util: remove LIST_IS_EMPTY macro
[mesa.git] / src / gallium / drivers / radeonsi / gfx10_shader_ngg.c
1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "si_pipe.h"
25 #include "si_shader_internal.h"
26
27 #include "sid.h"
28
29 #include "util/u_memory.h"
30 #include "util/u_prim.h"
31
32 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
33 {
34 return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
35 }
36
37 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
38 {
39 return si_unpack_param(ctx, ctx->param_merged_wave_info, 28, 4);
40 }
41
42 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
43 {
44 LLVMBuilderRef builder = ctx->ac.builder;
45 LLVMValueRef tmp;
46 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
47 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
48 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
49 }
50
51 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
52 {
53 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
54 LLVMConstInt(ctx->ac.i32, 12, false),
55 LLVMConstInt(ctx->ac.i32, 9, false),
56 false);
57 }
58
59 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
60 {
61 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
62 LLVMConstInt(ctx->ac.i32, 22, false),
63 LLVMConstInt(ctx->ac.i32, 9, false),
64 false);
65 }
66
67 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
68 {
69 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
70 ctx->i32_0,
71 LLVMConstInt(ctx->ac.i32, 11, false),
72 false);
73 }
74
75 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
76 {
77 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
78 ctx->param_rw_buffers);
79
80 return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
81 LLVMConstInt(ctx->i32, GFX10_GS_QUERY_BUF, false));
82 }
83
84 /* Send GS Alloc Req message from the first wave of the group to SPI.
85 * Message payload is:
86 * - bits 0..10: vertices in group
87 * - bits 12..22: primitives in group
88 */
89 static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx,
90 LLVMValueRef vtx_cnt,
91 LLVMValueRef prim_cnt)
92 {
93 LLVMBuilderRef builder = ctx->ac.builder;
94 LLVMValueRef tmp;
95
96 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
97 ac_build_ifcc(&ctx->ac, tmp, 5020);
98
99 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
100 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
101 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
102
103 ac_build_endif(&ctx->ac, 5020);
104 }
105
106 struct ngg_prim {
107 unsigned num_vertices;
108 LLVMValueRef isnull;
109 LLVMValueRef index[3];
110 LLVMValueRef edgeflag[3];
111 };
112
113 static void build_export_prim(struct si_shader_context *ctx,
114 const struct ngg_prim *prim)
115 {
116 LLVMBuilderRef builder = ctx->ac.builder;
117 struct ac_export_args args;
118 LLVMValueRef tmp;
119
120 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
121 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
122
123 for (unsigned i = 0; i < prim->num_vertices; ++i) {
124 tmp = LLVMBuildShl(builder, prim->index[i],
125 LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
126 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
127 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
128 tmp = LLVMBuildShl(builder, tmp,
129 LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
130 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
131 }
132
133 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
134 args.out[1] = LLVMGetUndef(ctx->ac.f32);
135 args.out[2] = LLVMGetUndef(ctx->ac.f32);
136 args.out[3] = LLVMGetUndef(ctx->ac.f32);
137
138 args.target = V_008DFC_SQ_EXP_PRIM;
139 args.enabled_channels = 1;
140 args.done = true;
141 args.valid_mask = false;
142 args.compr = false;
143
144 ac_build_export(&ctx->ac, &args);
145 }
146
147 static void build_streamout_vertex(struct si_shader_context *ctx,
148 LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
149 unsigned stream, LLVMValueRef offset_vtx,
150 LLVMValueRef vertexptr)
151 {
152 struct tgsi_shader_info *info = &ctx->shader->selector->info;
153 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
154 LLVMBuilderRef builder = ctx->ac.builder;
155 LLVMValueRef offset[4] = {};
156 LLVMValueRef tmp;
157
158 for (unsigned buffer = 0; buffer < 4; ++buffer) {
159 if (!wg_offset_dw[buffer])
160 continue;
161
162 tmp = LLVMBuildMul(builder, offset_vtx,
163 LLVMConstInt(ctx->i32, so->stride[buffer], false), "");
164 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
165 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 2, false), "");
166 }
167
168 for (unsigned i = 0; i < so->num_outputs; ++i) {
169 if (so->output[i].stream != stream)
170 continue;
171
172 unsigned reg = so->output[i].register_index;
173 struct si_shader_output_values out;
174 out.semantic_name = info->output_semantic_name[reg];
175 out.semantic_index = info->output_semantic_index[reg];
176
177 for (unsigned comp = 0; comp < 4; comp++) {
178 tmp = ac_build_gep0(&ctx->ac, vertexptr,
179 LLVMConstInt(ctx->i32, 4 * reg + comp, false));
180 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
181 out.vertex_stream[comp] =
182 (info->output_streams[reg] >> (2 * comp)) & 3;
183 }
184
185 si_emit_streamout_output(ctx, so_buffer, offset, &so->output[i], &out);
186 }
187 }
188
189 struct ngg_streamout {
190 LLVMValueRef num_vertices;
191
192 /* per-thread data */
193 LLVMValueRef prim_enable[4]; /* i1 per stream */
194 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
195
196 /* Output */
197 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
198 };
199
200 /**
201 * Build streamout logic.
202 *
203 * Implies a barrier.
204 *
205 * Writes number of emitted primitives to gs_ngg_scratch[4:8].
206 *
207 * Clobbers gs_ngg_scratch[8:].
208 */
209 static void build_streamout(struct si_shader_context *ctx,
210 struct ngg_streamout *nggso)
211 {
212 struct tgsi_shader_info *info = &ctx->shader->selector->info;
213 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
214 LLVMBuilderRef builder = ctx->ac.builder;
215 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
216 LLVMValueRef tid = get_thread_id_in_tg(ctx);
217 LLVMValueRef tmp, tmp2;
218 LLVMValueRef i32_2 = LLVMConstInt(ctx->i32, 2, false);
219 LLVMValueRef i32_4 = LLVMConstInt(ctx->i32, 4, false);
220 LLVMValueRef i32_8 = LLVMConstInt(ctx->i32, 8, false);
221 LLVMValueRef so_buffer[4] = {};
222 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
223 (nggso->vertices[2] ? 1 : 0);
224 LLVMValueRef prim_stride_dw[4] = {};
225 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->i32);
226 int stream_for_buffer[4] = { -1, -1, -1, -1 };
227 unsigned bufmask_for_stream[4] = {};
228 bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
229 unsigned scratch_emit_base = isgs ? 4 : 0;
230 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->i32_0;
231 unsigned scratch_offset_base = isgs ? 8 : 4;
232 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
233
234 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
235
236 /* Determine the mapping of streamout buffers to vertex streams. */
237 for (unsigned i = 0; i < so->num_outputs; ++i) {
238 unsigned buf = so->output[i].output_buffer;
239 unsigned stream = so->output[i].stream;
240 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
241 stream_for_buffer[buf] = stream;
242 bufmask_for_stream[stream] |= 1 << buf;
243 }
244
245 for (unsigned buffer = 0; buffer < 4; ++buffer) {
246 if (stream_for_buffer[buffer] == -1)
247 continue;
248
249 assert(so->stride[buffer]);
250
251 tmp = LLVMConstInt(ctx->i32, so->stride[buffer], false);
252 prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
253 prim_stride_dw_vgpr = ac_build_writelane(
254 &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
255 LLVMConstInt(ctx->i32, buffer, false));
256
257 so_buffer[buffer] = ac_build_load_to_sgpr(
258 &ctx->ac, buf_ptr,
259 LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
260 }
261
262 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->i32_0, "");
263 ac_build_ifcc(&ctx->ac, tmp, 5200);
264 {
265 LLVMTypeRef gdsptr = LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS);
266 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->i32_0, gdsptr, "");
267
268 /* Advance the streamout offsets in GDS. */
269 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
270 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
271
272 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
273 ac_build_ifcc(&ctx->ac, tmp, 5210);
274 {
275 if (isgs) {
276 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
277 tmp = LLVMBuildLoad(builder, tmp, "");
278 } else {
279 tmp = ac_build_writelane(&ctx->ac, ctx->i32_0,
280 ngg_get_prim_cnt(ctx), ctx->i32_0);
281 }
282 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
283
284 unsigned swizzle[4];
285 int unused_stream = -1;
286 for (unsigned stream = 0; stream < 4; ++stream) {
287 if (!info->num_stream_output_components[stream]) {
288 unused_stream = stream;
289 break;
290 }
291 }
292 for (unsigned buffer = 0; buffer < 4; ++buffer) {
293 if (stream_for_buffer[buffer] >= 0) {
294 swizzle[buffer] = stream_for_buffer[buffer];
295 } else {
296 assert(unused_stream >= 0);
297 swizzle[buffer] = unused_stream;
298 }
299 }
300
301 tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
302 swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
303 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
304
305 LLVMValueRef args[] = {
306 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
307 tmp,
308 ctx->i32_0, // ordering
309 ctx->i32_0, // scope
310 ctx->ac.i1false, // isVolatile
311 LLVMConstInt(ctx->i32, 4 << 24, false), // OA index
312 ctx->ac.i1true, // wave release
313 ctx->ac.i1true, // wave done
314 };
315 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
316 ctx->i32, args, ARRAY_SIZE(args), 0);
317
318 /* Keep offsets in a VGPR for quick retrieval via readlane by
319 * the first wave for bounds checking, and also store in LDS
320 * for retrieval by all waves later. */
321 LLVMBuildStore(builder, tmp, offsets_vgpr);
322
323 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
324 scratch_offset_basev, "");
325 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
326 LLVMBuildStore(builder, tmp, tmp2);
327 }
328 ac_build_endif(&ctx->ac, 5210);
329
330 /* Determine the max emit per buffer. This is done via the SALU, in part
331 * because LLVM can't generate divide-by-multiply if we try to do this
332 * via VALU with one lane per buffer.
333 */
334 LLVMValueRef max_emit[4] = {};
335 for (unsigned buffer = 0; buffer < 4; ++buffer) {
336 if (stream_for_buffer[buffer] == -1)
337 continue;
338
339 LLVMValueRef bufsize_dw =
340 LLVMBuildLShr(builder,
341 LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
342 i32_2, "");
343
344 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
345 LLVMValueRef offset_dw =
346 ac_build_readlane(&ctx->ac, tmp,
347 LLVMConstInt(ctx->i32, buffer, false));
348
349 tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
350 tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
351
352 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
353 max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->i32_0, tmp, "");
354 }
355
356 /* Determine the number of emitted primitives per stream and fixup the
357 * GDS counter if necessary.
358 *
359 * This is complicated by the fact that a single stream can emit to
360 * multiple buffers (but luckily not vice versa).
361 */
362 LLVMValueRef emit_vgpr = ctx->i32_0;
363
364 for (unsigned stream = 0; stream < 4; ++stream) {
365 if (!info->num_stream_output_components[stream])
366 continue;
367
368 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
369 LLVMValueRef generated =
370 ac_build_readlane(&ctx->ac, tmp,
371 LLVMConstInt(ctx->i32, stream, false));
372
373 LLVMValueRef emit = generated;
374 for (unsigned buffer = 0; buffer < 4; ++buffer) {
375 if (stream_for_buffer[buffer] == stream)
376 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
377 }
378
379 emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
380 LLVMConstInt(ctx->i32, stream, false));
381
382 /* Fixup the offset using a plain GDS atomic if we overflowed. */
383 tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
384 ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
385 tmp = LLVMBuildLShr(builder,
386 LLVMConstInt(ctx->i32, bufmask_for_stream[stream], false),
387 ac_get_thread_id(&ctx->ac), "");
388 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
389 ac_build_ifcc(&ctx->ac, tmp, 5222);
390 {
391 tmp = LLVMBuildSub(builder, generated, emit, "");
392 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
393 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
394 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
395 LLVMAtomicOrderingMonotonic, false);
396 }
397 ac_build_endif(&ctx->ac, 5222);
398 ac_build_endif(&ctx->ac, 5221);
399 }
400
401 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
402 ac_build_ifcc(&ctx->ac, tmp, 5225);
403 {
404 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
405 scratch_emit_basev, "");
406 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
407 LLVMBuildStore(builder, emit_vgpr, tmp);
408 }
409 ac_build_endif(&ctx->ac, 5225);
410 }
411 ac_build_endif(&ctx->ac, 5200);
412
413 /* Determine the workgroup-relative per-thread / primitive offset into
414 * the streamout buffers */
415 struct ac_wg_scan primemit_scan[4] = {};
416
417 if (isgs) {
418 for (unsigned stream = 0; stream < 4; ++stream) {
419 if (!info->num_stream_output_components[stream])
420 continue;
421
422 primemit_scan[stream].enable_exclusive = true;
423 primemit_scan[stream].op = nir_op_iadd;
424 primemit_scan[stream].src = nggso->prim_enable[stream];
425 primemit_scan[stream].scratch =
426 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
427 LLVMConstInt(ctx->i32, 12 + 8 * stream, false));
428 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
429 primemit_scan[stream].numwaves = get_tgsize(ctx);
430 primemit_scan[stream].maxwaves = 8;
431 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
432 }
433 }
434
435 ac_build_s_barrier(&ctx->ac);
436
437 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
438 LLVMValueRef wgoffset_dw[4] = {};
439
440 {
441 LLVMValueRef scratch_vgpr;
442
443 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
444 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
445
446 for (unsigned buffer = 0; buffer < 4; ++buffer) {
447 if (stream_for_buffer[buffer] >= 0) {
448 wgoffset_dw[buffer] = ac_build_readlane(
449 &ctx->ac, scratch_vgpr,
450 LLVMConstInt(ctx->i32, scratch_offset_base + buffer, false));
451 }
452 }
453
454 for (unsigned stream = 0; stream < 4; ++stream) {
455 if (info->num_stream_output_components[stream]) {
456 nggso->emit[stream] = ac_build_readlane(
457 &ctx->ac, scratch_vgpr,
458 LLVMConstInt(ctx->i32, scratch_emit_base + stream, false));
459 }
460 }
461 }
462
463 /* Write out primitive data */
464 for (unsigned stream = 0; stream < 4; ++stream) {
465 if (!info->num_stream_output_components[stream])
466 continue;
467
468 if (isgs) {
469 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
470 } else {
471 primemit_scan[stream].result_exclusive = tid;
472 }
473
474 tmp = LLVMBuildICmp(builder, LLVMIntULT,
475 primemit_scan[stream].result_exclusive,
476 nggso->emit[stream], "");
477 tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
478 ac_build_ifcc(&ctx->ac, tmp, 5240);
479 {
480 LLVMValueRef offset_vtx =
481 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
482 nggso->num_vertices, "");
483
484 for (unsigned i = 0; i < max_num_vertices; ++i) {
485 tmp = LLVMBuildICmp(builder, LLVMIntULT,
486 LLVMConstInt(ctx->i32, i, false),
487 nggso->num_vertices, "");
488 ac_build_ifcc(&ctx->ac, tmp, 5241);
489 build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
490 stream, offset_vtx, nggso->vertices[i]);
491 ac_build_endif(&ctx->ac, 5241);
492 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->i32_1, "");
493 }
494 }
495 ac_build_endif(&ctx->ac, 5240);
496 }
497 }
498
499 static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
500 {
501 unsigned lds_vertex_size = 0;
502
503 /* The edgeflag is always stored in the last element that's also
504 * used for padding to reduce LDS bank conflicts. */
505 if (shader->selector->so.num_outputs)
506 lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
507 if (shader->selector->info.writes_edgeflag)
508 lds_vertex_size = MAX2(lds_vertex_size, 1);
509
510 return lds_vertex_size;
511 }
512
513 /**
514 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
515 * for the vertex outputs.
516 */
517 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
518 LLVMValueRef vtxid)
519 {
520 /* The extra dword is used to avoid LDS bank conflicts. */
521 unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
522 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, vertex_size);
523 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
524 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
525 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
526 }
527
528 /**
529 * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
530 */
531 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
532 unsigned max_outputs,
533 LLVMValueRef *addrs)
534 {
535 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
536 struct si_shader_selector *sel = ctx->shader->selector;
537 struct tgsi_shader_info *info = &sel->info;
538 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
539 LLVMBuilderRef builder = ctx->ac.builder;
540 LLVMValueRef tmp, tmp2;
541
542 assert(!ctx->shader->is_gs_copy_shader);
543 assert(info->num_outputs <= max_outputs);
544
545 LLVMValueRef vertex_ptr = NULL;
546
547 if (sel->so.num_outputs || sel->info.writes_edgeflag)
548 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
549
550 for (unsigned i = 0; i < info->num_outputs; i++) {
551 outputs[i].semantic_name = info->output_semantic_name[i];
552 outputs[i].semantic_index = info->output_semantic_index[i];
553
554 for (unsigned j = 0; j < 4; j++) {
555 outputs[i].vertex_stream[j] =
556 (info->output_streams[i] >> (2 * j)) & 3;
557
558 /* TODO: we may store more outputs than streamout needs,
559 * but streamout performance isn't that important.
560 */
561 if (sel->so.num_outputs) {
562 tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
563 LLVMConstInt(ctx->i32, 4 * i + j, false));
564 tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
565 tmp2 = ac_to_integer(&ctx->ac, tmp2);
566 LLVMBuildStore(builder, tmp2, tmp);
567 }
568 }
569
570 /* Store the edgeflag at the end (if streamout is enabled) */
571 if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG &&
572 sel->info.writes_edgeflag) {
573 LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
574 /* The output is a float, but the hw expects a 1-bit integer. */
575 edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->i32, "");
576 edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->i32_1);
577
578 tmp = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
579 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
580 LLVMBuildStore(builder, edgeflag, tmp);
581 }
582 }
583
584 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
585
586 LLVMValueRef prims_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
587 LLVMValueRef vtx_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
588 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
589 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
590 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
591 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
592 LLVMValueRef vtxindex[] = {
593 si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 0, 16),
594 si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 16, 16),
595 si_unpack_param(ctx, ctx->param_gs_vtx23_offset, 0, 16),
596 };
597
598 /* Determine the number of vertices per primitive. */
599 unsigned num_vertices;
600 LLVMValueRef num_vertices_val;
601
602 if (ctx->type == PIPE_SHADER_VERTEX) {
603 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
604 /* Blits always use axis-aligned rectangles with 3 vertices. */
605 num_vertices = 3;
606 num_vertices_val = LLVMConstInt(ctx->i32, 3, 0);
607 } else {
608 /* Extract OUTPRIM field. */
609 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 2, 2);
610 num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, "");
611 num_vertices = 3; /* TODO: optimize for points & lines */
612 }
613 } else {
614 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
615
616 if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
617 num_vertices = 1;
618 else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
619 num_vertices = 2;
620 else
621 num_vertices = 3;
622
623 num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false);
624 }
625
626 /* Streamout */
627 LLVMValueRef emitted_prims = NULL;
628
629 if (sel->so.num_outputs) {
630 struct ngg_streamout nggso = {};
631
632 nggso.num_vertices = num_vertices_val;
633 nggso.prim_enable[0] = is_gs_thread;
634
635 for (unsigned i = 0; i < num_vertices; ++i)
636 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
637
638 build_streamout(ctx, &nggso);
639 emitted_prims = nggso.emit[0];
640 }
641
642 LLVMValueRef user_edgeflags[3] = {};
643
644 if (sel->info.writes_edgeflag) {
645 /* Streamout already inserted the barrier, so don't insert it again. */
646 if (!sel->so.num_outputs)
647 ac_build_s_barrier(&ctx->ac);
648
649 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
650 /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
651 for (unsigned i = 0; i < num_vertices; i++) {
652 tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
653 tmp2 = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
654 tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
655 tmp = LLVMBuildLoad(builder, tmp, "");
656 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
657
658 user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
659 LLVMBuildStore(builder, tmp, user_edgeflags[i]);
660 }
661 ac_build_endif(&ctx->ac, 5400);
662 }
663
664 /* Copy Primitive IDs from GS threads to the LDS address corresponding
665 * to the ES thread of the provoking vertex.
666 */
667 if (ctx->type == PIPE_SHADER_VERTEX &&
668 ctx->shader->key.mono.u.vs_export_prim_id) {
669 /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
670 if (sel->so.num_outputs || sel->info.writes_edgeflag)
671 ac_build_s_barrier(&ctx->ac);
672
673 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
674 /* Extract the PROVOKING_VTX_INDEX field. */
675 LLVMValueRef provoking_vtx_in_prim =
676 si_unpack_param(ctx, ctx->param_vs_state_bits, 4, 2);
677
678 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
679 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
680 LLVMValueRef provoking_vtx_index =
681 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
682
683 LLVMBuildStore(builder, ctx->abi.gs_prim_id,
684 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
685 ac_build_endif(&ctx->ac, 5400);
686 }
687
688 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
689
690 /* Update query buffer */
691 /* TODO: this won't catch 96-bit clear_buffer via transform feedback. */
692 if (!info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
693 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1);
694 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
695 ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
696 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
697 ac_build_ifcc(&ctx->ac, tmp, 5030);
698 tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
699 sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
700 ac_build_ifcc(&ctx->ac, tmp, 5031);
701 {
702 LLVMValueRef args[] = {
703 ngg_get_prim_cnt(ctx),
704 ngg_get_query_buf(ctx),
705 LLVMConstInt(ctx->i32, 16, false), /* offset of stream[0].generated_primitives */
706 ctx->i32_0, /* soffset */
707 ctx->i32_0, /* cachepolicy */
708 };
709
710 if (sel->so.num_outputs) {
711 args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->i32_1);
712 args[2] = ac_build_writelane(&ctx->ac, args[2],
713 LLVMConstInt(ctx->i32, 24, false), ctx->i32_1);
714 }
715
716 /* TODO: should this be 64-bit atomics? */
717 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
718 ctx->i32, args, 5, 0);
719 }
720 ac_build_endif(&ctx->ac, 5031);
721 ac_build_endif(&ctx->ac, 5030);
722 ac_build_endif(&ctx->ac, 5029);
723 }
724
725 /* Export primitive data to the index buffer. Format is:
726 * - bits 0..8: index 0
727 * - bit 9: edge flag 0
728 * - bits 10..18: index 1
729 * - bit 19: edge flag 1
730 * - bits 20..28: index 2
731 * - bit 29: edge flag 2
732 * - bit 31: null primitive (skip)
733 *
734 * For the first version, we will always build up all three indices
735 * independent of the primitive type. The additional garbage data
736 * shouldn't hurt.
737 *
738 * TODO: culling depends on the primitive type, so can have some
739 * interaction here.
740 */
741 ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
742 {
743 struct ngg_prim prim = {};
744
745 prim.num_vertices = num_vertices;
746 prim.isnull = ctx->ac.i1false;
747 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
748
749 for (unsigned i = 0; i < num_vertices; ++i) {
750 if (ctx->type != PIPE_SHADER_VERTEX) {
751 prim.edgeflag[i] = ctx->i1false;
752 continue;
753 }
754
755 tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
756 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
757 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
758
759 if (sel->info.writes_edgeflag) {
760 tmp2 = LLVMBuildLoad(builder, user_edgeflags[i], "");
761 prim.edgeflag[i] = LLVMBuildAnd(builder, prim.edgeflag[i],
762 tmp2, "");
763 }
764 }
765
766 build_export_prim(ctx, &prim);
767 }
768 ac_build_endif(&ctx->ac, 6001);
769
770 /* Export per-vertex data (positions and parameters). */
771 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
772 {
773 unsigned i;
774
775 /* Unconditionally (re-)load the values for proper SSA form. */
776 for (i = 0; i < info->num_outputs; i++) {
777 for (unsigned j = 0; j < 4; j++) {
778 outputs[i].values[j] =
779 LLVMBuildLoad(builder,
780 addrs[4 * i + j],
781 "");
782 }
783 }
784
785 if (ctx->shader->key.mono.u.vs_export_prim_id) {
786 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
787 outputs[i].semantic_index = 0;
788
789 if (ctx->type == PIPE_SHADER_VERTEX) {
790 /* Wait for GS stores to finish. */
791 ac_build_s_barrier(&ctx->ac);
792
793 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
794 get_thread_id_in_tg(ctx));
795 outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
796 } else {
797 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
798 outputs[i].values[0] = si_get_primitive_id(ctx, 0);
799 }
800
801 outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
802 for (unsigned j = 1; j < 4; j++)
803 outputs[i].values[j] = LLVMGetUndef(ctx->f32);
804
805 memset(outputs[i].vertex_stream, 0,
806 sizeof(outputs[i].vertex_stream));
807 i++;
808 }
809
810 si_llvm_export_vs(ctx, outputs, i);
811 }
812 ac_build_endif(&ctx->ac, 6002);
813 }
814
815 static LLVMValueRef
816 ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
817 {
818 const struct si_shader_selector *sel = ctx->shader->selector;
819 const struct tgsi_shader_info *info = &sel->info;
820
821 LLVMTypeRef elements[2] = {
822 LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
823 LLVMArrayType(ctx->ac.i8, 4),
824 };
825 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
826 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
827 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
828 }
829
830 /**
831 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
832 * is in emit order; that is:
833 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
834 * - during vertex emit, i.e. while the API GS shader invocation is running,
835 * N = threadidx * gs_max_out_vertices + emitidx
836 *
837 * Goals of the LDS memory layout:
838 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
839 * in uniform control flow
840 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
841 * culling
842 * 3. Agnostic to the number of waves (since we don't know it before compiling)
843 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
844 * 5. Avoid wasting memory.
845 *
846 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
847 * layout, elimination of bank conflicts requires that each vertex occupy an
848 * odd number of dwords. We use the additional dword to store the output stream
849 * index as well as a flag to indicate whether this vertex ends a primitive
850 * for rasterization.
851 *
852 * Swizzling is required to satisfy points 1 and 2 simultaneously.
853 *
854 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
855 * Indices are swizzled in groups of 32, which ensures point 1 without
856 * disturbing point 2.
857 *
858 * \return an LDS pointer to type {[N x i32], [4 x i8]}
859 */
860 static LLVMValueRef
861 ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
862 {
863 struct si_shader_selector *sel = ctx->shader->selector;
864 LLVMBuilderRef builder = ctx->ac.builder;
865 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
866
867 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
868 unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
869 if (write_stride_2exp) {
870 LLVMValueRef row =
871 LLVMBuildLShr(builder, vertexidx,
872 LLVMConstInt(ctx->ac.i32, 5, false), "");
873 LLVMValueRef swizzle =
874 LLVMBuildAnd(builder, row,
875 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
876 false), "");
877 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
878 }
879
880 return ac_build_gep0(&ctx->ac, storage, vertexidx);
881 }
882
883 static LLVMValueRef
884 ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
885 LLVMValueRef emitidx)
886 {
887 struct si_shader_selector *sel = ctx->shader->selector;
888 LLVMBuilderRef builder = ctx->ac.builder;
889 LLVMValueRef tmp;
890
891 tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
892 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
893 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
894 return ngg_gs_vertex_ptr(ctx, vertexidx);
895 }
896
897 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
898 unsigned stream,
899 LLVMValueRef *addrs)
900 {
901 const struct si_shader_selector *sel = ctx->shader->selector;
902 const struct tgsi_shader_info *info = &sel->info;
903 LLVMBuilderRef builder = ctx->ac.builder;
904 LLVMValueRef tmp;
905 const LLVMValueRef vertexidx =
906 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
907
908 /* If this thread has already emitted the declared maximum number of
909 * vertices, skip the write: excessive vertex emissions are not
910 * supposed to have any effect.
911 */
912 const LLVMValueRef can_emit =
913 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
914 LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), "");
915
916 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
917 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
918 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
919
920 ac_build_ifcc(&ctx->ac, can_emit, 9001);
921
922 const LLVMValueRef vertexptr =
923 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
924 unsigned out_idx = 0;
925 for (unsigned i = 0; i < info->num_outputs; i++) {
926 for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
927 if (!(info->output_usagemask[i] & (1 << chan)) ||
928 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
929 continue;
930
931 LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
932 LLVMValueRef gep_idx[3] = {
933 ctx->ac.i32_0, /* implied C-style array */
934 ctx->ac.i32_0, /* first entry of struct */
935 LLVMConstInt(ctx->ac.i32, out_idx, false),
936 };
937 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
938
939 out_val = ac_to_integer(&ctx->ac, out_val);
940 LLVMBuildStore(builder, out_val, ptr);
941 }
942 }
943 assert(out_idx * 4 == sel->gsvs_vertex_size);
944
945 /* Determine and store whether this vertex completed a primitive. */
946 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
947
948 tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
949 const LLVMValueRef iscompleteprim =
950 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
951
952 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
953 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
954
955 LLVMValueRef gep_idx[3] = {
956 ctx->ac.i32_0, /* implied C-style array */
957 ctx->ac.i32_1, /* second struct entry */
958 LLVMConstInt(ctx->ac.i32, stream, false),
959 };
960 const LLVMValueRef primflagptr =
961 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
962
963 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
964 LLVMBuildStore(builder, tmp, primflagptr);
965
966 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
967 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
968 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
969
970 ac_build_endif(&ctx->ac, 9001);
971 }
972
973 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
974 {
975 /* Zero out the part of LDS scratch that is used to accumulate the
976 * per-stream generated primitive count.
977 */
978 LLVMBuilderRef builder = ctx->ac.builder;
979 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
980 LLVMValueRef tid = get_thread_id_in_tg(ctx);
981 LLVMValueRef tmp;
982
983 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->i32, 4, false), "");
984 ac_build_ifcc(&ctx->ac, tmp, 5090);
985 {
986 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
987 LLVMBuildStore(builder, ctx->i32_0, ptr);
988 }
989 ac_build_endif(&ctx->ac, 5090);
990
991 ac_build_s_barrier(&ctx->ac);
992 }
993
994 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
995 {
996 const struct si_shader_selector *sel = ctx->shader->selector;
997 const struct tgsi_shader_info *info = &sel->info;
998 const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
999 LLVMBuilderRef builder = ctx->ac.builder;
1000 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
1001 LLVMValueRef tmp, tmp2;
1002
1003 /* Zero out remaining (non-emitted) primitive flags.
1004 *
1005 * Note: Alternatively, we could pass the relevant gs_next_vertex to
1006 * the emit threads via LDS. This is likely worse in the expected
1007 * typical case where each GS thread emits the full set of
1008 * vertices.
1009 */
1010 for (unsigned stream = 0; stream < 4; ++stream) {
1011 if (!info->num_stream_output_components[stream])
1012 continue;
1013
1014 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
1015
1016 ac_build_bgnloop(&ctx->ac, 5100);
1017
1018 const LLVMValueRef vertexidx =
1019 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1020 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
1021 LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
1022 ac_build_ifcc(&ctx->ac, tmp, 5101);
1023 ac_build_break(&ctx->ac);
1024 ac_build_endif(&ctx->ac, 5101);
1025
1026 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1027 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1028
1029 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
1030 LLVMValueRef gep_idx[3] = {
1031 ctx->ac.i32_0, /* implied C-style array */
1032 ctx->ac.i32_1, /* second entry of struct */
1033 LLVMConstInt(ctx->ac.i32, stream, false),
1034 };
1035 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1036 LLVMBuildStore(builder, i8_0, tmp);
1037
1038 ac_build_endloop(&ctx->ac, 5100);
1039 }
1040
1041 /* Accumulate generated primitives counts across the entire threadgroup. */
1042 for (unsigned stream = 0; stream < 4; ++stream) {
1043 if (!info->num_stream_output_components[stream])
1044 continue;
1045
1046 LLVMValueRef numprims =
1047 LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1048 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
1049
1050 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->i32_0, "");
1051 ac_build_ifcc(&ctx->ac, tmp, 5105);
1052 {
1053 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
1054 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
1055 LLVMConstInt(ctx->i32, stream, false)),
1056 numprims, LLVMAtomicOrderingMonotonic, false);
1057 }
1058 ac_build_endif(&ctx->ac, 5105);
1059 }
1060
1061 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1062
1063 ac_build_s_barrier(&ctx->ac);
1064
1065 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
1066 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1067
1068 /* Streamout */
1069 if (sel->so.num_outputs) {
1070 struct ngg_streamout nggso = {};
1071
1072 nggso.num_vertices = LLVMConstInt(ctx->i32, verts_per_prim, false);
1073
1074 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1075 for (unsigned stream = 0; stream < 4; ++stream) {
1076 if (!info->num_stream_output_components[stream])
1077 continue;
1078
1079 LLVMValueRef gep_idx[3] = {
1080 ctx->i32_0, /* implicit C-style array */
1081 ctx->i32_1, /* second value of struct */
1082 LLVMConstInt(ctx->i32, stream, false),
1083 };
1084 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
1085 tmp = LLVMBuildLoad(builder, tmp, "");
1086 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
1087 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1088 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1089 }
1090
1091 for (unsigned i = 0; i < verts_per_prim; ++i) {
1092 tmp = LLVMBuildSub(builder, tid,
1093 LLVMConstInt(ctx->i32, verts_per_prim - i - 1, false), "");
1094 tmp = ngg_gs_vertex_ptr(ctx, tmp);
1095 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0);
1096 }
1097
1098 build_streamout(ctx, &nggso);
1099 }
1100
1101 /* Write shader query data. */
1102 tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1);
1103 tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
1104 ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1105 unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1106 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1107 LLVMConstInt(ctx->i32, num_query_comps, false), "");
1108 ac_build_ifcc(&ctx->ac, tmp, 5110);
1109 {
1110 LLVMValueRef offset;
1111 tmp = tid;
1112 if (sel->so.num_outputs)
1113 tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->i32, 3, false), "");
1114 offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 32, false), "");
1115 if (sel->so.num_outputs) {
1116 tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->i32, 2, false), "");
1117 tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 8, false), "");
1118 offset = LLVMBuildAdd(builder, offset, tmp, "");
1119 }
1120
1121 tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1122 LLVMValueRef args[] = {
1123 tmp,
1124 ngg_get_query_buf(ctx),
1125 offset,
1126 LLVMConstInt(ctx->i32, 16, false), /* soffset */
1127 ctx->i32_0, /* cachepolicy */
1128 };
1129 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
1130 ctx->i32, args, 5, 0);
1131 }
1132 ac_build_endif(&ctx->ac, 5110);
1133 ac_build_endif(&ctx->ac, 5109);
1134
1135 /* TODO: culling */
1136
1137 /* Determine vertex liveness. */
1138 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
1139
1140 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1141 ac_build_ifcc(&ctx->ac, tmp, 5120);
1142 {
1143 for (unsigned i = 0; i < verts_per_prim; ++i) {
1144 const LLVMValueRef primidx =
1145 LLVMBuildAdd(builder, tid,
1146 LLVMConstInt(ctx->ac.i32, i, false), "");
1147
1148 if (i > 0) {
1149 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
1150 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
1151 }
1152
1153 /* Load primitive liveness */
1154 tmp = ngg_gs_vertex_ptr(ctx, primidx);
1155 LLVMValueRef gep_idx[3] = {
1156 ctx->ac.i32_0, /* implicit C-style array */
1157 ctx->ac.i32_1, /* second value of struct */
1158 ctx->ac.i32_0, /* stream 0 */
1159 };
1160 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1161 tmp = LLVMBuildLoad(builder, tmp, "");
1162 const LLVMValueRef primlive =
1163 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1164
1165 tmp = LLVMBuildLoad(builder, vertliveptr, "");
1166 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
1167 LLVMBuildStore(builder, tmp, vertliveptr);
1168
1169 if (i > 0)
1170 ac_build_endif(&ctx->ac, 5121 + i);
1171 }
1172 }
1173 ac_build_endif(&ctx->ac, 5120);
1174
1175 /* Inclusive scan addition across the current wave. */
1176 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
1177 struct ac_wg_scan vertlive_scan = {};
1178 vertlive_scan.op = nir_op_iadd;
1179 vertlive_scan.enable_reduce = true;
1180 vertlive_scan.enable_exclusive = true;
1181 vertlive_scan.src = vertlive;
1182 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0);
1183 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
1184 vertlive_scan.numwaves = get_tgsize(ctx);
1185 vertlive_scan.maxwaves = 8;
1186
1187 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
1188
1189 /* Skip all exports (including index exports) when possible. At least on
1190 * early gfx10 revisions this is also to avoid hangs.
1191 */
1192 LLVMValueRef have_exports =
1193 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
1194 num_emit_threads =
1195 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
1196
1197 /* Allocate export space. Send this message as early as possible, to
1198 * hide the latency of the SQ <-> SPI roundtrip.
1199 *
1200 * Note: We could consider compacting primitives for export as well.
1201 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
1202 * prim data per clock and skips null primitives at no additional
1203 * cost. So compacting primitives can only be beneficial when
1204 * there are 4 or more contiguous null primitives in the export
1205 * (in the common case of single-dword prim exports).
1206 */
1207 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
1208
1209 /* Setup the reverse vertex compaction permutation. We re-use stream 1
1210 * of the primitive liveness flags, relying on the fact that each
1211 * threadgroup can have at most 256 threads. */
1212 ac_build_ifcc(&ctx->ac, vertlive, 5130);
1213 {
1214 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
1215 LLVMValueRef gep_idx[3] = {
1216 ctx->ac.i32_0, /* implicit C-style array */
1217 ctx->ac.i32_1, /* second value of struct */
1218 ctx->ac.i32_1, /* stream 1 */
1219 };
1220 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1221 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
1222 LLVMBuildStore(builder, tmp2, tmp);
1223 }
1224 ac_build_endif(&ctx->ac, 5130);
1225
1226 ac_build_s_barrier(&ctx->ac);
1227
1228 /* Export primitive data */
1229 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1230 ac_build_ifcc(&ctx->ac, tmp, 5140);
1231 {
1232 struct ngg_prim prim = {};
1233 prim.num_vertices = verts_per_prim;
1234
1235 tmp = ngg_gs_vertex_ptr(ctx, tid);
1236 LLVMValueRef gep_idx[3] = {
1237 ctx->ac.i32_0, /* implicit C-style array */
1238 ctx->ac.i32_1, /* second value of struct */
1239 ctx->ac.i32_0, /* primflag */
1240 };
1241 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1242 tmp = LLVMBuildLoad(builder, tmp, "");
1243 prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
1244 LLVMConstInt(ctx->ac.i8, 0, false), "");
1245
1246 for (unsigned i = 0; i < verts_per_prim; ++i) {
1247 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
1248 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1249 prim.edgeflag[i] = ctx->ac.i1false;
1250 }
1251
1252 build_export_prim(ctx, &prim);
1253 }
1254 ac_build_endif(&ctx->ac, 5140);
1255
1256 /* Export position and parameter data */
1257 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
1258 ac_build_ifcc(&ctx->ac, tmp, 5145);
1259 {
1260 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1261
1262 tmp = ngg_gs_vertex_ptr(ctx, tid);
1263 LLVMValueRef gep_idx[3] = {
1264 ctx->ac.i32_0, /* implicit C-style array */
1265 ctx->ac.i32_1, /* second value of struct */
1266 ctx->ac.i32_1, /* stream 1: source data index */
1267 };
1268 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
1269 tmp = LLVMBuildLoad(builder, tmp, "");
1270 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1271 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
1272
1273 unsigned out_idx = 0;
1274 gep_idx[1] = ctx->ac.i32_0;
1275 for (unsigned i = 0; i < info->num_outputs; i++) {
1276 outputs[i].semantic_name = info->output_semantic_name[i];
1277 outputs[i].semantic_index = info->output_semantic_index[i];
1278
1279 for (unsigned j = 0; j < 4; j++, out_idx++) {
1280 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
1281 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
1282 tmp = LLVMBuildLoad(builder, tmp, "");
1283 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1284 outputs[i].vertex_stream[j] =
1285 (info->output_streams[i] >> (2 * j)) & 3;
1286 }
1287 }
1288
1289 si_llvm_export_vs(ctx, outputs, info->num_outputs);
1290 }
1291 ac_build_endif(&ctx->ac, 5145);
1292 }
1293
1294 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1295 unsigned min_verts_per_prim, bool use_adjacency)
1296 {
1297 unsigned max_reuse = max_esverts - min_verts_per_prim;
1298 if (use_adjacency)
1299 max_reuse /= 2;
1300 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1301 }
1302
1303 /**
1304 * Determine subgroup information like maximum number of vertices and prims.
1305 *
1306 * This happens before the shader is uploaded, since LDS relocations during
1307 * upload depend on the subgroup size.
1308 */
1309 void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
1310 {
1311 const struct si_shader_selector *gs_sel = shader->selector;
1312 const struct si_shader_selector *es_sel =
1313 shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
1314 const enum pipe_shader_type gs_type = gs_sel->type;
1315 const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1316 const unsigned input_prim = si_get_input_prim(gs_sel);
1317 const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
1318 input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
1319 const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
1320 const unsigned min_verts_per_prim =
1321 gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1322
1323 /* All these are in dwords: */
1324 /* We can't allow using the whole LDS, because GS waves compete with
1325 * other shader stages for LDS space.
1326 *
1327 * TODO: We should really take the shader's internal LDS use into
1328 * account. The linker will fail if the size is greater than
1329 * 8K dwords.
1330 */
1331 const unsigned max_lds_size = 8 * 1024 - 768;
1332 const unsigned target_lds_size = max_lds_size;
1333 unsigned esvert_lds_size = 0;
1334 unsigned gsprim_lds_size = 0;
1335
1336 /* All these are per subgroup: */
1337 bool max_vert_out_per_gs_instance = false;
1338 unsigned max_esverts_base = 128;
1339 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1340
1341 /* Hardware has the following non-natural restrictions on the value
1342 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1343 * the draw:
1344 * - at most 252 for any line input primitive type
1345 * - at most 251 for any quad input primitive type
1346 * - at most 251 for triangle strips with adjacency (this happens to
1347 * be the natural limit for triangle *lists* with adjacency)
1348 */
1349 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1350
1351 if (gs_type == PIPE_SHADER_GEOMETRY) {
1352 unsigned max_out_verts_per_gsprim =
1353 gs_sel->gs_max_out_vertices * gs_num_invocations;
1354
1355 if (max_out_verts_per_gsprim <= 256) {
1356 if (max_out_verts_per_gsprim) {
1357 max_gsprims_base = MIN2(max_gsprims_base,
1358 256 / max_out_verts_per_gsprim);
1359 }
1360 } else {
1361 /* Use special multi-cycling mode in which each GS
1362 * instance gets its own subgroup. Does not work with
1363 * tessellation. */
1364 max_vert_out_per_gs_instance = true;
1365 max_gsprims_base = 1;
1366 max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
1367 }
1368
1369 esvert_lds_size = es_sel->esgs_itemsize / 4;
1370 gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1371 } else {
1372 /* VS and TES. */
1373 /* LDS size for passing data from ES to GS. */
1374 esvert_lds_size = ngg_nogs_vertex_size(shader);
1375
1376 /* LDS size for passing data from GS to ES.
1377 * GS stores Primitive IDs into LDS at the address corresponding
1378 * to the ES thread of the provoking vertex. All ES threads
1379 * load and export PrimitiveID for their thread.
1380 */
1381 if (gs_sel->type == PIPE_SHADER_VERTEX &&
1382 shader->key.mono.u.vs_export_prim_id)
1383 esvert_lds_size = MAX2(esvert_lds_size, 1);
1384 }
1385
1386 unsigned max_gsprims = max_gsprims_base;
1387 unsigned max_esverts = max_esverts_base;
1388
1389 if (esvert_lds_size)
1390 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1391 if (gsprim_lds_size)
1392 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1393
1394 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1395 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
1396 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1397
1398 if (esvert_lds_size || gsprim_lds_size) {
1399 /* Now that we have a rough proportionality between esverts
1400 * and gsprims based on the primitive type, scale both of them
1401 * down simultaneously based on required LDS space.
1402 *
1403 * We could be smarter about this if we knew how much vertex
1404 * reuse to expect.
1405 */
1406 unsigned lds_total = max_esverts * esvert_lds_size +
1407 max_gsprims * gsprim_lds_size;
1408 if (lds_total > target_lds_size) {
1409 max_esverts = max_esverts * target_lds_size / lds_total;
1410 max_gsprims = max_gsprims * target_lds_size / lds_total;
1411
1412 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1413 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1414 min_verts_per_prim, use_adjacency);
1415 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1416 }
1417 }
1418
1419 /* Round up towards full wave sizes for better ALU utilization. */
1420 if (!max_vert_out_per_gs_instance) {
1421 const unsigned wavesize = gs_sel->screen->ge_wave_size;
1422 unsigned orig_max_esverts;
1423 unsigned orig_max_gsprims;
1424 do {
1425 orig_max_esverts = max_esverts;
1426 orig_max_gsprims = max_gsprims;
1427
1428 max_esverts = align(max_esverts, wavesize);
1429 max_esverts = MIN2(max_esverts, max_esverts_base);
1430 if (esvert_lds_size)
1431 max_esverts = MIN2(max_esverts,
1432 (max_lds_size - max_gsprims * gsprim_lds_size) /
1433 esvert_lds_size);
1434 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1435
1436 max_gsprims = align(max_gsprims, wavesize);
1437 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1438 if (gsprim_lds_size)
1439 max_gsprims = MIN2(max_gsprims,
1440 (max_lds_size - max_esverts * esvert_lds_size) /
1441 gsprim_lds_size);
1442 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1443 min_verts_per_prim, use_adjacency);
1444 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1445 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1446 }
1447
1448 /* Hardware restriction: minimum value of max_esverts */
1449 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1450
1451 unsigned max_out_vertices =
1452 max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
1453 gs_type == PIPE_SHADER_GEOMETRY ?
1454 max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
1455 max_esverts;
1456 assert(max_out_vertices <= 256);
1457
1458 unsigned prim_amp_factor = 1;
1459 if (gs_type == PIPE_SHADER_GEOMETRY) {
1460 /* Number of output primitives per GS input primitive after
1461 * GS instancing. */
1462 prim_amp_factor = gs_sel->gs_max_out_vertices;
1463 }
1464
1465 /* The GE only checks against the maximum number of ES verts after
1466 * allocating a full GS primitive. So we need to ensure that whenever
1467 * this check passes, there is enough space for a full primitive without
1468 * vertex reuse.
1469 */
1470 shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1471 shader->ngg.max_gsprims = max_gsprims;
1472 shader->ngg.max_out_verts = max_out_vertices;
1473 shader->ngg.prim_amp_factor = prim_amp_factor;
1474 shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1475
1476 shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1477 shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
1478
1479 assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
1480 }