amd,radeonsi: rename radeon_winsys_cs -> radeon_cmdbuf
[mesa.git] / src / gallium / drivers / radeonsi / si_compute.c
1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include "tgsi/tgsi_parse.h"
27 #include "util/u_async_debug.h"
28 #include "util/u_memory.h"
29 #include "util/u_upload_mgr.h"
30
31 #include "amd_kernel_code_t.h"
32 #include "si_build_pm4.h"
33 #include "si_compute.h"
34
35 #define COMPUTE_DBG(rscreen, fmt, args...) \
36 do { \
37 if ((rscreen->debug_flags & DBG(COMPUTE))) fprintf(stderr, fmt, ##args); \
38 } while (0);
39
40 struct dispatch_packet {
41 uint16_t header;
42 uint16_t setup;
43 uint16_t workgroup_size_x;
44 uint16_t workgroup_size_y;
45 uint16_t workgroup_size_z;
46 uint16_t reserved0;
47 uint32_t grid_size_x;
48 uint32_t grid_size_y;
49 uint32_t grid_size_z;
50 uint32_t private_segment_size;
51 uint32_t group_segment_size;
52 uint64_t kernel_object;
53 uint64_t kernarg_address;
54 uint64_t reserved2;
55 };
56
57 static const amd_kernel_code_t *si_compute_get_code_object(
58 const struct si_compute *program,
59 uint64_t symbol_offset)
60 {
61 if (!program->use_code_object_v2) {
62 return NULL;
63 }
64 return (const amd_kernel_code_t*)
65 (program->shader.binary.code + symbol_offset);
66 }
67
68 static void code_object_to_config(const amd_kernel_code_t *code_object,
69 struct si_shader_config *out_config) {
70
71 uint32_t rsrc1 = code_object->compute_pgm_resource_registers;
72 uint32_t rsrc2 = code_object->compute_pgm_resource_registers >> 32;
73 out_config->num_sgprs = code_object->wavefront_sgpr_count;
74 out_config->num_vgprs = code_object->workitem_vgpr_count;
75 out_config->float_mode = G_00B028_FLOAT_MODE(rsrc1);
76 out_config->rsrc1 = rsrc1;
77 out_config->lds_size = MAX2(out_config->lds_size, G_00B84C_LDS_SIZE(rsrc2));
78 out_config->rsrc2 = rsrc2;
79 out_config->scratch_bytes_per_wave =
80 align(code_object->workitem_private_segment_byte_size * 64, 1024);
81 }
82
83 /* Asynchronous compute shader compilation. */
84 static void si_create_compute_state_async(void *job, int thread_index)
85 {
86 struct si_compute *program = (struct si_compute *)job;
87 struct si_shader *shader = &program->shader;
88 struct si_shader_selector sel;
89 struct si_compiler *compiler;
90 struct pipe_debug_callback *debug = &program->compiler_ctx_state.debug;
91
92 assert(!debug->debug_message || debug->async);
93 assert(thread_index >= 0);
94 assert(thread_index < ARRAY_SIZE(program->screen->compiler));
95 compiler = &program->screen->compiler[thread_index];
96
97 memset(&sel, 0, sizeof(sel));
98
99 sel.screen = program->screen;
100
101 if (program->ir_type == PIPE_SHADER_IR_TGSI) {
102 tgsi_scan_shader(program->ir.tgsi, &sel.info);
103 sel.tokens = program->ir.tgsi;
104 } else {
105 assert(program->ir_type == PIPE_SHADER_IR_NIR);
106 sel.nir = program->ir.nir;
107
108 si_nir_scan_shader(sel.nir, &sel.info);
109 si_lower_nir(&sel);
110 }
111
112
113 sel.type = PIPE_SHADER_COMPUTE;
114 sel.local_size = program->local_size;
115 si_get_active_slot_masks(&sel.info,
116 &program->active_const_and_shader_buffers,
117 &program->active_samplers_and_images);
118
119 program->shader.selector = &sel;
120 program->shader.is_monolithic = true;
121 program->uses_grid_size = sel.info.uses_grid_size;
122 program->uses_block_size = sel.info.uses_block_size;
123 program->uses_bindless_samplers = sel.info.uses_bindless_samplers;
124 program->uses_bindless_images = sel.info.uses_bindless_images;
125
126 if (si_shader_create(program->screen, compiler, &program->shader, debug)) {
127 program->shader.compilation_failed = true;
128 } else {
129 bool scratch_enabled = shader->config.scratch_bytes_per_wave > 0;
130 unsigned user_sgprs = SI_NUM_RESOURCE_SGPRS +
131 (sel.info.uses_grid_size ? 3 : 0) +
132 (sel.info.uses_block_size ? 3 : 0);
133
134 shader->config.rsrc1 =
135 S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
136 S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
137 S_00B848_DX10_CLAMP(1) |
138 S_00B848_FLOAT_MODE(shader->config.float_mode);
139
140 shader->config.rsrc2 =
141 S_00B84C_USER_SGPR(user_sgprs) |
142 S_00B84C_SCRATCH_EN(scratch_enabled) |
143 S_00B84C_TGID_X_EN(sel.info.uses_block_id[0]) |
144 S_00B84C_TGID_Y_EN(sel.info.uses_block_id[1]) |
145 S_00B84C_TGID_Z_EN(sel.info.uses_block_id[2]) |
146 S_00B84C_TIDIG_COMP_CNT(sel.info.uses_thread_id[2] ? 2 :
147 sel.info.uses_thread_id[1] ? 1 : 0) |
148 S_00B84C_LDS_SIZE(shader->config.lds_size);
149
150 program->variable_group_size =
151 sel.info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0;
152 }
153
154 if (program->ir_type == PIPE_SHADER_IR_TGSI)
155 FREE(program->ir.tgsi);
156
157 program->shader.selector = NULL;
158 }
159
160 static void *si_create_compute_state(
161 struct pipe_context *ctx,
162 const struct pipe_compute_state *cso)
163 {
164 struct si_context *sctx = (struct si_context *)ctx;
165 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
166 struct si_compute *program = CALLOC_STRUCT(si_compute);
167
168 pipe_reference_init(&program->reference, 1);
169 program->screen = (struct si_screen *)ctx->screen;
170 program->ir_type = cso->ir_type;
171 program->local_size = cso->req_local_mem;
172 program->private_size = cso->req_private_mem;
173 program->input_size = cso->req_input_mem;
174 program->use_code_object_v2 = cso->ir_type == PIPE_SHADER_IR_NATIVE;
175
176 if (cso->ir_type != PIPE_SHADER_IR_NATIVE) {
177 if (cso->ir_type == PIPE_SHADER_IR_TGSI) {
178 program->ir.tgsi = tgsi_dup_tokens(cso->prog);
179 if (!program->ir.tgsi) {
180 FREE(program);
181 return NULL;
182 }
183 } else {
184 assert(cso->ir_type == PIPE_SHADER_IR_NIR);
185 program->ir.nir = (struct nir_shader *) cso->prog;
186 }
187
188 program->compiler_ctx_state.debug = sctx->debug;
189 program->compiler_ctx_state.is_debug_context = sctx->is_debug;
190 p_atomic_inc(&sscreen->num_shaders_created);
191 util_queue_fence_init(&program->ready);
192
193 struct util_async_debug_callback async_debug;
194 bool wait =
195 (sctx->debug.debug_message && !sctx->debug.async) ||
196 sctx->is_debug ||
197 si_can_dump_shader(sscreen, PIPE_SHADER_COMPUTE);
198
199 if (wait) {
200 u_async_debug_init(&async_debug);
201 program->compiler_ctx_state.debug = async_debug.base;
202 }
203
204 util_queue_add_job(&sscreen->shader_compiler_queue,
205 program, &program->ready,
206 si_create_compute_state_async, NULL);
207
208 if (wait) {
209 util_queue_fence_wait(&program->ready);
210 u_async_debug_drain(&async_debug, &sctx->debug);
211 u_async_debug_cleanup(&async_debug);
212 }
213 } else {
214 const struct pipe_llvm_program_header *header;
215 const char *code;
216 header = cso->prog;
217 code = cso->prog + sizeof(struct pipe_llvm_program_header);
218
219 ac_elf_read(code, header->num_bytes, &program->shader.binary);
220 if (program->use_code_object_v2) {
221 const amd_kernel_code_t *code_object =
222 si_compute_get_code_object(program, 0);
223 code_object_to_config(code_object, &program->shader.config);
224 } else {
225 si_shader_binary_read_config(&program->shader.binary,
226 &program->shader.config, 0);
227 }
228 si_shader_dump(sctx->screen, &program->shader, &sctx->debug,
229 PIPE_SHADER_COMPUTE, stderr, true);
230 if (si_shader_binary_upload(sctx->screen, &program->shader) < 0) {
231 fprintf(stderr, "LLVM failed to upload shader\n");
232 FREE(program);
233 return NULL;
234 }
235 }
236
237 return program;
238 }
239
240 static void si_bind_compute_state(struct pipe_context *ctx, void *state)
241 {
242 struct si_context *sctx = (struct si_context*)ctx;
243 struct si_compute *program = (struct si_compute*)state;
244
245 sctx->cs_shader_state.program = program;
246 if (!program)
247 return;
248
249 /* Wait because we need active slot usage masks. */
250 if (program->ir_type != PIPE_SHADER_IR_NATIVE)
251 util_queue_fence_wait(&program->ready);
252
253 si_set_active_descriptors(sctx,
254 SI_DESCS_FIRST_COMPUTE +
255 SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS,
256 program->active_const_and_shader_buffers);
257 si_set_active_descriptors(sctx,
258 SI_DESCS_FIRST_COMPUTE +
259 SI_SHADER_DESCS_SAMPLERS_AND_IMAGES,
260 program->active_samplers_and_images);
261 }
262
263 static void si_set_global_binding(
264 struct pipe_context *ctx, unsigned first, unsigned n,
265 struct pipe_resource **resources,
266 uint32_t **handles)
267 {
268 unsigned i;
269 struct si_context *sctx = (struct si_context*)ctx;
270 struct si_compute *program = sctx->cs_shader_state.program;
271
272 assert(first + n <= MAX_GLOBAL_BUFFERS);
273
274 if (!resources) {
275 for (i = 0; i < n; i++) {
276 pipe_resource_reference(&program->global_buffers[first + i], NULL);
277 }
278 return;
279 }
280
281 for (i = 0; i < n; i++) {
282 uint64_t va;
283 uint32_t offset;
284 pipe_resource_reference(&program->global_buffers[first + i], resources[i]);
285 va = r600_resource(resources[i])->gpu_address;
286 offset = util_le32_to_cpu(*handles[i]);
287 va += offset;
288 va = util_cpu_to_le64(va);
289 memcpy(handles[i], &va, sizeof(va));
290 }
291 }
292
293 static void si_initialize_compute(struct si_context *sctx)
294 {
295 struct radeon_cmdbuf *cs = sctx->gfx_cs;
296 uint64_t bc_va;
297
298 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
299 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
300 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
301 radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
302
303 if (sctx->chip_class >= CIK) {
304 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
305 radeon_set_sh_reg_seq(cs,
306 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
307 radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
308 S_00B864_SH1_CU_EN(0xffff));
309 radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
310 S_00B868_SH1_CU_EN(0xffff));
311 }
312
313 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
314 * and is now per pipe, so it should be handled in the
315 * kernel if we want to use something other than the default value,
316 * which is now 0x22f.
317 */
318 if (sctx->chip_class <= SI) {
319 /* XXX: This should be:
320 * (number of compute units) * 4 * (waves per simd) - 1 */
321
322 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
323 0x190 /* Default value */);
324 }
325
326 /* Set the pointer to border colors. */
327 bc_va = sctx->border_color_buffer->gpu_address;
328
329 if (sctx->chip_class >= CIK) {
330 radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2);
331 radeon_emit(cs, bc_va >> 8); /* R_030E00_TA_CS_BC_BASE_ADDR */
332 radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40)); /* R_030E04_TA_CS_BC_BASE_ADDR_HI */
333 } else {
334 if (sctx->screen->info.si_TA_CS_BC_BASE_ADDR_allowed) {
335 radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR,
336 bc_va >> 8);
337 }
338 }
339
340 sctx->cs_shader_state.emitted_program = NULL;
341 sctx->cs_shader_state.initialized = true;
342 }
343
344 static bool si_setup_compute_scratch_buffer(struct si_context *sctx,
345 struct si_shader *shader,
346 struct si_shader_config *config)
347 {
348 uint64_t scratch_bo_size, scratch_needed;
349 scratch_bo_size = 0;
350 scratch_needed = config->scratch_bytes_per_wave * sctx->scratch_waves;
351 if (sctx->compute_scratch_buffer)
352 scratch_bo_size = sctx->compute_scratch_buffer->b.b.width0;
353
354 if (scratch_bo_size < scratch_needed) {
355 r600_resource_reference(&sctx->compute_scratch_buffer, NULL);
356
357 sctx->compute_scratch_buffer =
358 si_aligned_buffer_create(&sctx->screen->b,
359 SI_RESOURCE_FLAG_UNMAPPABLE,
360 PIPE_USAGE_DEFAULT,
361 scratch_needed, 256);
362
363 if (!sctx->compute_scratch_buffer)
364 return false;
365 }
366
367 if (sctx->compute_scratch_buffer != shader->scratch_bo && scratch_needed) {
368 uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
369
370 si_shader_apply_scratch_relocs(shader, scratch_va);
371
372 if (si_shader_binary_upload(sctx->screen, shader))
373 return false;
374
375 r600_resource_reference(&shader->scratch_bo,
376 sctx->compute_scratch_buffer);
377 }
378
379 return true;
380 }
381
382 static bool si_switch_compute_shader(struct si_context *sctx,
383 struct si_compute *program,
384 struct si_shader *shader,
385 const amd_kernel_code_t *code_object,
386 unsigned offset)
387 {
388 struct radeon_cmdbuf *cs = sctx->gfx_cs;
389 struct si_shader_config inline_config = {0};
390 struct si_shader_config *config;
391 uint64_t shader_va;
392
393 if (sctx->cs_shader_state.emitted_program == program &&
394 sctx->cs_shader_state.offset == offset)
395 return true;
396
397 if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
398 config = &shader->config;
399 } else {
400 unsigned lds_blocks;
401
402 config = &inline_config;
403 if (code_object) {
404 code_object_to_config(code_object, config);
405 } else {
406 si_shader_binary_read_config(&shader->binary, config, offset);
407 }
408
409 lds_blocks = config->lds_size;
410 /* XXX: We are over allocating LDS. For SI, the shader reports
411 * LDS in blocks of 256 bytes, so if there are 4 bytes lds
412 * allocated in the shader and 4 bytes allocated by the state
413 * tracker, then we will set LDS_SIZE to 512 bytes rather than 256.
414 */
415 if (sctx->chip_class <= SI) {
416 lds_blocks += align(program->local_size, 256) >> 8;
417 } else {
418 lds_blocks += align(program->local_size, 512) >> 9;
419 }
420
421 /* TODO: use si_multiwave_lds_size_workaround */
422 assert(lds_blocks <= 0xFF);
423
424 config->rsrc2 &= C_00B84C_LDS_SIZE;
425 config->rsrc2 |= S_00B84C_LDS_SIZE(lds_blocks);
426 }
427
428 if (!si_setup_compute_scratch_buffer(sctx, shader, config))
429 return false;
430
431 if (shader->scratch_bo) {
432 COMPUTE_DBG(sctx->screen, "Waves: %u; Scratch per wave: %u bytes; "
433 "Total Scratch: %u bytes\n", sctx->scratch_waves,
434 config->scratch_bytes_per_wave,
435 config->scratch_bytes_per_wave *
436 sctx->scratch_waves);
437
438 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
439 shader->scratch_bo, RADEON_USAGE_READWRITE,
440 RADEON_PRIO_SCRATCH_BUFFER);
441 }
442
443 /* Prefetch the compute shader to TC L2.
444 *
445 * We should also prefetch graphics shaders if a compute dispatch was
446 * the last command, and the compute shader if a draw call was the last
447 * command. However, that would add more complexity and we're likely
448 * to get a shader state change in that case anyway.
449 */
450 if (sctx->chip_class >= CIK) {
451 cik_prefetch_TC_L2_async(sctx, &program->shader.bo->b.b,
452 0, program->shader.bo->b.b.width0);
453 }
454
455 shader_va = shader->bo->gpu_address + offset;
456 if (program->use_code_object_v2) {
457 /* Shader code is placed after the amd_kernel_code_t
458 * struct. */
459 shader_va += sizeof(amd_kernel_code_t);
460 }
461
462 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, shader->bo,
463 RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
464
465 radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
466 radeon_emit(cs, shader_va >> 8);
467 radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
468
469 radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
470 radeon_emit(cs, config->rsrc1);
471 radeon_emit(cs, config->rsrc2);
472
473 COMPUTE_DBG(sctx->screen, "COMPUTE_PGM_RSRC1: 0x%08x "
474 "COMPUTE_PGM_RSRC2: 0x%08x\n", config->rsrc1, config->rsrc2);
475
476 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
477 S_00B860_WAVES(sctx->scratch_waves)
478 | S_00B860_WAVESIZE(config->scratch_bytes_per_wave >> 10));
479
480 sctx->cs_shader_state.emitted_program = program;
481 sctx->cs_shader_state.offset = offset;
482 sctx->cs_shader_state.uses_scratch =
483 config->scratch_bytes_per_wave != 0;
484
485 return true;
486 }
487
488 static void setup_scratch_rsrc_user_sgprs(struct si_context *sctx,
489 const amd_kernel_code_t *code_object,
490 unsigned user_sgpr)
491 {
492 struct radeon_cmdbuf *cs = sctx->gfx_cs;
493 uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
494
495 unsigned max_private_element_size = AMD_HSA_BITS_GET(
496 code_object->code_properties,
497 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE);
498
499 uint32_t scratch_dword0 = scratch_va & 0xffffffff;
500 uint32_t scratch_dword1 =
501 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
502 S_008F04_SWIZZLE_ENABLE(1);
503
504 /* Disable address clamping */
505 uint32_t scratch_dword2 = 0xffffffff;
506 uint32_t scratch_dword3 =
507 S_008F0C_INDEX_STRIDE(3) |
508 S_008F0C_ADD_TID_ENABLE(1);
509
510 if (sctx->chip_class >= GFX9) {
511 assert(max_private_element_size == 1); /* always 4 bytes on GFX9 */
512 } else {
513 scratch_dword3 |= S_008F0C_ELEMENT_SIZE(max_private_element_size);
514
515 if (sctx->chip_class < VI) {
516 /* BUF_DATA_FORMAT is ignored, but it cannot be
517 * BUF_DATA_FORMAT_INVALID. */
518 scratch_dword3 |=
519 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_8);
520 }
521 }
522
523 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
524 (user_sgpr * 4), 4);
525 radeon_emit(cs, scratch_dword0);
526 radeon_emit(cs, scratch_dword1);
527 radeon_emit(cs, scratch_dword2);
528 radeon_emit(cs, scratch_dword3);
529 }
530
531 static void si_setup_user_sgprs_co_v2(struct si_context *sctx,
532 const amd_kernel_code_t *code_object,
533 const struct pipe_grid_info *info,
534 uint64_t kernel_args_va)
535 {
536 struct si_compute *program = sctx->cs_shader_state.program;
537 struct radeon_cmdbuf *cs = sctx->gfx_cs;
538
539 static const enum amd_code_property_mask_t workgroup_count_masks [] = {
540 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X,
541 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y,
542 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z
543 };
544
545 unsigned i, user_sgpr = 0;
546 if (AMD_HSA_BITS_GET(code_object->code_properties,
547 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER)) {
548 if (code_object->workitem_private_segment_byte_size > 0) {
549 setup_scratch_rsrc_user_sgprs(sctx, code_object,
550 user_sgpr);
551 }
552 user_sgpr += 4;
553 }
554
555 if (AMD_HSA_BITS_GET(code_object->code_properties,
556 AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR)) {
557 struct dispatch_packet dispatch;
558 unsigned dispatch_offset;
559 struct r600_resource *dispatch_buf = NULL;
560 uint64_t dispatch_va;
561
562 /* Upload dispatch ptr */
563 memset(&dispatch, 0, sizeof(dispatch));
564
565 dispatch.workgroup_size_x = util_cpu_to_le16(info->block[0]);
566 dispatch.workgroup_size_y = util_cpu_to_le16(info->block[1]);
567 dispatch.workgroup_size_z = util_cpu_to_le16(info->block[2]);
568
569 dispatch.grid_size_x = util_cpu_to_le32(info->grid[0] * info->block[0]);
570 dispatch.grid_size_y = util_cpu_to_le32(info->grid[1] * info->block[1]);
571 dispatch.grid_size_z = util_cpu_to_le32(info->grid[2] * info->block[2]);
572
573 dispatch.private_segment_size = util_cpu_to_le32(program->private_size);
574 dispatch.group_segment_size = util_cpu_to_le32(program->local_size);
575
576 dispatch.kernarg_address = util_cpu_to_le64(kernel_args_va);
577
578 u_upload_data(sctx->b.const_uploader, 0, sizeof(dispatch),
579 256, &dispatch, &dispatch_offset,
580 (struct pipe_resource**)&dispatch_buf);
581
582 if (!dispatch_buf) {
583 fprintf(stderr, "Error: Failed to allocate dispatch "
584 "packet.");
585 }
586 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dispatch_buf,
587 RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
588
589 dispatch_va = dispatch_buf->gpu_address + dispatch_offset;
590
591 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
592 (user_sgpr * 4), 2);
593 radeon_emit(cs, dispatch_va);
594 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(dispatch_va >> 32) |
595 S_008F04_STRIDE(0));
596
597 r600_resource_reference(&dispatch_buf, NULL);
598 user_sgpr += 2;
599 }
600
601 if (AMD_HSA_BITS_GET(code_object->code_properties,
602 AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)) {
603 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
604 (user_sgpr * 4), 2);
605 radeon_emit(cs, kernel_args_va);
606 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
607 S_008F04_STRIDE(0));
608 user_sgpr += 2;
609 }
610
611 for (i = 0; i < 3 && user_sgpr < 16; i++) {
612 if (code_object->code_properties & workgroup_count_masks[i]) {
613 radeon_set_sh_reg_seq(cs,
614 R_00B900_COMPUTE_USER_DATA_0 +
615 (user_sgpr * 4), 1);
616 radeon_emit(cs, info->grid[i]);
617 user_sgpr += 1;
618 }
619 }
620 }
621
622 static bool si_upload_compute_input(struct si_context *sctx,
623 const amd_kernel_code_t *code_object,
624 const struct pipe_grid_info *info)
625 {
626 struct radeon_cmdbuf *cs = sctx->gfx_cs;
627 struct si_compute *program = sctx->cs_shader_state.program;
628 struct r600_resource *input_buffer = NULL;
629 unsigned kernel_args_size;
630 unsigned num_work_size_bytes = program->use_code_object_v2 ? 0 : 36;
631 uint32_t kernel_args_offset = 0;
632 uint32_t *kernel_args;
633 void *kernel_args_ptr;
634 uint64_t kernel_args_va;
635 unsigned i;
636
637 /* The extra num_work_size_bytes are for work group / work item size information */
638 kernel_args_size = program->input_size + num_work_size_bytes;
639
640 u_upload_alloc(sctx->b.const_uploader, 0, kernel_args_size,
641 sctx->screen->info.tcc_cache_line_size,
642 &kernel_args_offset,
643 (struct pipe_resource**)&input_buffer, &kernel_args_ptr);
644
645 if (unlikely(!kernel_args_ptr))
646 return false;
647
648 kernel_args = (uint32_t*)kernel_args_ptr;
649 kernel_args_va = input_buffer->gpu_address + kernel_args_offset;
650
651 if (!code_object) {
652 for (i = 0; i < 3; i++) {
653 kernel_args[i] = util_cpu_to_le32(info->grid[i]);
654 kernel_args[i + 3] = util_cpu_to_le32(info->grid[i] * info->block[i]);
655 kernel_args[i + 6] = util_cpu_to_le32(info->block[i]);
656 }
657 }
658
659 memcpy(kernel_args + (num_work_size_bytes / 4), info->input,
660 program->input_size);
661
662
663 for (i = 0; i < (kernel_args_size / 4); i++) {
664 COMPUTE_DBG(sctx->screen, "input %u : %u\n", i,
665 kernel_args[i]);
666 }
667
668
669 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, input_buffer,
670 RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
671
672 if (code_object) {
673 si_setup_user_sgprs_co_v2(sctx, code_object, info, kernel_args_va);
674 } else {
675 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
676 radeon_emit(cs, kernel_args_va);
677 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
678 S_008F04_STRIDE(0));
679 }
680
681 r600_resource_reference(&input_buffer, NULL);
682
683 return true;
684 }
685
686 static void si_setup_tgsi_grid(struct si_context *sctx,
687 const struct pipe_grid_info *info)
688 {
689 struct si_compute *program = sctx->cs_shader_state.program;
690 struct radeon_cmdbuf *cs = sctx->gfx_cs;
691 unsigned grid_size_reg = R_00B900_COMPUTE_USER_DATA_0 +
692 4 * SI_NUM_RESOURCE_SGPRS;
693 unsigned block_size_reg = grid_size_reg +
694 /* 12 bytes = 3 dwords. */
695 12 * program->uses_grid_size;
696
697 if (info->indirect) {
698 if (program->uses_grid_size) {
699 uint64_t base_va = r600_resource(info->indirect)->gpu_address;
700 uint64_t va = base_va + info->indirect_offset;
701 int i;
702
703 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
704 r600_resource(info->indirect),
705 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
706
707 for (i = 0; i < 3; ++i) {
708 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
709 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
710 COPY_DATA_DST_SEL(COPY_DATA_REG));
711 radeon_emit(cs, (va + 4 * i));
712 radeon_emit(cs, (va + 4 * i) >> 32);
713 radeon_emit(cs, (grid_size_reg >> 2) + i);
714 radeon_emit(cs, 0);
715 }
716 }
717 } else {
718 if (program->uses_grid_size) {
719 radeon_set_sh_reg_seq(cs, grid_size_reg, 3);
720 radeon_emit(cs, info->grid[0]);
721 radeon_emit(cs, info->grid[1]);
722 radeon_emit(cs, info->grid[2]);
723 }
724 if (program->variable_group_size && program->uses_block_size) {
725 radeon_set_sh_reg_seq(cs, block_size_reg, 3);
726 radeon_emit(cs, info->block[0]);
727 radeon_emit(cs, info->block[1]);
728 radeon_emit(cs, info->block[2]);
729 }
730 }
731 }
732
733 static void si_emit_dispatch_packets(struct si_context *sctx,
734 const struct pipe_grid_info *info)
735 {
736 struct si_screen *sscreen = sctx->screen;
737 struct radeon_cmdbuf *cs = sctx->gfx_cs;
738 bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
739 unsigned waves_per_threadgroup =
740 DIV_ROUND_UP(info->block[0] * info->block[1] * info->block[2], 64);
741 unsigned compute_resource_limits =
742 S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
743
744 if (sctx->chip_class >= CIK) {
745 unsigned num_cu_per_se = sscreen->info.num_good_compute_units /
746 sscreen->info.max_se;
747
748 /* Force even distribution on all SIMDs in CU if the workgroup
749 * size is 64. This has shown some good improvements if # of CUs
750 * per SE is not a multiple of 4.
751 */
752 if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
753 compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
754 }
755
756 radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
757 compute_resource_limits);
758
759 radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
760 radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(info->block[0]));
761 radeon_emit(cs, S_00B820_NUM_THREAD_FULL(info->block[1]));
762 radeon_emit(cs, S_00B824_NUM_THREAD_FULL(info->block[2]));
763
764 unsigned dispatch_initiator =
765 S_00B800_COMPUTE_SHADER_EN(1) |
766 S_00B800_FORCE_START_AT_000(1) |
767 /* If the KMD allows it (there is a KMD hw register for it),
768 * allow launching waves out-of-order. (same as Vulkan) */
769 S_00B800_ORDER_MODE(sctx->chip_class >= CIK);
770
771 if (info->indirect) {
772 uint64_t base_va = r600_resource(info->indirect)->gpu_address;
773
774 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
775 r600_resource(info->indirect),
776 RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
777
778 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) |
779 PKT3_SHADER_TYPE_S(1));
780 radeon_emit(cs, 1);
781 radeon_emit(cs, base_va);
782 radeon_emit(cs, base_va >> 32);
783
784 radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, render_cond_bit) |
785 PKT3_SHADER_TYPE_S(1));
786 radeon_emit(cs, info->indirect_offset);
787 radeon_emit(cs, dispatch_initiator);
788 } else {
789 radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, render_cond_bit) |
790 PKT3_SHADER_TYPE_S(1));
791 radeon_emit(cs, info->grid[0]);
792 radeon_emit(cs, info->grid[1]);
793 radeon_emit(cs, info->grid[2]);
794 radeon_emit(cs, dispatch_initiator);
795 }
796 }
797
798
799 static void si_launch_grid(
800 struct pipe_context *ctx, const struct pipe_grid_info *info)
801 {
802 struct si_context *sctx = (struct si_context*)ctx;
803 struct si_compute *program = sctx->cs_shader_state.program;
804 const amd_kernel_code_t *code_object =
805 si_compute_get_code_object(program, info->pc);
806 int i;
807 /* HW bug workaround when CS threadgroups > 256 threads and async
808 * compute isn't used, i.e. only one compute job can run at a time.
809 * If async compute is possible, the threadgroup size must be limited
810 * to 256 threads on all queues to avoid the bug.
811 * Only SI and certain CIK chips are affected.
812 */
813 bool cs_regalloc_hang =
814 (sctx->chip_class == SI ||
815 sctx->family == CHIP_BONAIRE ||
816 sctx->family == CHIP_KABINI) &&
817 info->block[0] * info->block[1] * info->block[2] > 256;
818
819 if (cs_regalloc_hang)
820 sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
821 SI_CONTEXT_CS_PARTIAL_FLUSH;
822
823 if (program->ir_type != PIPE_SHADER_IR_NATIVE &&
824 program->shader.compilation_failed)
825 return;
826
827 if (sctx->last_num_draw_calls != sctx->num_draw_calls) {
828 si_update_fb_dirtiness_after_rendering(sctx);
829 sctx->last_num_draw_calls = sctx->num_draw_calls;
830 }
831
832 si_decompress_textures(sctx, 1 << PIPE_SHADER_COMPUTE);
833
834 /* Add buffer sizes for memory checking in need_cs_space. */
835 si_context_add_resource_size(sctx, &program->shader.bo->b.b);
836 /* TODO: add the scratch buffer */
837
838 if (info->indirect) {
839 si_context_add_resource_size(sctx, info->indirect);
840
841 /* Indirect buffers use TC L2 on GFX9, but not older hw. */
842 if (sctx->chip_class <= VI &&
843 r600_resource(info->indirect)->TC_L2_dirty) {
844 sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
845 r600_resource(info->indirect)->TC_L2_dirty = false;
846 }
847 }
848
849 si_need_gfx_cs_space(sctx);
850
851 if (!sctx->cs_shader_state.initialized)
852 si_initialize_compute(sctx);
853
854 if (sctx->flags)
855 si_emit_cache_flush(sctx);
856
857 if (!si_switch_compute_shader(sctx, program, &program->shader,
858 code_object, info->pc))
859 return;
860
861 si_upload_compute_shader_descriptors(sctx);
862 si_emit_compute_shader_pointers(sctx);
863
864 if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
865 sctx->atoms.s.render_cond.emit(sctx);
866 si_set_atom_dirty(sctx, &sctx->atoms.s.render_cond, false);
867 }
868
869 if ((program->input_size ||
870 program->ir_type == PIPE_SHADER_IR_NATIVE) &&
871 unlikely(!si_upload_compute_input(sctx, code_object, info))) {
872 return;
873 }
874
875 /* Global buffers */
876 for (i = 0; i < MAX_GLOBAL_BUFFERS; i++) {
877 struct r600_resource *buffer =
878 r600_resource(program->global_buffers[i]);
879 if (!buffer) {
880 continue;
881 }
882 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, buffer,
883 RADEON_USAGE_READWRITE,
884 RADEON_PRIO_COMPUTE_GLOBAL);
885 }
886
887 if (program->ir_type != PIPE_SHADER_IR_NATIVE)
888 si_setup_tgsi_grid(sctx, info);
889
890 si_emit_dispatch_packets(sctx, info);
891
892 if (unlikely(sctx->current_saved_cs)) {
893 si_trace_emit(sctx);
894 si_log_compute_state(sctx, sctx->log);
895 }
896
897 sctx->compute_is_busy = true;
898 sctx->num_compute_calls++;
899 if (sctx->cs_shader_state.uses_scratch)
900 sctx->num_spill_compute_calls++;
901
902 if (cs_regalloc_hang)
903 sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
904 }
905
906 void si_destroy_compute(struct si_compute *program)
907 {
908 if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
909 util_queue_drop_job(&program->screen->shader_compiler_queue,
910 &program->ready);
911 util_queue_fence_destroy(&program->ready);
912 }
913
914 si_shader_destroy(&program->shader);
915 FREE(program);
916 }
917
918 static void si_delete_compute_state(struct pipe_context *ctx, void* state){
919 struct si_compute *program = (struct si_compute *)state;
920 struct si_context *sctx = (struct si_context*)ctx;
921
922 if (!state)
923 return;
924
925 if (program == sctx->cs_shader_state.program)
926 sctx->cs_shader_state.program = NULL;
927
928 if (program == sctx->cs_shader_state.emitted_program)
929 sctx->cs_shader_state.emitted_program = NULL;
930
931 si_compute_reference(&program, NULL);
932 }
933
934 static void si_set_compute_resources(struct pipe_context * ctx_,
935 unsigned start, unsigned count,
936 struct pipe_surface ** surfaces) { }
937
938 void si_init_compute_functions(struct si_context *sctx)
939 {
940 sctx->b.create_compute_state = si_create_compute_state;
941 sctx->b.delete_compute_state = si_delete_compute_state;
942 sctx->b.bind_compute_state = si_bind_compute_state;
943 /* ctx->context.create_sampler_view = evergreen_compute_create_sampler_view; */
944 sctx->b.set_compute_resources = si_set_compute_resources;
945 sctx->b.set_global_binding = si_set_global_binding;
946 sctx->b.launch_grid = si_launch_grid;
947 }