radeonsi: add return value to gfx10_ngg_calculate_subgroup_info
[mesa.git] / src / gallium / drivers / radeonsi / gfx10_shader_ngg.c
1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "ac_llvm_cull.h"
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28 #include "util/u_memory.h"
29 #include "util/u_prim.h"
30
31 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
32 {
33 return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
34 }
35
36 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
37 {
38 return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
39 }
40
41 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
42 {
43 LLVMBuilderRef builder = ctx->ac.builder;
44 LLVMValueRef tmp;
45 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
46 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
47 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
48 }
49
50 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
51 {
52 return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
53 }
54
55 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
56 {
57 return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
58 }
59
60 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
61 {
62 return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
63 }
64
65 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
66 {
67 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
68
69 return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
70 LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
71 }
72
73 static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
74 {
75 if (ctx->type == PIPE_SHADER_VERTEX) {
76 LLVMValueRef tmp;
77 tmp = LLVMBuildLShr(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
78 LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
79 return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
80 }
81 return ctx->ac.i1false;
82 }
83
84 /**
85 * Return the number of vertices as a constant in \p num_vertices,
86 * and return a more precise value as LLVMValueRef from the function.
87 */
88 static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
89 {
90 const struct si_shader_info *info = &ctx->shader->selector->info;
91
92 if (ctx->type == PIPE_SHADER_VERTEX) {
93 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
94 /* Blits always use axis-aligned rectangles with 3 vertices. */
95 *num_vertices = 3;
96 return LLVMConstInt(ctx->ac.i32, 3, 0);
97 } else {
98 /* We always build up all three indices for the prim export
99 * independent of the primitive type. The additional garbage
100 * data shouldn't hurt. This number doesn't matter with
101 * NGG passthrough.
102 */
103 *num_vertices = 3;
104
105 /* Extract OUTPRIM field. */
106 LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
107 return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
108 }
109 } else {
110 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
111
112 if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
113 *num_vertices = 1;
114 else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
115 *num_vertices = 2;
116 else
117 *num_vertices = 3;
118
119 return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
120 }
121 }
122
123 bool gfx10_ngg_export_prim_early(struct si_shader *shader)
124 {
125 struct si_shader_selector *sel = shader->selector;
126
127 assert(shader->key.as_ngg && !shader->key.as_es);
128
129 return sel->type != PIPE_SHADER_GEOMETRY && !sel->info.writes_edgeflag;
130 }
131
132 void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
133 {
134 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
135 ngg_get_prim_cnt(ctx));
136 }
137
138 void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
139 LLVMValueRef prim_passthrough)
140 {
141 LLVMBuilderRef builder = ctx->ac.builder;
142
143 if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) {
144 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
145 {
146 struct ac_ngg_prim prim = {};
147
148 if (prim_passthrough)
149 prim.passthrough = prim_passthrough;
150 else
151 prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
152
153 /* This is only used with NGG culling, which returns the NGG
154 * passthrough prim export encoding.
155 */
156 if (ctx->shader->selector->info.writes_edgeflag) {
157 unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
158 LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
159
160 unsigned num_vertices;
161 ngg_get_vertices_per_prim(ctx, &num_vertices);
162
163 for (unsigned i = 0; i < num_vertices; i++) {
164 unsigned shift = 9 + i * 10;
165 LLVMValueRef edge;
166
167 edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
168 edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
169 edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
170 edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
171 }
172 prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
173 }
174
175 ac_build_export_prim(&ctx->ac, &prim);
176 }
177 ac_build_endif(&ctx->ac, 6001);
178 return;
179 }
180
181 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
182 {
183 struct ac_ngg_prim prim = {};
184
185 ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
186
187 prim.isnull = ctx->ac.i1false;
188 prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
189 prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
190 prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
191
192 for (unsigned i = 0; i < prim.num_vertices; ++i) {
193 prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
194
195 if (ctx->shader->selector->info.writes_edgeflag) {
196 LLVMValueRef edge;
197
198 edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
199 edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
200 prim.edgeflag[i] = edge;
201 }
202 }
203
204 ac_build_export_prim(&ctx->ac, &prim);
205 }
206 ac_build_endif(&ctx->ac, 6001);
207 }
208
209 static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
210 LLVMValueRef *wg_offset_dw, unsigned stream,
211 LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
212 {
213 struct si_shader_info *info = &ctx->shader->selector->info;
214 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
215 LLVMBuilderRef builder = ctx->ac.builder;
216 LLVMValueRef offset[4] = {};
217 LLVMValueRef tmp;
218
219 for (unsigned buffer = 0; buffer < 4; ++buffer) {
220 if (!wg_offset_dw[buffer])
221 continue;
222
223 tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
224 "");
225 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
226 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
227 }
228
229 for (unsigned i = 0; i < so->num_outputs; ++i) {
230 if (so->output[i].stream != stream)
231 continue;
232
233 unsigned reg = so->output[i].register_index;
234 struct si_shader_output_values out;
235 out.semantic_name = info->output_semantic_name[reg];
236 out.semantic_index = info->output_semantic_index[reg];
237
238 for (unsigned comp = 0; comp < 4; comp++) {
239 tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
240 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
241 out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3;
242 }
243
244 si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
245 }
246 }
247
248 struct ngg_streamout {
249 LLVMValueRef num_vertices;
250
251 /* per-thread data */
252 LLVMValueRef prim_enable[4]; /* i1 per stream */
253 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
254
255 /* Output */
256 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
257 };
258
259 /**
260 * Build streamout logic.
261 *
262 * Implies a barrier.
263 *
264 * Writes number of emitted primitives to gs_ngg_scratch[4:8].
265 *
266 * Clobbers gs_ngg_scratch[8:].
267 */
268 static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
269 {
270 struct si_shader_info *info = &ctx->shader->selector->info;
271 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
272 LLVMBuilderRef builder = ctx->ac.builder;
273 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
274 LLVMValueRef tid = get_thread_id_in_tg(ctx);
275 LLVMValueRef tmp, tmp2;
276 LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
277 LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
278 LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
279 LLVMValueRef so_buffer[4] = {};
280 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
281 LLVMValueRef prim_stride_dw[4] = {};
282 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
283 int stream_for_buffer[4] = {-1, -1, -1, -1};
284 unsigned bufmask_for_stream[4] = {};
285 bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
286 unsigned scratch_emit_base = isgs ? 4 : 0;
287 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
288 unsigned scratch_offset_base = isgs ? 8 : 4;
289 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
290
291 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
292
293 /* Determine the mapping of streamout buffers to vertex streams. */
294 for (unsigned i = 0; i < so->num_outputs; ++i) {
295 unsigned buf = so->output[i].output_buffer;
296 unsigned stream = so->output[i].stream;
297 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
298 stream_for_buffer[buf] = stream;
299 bufmask_for_stream[stream] |= 1 << buf;
300 }
301
302 for (unsigned buffer = 0; buffer < 4; ++buffer) {
303 if (stream_for_buffer[buffer] == -1)
304 continue;
305
306 assert(so->stride[buffer]);
307
308 tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
309 prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
310 prim_stride_dw_vgpr =
311 ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
312 LLVMConstInt(ctx->ac.i32, buffer, false));
313
314 so_buffer[buffer] = ac_build_load_to_sgpr(
315 &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
316 }
317
318 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
319 ac_build_ifcc(&ctx->ac, tmp, 5200);
320 {
321 LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
322 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
323
324 /* Advance the streamout offsets in GDS. */
325 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
326 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
327
328 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
329 ac_build_ifcc(&ctx->ac, tmp, 5210);
330 {
331 if (isgs) {
332 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
333 tmp = LLVMBuildLoad(builder, tmp, "");
334 } else {
335 tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
336 }
337 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
338
339 unsigned swizzle[4];
340 int unused_stream = -1;
341 for (unsigned stream = 0; stream < 4; ++stream) {
342 if (!info->num_stream_output_components[stream]) {
343 unused_stream = stream;
344 break;
345 }
346 }
347 for (unsigned buffer = 0; buffer < 4; ++buffer) {
348 if (stream_for_buffer[buffer] >= 0) {
349 swizzle[buffer] = stream_for_buffer[buffer];
350 } else {
351 assert(unused_stream >= 0);
352 swizzle[buffer] = unused_stream;
353 }
354 }
355
356 tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
357 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
358
359 LLVMValueRef args[] = {
360 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
361 tmp,
362 ctx->ac.i32_0, // ordering
363 ctx->ac.i32_0, // scope
364 ctx->ac.i1false, // isVolatile
365 LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
366 ctx->ac.i1true, // wave release
367 ctx->ac.i1true, // wave done
368 };
369 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
370 ARRAY_SIZE(args), 0);
371
372 /* Keep offsets in a VGPR for quick retrieval via readlane by
373 * the first wave for bounds checking, and also store in LDS
374 * for retrieval by all waves later. */
375 LLVMBuildStore(builder, tmp, offsets_vgpr);
376
377 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
378 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
379 LLVMBuildStore(builder, tmp, tmp2);
380 }
381 ac_build_endif(&ctx->ac, 5210);
382
383 /* Determine the max emit per buffer. This is done via the SALU, in part
384 * because LLVM can't generate divide-by-multiply if we try to do this
385 * via VALU with one lane per buffer.
386 */
387 LLVMValueRef max_emit[4] = {};
388 for (unsigned buffer = 0; buffer < 4; ++buffer) {
389 if (stream_for_buffer[buffer] == -1)
390 continue;
391
392 LLVMValueRef bufsize_dw = LLVMBuildLShr(
393 builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
394
395 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
396 LLVMValueRef offset_dw =
397 ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
398
399 tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
400 tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
401
402 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
403 max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
404 }
405
406 /* Determine the number of emitted primitives per stream and fixup the
407 * GDS counter if necessary.
408 *
409 * This is complicated by the fact that a single stream can emit to
410 * multiple buffers (but luckily not vice versa).
411 */
412 LLVMValueRef emit_vgpr = ctx->ac.i32_0;
413
414 for (unsigned stream = 0; stream < 4; ++stream) {
415 if (!info->num_stream_output_components[stream])
416 continue;
417
418 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
419 LLVMValueRef generated =
420 ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
421
422 LLVMValueRef emit = generated;
423 for (unsigned buffer = 0; buffer < 4; ++buffer) {
424 if (stream_for_buffer[buffer] == stream)
425 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
426 }
427
428 emit_vgpr =
429 ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
430
431 /* Fixup the offset using a plain GDS atomic if we overflowed. */
432 tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
433 ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
434 tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
435 ac_get_thread_id(&ctx->ac), "");
436 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
437 ac_build_ifcc(&ctx->ac, tmp, 5222);
438 {
439 tmp = LLVMBuildSub(builder, generated, emit, "");
440 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
441 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
442 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
443 LLVMAtomicOrderingMonotonic, false);
444 }
445 ac_build_endif(&ctx->ac, 5222);
446 ac_build_endif(&ctx->ac, 5221);
447 }
448
449 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
450 ac_build_ifcc(&ctx->ac, tmp, 5225);
451 {
452 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
453 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
454 LLVMBuildStore(builder, emit_vgpr, tmp);
455 }
456 ac_build_endif(&ctx->ac, 5225);
457 }
458 ac_build_endif(&ctx->ac, 5200);
459
460 /* Determine the workgroup-relative per-thread / primitive offset into
461 * the streamout buffers */
462 struct ac_wg_scan primemit_scan[4] = {};
463
464 if (isgs) {
465 for (unsigned stream = 0; stream < 4; ++stream) {
466 if (!info->num_stream_output_components[stream])
467 continue;
468
469 primemit_scan[stream].enable_exclusive = true;
470 primemit_scan[stream].op = nir_op_iadd;
471 primemit_scan[stream].src = nggso->prim_enable[stream];
472 primemit_scan[stream].scratch = ac_build_gep0(
473 &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
474 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
475 primemit_scan[stream].numwaves = get_tgsize(ctx);
476 primemit_scan[stream].maxwaves = 8;
477 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
478 }
479 }
480
481 ac_build_s_barrier(&ctx->ac);
482
483 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
484 LLVMValueRef wgoffset_dw[4] = {};
485
486 {
487 LLVMValueRef scratch_vgpr;
488
489 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
490 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
491
492 for (unsigned buffer = 0; buffer < 4; ++buffer) {
493 if (stream_for_buffer[buffer] >= 0) {
494 wgoffset_dw[buffer] =
495 ac_build_readlane(&ctx->ac, scratch_vgpr,
496 LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
497 }
498 }
499
500 for (unsigned stream = 0; stream < 4; ++stream) {
501 if (info->num_stream_output_components[stream]) {
502 nggso->emit[stream] =
503 ac_build_readlane(&ctx->ac, scratch_vgpr,
504 LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
505 }
506 }
507 }
508
509 /* Write out primitive data */
510 for (unsigned stream = 0; stream < 4; ++stream) {
511 if (!info->num_stream_output_components[stream])
512 continue;
513
514 if (isgs) {
515 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
516 } else {
517 primemit_scan[stream].result_exclusive = tid;
518 }
519
520 tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
521 nggso->emit[stream], "");
522 tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
523 ac_build_ifcc(&ctx->ac, tmp, 5240);
524 {
525 LLVMValueRef offset_vtx =
526 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
527
528 for (unsigned i = 0; i < max_num_vertices; ++i) {
529 tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
530 nggso->num_vertices, "");
531 ac_build_ifcc(&ctx->ac, tmp, 5241);
532 build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
533 nggso->vertices[i]);
534 ac_build_endif(&ctx->ac, 5241);
535 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
536 }
537 }
538 ac_build_endif(&ctx->ac, 5240);
539 }
540 }
541
542 /* LDS layout of ES vertex data for NGG culling. */
543 enum
544 {
545 /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
546 * ES thread ID. After vertex compaction, compacted ES threads
547 * store the old thread ID here to copy input VGPRs from uncompacted
548 * ES threads.
549 * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
550 * Byte 2: TES rel patch ID
551 * Byte 3: Unused
552 */
553 lds_byte0_accept_flag = 0,
554 lds_byte0_old_thread_id = 0,
555 lds_byte1_new_thread_id,
556 lds_byte2_tes_rel_patch_id,
557 lds_byte3_unused,
558
559 lds_packed_data = 0, /* lds_byteN_... */
560
561 lds_pos_x,
562 lds_pos_y,
563 lds_pos_z,
564 lds_pos_w,
565 lds_pos_x_div_w,
566 lds_pos_y_div_w,
567 /* If VS: */
568 lds_vertex_id,
569 lds_instance_id, /* optional */
570 /* If TES: */
571 lds_tes_u = lds_vertex_id,
572 lds_tes_v = lds_instance_id,
573 lds_tes_patch_id, /* optional */
574 };
575
576 static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
577 unsigned byte_index)
578 {
579 assert(byte_index < 4);
580 LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
581 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
582
583 return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
584 1, "");
585 }
586
587 static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
588 {
589 unsigned lds_vertex_size = 0;
590
591 /* The edgeflag is always stored in the last element that's also
592 * used for padding to reduce LDS bank conflicts. */
593 if (shader->selector->so.num_outputs)
594 lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
595 if (shader->selector->info.writes_edgeflag)
596 lds_vertex_size = MAX2(lds_vertex_size, 1);
597
598 /* LDS size for passing data from GS to ES.
599 * GS stores Primitive IDs into LDS at the address corresponding
600 * to the ES thread of the provoking vertex. All ES threads
601 * load and export PrimitiveID for their thread.
602 */
603 if (shader->selector->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)
604 lds_vertex_size = MAX2(lds_vertex_size, 1);
605
606 if (shader->key.opt.ngg_culling) {
607 if (shader->selector->type == PIPE_SHADER_VERTEX) {
608 STATIC_ASSERT(lds_instance_id + 1 == 9);
609 lds_vertex_size = MAX2(lds_vertex_size, 9);
610 } else {
611 assert(shader->selector->type == PIPE_SHADER_TESS_EVAL);
612
613 if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) {
614 STATIC_ASSERT(lds_tes_patch_id + 2 == 11);
615 lds_vertex_size = MAX2(lds_vertex_size, 11);
616 } else {
617 STATIC_ASSERT(lds_tes_v + 1 == 9);
618 lds_vertex_size = MAX2(lds_vertex_size, 9);
619 }
620 }
621 }
622
623 return lds_vertex_size;
624 }
625
626 /**
627 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
628 * for the vertex outputs.
629 */
630 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
631 {
632 /* The extra dword is used to avoid LDS bank conflicts. */
633 unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
634 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
635 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
636 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
637 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
638 }
639
640 static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
641 struct ac_arg param, unsigned return_index)
642 {
643 LLVMValueRef v = ac_get_arg(&ctx->ac, param);
644
645 for (unsigned i = 0; i < 4; i++) {
646 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
647 return_index + i, "");
648 }
649 return ret;
650 }
651
652 static void load_bitmasks_2x64(struct si_shader_context *ctx, LLVMValueRef lds_ptr,
653 unsigned dw_offset, LLVMValueRef mask[2],
654 LLVMValueRef *total_bitcount)
655 {
656 LLVMBuilderRef builder = ctx->ac.builder;
657 LLVMValueRef ptr64 = LLVMBuildPointerCast(
658 builder, lds_ptr, LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2), AC_ADDR_SPACE_LDS), "");
659 for (unsigned i = 0; i < 2; i++) {
660 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
661 mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
662 }
663
664 /* We get better code if we don't use the 128-bit bitcount. */
665 *total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]),
666 ac_build_bit_count(&ctx->ac, mask[1]), "");
667 }
668
669 /**
670 * Given a total thread count, update total and per-wave thread counts in input SGPRs
671 * and return the per-wave thread count.
672 *
673 * \param new_num_threads Total thread count on the input, per-wave thread count on the output.
674 * \param tg_info tg_info SGPR value
675 * \param tg_info_num_bits the bit size of thread count field in tg_info
676 * \param tg_info_shift the bit offset of the thread count field in tg_info
677 * \param wave_info merged_wave_info SGPR value
678 * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
679 * \param wave_info_shift the bit offset of the thread count field in merged_wave_info
680 */
681 static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
682 LLVMValueRef *tg_info, unsigned tg_info_num_bits,
683 unsigned tg_info_shift, LLVMValueRef *wave_info,
684 unsigned wave_info_num_bits, unsigned wave_info_shift)
685 {
686 LLVMBuilderRef builder = ctx->ac.builder;
687
688 /* Update the total thread count. */
689 unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
690 *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
691 *tg_info = LLVMBuildOr(
692 builder, *tg_info,
693 LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
694
695 /* Update the per-wave thread count. */
696 LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
697 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
698 *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
699 *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
700 *new_num_threads =
701 ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
702 unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
703 *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
704 *wave_info = LLVMBuildOr(
705 builder, *wave_info,
706 LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
707 "");
708 }
709
710 /**
711 * Cull primitives for NGG VS or TES, then compact vertices, which happens
712 * before the VS or TES main function. Return values for the main function.
713 * Also return the position, which is passed to the shader as an input,
714 * so that we don't compute it twice.
715 */
716 void gfx10_emit_ngg_culling_epilogue_4x_wave32(struct ac_shader_abi *abi, unsigned max_outputs,
717 LLVMValueRef *addrs)
718 {
719 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
720 struct si_shader *shader = ctx->shader;
721 struct si_shader_selector *sel = shader->selector;
722 struct si_shader_info *info = &sel->info;
723 LLVMBuilderRef builder = ctx->ac.builder;
724
725 assert(shader->key.opt.ngg_culling);
726 assert(shader->key.as_ngg);
727 assert(sel->type == PIPE_SHADER_VERTEX ||
728 (sel->type == PIPE_SHADER_TESS_EVAL && !shader->key.as_es));
729
730 LLVMValueRef position[4] = {};
731 for (unsigned i = 0; i < info->num_outputs; i++) {
732 switch (info->output_semantic_name[i]) {
733 case TGSI_SEMANTIC_POSITION:
734 for (unsigned j = 0; j < 4; j++) {
735 position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
736 }
737 break;
738 }
739 }
740 assert(position[0]);
741
742 /* Store Position.XYZW into LDS. */
743 LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
744 for (unsigned chan = 0; chan < 4; chan++) {
745 LLVMBuildStore(
746 builder, ac_to_integer(&ctx->ac, position[chan]),
747 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
748 }
749 /* Store Position.XY / W into LDS. */
750 for (unsigned chan = 0; chan < 2; chan++) {
751 LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
752 LLVMBuildStore(
753 builder, ac_to_integer(&ctx->ac, val),
754 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0)));
755 }
756
757 /* Store VertexID and InstanceID. ES threads will have to load them
758 * from LDS after vertex compaction and use them instead of their own
759 * system values.
760 */
761 bool uses_instance_id = false;
762 bool uses_tes_prim_id = false;
763 LLVMValueRef packed_data = ctx->ac.i32_0;
764
765 if (ctx->type == PIPE_SHADER_VERTEX) {
766 uses_instance_id = sel->info.uses_instanceid ||
767 shader->key.part.vs.prolog.instance_divisor_is_one ||
768 shader->key.part.vs.prolog.instance_divisor_is_fetched;
769
770 LLVMBuildStore(
771 builder, ctx->abi.vertex_id,
772 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
773 if (uses_instance_id) {
774 LLVMBuildStore(
775 builder, ctx->abi.instance_id,
776 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
777 }
778 } else {
779 uses_tes_prim_id = sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id;
780
781 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
782 LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
783 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
784 LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
785 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
786 packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id),
787 LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), "");
788 if (uses_tes_prim_id) {
789 LLVMBuildStore(
790 builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
791 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
792 }
793 }
794 /* Initialize the packed data. */
795 LLVMBuildStore(
796 builder, packed_data,
797 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
798 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
799
800 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
801
802 /* Initialize the last 3 gs_ngg_scratch dwords to 0, because we may have less
803 * than 4 waves, but we always read all 4 values. This is where the thread
804 * bitmasks of unculled threads will be stored.
805 *
806 * gs_ngg_scratch layout: esmask[0..3]
807 */
808 ac_build_ifcc(&ctx->ac,
809 LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
810 LLVMConstInt(ctx->ac.i32, 3, 0), ""),
811 16101);
812 {
813 LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
814 LLVMBuildStore(builder, ctx->ac.i32_0, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, index));
815 }
816 ac_build_endif(&ctx->ac, 16101);
817 ac_build_s_barrier(&ctx->ac);
818
819 /* The hardware requires that there are no holes between unculled vertices,
820 * which means we have to pack ES threads, i.e. reduce the ES thread count
821 * and move ES input VGPRs to lower threads. The upside is that varyings
822 * are only fetched and computed for unculled vertices.
823 *
824 * Vertex compaction in GS threads:
825 *
826 * Part 1: Compute the surviving vertex mask in GS threads:
827 * - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
828 * - In GS, notify ES threads whether the vertex survived.
829 * - Barrier
830 * - ES threads will create the mask and store it in LDS.
831 * - Barrier
832 * - Each GS thread loads the vertex masks from LDS.
833 *
834 * Part 2: Compact ES threads in GS threads:
835 * - Compute the prefix sum for all 3 vertices from the masks. These are the new
836 * thread IDs for each vertex within the primitive.
837 * - Write the value of the old thread ID into the LDS address of the new thread ID.
838 * The ES thread will load the old thread ID and use it to load the position, VertexID,
839 * and InstanceID.
840 * - Update vertex indices and null flag in the GS input VGPRs.
841 * - Barrier
842 *
843 * Part 3: Update inputs GPRs
844 * - For all waves, update per-wave thread counts in input SGPRs.
845 * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
846 */
847
848 LLVMValueRef vtxindex[3];
849 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
850 /* For the GS fast launch, the VS prologs simply puts the Vertex IDs
851 * into these VGPRs.
852 */
853 vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
854 vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
855 vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
856 } else {
857 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
858 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
859 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
860 };
861 LLVMValueRef gs_vtxptr[] = {
862 ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
863 ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
864 ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
865 };
866 es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
867
868 LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
869
870 /* Do culling in GS threads. */
871 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
872 {
873 /* Load positions. */
874 LLVMValueRef pos[3][4] = {};
875 for (unsigned vtx = 0; vtx < 3; vtx++) {
876 for (unsigned chan = 0; chan < 4; chan++) {
877 unsigned index;
878 if (chan == 0 || chan == 1)
879 index = lds_pos_x_div_w + chan;
880 else if (chan == 3)
881 index = lds_pos_w;
882 else
883 continue;
884
885 LLVMValueRef addr =
886 ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
887 pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
888 pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
889 }
890 }
891
892 /* Load the viewport state for small prim culling. */
893 LLVMValueRef vp = ac_build_load_invariant(
894 &ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0);
895 vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
896 LLVMValueRef vp_scale[2], vp_translate[2];
897 vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
898 vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
899 vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
900 vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
901
902 /* Get the small prim filter precision. */
903 LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
904 small_prim_precision =
905 LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
906 small_prim_precision =
907 LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
908 small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
909
910 /* Execute culling code. */
911 struct ac_cull_options options = {};
912 options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
913 options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
914 options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
915 options.cull_small_prims = options.cull_view_xy;
916 options.cull_zero_area = options.cull_front || options.cull_back;
917 options.cull_w = true;
918
919 /* Tell ES threads whether their vertex survived. */
920 ac_build_ifcc(&ctx->ac,
921 ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate,
922 small_prim_precision, &options),
923 16003);
924 {
925 LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
926 for (unsigned vtx = 0; vtx < 3; vtx++) {
927 LLVMBuildStore(builder, ctx->ac.i8_1,
928 si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
929 }
930 }
931 ac_build_endif(&ctx->ac, 16003);
932 }
933 ac_build_endif(&ctx->ac, 16002);
934 ac_build_s_barrier(&ctx->ac);
935
936 gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
937
938 LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
939
940 /* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
941 ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
942 {
943 LLVMValueRef es_accepted_flag =
944 LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
945
946 LLVMValueRef es_accepted_bool =
947 LLVMBuildICmp(builder, LLVMIntNE, es_accepted_flag, ctx->ac.i8_0, "");
948 LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
949
950 LLVMBuildStore(builder, es_accepted_bool, es_accepted);
951
952 ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
953 {
954 LLVMBuildStore(builder, es_mask,
955 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, get_wave_id_in_tg(ctx)));
956 }
957 ac_build_endif(&ctx->ac, 16008);
958 }
959 ac_build_endif(&ctx->ac, 16007);
960 ac_build_s_barrier(&ctx->ac);
961
962 /* Load the vertex masks and compute the new ES thread count. */
963 LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
964 load_bitmasks_2x64(ctx, ctx->gs_ngg_scratch, 0, es_mask, &new_num_es_threads);
965 new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL);
966
967 /* ES threads compute their prefix sum, which is the new ES thread ID.
968 * Then they write the value of the old thread ID into the LDS address
969 * of the new thread ID. It will be used it to load input VGPRs from
970 * the old thread's LDS location.
971 */
972 ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
973 {
974 LLVMValueRef old_id = get_thread_id_in_tg(ctx);
975 LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
976
977 LLVMBuildStore(
978 builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""),
979 si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id), lds_byte0_old_thread_id));
980 LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
981 si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
982 }
983 ac_build_endif(&ctx->ac, 16009);
984
985 /* Kill waves that have inactive threads. */
986 kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
987 ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
988 LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
989 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
990 "");
991 ac_build_ifcc(&ctx->ac, kill_wave, 19202);
992 {
993 /* If we are killing wave 0, send that there are no primitives
994 * in this threadgroup.
995 */
996 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
997 ac_build_s_endpgm(&ctx->ac);
998 }
999 ac_build_endif(&ctx->ac, 19202);
1000 ac_build_s_barrier(&ctx->ac);
1001
1002 /* Send the final vertex and primitive counts. */
1003 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
1004 ngg_get_prim_cnt(ctx));
1005
1006 /* Update thread counts in SGPRs. */
1007 LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
1008 LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
1009
1010 /* This also converts the thread count from the total count to the per-wave count. */
1011 update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
1012 0);
1013
1014 /* Update vertex indices in VGPR0 (same format as NGG passthrough). */
1015 LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
1016
1017 /* Set the null flag at the beginning (culled), and then
1018 * overwrite it for accepted primitives.
1019 */
1020 LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
1021
1022 /* Get vertex indices after vertex compaction. */
1023 ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
1024 {
1025 struct ac_ngg_prim prim = {};
1026 prim.num_vertices = 3;
1027 prim.isnull = ctx->ac.i1false;
1028
1029 for (unsigned vtx = 0; vtx < 3; vtx++) {
1030 prim.index[vtx] = LLVMBuildLoad(
1031 builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
1032 prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
1033 prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
1034 }
1035
1036 /* Set the new GS input VGPR. */
1037 LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
1038 }
1039 ac_build_endif(&ctx->ac, 16011);
1040
1041 if (gfx10_ngg_export_prim_early(shader))
1042 gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
1043
1044 /* Set the new ES input VGPRs. */
1045 LLVMValueRef es_data[4];
1046 LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
1047
1048 for (unsigned i = 0; i < 4; i++)
1049 es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
1050
1051 ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid, new_num_es_threads, ""),
1052 16012);
1053 {
1054 LLVMValueRef old_id, old_es_vtxptr, tmp;
1055
1056 /* Load ES input VGPRs from the ES thread before compaction. */
1057 old_id = LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), "");
1058 old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, "");
1059
1060 LLVMBuildStore(builder, old_id, old_thread_id);
1061 old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id);
1062
1063 for (unsigned i = 0; i < 2; i++) {
1064 tmp = LLVMBuildLoad(
1065 builder,
1066 ac_build_gep0(&ctx->ac, old_es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)),
1067 "");
1068 LLVMBuildStore(builder, tmp, es_data[i]);
1069 }
1070
1071 if (ctx->type == PIPE_SHADER_TESS_EVAL) {
1072 tmp = LLVMBuildLoad(builder,
1073 si_build_gep_i8(ctx, old_es_vtxptr, lds_byte2_tes_rel_patch_id), "");
1074 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1075 LLVMBuildStore(builder, tmp, es_data[2]);
1076
1077 if (uses_tes_prim_id) {
1078 tmp = LLVMBuildLoad(builder,
1079 ac_build_gep0(&ctx->ac, old_es_vtxptr,
1080 LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)),
1081 "");
1082 LLVMBuildStore(builder, tmp, es_data[3]);
1083 }
1084 }
1085 }
1086 ac_build_endif(&ctx->ac, 16012);
1087
1088 /* Return values for the main function. */
1089 LLVMValueRef ret = ctx->return_value;
1090 LLVMValueRef val;
1091
1092 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
1093 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
1094 if (ctx->type == PIPE_SHADER_TESS_EVAL)
1095 ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
1096
1097 ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS);
1098 ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
1099 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
1100 ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
1101 8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
1102 ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
1103 ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
1104
1105 if (ctx->type == PIPE_SHADER_VERTEX) {
1106 ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
1107 ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
1108 ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
1109 ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers, 8 + SI_VS_NUM_USER_SGPR);
1110
1111 for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
1112 ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
1113 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
1114 }
1115 } else {
1116 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
1117 ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
1118 ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
1119 }
1120
1121 unsigned vgpr;
1122 if (ctx->type == PIPE_SHADER_VERTEX) {
1123 if (shader->selector->num_vbos_in_user_sgprs) {
1124 vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
1125 } else {
1126 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
1127 }
1128 } else {
1129 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
1130 }
1131
1132 val = LLVMBuildLoad(builder, new_vgpr0, "");
1133 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1134 vgpr++; /* gs_vtx23_offset */
1135
1136 ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
1137 ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
1138 vgpr++; /* gs_vtx45_offset */
1139
1140 if (ctx->type == PIPE_SHADER_VERTEX) {
1141 val = LLVMBuildLoad(builder, es_data[0], "");
1142 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1143 ""); /* VGPR5 - VertexID */
1144 vgpr += 2;
1145 if (uses_instance_id) {
1146 val = LLVMBuildLoad(builder, es_data[1], "");
1147 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1148 ""); /* VGPR8 - InstanceID */
1149 } else {
1150 vgpr++;
1151 }
1152 } else {
1153 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
1154 unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
1155 for (unsigned i = 0; i < num_vgprs; i++) {
1156 val = LLVMBuildLoad(builder, es_data[i], "");
1157 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1158 }
1159 if (num_vgprs == 3)
1160 vgpr++;
1161 }
1162 /* Return the old thread ID. */
1163 val = LLVMBuildLoad(builder, old_thread_id, "");
1164 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1165
1166 /* These two also use LDS. */
1167 if (sel->info.writes_edgeflag ||
1168 (ctx->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1169 ac_build_s_barrier(&ctx->ac);
1170
1171 ctx->return_value = ret;
1172 }
1173
1174 /**
1175 * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
1176 */
1177 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
1178 {
1179 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1180 struct si_shader_selector *sel = ctx->shader->selector;
1181 struct si_shader_info *info = &sel->info;
1182 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1183 LLVMBuilderRef builder = ctx->ac.builder;
1184 LLVMValueRef tmp, tmp2;
1185
1186 assert(!ctx->shader->is_gs_copy_shader);
1187 assert(info->num_outputs <= max_outputs);
1188
1189 LLVMValueRef vertex_ptr = NULL;
1190
1191 if (sel->so.num_outputs || sel->info.writes_edgeflag)
1192 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1193
1194 for (unsigned i = 0; i < info->num_outputs; i++) {
1195 outputs[i].semantic_name = info->output_semantic_name[i];
1196 outputs[i].semantic_index = info->output_semantic_index[i];
1197
1198 for (unsigned j = 0; j < 4; j++) {
1199 outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1200
1201 /* TODO: we may store more outputs than streamout needs,
1202 * but streamout performance isn't that important.
1203 */
1204 if (sel->so.num_outputs) {
1205 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
1206 tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1207 tmp2 = ac_to_integer(&ctx->ac, tmp2);
1208 LLVMBuildStore(builder, tmp2, tmp);
1209 }
1210 }
1211
1212 /* Store the edgeflag at the end (if streamout is enabled) */
1213 if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG && sel->info.writes_edgeflag) {
1214 LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
1215 /* The output is a float, but the hw expects a 1-bit integer. */
1216 edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
1217 edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
1218
1219 tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1220 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1221 LLVMBuildStore(builder, edgeflag, tmp);
1222 }
1223 }
1224
1225 bool unterminated_es_if_block =
1226 !sel->so.num_outputs && !sel->info.writes_edgeflag &&
1227 !ctx->screen->use_ngg_streamout && /* no query buffer */
1228 (ctx->type != PIPE_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id);
1229
1230 if (!unterminated_es_if_block)
1231 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1232
1233 LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
1234 LLVMValueRef is_es_thread = si_is_es_thread(ctx);
1235 LLVMValueRef vtxindex[3];
1236
1237 if (ctx->shader->key.opt.ngg_culling) {
1238 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
1239 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
1240 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
1241 } else {
1242 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
1243 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
1244 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
1245 }
1246
1247 /* Determine the number of vertices per primitive. */
1248 unsigned num_vertices;
1249 LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
1250
1251 /* Streamout */
1252 LLVMValueRef emitted_prims = NULL;
1253
1254 if (sel->so.num_outputs) {
1255 assert(!unterminated_es_if_block);
1256
1257 struct ngg_streamout nggso = {};
1258 nggso.num_vertices = num_vertices_val;
1259 nggso.prim_enable[0] = is_gs_thread;
1260
1261 for (unsigned i = 0; i < num_vertices; ++i)
1262 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1263
1264 build_streamout(ctx, &nggso);
1265 emitted_prims = nggso.emit[0];
1266 }
1267
1268 LLVMValueRef user_edgeflags[3] = {};
1269
1270 if (sel->info.writes_edgeflag) {
1271 assert(!unterminated_es_if_block);
1272
1273 /* Streamout already inserted the barrier, so don't insert it again. */
1274 if (!sel->so.num_outputs)
1275 ac_build_s_barrier(&ctx->ac);
1276
1277 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1278 /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
1279 for (unsigned i = 0; i < num_vertices; i++) {
1280 tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1281 tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1282 tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
1283 tmp = LLVMBuildLoad(builder, tmp, "");
1284 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1285
1286 user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
1287 LLVMBuildStore(builder, tmp, user_edgeflags[i]);
1288 }
1289 ac_build_endif(&ctx->ac, 5400);
1290 }
1291
1292 /* Copy Primitive IDs from GS threads to the LDS address corresponding
1293 * to the ES thread of the provoking vertex.
1294 */
1295 if (ctx->type == PIPE_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) {
1296 assert(!unterminated_es_if_block);
1297
1298 /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
1299 if (sel->so.num_outputs || sel->info.writes_edgeflag)
1300 ac_build_s_barrier(&ctx->ac);
1301
1302 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1303 /* Extract the PROVOKING_VTX_INDEX field. */
1304 LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
1305
1306 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
1307 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
1308 LLVMValueRef provoking_vtx_index =
1309 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
1310 LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
1311
1312 LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
1313 ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
1314 ac_build_endif(&ctx->ac, 5400);
1315 }
1316
1317 /* Update query buffer */
1318 if (ctx->screen->use_ngg_streamout && !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1319 assert(!unterminated_es_if_block);
1320
1321 tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1322 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1323 ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
1324 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
1325 ac_build_ifcc(&ctx->ac, tmp, 5030);
1326 tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
1327 sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
1328 ac_build_ifcc(&ctx->ac, tmp, 5031);
1329 {
1330 LLVMValueRef args[] = {
1331 ngg_get_prim_cnt(ctx),
1332 ngg_get_query_buf(ctx),
1333 LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
1334 ctx->ac.i32_0, /* soffset */
1335 ctx->ac.i32_0, /* cachepolicy */
1336 };
1337
1338 if (sel->so.num_outputs) {
1339 args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
1340 args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
1341 ctx->ac.i32_1);
1342 }
1343
1344 /* TODO: should this be 64-bit atomics? */
1345 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1346 0);
1347 }
1348 ac_build_endif(&ctx->ac, 5031);
1349 ac_build_endif(&ctx->ac, 5030);
1350 ac_build_endif(&ctx->ac, 5029);
1351 }
1352
1353 /* Build the primitive export. */
1354 if (!gfx10_ngg_export_prim_early(ctx->shader)) {
1355 assert(!unterminated_es_if_block);
1356 gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
1357 }
1358
1359 /* Export per-vertex data (positions and parameters). */
1360 if (!unterminated_es_if_block)
1361 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
1362 {
1363 unsigned i;
1364
1365 /* Unconditionally (re-)load the values for proper SSA form. */
1366 for (i = 0; i < info->num_outputs; i++) {
1367 /* If the NGG cull shader part computed the position, don't
1368 * use the position from the current shader part. Instead,
1369 * load it from LDS.
1370 */
1371 if (info->output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
1372 ctx->shader->key.opt.ngg_culling) {
1373 vertex_ptr = ngg_nogs_vertex_ptr(ctx, ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id));
1374
1375 for (unsigned j = 0; j < 4; j++) {
1376 tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
1377 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1378 tmp = LLVMBuildLoad(builder, tmp, "");
1379 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1380 }
1381 } else {
1382 for (unsigned j = 0; j < 4; j++) {
1383 outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1384 }
1385 }
1386 }
1387
1388 if (ctx->shader->key.mono.u.vs_export_prim_id) {
1389 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
1390 outputs[i].semantic_index = 0;
1391
1392 if (ctx->type == PIPE_SHADER_VERTEX) {
1393 /* Wait for GS stores to finish. */
1394 ac_build_s_barrier(&ctx->ac);
1395
1396 tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1397 tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1398 outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
1399 } else {
1400 assert(ctx->type == PIPE_SHADER_TESS_EVAL);
1401 outputs[i].values[0] = si_get_primitive_id(ctx, 0);
1402 }
1403
1404 outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
1405 for (unsigned j = 1; j < 4; j++)
1406 outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
1407
1408 memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
1409 i++;
1410 }
1411
1412 si_llvm_build_vs_exports(ctx, outputs, i);
1413 }
1414 ac_build_endif(&ctx->ac, 6002);
1415 }
1416
1417 static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
1418 {
1419 const struct si_shader_selector *sel = ctx->shader->selector;
1420 const struct si_shader_info *info = &sel->info;
1421
1422 LLVMTypeRef elements[2] = {
1423 LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
1424 LLVMArrayType(ctx->ac.i8, 4),
1425 };
1426 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
1427 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
1428 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
1429 }
1430
1431 /**
1432 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
1433 * is in emit order; that is:
1434 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
1435 * - during vertex emit, i.e. while the API GS shader invocation is running,
1436 * N = threadidx * gs_max_out_vertices + emitidx
1437 *
1438 * Goals of the LDS memory layout:
1439 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
1440 * in uniform control flow
1441 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
1442 * culling
1443 * 3. Agnostic to the number of waves (since we don't know it before compiling)
1444 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
1445 * 5. Avoid wasting memory.
1446 *
1447 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
1448 * layout, elimination of bank conflicts requires that each vertex occupy an
1449 * odd number of dwords. We use the additional dword to store the output stream
1450 * index as well as a flag to indicate whether this vertex ends a primitive
1451 * for rasterization.
1452 *
1453 * Swizzling is required to satisfy points 1 and 2 simultaneously.
1454 *
1455 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
1456 * Indices are swizzled in groups of 32, which ensures point 1 without
1457 * disturbing point 2.
1458 *
1459 * \return an LDS pointer to type {[N x i32], [4 x i8]}
1460 */
1461 static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
1462 {
1463 struct si_shader_selector *sel = ctx->shader->selector;
1464 LLVMBuilderRef builder = ctx->ac.builder;
1465 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
1466
1467 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
1468 unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
1469 if (write_stride_2exp) {
1470 LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
1471 LLVMValueRef swizzle = LLVMBuildAnd(
1472 builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
1473 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
1474 }
1475
1476 return ac_build_gep0(&ctx->ac, storage, vertexidx);
1477 }
1478
1479 static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
1480 LLVMValueRef emitidx)
1481 {
1482 struct si_shader_selector *sel = ctx->shader->selector;
1483 LLVMBuilderRef builder = ctx->ac.builder;
1484 LLVMValueRef tmp;
1485
1486 tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
1487 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
1488 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
1489 return ngg_gs_vertex_ptr(ctx, vertexidx);
1490 }
1491
1492 static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
1493 LLVMValueRef vertexptr, unsigned out_idx)
1494 {
1495 LLVMValueRef gep_idx[3] = {
1496 ctx->ac.i32_0, /* implied C-style array */
1497 ctx->ac.i32_0, /* first struct entry */
1498 LLVMConstInt(ctx->ac.i32, out_idx, false),
1499 };
1500 return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1501 }
1502
1503 static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
1504 LLVMValueRef vertexptr, unsigned stream)
1505 {
1506 LLVMValueRef gep_idx[3] = {
1507 ctx->ac.i32_0, /* implied C-style array */
1508 ctx->ac.i32_1, /* second struct entry */
1509 LLVMConstInt(ctx->ac.i32, stream, false),
1510 };
1511 return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1512 }
1513
1514 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
1515 {
1516 const struct si_shader_selector *sel = ctx->shader->selector;
1517 const struct si_shader_info *info = &sel->info;
1518 LLVMBuilderRef builder = ctx->ac.builder;
1519 LLVMValueRef tmp;
1520 const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1521
1522 /* If this thread has already emitted the declared maximum number of
1523 * vertices, skip the write: excessive vertex emissions are not
1524 * supposed to have any effect.
1525 */
1526 const LLVMValueRef can_emit =
1527 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
1528 LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
1529
1530 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1531 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
1532 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1533
1534 ac_build_ifcc(&ctx->ac, can_emit, 9001);
1535
1536 const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
1537 unsigned out_idx = 0;
1538 for (unsigned i = 0; i < info->num_outputs; i++) {
1539 for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
1540 if (!(info->output_usagemask[i] & (1 << chan)) ||
1541 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
1542 continue;
1543
1544 LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
1545 out_val = ac_to_integer(&ctx->ac, out_val);
1546 LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
1547 }
1548 }
1549 assert(out_idx * 4 == sel->gsvs_vertex_size);
1550
1551 /* Determine and store whether this vertex completed a primitive. */
1552 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
1553
1554 tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
1555 const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
1556
1557 /* Since the geometry shader emits triangle strips, we need to
1558 * track which primitive is odd and swap vertex indices to get
1559 * the correct vertex order.
1560 */
1561 LLVMValueRef is_odd = ctx->ac.i1false;
1562 if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
1563 tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
1564 is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
1565 }
1566
1567 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
1568 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
1569
1570 /* The per-vertex primitive flag encoding:
1571 * bit 0: whether this vertex finishes a primitive
1572 * bit 1: whether the primitive is odd (if we are emitting triangle strips)
1573 */
1574 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
1575 tmp = LLVMBuildOr(
1576 builder, tmp,
1577 LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
1578 LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
1579
1580 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1581 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
1582 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
1583
1584 ac_build_endif(&ctx->ac, 9001);
1585 }
1586
1587 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
1588 {
1589 /* Zero out the part of LDS scratch that is used to accumulate the
1590 * per-stream generated primitive count.
1591 */
1592 LLVMBuilderRef builder = ctx->ac.builder;
1593 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
1594 LLVMValueRef tid = get_thread_id_in_tg(ctx);
1595 LLVMValueRef tmp;
1596
1597 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
1598 ac_build_ifcc(&ctx->ac, tmp, 5090);
1599 {
1600 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
1601 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
1602 }
1603 ac_build_endif(&ctx->ac, 5090);
1604
1605 ac_build_s_barrier(&ctx->ac);
1606 }
1607
1608 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
1609 {
1610 const struct si_shader_selector *sel = ctx->shader->selector;
1611 const struct si_shader_info *info = &sel->info;
1612 const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
1613 LLVMBuilderRef builder = ctx->ac.builder;
1614 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
1615 LLVMValueRef tmp, tmp2;
1616
1617 /* Zero out remaining (non-emitted) primitive flags.
1618 *
1619 * Note: Alternatively, we could pass the relevant gs_next_vertex to
1620 * the emit threads via LDS. This is likely worse in the expected
1621 * typical case where each GS thread emits the full set of
1622 * vertices.
1623 */
1624 for (unsigned stream = 0; stream < 4; ++stream) {
1625 if (!info->num_stream_output_components[stream])
1626 continue;
1627
1628 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
1629
1630 ac_build_bgnloop(&ctx->ac, 5100);
1631
1632 const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1633 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
1634 LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
1635 ac_build_ifcc(&ctx->ac, tmp, 5101);
1636 ac_build_break(&ctx->ac);
1637 ac_build_endif(&ctx->ac, 5101);
1638
1639 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1640 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1641
1642 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
1643 LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
1644
1645 ac_build_endloop(&ctx->ac, 5100);
1646 }
1647
1648 /* Accumulate generated primitives counts across the entire threadgroup. */
1649 for (unsigned stream = 0; stream < 4; ++stream) {
1650 if (!info->num_stream_output_components[stream])
1651 continue;
1652
1653 LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1654 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
1655
1656 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
1657 ac_build_ifcc(&ctx->ac, tmp, 5105);
1658 {
1659 LLVMBuildAtomicRMW(
1660 builder, LLVMAtomicRMWBinOpAdd,
1661 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
1662 numprims, LLVMAtomicOrderingMonotonic, false);
1663 }
1664 ac_build_endif(&ctx->ac, 5105);
1665 }
1666
1667 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1668
1669 ac_build_s_barrier(&ctx->ac);
1670
1671 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
1672 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1673
1674 /* Streamout */
1675 if (sel->so.num_outputs) {
1676 struct ngg_streamout nggso = {};
1677
1678 nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
1679
1680 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1681 for (unsigned stream = 0; stream < 4; ++stream) {
1682 if (!info->num_stream_output_components[stream])
1683 continue;
1684
1685 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
1686 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1687 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1688 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1689 }
1690
1691 for (unsigned i = 0; i < verts_per_prim; ++i) {
1692 tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
1693 "");
1694 tmp = ngg_gs_vertex_ptr(ctx, tmp);
1695 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1696 }
1697
1698 build_streamout(ctx, &nggso);
1699 }
1700
1701 /* Write shader query data. */
1702 if (ctx->screen->use_ngg_streamout) {
1703 tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1704 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1705 ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1706 unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1707 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1708 LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
1709 ac_build_ifcc(&ctx->ac, tmp, 5110);
1710 {
1711 LLVMValueRef offset;
1712 tmp = tid;
1713 if (sel->so.num_outputs)
1714 tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
1715 offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
1716 if (sel->so.num_outputs) {
1717 tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
1718 tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
1719 offset = LLVMBuildAdd(builder, offset, tmp, "");
1720 }
1721
1722 tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1723 LLVMValueRef args[] = {
1724 tmp, ngg_get_query_buf(ctx),
1725 offset, LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
1726 ctx->ac.i32_0, /* cachepolicy */
1727 };
1728 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1729 0);
1730 }
1731 ac_build_endif(&ctx->ac, 5110);
1732 ac_build_endif(&ctx->ac, 5109);
1733 }
1734
1735 /* Determine vertex liveness. */
1736 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
1737
1738 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1739 ac_build_ifcc(&ctx->ac, tmp, 5120);
1740 {
1741 for (unsigned i = 0; i < verts_per_prim; ++i) {
1742 const LLVMValueRef primidx =
1743 LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
1744
1745 if (i > 0) {
1746 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
1747 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
1748 }
1749
1750 /* Load primitive liveness */
1751 tmp = ngg_gs_vertex_ptr(ctx, primidx);
1752 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1753 const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1754
1755 tmp = LLVMBuildLoad(builder, vertliveptr, "");
1756 tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
1757
1758 if (i > 0)
1759 ac_build_endif(&ctx->ac, 5121 + i);
1760 }
1761 }
1762 ac_build_endif(&ctx->ac, 5120);
1763
1764 /* Inclusive scan addition across the current wave. */
1765 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
1766 struct ac_wg_scan vertlive_scan = {};
1767 vertlive_scan.op = nir_op_iadd;
1768 vertlive_scan.enable_reduce = true;
1769 vertlive_scan.enable_exclusive = true;
1770 vertlive_scan.src = vertlive;
1771 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
1772 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
1773 vertlive_scan.numwaves = get_tgsize(ctx);
1774 vertlive_scan.maxwaves = 8;
1775
1776 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
1777
1778 /* Skip all exports (including index exports) when possible. At least on
1779 * early gfx10 revisions this is also to avoid hangs.
1780 */
1781 LLVMValueRef have_exports =
1782 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
1783 num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
1784
1785 /* Allocate export space. Send this message as early as possible, to
1786 * hide the latency of the SQ <-> SPI roundtrip.
1787 *
1788 * Note: We could consider compacting primitives for export as well.
1789 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
1790 * prim data per clock and skips null primitives at no additional
1791 * cost. So compacting primitives can only be beneficial when
1792 * there are 4 or more contiguous null primitives in the export
1793 * (in the common case of single-dword prim exports).
1794 */
1795 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
1796 num_emit_threads);
1797
1798 /* Setup the reverse vertex compaction permutation. We re-use stream 1
1799 * of the primitive liveness flags, relying on the fact that each
1800 * threadgroup can have at most 256 threads. */
1801 ac_build_ifcc(&ctx->ac, vertlive, 5130);
1802 {
1803 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
1804 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
1805 LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
1806 }
1807 ac_build_endif(&ctx->ac, 5130);
1808
1809 ac_build_s_barrier(&ctx->ac);
1810
1811 /* Export primitive data */
1812 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1813 ac_build_ifcc(&ctx->ac, tmp, 5140);
1814 {
1815 LLVMValueRef flags;
1816 struct ac_ngg_prim prim = {};
1817 prim.num_vertices = verts_per_prim;
1818
1819 tmp = ngg_gs_vertex_ptr(ctx, tid);
1820 flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1821 prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
1822
1823 for (unsigned i = 0; i < verts_per_prim; ++i) {
1824 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
1825 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1826 prim.edgeflag[i] = ctx->ac.i1false;
1827 }
1828
1829 /* Geometry shaders output triangle strips, but NGG expects triangles. */
1830 if (verts_per_prim == 3) {
1831 LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
1832 is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
1833 LLVMValueRef flatshade_first = LLVMBuildICmp(
1834 builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
1835
1836 ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
1837 }
1838
1839 ac_build_export_prim(&ctx->ac, &prim);
1840 }
1841 ac_build_endif(&ctx->ac, 5140);
1842
1843 /* Export position and parameter data */
1844 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
1845 ac_build_ifcc(&ctx->ac, tmp, 5145);
1846 {
1847 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1848
1849 tmp = ngg_gs_vertex_ptr(ctx, tid);
1850 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
1851 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1852 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
1853
1854 unsigned out_idx = 0;
1855 for (unsigned i = 0; i < info->num_outputs; i++) {
1856 outputs[i].semantic_name = info->output_semantic_name[i];
1857 outputs[i].semantic_index = info->output_semantic_index[i];
1858
1859 for (unsigned j = 0; j < 4; j++, out_idx++) {
1860 tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
1861 tmp = LLVMBuildLoad(builder, tmp, "");
1862 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1863 outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1864 }
1865 }
1866
1867 si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
1868 }
1869 ac_build_endif(&ctx->ac, 5145);
1870 }
1871
1872 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1873 unsigned min_verts_per_prim, bool use_adjacency)
1874 {
1875 unsigned max_reuse = max_esverts - min_verts_per_prim;
1876 if (use_adjacency)
1877 max_reuse /= 2;
1878 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1879 }
1880
1881 /**
1882 * Determine subgroup information like maximum number of vertices and prims.
1883 *
1884 * This happens before the shader is uploaded, since LDS relocations during
1885 * upload depend on the subgroup size.
1886 */
1887 bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
1888 {
1889 const struct si_shader_selector *gs_sel = shader->selector;
1890 const struct si_shader_selector *es_sel =
1891 shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
1892 const enum pipe_shader_type gs_type = gs_sel->type;
1893 const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1894 const unsigned input_prim = si_get_input_prim(gs_sel);
1895 const bool use_adjacency =
1896 input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
1897 const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
1898 const unsigned min_verts_per_prim = gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1899
1900 /* All these are in dwords: */
1901 /* We can't allow using the whole LDS, because GS waves compete with
1902 * other shader stages for LDS space.
1903 *
1904 * TODO: We should really take the shader's internal LDS use into
1905 * account. The linker will fail if the size is greater than
1906 * 8K dwords.
1907 */
1908 const unsigned max_lds_size = 8 * 1024 - 768;
1909 const unsigned target_lds_size = max_lds_size;
1910 unsigned esvert_lds_size = 0;
1911 unsigned gsprim_lds_size = 0;
1912
1913 /* All these are per subgroup: */
1914 bool max_vert_out_per_gs_instance = false;
1915 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1916 unsigned max_esverts_base = 128;
1917
1918 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
1919 max_gsprims_base = 128 / 3;
1920 max_esverts_base = max_gsprims_base * 3;
1921 } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
1922 max_gsprims_base = 126;
1923 max_esverts_base = 128;
1924 }
1925
1926 /* Hardware has the following non-natural restrictions on the value
1927 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1928 * the draw:
1929 * - at most 252 for any line input primitive type
1930 * - at most 251 for any quad input primitive type
1931 * - at most 251 for triangle strips with adjacency (this happens to
1932 * be the natural limit for triangle *lists* with adjacency)
1933 */
1934 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1935
1936 if (gs_type == PIPE_SHADER_GEOMETRY) {
1937 unsigned max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices * gs_num_invocations;
1938
1939 if (max_out_verts_per_gsprim <= 256) {
1940 if (max_out_verts_per_gsprim) {
1941 max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
1942 }
1943 } else {
1944 /* Use special multi-cycling mode in which each GS
1945 * instance gets its own subgroup. Does not work with
1946 * tessellation. */
1947 max_vert_out_per_gs_instance = true;
1948 max_gsprims_base = 1;
1949 max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
1950 }
1951
1952 esvert_lds_size = es_sel->esgs_itemsize / 4;
1953 gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1954 } else {
1955 /* VS and TES. */
1956 /* LDS size for passing data from ES to GS. */
1957 esvert_lds_size = ngg_nogs_vertex_size(shader);
1958 }
1959
1960 unsigned max_gsprims = max_gsprims_base;
1961 unsigned max_esverts = max_esverts_base;
1962
1963 if (esvert_lds_size)
1964 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1965 if (gsprim_lds_size)
1966 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1967
1968 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1969 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
1970 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1971
1972 if (esvert_lds_size || gsprim_lds_size) {
1973 /* Now that we have a rough proportionality between esverts
1974 * and gsprims based on the primitive type, scale both of them
1975 * down simultaneously based on required LDS space.
1976 *
1977 * We could be smarter about this if we knew how much vertex
1978 * reuse to expect.
1979 */
1980 unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
1981 if (lds_total > target_lds_size) {
1982 max_esverts = max_esverts * target_lds_size / lds_total;
1983 max_gsprims = max_gsprims * target_lds_size / lds_total;
1984
1985 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1986 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
1987 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1988 }
1989 }
1990
1991 /* Round up towards full wave sizes for better ALU utilization. */
1992 if (!max_vert_out_per_gs_instance) {
1993 const unsigned wavesize = gs_sel->screen->ge_wave_size;
1994 unsigned orig_max_esverts;
1995 unsigned orig_max_gsprims;
1996 do {
1997 orig_max_esverts = max_esverts;
1998 orig_max_gsprims = max_gsprims;
1999
2000 max_esverts = align(max_esverts, wavesize);
2001 max_esverts = MIN2(max_esverts, max_esverts_base);
2002 if (esvert_lds_size)
2003 max_esverts =
2004 MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
2005 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2006
2007 max_gsprims = align(max_gsprims, wavesize);
2008 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
2009 if (gsprim_lds_size)
2010 max_gsprims =
2011 MIN2(max_gsprims, (max_lds_size - max_esverts * esvert_lds_size) / gsprim_lds_size);
2012 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2013 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2014 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
2015 }
2016
2017 /* Hardware restriction: minimum value of max_esverts */
2018 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
2019
2020 unsigned max_out_vertices =
2021 max_vert_out_per_gs_instance
2022 ? gs_sel->gs_max_out_vertices
2023 : gs_type == PIPE_SHADER_GEOMETRY
2024 ? max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices
2025 : max_esverts;
2026 assert(max_out_vertices <= 256);
2027
2028 unsigned prim_amp_factor = 1;
2029 if (gs_type == PIPE_SHADER_GEOMETRY) {
2030 /* Number of output primitives per GS input primitive after
2031 * GS instancing. */
2032 prim_amp_factor = gs_sel->gs_max_out_vertices;
2033 }
2034
2035 /* The GE only checks against the maximum number of ES verts after
2036 * allocating a full GS primitive. So we need to ensure that whenever
2037 * this check passes, there is enough space for a full primitive without
2038 * vertex reuse.
2039 */
2040 shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
2041 shader->ngg.max_gsprims = max_gsprims;
2042 shader->ngg.max_out_verts = max_out_vertices;
2043 shader->ngg.prim_amp_factor = prim_amp_factor;
2044 shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
2045
2046 shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
2047 shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
2048
2049 assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
2050
2051 /* If asserts are disabled, we use the same conditions to return false */
2052 return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
2053 max_out_vertices <= 256 &&
2054 shader->ngg.hw_max_esverts >= 24;
2055 }