr)
827 {
828 struct r300_context* r300 = r300_context(pipe);
829
830 r300->stencil_ref = *sr;
831
832 r300_dsa_inject_stencilref(r300);
833 r300_mark_atom_dirty(r300, &r300->dsa_state);
834 }
835
836 static void r300_tex_set_tiling_flags(struct r300_context *r300,
837 struct r300_resource *tex,
838 unsigned level)
839 {
840 /* Check if the macrotile flag needs to be changed.
841 * Skip changing the flags otherwise. */
842 if (tex->tex.macrotile[tex->surface_level] !=
843 tex->tex.macrotile[level]) {
844 r300->rws->buffer_set_tiling(tex->buf, r300->cs,
845 tex->tex.microtile, tex->tex.macrotile[level],
846 0, 0, 0, 0, 0,
847 tex->tex.stride_in_bytes[0]);
848
849 tex->surface_level = level;
850 }
851 }
852
853 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
854 static void r300_fb_set_tiling_flags(struct r300_context *r300,
855 const struct pipe_framebuffer_state *state)
856 {
857 unsigned i;
858
859 /* Set tiling flags for new surfaces. */
860 for (i = 0; i < state->nr_cbufs; i++) {
861 r300_tex_set_tiling_flags(r300,
862 r300_resource(state->cbufs[i]->texture),
863 state->cbufs[i]->u.tex.level);
864 }
865 if (state->zsbuf) {
866 r300_tex_set_tiling_flags(r300,
867 r300_resource(state->zsbuf->texture),
868 state->zsbuf->u.tex.level);
869 }
870 }
871
872 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
873 const char *binding)
874 {
875 struct pipe_resource *tex = surf->texture;
876 struct r300_resource *rtex = r300_resource(tex);
877
878 fprintf(stderr,
879 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, "
880 "Lastlayer: %i, Level: %i, Format: %s\n"
881
882 "r300: TEX: Macro: %s, Micro: %s, "
883 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
884
885 binding, index, surf->width, surf->height,
886 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
887 util_format_short_name(surf->format),
888
889 rtex->tex.macrotile[0] ? "YES" : " NO",
890 rtex->tex.microtile ? "YES" : " NO",
891 tex->width0, tex->height0, tex->depth0,
892 tex->last_level, util_format_short_name(surf->format));
893 }
894
895 void r300_mark_fb_state_dirty(struct r300_context *r300,
896 enum r300_fb_state_change change)
897 {
898 struct pipe_framebuffer_state *state = r300->fb_state.state;
899
900 r300_mark_atom_dirty(r300, &r300->gpu_flush);
901 r300_mark_atom_dirty(r300, &r300->fb_state);
902
903 /* What is marked as dirty depends on the enum r300_fb_state_change. */
904 if (change == R300_CHANGED_FB_STATE) {
905 r300_mark_atom_dirty(r300, &r300->aa_state);
906 r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */
907 r300_set_blend_color(&r300->context, r300->blend_color_state.state);
908 }
909
910 if (change == R300_CHANGED_FB_STATE ||
911 change == R300_CHANGED_HYPERZ_FLAG) {
912 r300_mark_atom_dirty(r300, &r300->hyperz_state);
913 }
914
915 if (change == R300_CHANGED_FB_STATE ||
916 change == R300_CHANGED_MULTIWRITE) {
917 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
918 }
919
920 /* Now compute the fb_state atom size. */
921 r300->fb_state.size = 2 + (8 * state->nr_cbufs);
922
923 if (r300->cbzb_clear)
924 r300->fb_state.size += 10;
925 else if (state->zsbuf) {
926 r300->fb_state.size += 10;
927 if (r300->hyperz_enabled)
928 r300->fb_state.size += 8;
929 }
930
931 if (r300->cmask_in_use) {
932 r300->fb_state.size += 6;
933 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
934 r300->fb_state.size += 3;
935 }
936 }
937
938 /* The size of the rest of atoms stays the same. */
939 }
940
941 static unsigned r300_get_num_samples(struct r300_context *r300)
942 {
943 struct pipe_framebuffer_state* fb =
944 (struct pipe_framebuffer_state*)r300->fb_state.state;
945 unsigned i, num_samples;
946
947 if (!fb->nr_cbufs && !fb->zsbuf)
948 return 1;
949
950 num_samples = 6;
951
952 for (i = 0; i < fb->nr_cbufs; i++)
953 num_samples = MIN2(num_samples, fb->cbufs[i]->texture->nr_samples);
954
955 if (fb->zsbuf)
956 num_samples = MIN2(num_samples, fb->zsbuf->texture->nr_samples);
957
958 if (!num_samples)
959 num_samples = 1;
960
961 return num_samples;
962 }
963
964 static void
965 r300_set_framebuffer_state(struct pipe_context* pipe,
966 const struct pipe_framebuffer_state* state)
967 {
968 struct r300_context* r300 = r300_context(pipe);
969 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
970 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
971 unsigned max_width, max_height, i;
972 uint32_t zbuffer_bpp = 0;
973 boolean unlock_zbuffer = FALSE;
974
975 if (r300->screen->caps.is_r500) {
976 max_width = max_height = 4096;
977 } else if (r300->screen->caps.is_r400) {
978 max_width = max_height = 4021;
979 } else {
980 max_width = max_height = 2560;
981 }
982
983 if (state->width > max_width || state->height > max_height) {
984 fprintf(stderr, "r300: Implementation error: Render targets are too "
985 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
986 return;
987 }
988
989 if (old_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) {
990 /* There is a zmask in use, what are we gonna do? */
991 if (state->zsbuf) {
992 if (!pipe_surface_equal(old_state->zsbuf, state->zsbuf)) {
993 /* Decompress the currently bound zbuffer before we bind another one. */
994 r300_decompress_zmask(r300);
995 r300->hiz_in_use = FALSE;
996 }
997 } else {
998 /* We don't bind another zbuffer, so lock the current one. */
999 pipe_surface_reference(&r300->locked_zbuffer, old_state->zsbuf);
1000 }
1001 } else if (r300->locked_zbuffer) {
1002 /* We have a locked zbuffer now, what are we gonna do? */
1003 if (state->zsbuf) {
1004 if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) {
1005 /* We are binding some other zbuffer, so decompress the locked one,
1006 * it gets unlocked automatically. */
1007 r300_decompress_zmask_locked_unsafe(r300);
1008 r300->hiz_in_use = FALSE;
1009 } else {
1010 /* We are binding the locked zbuffer again, so unlock it. */
1011 unlock_zbuffer = TRUE;
1012 }
1013 }
1014 }
1015 assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use);
1016
1017 /* Set whether CMASK can be used. */
1018 r300->cmask_in_use =
1019 state->nr_cbufs == 1 &&
1020 r300->screen->cmask_resource == state->cbufs[0]->texture;
1021
1022 /* Need to reset clamping or colormask. */
1023 r300_mark_atom_dirty(r300, &r300->blend_state);
1024
1025 /* Re-swizzle the blend color. */
1026 r300_set_blend_color(pipe, &((struct r300_blend_color_state*)r300->blend_color_state.state)->state);
1027
1028 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
1029 if (!!old_state->zsbuf != !!state->zsbuf) {
1030 r300_mark_atom_dirty(r300, &r300->dsa_state);
1031 }
1032
1033 if (r300->screen->info.drm_minor < 12) {
1034 /* The tiling flags are dependent on the surface miplevel, unfortunately.
1035 * This workarounds a bad design decision in old kernels which were
1036 * rewriting tile fields in registers. */
1037 r300_fb_set_tiling_flags(r300, state);
1038 }
1039
1040 util_copy_framebuffer_state(r300->fb_state.state, state);
1041
1042 if (unlock_zbuffer) {
1043 pipe_surface_reference(&r300->locked_zbuffer, NULL);
1044 }
1045
1046 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
1047
1048 if (state->zsbuf) {
1049 switch (util_format_get_blocksize(state->zsbuf->format)) {
1050 case 2:
1051 zbuffer_bpp = 16;
1052 break;
1053 case 4:
1054 zbuffer_bpp = 24;
1055 break;
1056 }
1057
1058 /* Polygon offset depends on the zbuffer bit depth. */
1059 if (r300->zbuffer_bpp != zbuffer_bpp) {
1060 r300->zbuffer_bpp = zbuffer_bpp;
1061
1062 if (r300->polygon_offset_enabled)
1063 r300_mark_atom_dirty(r300, &r300->rs_state);
1064 }
1065 }
1066
1067 r300->num_samples = r300_get_num_samples(r300);
1068
1069 /* Set up AA config. */
1070 if (r300->num_samples > 1) {
1071 switch (r300->num_samples) {
1072 case 2:
1073 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1074 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
1075 break;
1076 case 4:
1077 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1078 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
1079 break;
1080 case 6:
1081 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE |
1082 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
1083 break;
1084 }
1085 } else {
1086 aa->aa_config = 0;
1087 }
1088
1089 if (DBG_ON(r300, DBG_FB)) {
1090 fprintf(stderr, "r300: set_framebuffer_state:\n");
1091 for (i = 0; i < state->nr_cbufs; i++) {
1092 r300_print_fb_surf_info(state->cbufs[i], i, "CB");
1093 }
1094 if (state->zsbuf) {
1095 r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
1096 }
1097 }
1098 }
1099
1100 /* Create fragment shader state. */
1101 static void* r300_create_fs_state(struct pipe_context* pipe,
1102 const struct pipe_shader_state* shader)
1103 {
1104 struct r300_fragment_shader* fs = NULL;
1105
1106 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
1107
1108 /* Copy state directly into shader. */
1109 fs->state = *shader;
1110 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
1111
1112 return (void*)fs;
1113 }
1114
1115 void r300_mark_fs_code_dirty(struct r300_context *r300)
1116 {
1117 struct r300_fragment_shader* fs = r300_fs(r300);
1118
1119 r300_mark_atom_dirty(r300, &r300->fs);
1120 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1121 r300_mark_atom_dirty(r300, &r300->fs_constants);
1122 r300->fs.size = fs->shader->cb_code_size;
1123
1124 if (r300->screen->caps.is_r500) {
1125 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
1126 r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
1127 } else {
1128 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
1129 r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
1130 }
1131
1132 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
1133 fs->shader->code.constants_remap_table;
1134 }
1135
1136 /* Bind fragment shader state. */
1137 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
1138 {
1139 struct r300_context* r300 = r300_context(pipe);
1140 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1141
1142 if (fs == NULL) {
1143 r300->fs.state = NULL;
1144 return;
1145 }
1146
1147 r300->fs.state = fs;
1148 r300->fs_status = FRAGMENT_SHADER_DIRTY;
1149
1150 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1151 }
1152
1153 /* Delete fragment shader state. */
1154 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
1155 {
1156 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
1157 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
1158
1159 while (ptr) {
1160 tmp = ptr;
1161 ptr = ptr->next;
1162 rc_constants_destroy(&tmp->code.constants);
1163 FREE(tmp->cb_code);
1164 FREE(tmp);
1165 }
1166 FREE((void*)fs->state.tokens);
1167 FREE(shader);
1168 }
1169
1170 static void r300_set_polygon_stipple(struct pipe_context* pipe,
1171 const struct pipe_poly_stipple* state)
1172 {
1173 /* XXX no idea how to set this up, but not terribly important */
1174 }
1175
1176 /* Create a new rasterizer state based on the CSO rasterizer state.
1177 *
1178 * This is a very large chunk of state, and covers most of the graphics
1179 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
1180 *
1181 * In a not entirely unironic sidenote, this state has nearly nothing to do
1182 * with the actual block on the Radeon called the rasterizer (RS). */
1183 static void* r300_create_rs_state(struct pipe_context* pipe,
1184 const struct pipe_rasterizer_state* state)
1185 {
1186 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
1187 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
1188 uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */
1189 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
1190 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
1191 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
1192 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
1193 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
1194 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
1195 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
1196 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
1197 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
1198 uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */
1199
1200 /* Point sprites texture coordinates, 0: lower left, 1: upper right */
1201 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */
1202 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
1203 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
1204 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
1205 boolean vclamp = !r300_context(pipe)->screen->caps.is_r500;
1206 CB_LOCALS;
1207
1208 /* Copy rasterizer state. */
1209 rs->rs = *state;
1210 rs->rs_draw = *state;
1211
1212 rs->rs.sprite_coord_enable = state->point_quad_rasterization *
1213 state->sprite_coord_enable;
1214
1215 /* Override some states for Draw. */
1216 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
1217 rs->rs_draw.offset_point = 0;
1218 rs->rs_draw.offset_line = 0;
1219 rs->rs_draw.offset_tri = 0;
1220 rs->rs_draw.offset_clamp = 0;
1221
1222 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1223 vap_control_status = R300_VC_NO_SWAP;
1224 #else
1225 vap_control_status = R300_VC_32BIT_SWAP;
1226 #endif
1227
1228 /* If no TCL engine is present, turn off the HW TCL. */
1229 if (!r300_screen(pipe->screen)->caps.has_tcl) {
1230 vap_control_status |= R300_VAP_TCL_BYPASS;
1231 }
1232
1233 /* Point size width and height. */
1234 point_size =
1235 pack_float_16_6x(state->point_size) |
1236 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
1237
1238 /* Point size clamping. */
1239 if (state->point_size_per_vertex) {
1240 /* Per-vertex point size.
1241 * Clamp to [0, max FB size] */
1242 float min_psiz = util_get_min_point_size(state);
1243 float max_psiz = pipe->screen->get_paramf(pipe->screen,
1244 PIPE_CAPF_MAX_POINT_WIDTH);
1245 point_minmax =
1246 (pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1247 (pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1248 } else {
1249 /* We cannot disable the point-size vertex output,
1250 * so clamp it. */
1251 float psiz = state->point_size;
1252 point_minmax =
1253 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
1254 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
1255 }
1256
1257 /* Line control. */
1258 line_control = pack_float_16_6x(state->line_width) |
1259 R300_GA_LINE_CNTL_END_TYPE_COMP;
1260
1261 /* Enable polygon mode */
1262 polygon_mode = 0;
1263 if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
1264 state->fill_back != PIPE_POLYGON_MODE_FILL) {
1265 polygon_mode = R300_GA_POLY_MODE_DUAL;
1266 }
1267
1268 /* Front face */
1269 if (state->front_ccw)
1270 cull_mode = R300_FRONT_FACE_CCW;
1271 else
1272 cull_mode = R300_FRONT_FACE_CW;
1273
1274 /* Polygon offset */
1275 polygon_offset_enable = 0;
1276 if (util_get_offset(state, state->fill_front)) {
1277 polygon_offset_enable |= R300_FRONT_ENABLE;
1278 }
1279 if (util_get_offset(state, state->fill_back)) {
1280 polygon_offset_enable |= R300_BACK_ENABLE;
1281 }
1282
1283 rs->polygon_offset_enable = polygon_offset_enable != 0;
1284
1285 /* Polygon mode */
1286 if (polygon_mode) {
1287 polygon_mode |=
1288 r300_translate_polygon_mode_front(state->fill_front);
1289 polygon_mode |=
1290 r300_translate_polygon_mode_back(state->fill_back);
1291 }
1292
1293 if (state->cull_face & PIPE_FACE_FRONT) {
1294 cull_mode |= R300_CULL_FRONT;
1295 }
1296 if (state->cull_face & PIPE_FACE_BACK) {
1297 cull_mode |= R300_CULL_BACK;
1298 }
1299
1300 if (state->line_stipple_enable) {
1301 line_stipple_config =
1302 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1303 (fui((float)state->line_stipple_factor) &
1304 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1305 /* XXX this might need to be scaled up */
1306 line_stipple_value = state->line_stipple_pattern;
1307 } else {
1308 line_stipple_config = 0;
1309 line_stipple_value = 0;
1310 }
1311
1312 if (state->flatshade) {
1313 rs->color_control = R300_SHADE_MODEL_FLAT;
1314 } else {
1315 rs->color_control = R300_SHADE_MODEL_SMOOTH;
1316 }
1317
1318 clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1319
1320 /* Point sprites coord mode */
1321 if (rs->rs.sprite_coord_enable) {
1322 switch (state->sprite_coord_mode) {
1323 case PIPE_SPRITE_COORD_UPPER_LEFT:
1324 point_texcoord_top = 0.0f;
1325 point_texcoord_bottom = 1.0f;
1326 break;
1327 case PIPE_SPRITE_COORD_LOWER_LEFT:
1328 point_texcoord_top = 1.0f;
1329 point_texcoord_bottom = 0.0f;
1330 break;
1331 }
1332 }
1333
1334 if (r300_screen(pipe->screen)->caps.has_tcl) {
1335 vap_clip_cntl = (state->clip_plane_enable & 63) |
1336 R300_PS_UCP_MODE_CLIP_AS_TRIFAN;
1337 } else {
1338 vap_clip_cntl = R300_CLIP_DISABLE;
1339 }
1340
1341 /* Vertex color clamping. FP20 means no clamping. */
1342 round_mode =
1343 R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST |
1344 (!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 |
1345 R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0);
1346
1347 /* Build the main command buffer. */
1348 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
1349 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1350 OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl);
1351 OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1352 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1353 OUT_CB(point_minmax);
1354 OUT_CB(line_control);
1355 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1356 OUT_CB(polygon_offset_enable);
1357 rs->cull_mode_index = 11;
1358 OUT_CB(cull_mode);
1359 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1360 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1361 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1362 OUT_CB_REG(R300_GA_ROUND_MODE, round_mode);
1363 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1364 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1365 OUT_CB_32F(point_texcoord_left);
1366 OUT_CB_32F(point_texcoord_bottom);
1367 OUT_CB_32F(point_texcoord_right);
1368 OUT_CB_32F(point_texcoord_top);
1369 END_CB;
1370
1371 /* Build the two command buffers for polygon offset setup. */
1372 if (polygon_offset_enable) {
1373 float scale = state->offset_scale * 12;
1374 float offset = state->offset_units * 4;
1375
1376 BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1377 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1378 OUT_CB_32F(scale);
1379 OUT_CB_32F(offset);
1380 OUT_CB_32F(scale);
1381 OUT_CB_32F(offset);
1382 END_CB;
1383
1384 offset = state->offset_units * 2;
1385
1386 BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1387 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1388 OUT_CB_32F(scale);
1389 OUT_CB_32F(offset);
1390 OUT_CB_32F(scale);
1391 OUT_CB_32F(offset);
1392 END_CB;
1393 }
1394
1395 return (void*)rs;
1396 }
1397
1398 /* Bind rasterizer state. */
1399 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1400 {
1401 struct r300_context* r300 = r300_context(pipe);
1402 struct r300_rs_state* rs = (struct r300_rs_state*)state;
1403 int last_sprite_coord_enable = r300->sprite_coord_enable;
1404 boolean last_two_sided_color = r300->two_sided_color;
1405 boolean last_msaa_enable = r300->msaa_enable;
1406 boolean last_flatshade = r300->flatshade;
1407
1408 if (r300->draw && rs) {
1409 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1410 }
1411
1412 if (rs) {
1413 r300->polygon_offset_enabled = rs->polygon_offset_enable;
1414 r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1415 r300->two_sided_color = rs->rs.light_twoside;
1416 r300->msaa_enable = rs->rs.multisample;
1417 r300->flatshade = rs->rs.flatshade;
1418 } else {
1419 r300->polygon_offset_enabled = FALSE;
1420 r300->sprite_coord_enable = 0;
1421 r300->two_sided_color = FALSE;
1422 r300->msaa_enable = FALSE;
1423 r300->flatshade = FALSE;
1424 }
1425
1426 UPDATE_STATE(state, r300->rs_state);
1427 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
1428
1429 if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1430 last_two_sided_color != r300->two_sided_color ||
1431 last_flatshade != r300->flatshade) {
1432 r300_mark_atom_dirty(r300, &r300->rs_block_state);
1433 }
1434
1435 if (last_msaa_enable != r300->msaa_enable) {
1436 if (r300->alpha_to_coverage) {
1437 r300_mark_atom_dirty(r300, &r300->dsa_state);
1438 }
1439
1440 if (r300->alpha_to_one &&
1441 r300->fs_status == FRAGMENT_SHADER_VALID) {
1442 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY;
1443 }
1444 }
1445 }
1446
1447 /* Free rasterizer state. */
1448 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1449 {
1450 FREE(state);
1451 }
1452
1453 static void*
1454 r300_create_sampler_state(struct pipe_context* pipe,
1455 const struct pipe_sampler_state* state)
1456 {
1457 struct r300_context* r300 = r300_context(pipe);
1458 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1459 boolean is_r500 = r300->screen->caps.is_r500;
1460 int lod_bias;
1461
1462 sampler->state = *state;
1463
1464 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1465 * or MIN filter is NEAREST. Since texwrap produces same results
1466 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1467 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1468 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1469 /* Wrap S. */
1470 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1471 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1472 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1473 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1474
1475 /* Wrap T. */
1476 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1477 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1478 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1479 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1480
1481 /* Wrap R. */
1482 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1483 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1484 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1485 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1486 }
1487
1488 sampler->filter0 |=
1489 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1490 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1491 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1492
1493 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1494 state->mag_img_filter,
1495 state->min_mip_filter,
1496 state->max_anisotropy > 1);
1497
1498 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1499
1500 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1501 /* We must pass these to the merge function to clamp them properly. */
1502 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
1503 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
1504
1505 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1506
1507 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1508
1509 /* This is very high quality anisotropic filtering for R5xx.
1510 * It's good for benchmarking the performance of texturing but
1511 * in practice we don't want to slow down the driver because it's
1512 * a pretty good performance killer. Feel free to play with it. */
1513 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1514 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1515 }
1516
1517 /* R500-specific fixups and optimizations */
1518 if (r300->screen->caps.is_r500) {
1519 sampler->filter1 |= R500_BORDER_FIX;
1520 }
1521
1522 return (void*)sampler;
1523 }
1524
1525 static void r300_bind_sampler_states(struct pipe_context* pipe,
1526 unsigned shader,
1527 unsigned start, unsigned count,
1528 void** states)
1529 {
1530 struct r300_context* r300 = r300_context(pipe);
1531 struct r300_textures_state* state =
1532 (struct r300_textures_state*)r300->textures_state.state;
1533 unsigned tex_units = r300->screen->caps.num_tex_units;
1534
1535 assert(start == 0);
1536
1537 if (shader != PIPE_SHADER_FRAGMENT)
1538 return;
1539
1540 if (count > tex_units)
1541 return;
1542
1543 memcpy(state->sampler_states, states, sizeof(void*) * count);
1544 state->sampler_state_count = count;
1545
1546 r300_mark_atom_dirty(r300, &r300->textures_state);
1547 }
1548
1549 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1550 {
1551 FREE(state);
1552 }
1553
1554 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1555 {
1556 /* This looks like a hack, but I believe it's suppose to work like
1557 * that. To illustrate how this works, let's assume you have 5 textures.
1558 * From docs, 5 and the successive numbers are:
1559 *
1560 * FOURTH_1 = 5
1561 * FOURTH_2 = 6
1562 * FOURTH_3 = 7
1563 * EIGHTH_0 = 8
1564 * EIGHTH_1 = 9
1565 *
1566 * First 3 textures will get 3/4 of size of the cache, divived evenly
1567 * between them. The last 1/4 of the cache must be divided between
1568 * the last 2 textures, each will therefore get 1/8 of the cache.
1569 * Why not just to use "5 + texture_index" ?
1570 *
1571 * This simple trick works for all "num" <= 16.
1572 */
1573 if (num <= 1)
1574 return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1575 else
1576 return R300_TX_CACHE(num + index);
1577 }
1578
1579 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1580 unsigned count,
1581 struct pipe_sampler_view** views)
1582 {
1583 struct r300_context* r300 = r300_context(pipe);
1584 struct r300_textures_state* state =
1585 (struct r300_textures_state*)r300->textures_state.state;
1586 struct r300_resource *texture;
1587 unsigned i, real_num_views = 0, view_index = 0;
1588 unsigned tex_units = r300->screen->caps.num_tex_units;
1589 boolean dirty_tex = FALSE;
1590
1591 if (count > tex_units) {
1592 return;
1593 }
1594
1595 /* Calculate the real number of views. */
1596 for (i = 0; i < count; i++) {
1597 if (views[i])
1598 real_num_views++;
1599 }
1600
1601 for (i = 0; i < count; i++) {
1602 pipe_sampler_view_reference(
1603 (struct pipe_sampler_view**)&state->sampler_views[i],
1604 views[i]);
1605
1606 if (!views[i]) {
1607 continue;
1608 }
1609
1610 /* A new sampler view (= texture)... */
1611 dirty_tex = TRUE;
1612
1613 /* Set the texrect factor in the fragment shader.
1614 * Needed for RECT and NPOT fallback. */
1615 texture = r300_resource(views[i]->texture);
1616 if (texture->tex.is_npot) {
1617 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1618 }
1619
1620 state->sampler_views[i]->texcache_region =
1621 r300_assign_texture_cache_region(view_index, real_num_views);
1622 view_index++;
1623 }
1624
1625 for (i = count; i < tex_units; i++) {
1626 if (state->sampler_views[i]) {
1627 pipe_sampler_view_reference(
1628 (struct pipe_sampler_view**)&state->sampler_views[i],
1629 NULL);
1630 }
1631 }
1632
1633 state->sampler_view_count = count;
1634
1635 r300_mark_atom_dirty(r300, &r300->textures_state);
1636
1637 if (dirty_tex) {
1638 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1639 }
1640 }
1641
1642 struct pipe_sampler_view *
1643 r300_create_sampler_view_custom(struct pipe_context *pipe,
1644 struct pipe_resource *texture,
1645 const struct pipe_sampler_view *templ,
1646 unsigned width0_override,
1647 unsigned height0_override)
1648 {
1649 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1650 struct r300_resource *tex = r300_resource(texture);
1651 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1652 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
1653
1654 if (view) {
1655 unsigned hwformat;
1656
1657 view->base = *templ;
1658 view->base.reference.count = 1;
1659 view->base.context = pipe;
1660 view->base.texture = NULL;
1661 pipe_resource_reference(&view->base.texture, texture);
1662
1663 view->width0_override = width0_override;
1664 view->height0_override = height0_override;
1665 view->swizzle[0] = templ->swizzle_r;
1666 view->swizzle[1] = templ->swizzle_g;
1667 view->swizzle[2] = templ->swizzle_b;
1668 view->swizzle[3] = templ->swizzle_a;
1669
1670 hwformat = r300_translate_texformat(templ->format,
1671 view->swizzle,
1672 is_r500,
1673 dxtc_swizzle);
1674
1675 if (hwformat == ~0) {
1676 fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n",
1677 util_format_short_name(templ->format), __func__);
1678 }
1679 assert(hwformat != ~0);
1680
1681 r300_texture_setup_format_state(r300_screen(pipe->screen), tex,
1682 templ->format, 0,
1683 width0_override, height0_override,
1684 &view->format);
1685 view->format.format1 |= hwformat;
1686 if (is_r500) {
1687 view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1688 }
1689 }
1690
1691 return (struct pipe_sampler_view*)view;
1692 }
1693
1694 static struct pipe_sampler_view *
1695 r300_create_sampler_view(struct pipe_context *pipe,
1696 struct pipe_resource *texture,
1697 const struct pipe_sampler_view *templ)
1698 {
1699 return r300_create_sampler_view_custom(pipe, texture, templ,
1700 r300_resource(texture)->tex.width0,
1701 r300_resource(texture)->tex.height0);
1702 }
1703
1704
1705 static void
1706 r300_sampler_view_destroy(struct pipe_context *pipe,
1707 struct pipe_sampler_view *view)
1708 {
1709 pipe_resource_reference(&view->texture, NULL);
1710 FREE(view);
1711 }
1712
1713 static void r300_set_sample_mask(struct pipe_context *pipe,
1714 unsigned mask)
1715 {
1716 struct r300_context* r300 = r300_context(pipe);
1717
1718 *((unsigned*)r300->sample_mask.state) = mask;
1719
1720 r300_mark_atom_dirty(r300, &r300->sample_mask);
1721 }
1722
1723 static void r300_set_scissor_states(struct pipe_context* pipe,
1724 unsigned start_slot,
1725 unsigned num_scissors,
1726 const struct pipe_scissor_state* state)
1727 {
1728 struct r300_context* r300 = r300_context(pipe);
1729
1730 memcpy(r300->scissor_state.state, state,
1731 sizeof(struct pipe_scissor_state));
1732
1733 r300_mark_atom_dirty(r300, &r300->scissor_state);
1734 }
1735
1736 static void r300_set_viewport_states(struct pipe_context* pipe,
1737 unsigned start_slot,
1738 unsigned num_viewports,
1739 const struct pipe_viewport_state* state)
1740 {
1741 struct r300_context* r300 = r300_context(pipe);
1742 struct r300_viewport_state* viewport =
1743 (struct r300_viewport_state*)r300->viewport_state.state;
1744
1745 r300->viewport = *state;
1746
1747 if (r300->draw) {
1748 draw_set_viewport_states(r300->draw, start_slot, num_viewports, state);
1749 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1750 return;
1751 }
1752
1753 /* Do the transform in HW. */
1754 viewport->vte_control = R300_VTX_W0_FMT;
1755
1756 if (state->scale[0] != 1.0f) {
1757 viewport->xscale = state->scale[0];
1758 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1759 }
1760 if (state->scale[1] != 1.0f) {
1761 viewport->yscale = state->scale[1];
1762 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1763 }
1764 if (state->scale[2] != 1.0f) {
1765 viewport->zscale = state->scale[2];
1766 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1767 }
1768 if (state->translate[0] != 0.0f) {
1769 viewport->xoffset = state->translate[0];
1770 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1771 }
1772 if (state->translate[1] != 0.0f) {
1773 viewport->yoffset = state->translate[1];
1774 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1775 }
1776 if (state->translate[2] != 0.0f) {
1777 viewport->zoffset = state->translate[2];
1778 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1779 }
1780
1781 r300_mark_atom_dirty(r300, &r300->viewport_state);
1782 if (r300->fs.state && r300_fs(r300)->shader &&
1783 r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1784 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1785 }
1786 }
1787
1788 static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe,
1789 unsigned start_slot, unsigned count,
1790 const struct pipe_vertex_buffer* buffers)
1791 {
1792 struct r300_context* r300 = r300_context(pipe);
1793
1794 util_set_vertex_buffers_count(r300->vertex_buffer,
1795 &r300->nr_vertex_buffers,
1796 buffers, start_slot, count);
1797
1798 /* There must be at least one vertex buffer set, otherwise it locks up. */
1799 if (!r300->nr_vertex_buffers) {
1800 util_set_vertex_buffers_count(r300->vertex_buffer,
1801 &r300->nr_vertex_buffers,
1802 &r300->dummy_vb, 0, 1);
1803 }
1804
1805 r300->vertex_arrays_dirty = TRUE;
1806 }
1807
1808 static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe,
1809 unsigned start_slot, unsigned count,
1810 const struct pipe_vertex_buffer* buffers)
1811 {
1812 struct r300_context* r300 = r300_context(pipe);
1813 unsigned i;
1814
1815 util_set_vertex_buffers_count(r300->vertex_buffer,
1816 &r300->nr_vertex_buffers,
1817 buffers, start_slot, count);
1818 draw_set_vertex_buffers(r300->draw, start_slot, count, buffers);
1819
1820 if (!buffers)
1821 return;
1822
1823 for (i = 0; i < count; i++) {
1824 if (buffers[i].user_buffer) {
1825 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1826 buffers[i].user_buffer, ~0);
1827 } else if (buffers[i].buffer) {
1828 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i,
1829 r300_resource(buffers[i].buffer)->malloced_buffer, ~0);
1830 }
1831 }
1832 }
1833
1834 static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe,
1835 const struct pipe_index_buffer *ib)
1836 {
1837 struct r300_context* r300 = r300_context(pipe);
1838
1839 if (ib) {
1840 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1841 memcpy(&r300->index_buffer, ib, sizeof(*ib));
1842 } else {
1843 pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1844 }
1845 }
1846
1847 static void r300_set_index_buffer_swtcl(struct pipe_context* pipe,
1848 const struct pipe_index_buffer *ib)
1849 {
1850 struct r300_context* r300 = r300_context(pipe);
1851
1852 if (ib) {
1853 const void *buf = NULL;
1854 if (ib->user_buffer) {
1855 buf = ib->user_buffer;
1856 } else if (ib->buffer) {
1857 buf = r300_resource(ib->buffer)->malloced_buffer;
1858 }
1859 draw_set_indexes(r300->draw,
1860 (const ubyte *) buf + ib->offset,
1861 ib->index_size, ~0);
1862 }
1863 }
1864
1865 /* Initialize the PSC tables. */
1866 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1867 {
1868 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1869 uint16_t type, swizzle;
1870 enum pipe_format format;
1871 unsigned i;
1872
1873 /* Vertex shaders have no semantics on their inputs,
1874 * so PSC should just route stuff based on the vertex elements,
1875 * and not on attrib information. */
1876 for (i = 0; i < velems->count; i++) {
1877 format = velems->velem[i].src_format;
1878
1879 type = r300_translate_vertex_data_type(format);
1880 if (type == R300_INVALID_FORMAT) {
1881 fprintf(stderr, "r300: Bad vertex format %s.\n",
1882 util_format_short_name(format));
1883 assert(0);
1884 abort();
1885 }
1886
1887 type |= i << R300_DST_VEC_LOC_SHIFT;
1888 swizzle = r300_translate_vertex_data_swizzle(format);
1889
1890 if (i & 1) {
1891 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1892 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1893 } else {
1894 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1895 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1896 }
1897 }
1898
1899 /* Set the last vector in the PSC. */
1900 if (i) {
1901 i -= 1;
1902 }
1903 vstream->vap_prog_stream_cntl[i >> 1] |=
1904 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1905
1906 vstream->count = (i >> 1) + 1;
1907 }
1908
1909 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1910 unsigned count,
1911 const struct pipe_vertex_element* attribs)
1912 {
1913 struct r300_vertex_element_state *velems;
1914 unsigned i;
1915 struct pipe_vertex_element dummy_attrib = {0};
1916
1917 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
1918 if (!count) {
1919 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
1920 attribs = &dummy_attrib;
1921 count = 1;
1922 } else if (count > 16) {
1923 fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1924 " requested %i, using 16.\n", count);
1925 count = 16;
1926 }
1927
1928 velems = CALLOC_STRUCT(r300_vertex_element_state);
1929 if (!velems)
1930 return NULL;
1931
1932 velems->count = count;
1933 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1934
1935 if (r300_screen(pipe->screen)->caps.has_tcl) {
1936 /* Setup PSC.
1937 * The unused components will be replaced by (..., 0, 1). */
1938 r300_vertex_psc(velems);
1939
1940 for (i = 0; i < count; i++) {
1941 velems->format_size[i] =
1942 align(util_format_get_blocksize(velems->velem[i].src_format), 4);
1943 velems->vertex_size_dwords += velems->format_size[i] / 4;
1944 }
1945 }
1946
1947 return velems;
1948 }
1949
1950 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1951 void *state)
1952 {
1953 struct r300_context *r300 = r300_context(pipe);
1954 struct r300_vertex_element_state *velems = state;
1955
1956 if (velems == NULL) {
1957 return;
1958 }
1959
1960 r300->velems = velems;
1961
1962 if (r300->draw) {
1963 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1964 return;
1965 }
1966
1967 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1968 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1969 r300->vertex_arrays_dirty = TRUE;
1970 }
1971
1972 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1973 {
1974 FREE(state);
1975 }
1976
1977 static void* r300_create_vs_state(struct pipe_context* pipe,
1978 const struct pipe_shader_state* shader)
1979 {
1980 struct r300_context* r300 = r300_context(pipe);
1981 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1982
1983 /* Copy state directly into shader. */
1984 vs->state = *shader;
1985 vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1986
1987 if (r300->screen->caps.has_tcl) {
1988 r300_init_vs_outputs(r300, vs);
1989 r300_translate_vertex_shader(r300, vs);
1990 } else {
1991 r300_draw_init_vertex_shader(r300, vs);
1992 }
1993
1994 return vs;
1995 }
1996
1997 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1998 {
1999 struct r300_context* r300 = r300_context(pipe);
2000 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
2001
2002 if (vs == NULL) {
2003 r300->vs_state.state = NULL;
2004 return;
2005 }
2006 if (vs == r300->vs_state.state) {
2007 return;
2008 }
2009 r300->vs_state.state = vs;
2010
2011 /* The majority of the RS block bits is dependent on the vertex shader. */
2012 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
2013
2014 if (r300->screen->caps.has_tcl) {
2015 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
2016 r300_mark_atom_dirty(r300, &r300->vs_state);
2017 r300->vs_state.size = vs->code.length + 9 +
2018 (R300_VS_MAX_FC_OPS * fc_op_dwords + 4);
2019
2020 r300_mark_atom_dirty(r300, &r300->vs_constants);
2021 r300->vs_constants.size =
2022 2 +
2023 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
2024 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
2025
2026 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
2027 vs->code.constants_remap_table;
2028
2029 r300_mark_atom_dirty(r300, &r300->pvs_flush);
2030 } else {
2031 draw_bind_vertex_shader(r300->draw,
2032 (struct draw_vertex_shader*)vs->draw_vs);
2033 }
2034 }
2035
2036 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
2037 {
2038 struct r300_context* r300 = r300_context(pipe);
2039 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
2040
2041 if (r300->screen->caps.has_tcl) {
2042 rc_constants_destroy(&vs->code.constants);
2043 FREE(vs->code.constants_remap_table);
2044 } else {
2045 draw_delete_vertex_shader(r300->draw,
2046 (struct draw_vertex_shader*)vs->draw_vs);
2047 }
2048
2049 FREE((void*)vs->state.tokens);
2050 FREE(shader);
2051 }
2052
2053 static void r300_set_constant_buffer(struct pipe_context *pipe,
2054 uint shader, uint index,
2055 struct pipe_constant_buffer *cb)
2056 {
2057 struct r300_context* r300 = r300_context(pipe);
2058 struct r300_constant_buffer *cbuf;
2059 uint32_t *mapped;
2060
2061 if (!cb || (!cb->buffer && !cb->user_buffer))
2062 return;
2063
2064 switch (shader) {
2065 case PIPE_SHADER_VERTEX:
2066 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
2067 break;
2068 case PIPE_SHADER_FRAGMENT:
2069 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
2070 break;
2071 default:
2072 return;
2073 }
2074
2075
2076 if (cb->user_buffer)
2077 mapped = (uint32_t*)cb->user_buffer;
2078 else {
2079 struct r300_resource *rbuf = r300_resource(cb->buffer);
2080
2081 if (rbuf && rbuf->malloced_buffer)
2082 mapped = (uint32_t*)rbuf->malloced_buffer;
2083 else
2084 return;
2085 }
2086
2087 if (shader == PIPE_SHADER_FRAGMENT ||
2088 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
2089 cbuf->ptr = mapped;
2090 }
2091
2092 if (shader == PIPE_SHADER_VERTEX) {
2093 if (r300->screen->caps.has_tcl) {
2094 struct r300_vertex_shader *vs =
2095 (struct r300_vertex_shader*)r300->vs_state.state;
2096
2097 if (!vs) {
2098 cbuf->buffer_base = 0;
2099 return;
2100 }
2101
2102 cbuf->buffer_base = r300->vs_const_base;
2103 r300->vs_const_base += vs->code.constants.Count;
2104 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
2105 r300->vs_const_base = vs->code.constants.Count;
2106 cbuf->buffer_base = 0;
2107 r300_mark_atom_dirty(r300, &r300->pvs_flush);
2108 }
2109 r300_mark_atom_dirty(r300, &r300->vs_constants);
2110 } else if (r300->draw) {
2111 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
2112 0, mapped, cb->buffer_size);
2113 }
2114 } else if (shader == PIPE_SHADER_FRAGMENT) {
2115 r300_mark_atom_dirty(r300, &r300->fs_constants);
2116 }
2117 }
2118
2119 static void r300_texture_barrier(struct pipe_context *pipe)
2120 {
2121 struct r300_context *r300 = r300_context(pipe);
2122
2123 r300_mark_atom_dirty(r300, &r300->gpu_flush);
2124 r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
2125 }
2126
2127 void r300_init_state_functions(struct r300_context* r300)
2128 {
2129 r300->context.create_blend_state = r300_create_blend_state;
2130 r300->context.bind_blend_state = r300_bind_blend_state;
2131 r300->context.delete_blend_state = r300_delete_blend_state;
2132
2133 r300->context.set_blend_color = r300_set_blend_color;
2134
2135 r300->context.set_clip_state = r300_set_clip_state;
2136 r300->context.set_sample_mask = r300_set_sample_mask;
2137
2138 r300->context.set_constant_buffer = r300_set_constant_buffer;
2139
2140 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
2141 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
2142 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
2143
2144 r300->context.set_stencil_ref = r300_set_stencil_ref;
2145
2146 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
2147
2148 r300->context.create_fs_state = r300_create_fs_state;
2149 r300->context.bind_fs_state = r300_bind_fs_state;
2150 r300->context.delete_fs_state = r300_delete_fs_state;
2151
2152 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
2153
2154 r300->context.create_rasterizer_state = r300_create_rs_state;
2155 r300->context.bind_rasterizer_state = r300_bind_rs_state;
2156 r300->context.delete_rasterizer_state = r300_delete_rs_state;
2157
2158 r300->context.create_sampler_state = r300_create_sampler_state;
2159 r300->context.bind_sampler_states = r300_bind_sampler_states;
2160 r300->context.delete_sampler_state = r300_delete_sampler_state;
2161
2162 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
2163 r300->context.create_sampler_view = r300_create_sampler_view;
2164 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
2165
2166 r300->context.set_scissor_states = r300_set_scissor_states;
2167
2168 r300->context.set_viewport_states = r300_set_viewport_states;
2169
2170 if (r300->screen->caps.has_tcl) {
2171 r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl;
2172 r300->context.set_index_buffer = r300_set_index_buffer_hwtcl;
2173 } else {
2174 r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl;
2175 r300->context.set_index_buffer = r300_set_index_buffer_swtcl;
2176 }
2177
2178 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
2179 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
2180 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
2181
2182 r300->context.create_vs_state = r300_create_vs_state;
2183 r300->context.bind_vs_state = r300_bind_vs_state;
2184 r300->context.delete_vs_state = r300_delete_vs_state;
2185
2186 r300->context.texture_barrier = r300_texture_barrier;
2187 }