tree-wide: replace MAYBE_UNUSED with ASSERTED
[mesa.git] / src / gallium / drivers / radeonsi / si_compute_prim_discard.c
1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include "si_pipe.h"
27 #include "si_shader_internal.h"
28 #include "sid.h"
29 #include "si_build_pm4.h"
30 #include "ac_llvm_cull.h"
31
32 #include "util/u_prim.h"
33 #include "util/u_suballoc.h"
34 #include "util/u_upload_mgr.h"
35 #include "util/fast_idiv_by_const.h"
36
37 /* Based on:
38 * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
39 */
40
41 /* This file implements primitive culling using asynchronous compute.
42 * It's written to be GL conformant.
43 *
44 * It takes a monolithic VS in LLVM IR returning gl_Position and invokes it
45 * in a compute shader. The shader processes 1 primitive/thread by invoking
46 * the VS for each vertex to get the positions, decomposes strips and fans
47 * into triangles (if needed), eliminates primitive restart (if needed),
48 * does (W<0) culling, face culling, view XY culling, zero-area and
49 * small-primitive culling, and generates a new index buffer that doesn't
50 * contain culled primitives.
51 *
52 * The index buffer is generated using the Ordered Count feature of GDS,
53 * which is an atomic counter that is incremented in the wavefront launch
54 * order, so that the original primitive order is preserved.
55 *
56 * Another GDS ordered counter is used to eliminate primitive restart indices.
57 * If a restart index lands on an even thread ID, the compute shader has to flip
58 * the primitive orientation of the whole following triangle strip. The primitive
59 * orientation has to be correct after strip and fan decomposition for two-sided
60 * shading to behave correctly. The decomposition also needs to be aware of
61 * which vertex is the provoking vertex for flat shading to behave correctly.
62 *
63 * IB = a GPU command buffer
64 *
65 * Both the compute and gfx IBs run in parallel sort of like CE and DE.
66 * The gfx IB has a CP barrier (REWIND packet) before a draw packet. REWIND
67 * doesn't continue if its word isn't 0x80000000. Once compute shaders are
68 * finished culling, the last wave will write the final primitive count from
69 * GDS directly into the count word of the draw packet in the gfx IB, and
70 * a CS_DONE event will signal the REWIND packet to continue. It's really
71 * a direct draw with command buffer patching from the compute queue.
72 *
73 * The compute IB doesn't have to start when its corresponding gfx IB starts,
74 * but can start sooner. The compute IB is signaled to start after the last
75 * execution barrier in the *previous* gfx IB. This is handled as follows.
76 * The kernel GPU scheduler starts the compute IB after the previous gfx IB has
77 * started. The compute IB then waits (WAIT_REG_MEM) for a mid-IB fence that
78 * represents the barrier in the previous gfx IB.
79 *
80 * Features:
81 * - Triangle strips and fans are decomposed into an indexed triangle list.
82 * The decomposition differs based on the provoking vertex state.
83 * - Instanced draws are converted into non-instanced draws for 16-bit indices.
84 * (InstanceID is stored in the high bits of VertexID and unpacked by VS)
85 * - Primitive restart is fully supported with triangle strips, including
86 * correct primitive orientation across multiple waves. (restart indices
87 * reset primitive orientation)
88 * - W<0 culling (W<0 is behind the viewer, sort of like near Z culling).
89 * - Back face culling, incl. culling zero-area / degenerate primitives.
90 * - View XY culling.
91 * - View Z culling (disabled due to limited impact with perspective projection).
92 * - Small primitive culling for all MSAA modes and all quant modes.
93 *
94 * The following are not implemented:
95 * - ClipVertex/ClipDistance/CullDistance-based culling.
96 * - Scissor culling.
97 * - HiZ culling.
98 *
99 * Limitations (and unimplemented features that may be possible to implement):
100 * - Only triangles, triangle strips, and triangle fans are supported.
101 * - Primitive restart is only supported with triangle strips.
102 * - Instancing and primitive restart can't be used together.
103 * - Instancing is only supported with 16-bit indices and instance count <= 2^16.
104 * - The instance divisor buffer is unavailable, so all divisors must be
105 * either 0 or 1.
106 * - Multidraws where the vertex shader reads gl_DrawID are unsupported.
107 * - No support for tessellation and geometry shaders.
108 * (patch elimination where tess factors are 0 would be possible to implement)
109 * - The vertex shader must not contain memory stores.
110 * - All VS resources must not have a write usage in the command buffer.
111 * (TODO: all shader buffers currently set the write usage)
112 * - Bindless textures and images must not occur in the vertex shader.
113 *
114 * User data SGPR layout:
115 * INDEX_BUFFERS: pointer to constants
116 * 0..3: input index buffer - typed buffer view
117 * 4..7: output index buffer - typed buffer view
118 * 8..11: viewport state - scale.xy, translate.xy
119 * VERTEX_COUNTER: counter address or first primitive ID
120 * - If unordered memory counter: address of "count" in the draw packet
121 * and is incremented atomically by the shader.
122 * - If unordered GDS counter: address of "count" in GDS starting from 0,
123 * must be initialized to 0 before the dispatch.
124 * - If ordered GDS counter: the primitive ID that should reset the vertex
125 * counter to 0 in GDS
126 * LAST_WAVE_PRIM_ID: the primitive ID that should write the final vertex
127 * count to memory if using GDS ordered append
128 * VERTEX_COUNT_ADDR: where the last wave should write the vertex count if
129 * using GDS ordered append
130 * VS.VERTEX_BUFFERS: same value as VS
131 * VS.CONST_AND_SHADER_BUFFERS: same value as VS
132 * VS.SAMPLERS_AND_IMAGES: same value as VS
133 * VS.BASE_VERTEX: same value as VS
134 * VS.START_INSTANCE: same value as VS
135 * NUM_PRIMS_UDIV_MULTIPLIER: For fast 31-bit division by the number of primitives
136 * per instance for instancing.
137 * NUM_PRIMS_UDIV_TERMS:
138 * - Bits [0:4]: "post_shift" for fast 31-bit division for instancing.
139 * - Bits [5:31]: The number of primitives per instance for computing the remainder.
140 * PRIMITIVE_RESTART_INDEX
141 * SMALL_PRIM_CULLING_PRECISION: Scale the primitive bounding box by this number.
142 *
143 *
144 * The code contains 3 codepaths:
145 * - Unordered memory counter (for debugging, random primitive order, no primitive restart)
146 * - Unordered GDS counter (for debugging, random primitive order, no primitive restart)
147 * - Ordered GDS counter (it preserves the primitive order)
148 *
149 * How to test primitive restart (the most complicated part because it needs
150 * to get the primitive orientation right):
151 * Set THREADGROUP_SIZE to 2 to exercise both intra-wave and inter-wave
152 * primitive orientation flips with small draw calls, which is what most tests use.
153 * You can also enable draw call splitting into draw calls with just 2 primitives.
154 */
155
156 /* At least 256 is needed for the fastest wave launch rate from compute queues
157 * due to hw constraints. Nothing in the code needs more than 1 wave/threadgroup. */
158 #define THREADGROUP_SIZE 256 /* high numbers limit available VGPRs */
159 #define THREADGROUPS_PER_CU 1 /* TGs to launch on 1 CU before going onto the next, max 8 */
160 #define MAX_WAVES_PER_SH 0 /* no limit */
161 #define INDEX_STORES_USE_SLC 1 /* don't cache indices if L2 is full */
162 /* Don't cull Z. We already do (W < 0) culling for primitives behind the viewer. */
163 #define CULL_Z 0
164 /* 0 = unordered memory counter, 1 = unordered GDS counter, 2 = ordered GDS counter */
165 #define VERTEX_COUNTER_GDS_MODE 2
166 #define GDS_SIZE_UNORDERED (4 * 1024) /* only for the unordered GDS counter */
167
168 /* Grouping compute dispatches for small draw calls: How many primitives from multiple
169 * draw calls to process by compute before signaling the gfx IB. This reduces the number
170 * of EOP events + REWIND packets, because they decrease performance. */
171 #define PRIMS_PER_BATCH (512 * 1024)
172 /* Draw call splitting at the packet level. This allows signaling the gfx IB
173 * for big draw calls sooner, but doesn't allow context flushes between packets.
174 * Primitive restart is supported. Only implemented for ordered append. */
175 #define SPLIT_PRIMS_PACKET_LEVEL_VALUE PRIMS_PER_BATCH
176 /* If there is not enough ring buffer space for the current IB, split draw calls into
177 * this number of primitives, so that we can flush the context and get free ring space. */
178 #define SPLIT_PRIMS_DRAW_LEVEL PRIMS_PER_BATCH
179
180 /* Derived values. */
181 #define WAVES_PER_TG DIV_ROUND_UP(THREADGROUP_SIZE, 64)
182 #define SPLIT_PRIMS_PACKET_LEVEL (VERTEX_COUNTER_GDS_MODE == 2 ? \
183 SPLIT_PRIMS_PACKET_LEVEL_VALUE : \
184 UINT_MAX & ~(THREADGROUP_SIZE - 1))
185
186 #define REWIND_SIGNAL_BIT 0x80000000
187 /* For emulating the rewind packet on CI. */
188 #define FORCE_REWIND_EMULATION 0
189
190 void si_initialize_prim_discard_tunables(struct si_context *sctx)
191 {
192 sctx->prim_discard_vertex_count_threshold = UINT_MAX; /* disable */
193
194 if (sctx->chip_class == GFX6 || /* SI support is not implemented */
195 !sctx->screen->info.has_gds_ordered_append ||
196 sctx->screen->debug_flags & DBG(NO_PD) ||
197 /* If aux_context == NULL, we are initializing aux_context right now. */
198 !sctx->screen->aux_context)
199 return;
200
201 /* TODO: enable this after the GDS kernel memory management is fixed */
202 bool enable_on_pro_graphics_by_default = false;
203
204 if (sctx->screen->debug_flags & DBG(ALWAYS_PD) ||
205 sctx->screen->debug_flags & DBG(PD) ||
206 (enable_on_pro_graphics_by_default &&
207 sctx->screen->info.is_pro_graphics &&
208 (sctx->family == CHIP_BONAIRE ||
209 sctx->family == CHIP_HAWAII ||
210 sctx->family == CHIP_TONGA ||
211 sctx->family == CHIP_FIJI ||
212 sctx->family == CHIP_POLARIS10 ||
213 sctx->family == CHIP_POLARIS11 ||
214 sctx->family == CHIP_VEGA10 ||
215 sctx->family == CHIP_VEGA20))) {
216 sctx->prim_discard_vertex_count_threshold = 6000 * 3; /* 6K triangles */
217
218 if (sctx->screen->debug_flags & DBG(ALWAYS_PD))
219 sctx->prim_discard_vertex_count_threshold = 0; /* always enable */
220
221 const uint32_t MB = 1024 * 1024;
222 const uint64_t GB = 1024 * 1024 * 1024;
223
224 /* The total size is double this per context.
225 * Greater numbers allow bigger gfx IBs.
226 */
227 if (sctx->screen->info.vram_size <= 2 * GB)
228 sctx->index_ring_size_per_ib = 64 * MB;
229 else if (sctx->screen->info.vram_size <= 4 * GB)
230 sctx->index_ring_size_per_ib = 128 * MB;
231 else
232 sctx->index_ring_size_per_ib = 256 * MB;
233 }
234 }
235
236 /* Opcode can be "add" or "swap". */
237 static LLVMValueRef
238 si_build_ds_ordered_op(struct si_shader_context *ctx, const char *opcode,
239 LLVMValueRef m0, LLVMValueRef value, unsigned ordered_count_index,
240 bool release, bool done)
241 {
242 LLVMValueRef args[] = {
243 LLVMBuildIntToPtr(ctx->ac.builder, m0,
244 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), ""),
245 value,
246 LLVMConstInt(ctx->i32, LLVMAtomicOrderingMonotonic, 0), /* ordering */
247 ctx->i32_0, /* scope */
248 ctx->i1false, /* volatile */
249 LLVMConstInt(ctx->i32, ordered_count_index, 0),
250 LLVMConstInt(ctx->i1, release, 0),
251 LLVMConstInt(ctx->i1, done, 0),
252 };
253
254 char intrinsic[64];
255 snprintf(intrinsic, sizeof(intrinsic), "llvm.amdgcn.ds.ordered.%s", opcode);
256 return ac_build_intrinsic(&ctx->ac, intrinsic, ctx->i32, args, ARRAY_SIZE(args), 0);
257 }
258
259 static LLVMValueRef si_expand_32bit_pointer(struct si_shader_context *ctx, LLVMValueRef ptr)
260 {
261 uint64_t hi = (uint64_t)ctx->screen->info.address32_hi << 32;
262 ptr = LLVMBuildZExt(ctx->ac.builder, ptr, ctx->i64, "");
263 ptr = LLVMBuildOr(ctx->ac.builder, ptr, LLVMConstInt(ctx->i64, hi, 0), "");
264 return LLVMBuildIntToPtr(ctx->ac.builder, ptr,
265 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GLOBAL), "");
266 }
267
268 struct si_thread0_section {
269 struct si_shader_context *ctx;
270 LLVMValueRef vgpr_result; /* a VGPR for the value on thread 0. */
271 LLVMValueRef saved_exec;
272 };
273
274 /* Enter a section that only executes on thread 0. */
275 static void si_enter_thread0_section(struct si_shader_context *ctx,
276 struct si_thread0_section *section,
277 LLVMValueRef thread_id)
278 {
279 section->ctx = ctx;
280 section->vgpr_result = ac_build_alloca_undef(&ctx->ac, ctx->i32, "result0");
281
282 /* This IF has 4 instructions:
283 * v_and_b32_e32 v, 63, v ; get the thread ID
284 * v_cmp_eq_u32_e32 vcc, 0, v ; thread ID == 0
285 * s_and_saveexec_b64 s, vcc
286 * s_cbranch_execz BB0_4
287 *
288 * It could just be s_and_saveexec_b64 s, 1.
289 */
290 ac_build_ifcc(&ctx->ac,
291 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, thread_id,
292 ctx->i32_0, ""), 12601);
293 }
294
295 /* Exit a section that only executes on thread 0 and broadcast the result
296 * to all threads. */
297 static void si_exit_thread0_section(struct si_thread0_section *section,
298 LLVMValueRef *result)
299 {
300 struct si_shader_context *ctx = section->ctx;
301
302 LLVMBuildStore(ctx->ac.builder, *result, section->vgpr_result);
303
304 ac_build_endif(&ctx->ac, 12601);
305
306 /* Broadcast the result from thread 0 to all threads. */
307 *result = ac_build_readlane(&ctx->ac,
308 LLVMBuildLoad(ctx->ac.builder, section->vgpr_result, ""), NULL);
309 }
310
311 void si_build_prim_discard_compute_shader(struct si_shader_context *ctx)
312 {
313 struct si_shader_key *key = &ctx->shader->key;
314 LLVMBuilderRef builder = ctx->ac.builder;
315 LLVMValueRef vs = ctx->main_fn;
316
317 /* Always inline the VS function. */
318 ac_add_function_attr(ctx->ac.context, vs, -1, AC_FUNC_ATTR_ALWAYSINLINE);
319 LLVMSetLinkage(vs, LLVMPrivateLinkage);
320
321 LLVMTypeRef const_desc_type;
322 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
323 ctx->shader->selector->info.shader_buffers_declared == 0)
324 const_desc_type = ctx->f32;
325 else
326 const_desc_type = ctx->v4i32;
327
328 struct si_function_info fninfo;
329 si_init_function_info(&fninfo);
330
331 LLVMValueRef index_buffers_and_constants, vertex_counter, vb_desc, const_desc;
332 LLVMValueRef base_vertex, start_instance, block_id, local_id, ordered_wave_id;
333 LLVMValueRef restart_index, vp_scale[2], vp_translate[2], smallprim_precision;
334 LLVMValueRef num_prims_udiv_multiplier, num_prims_udiv_terms, sampler_desc;
335 LLVMValueRef last_wave_prim_id, vertex_count_addr;
336
337 add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
338 &index_buffers_and_constants);
339 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_counter);
340 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &last_wave_prim_id);
341 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_count_addr);
342 add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
343 &vb_desc);
344 add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(const_desc_type),
345 &const_desc);
346 add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v8i32),
347 &sampler_desc);
348 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &base_vertex);
349 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &start_instance);
350 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_multiplier);
351 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_terms);
352 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &restart_index);
353 add_arg_assign(&fninfo, ARG_SGPR, ctx->f32, &smallprim_precision);
354
355 /* Block ID and thread ID inputs. */
356 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &block_id);
357 if (VERTEX_COUNTER_GDS_MODE == 2)
358 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ordered_wave_id);
359 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &local_id);
360
361 /* Create the compute shader function. */
362 unsigned old_type = ctx->type;
363 ctx->type = PIPE_SHADER_COMPUTE;
364 si_create_function(ctx, "prim_discard_cs", NULL, 0, &fninfo, THREADGROUP_SIZE);
365 ctx->type = old_type;
366
367 if (VERTEX_COUNTER_GDS_MODE == 1) {
368 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size",
369 GDS_SIZE_UNORDERED);
370 }
371
372 /* Assemble parameters for VS. */
373 LLVMValueRef vs_params[16];
374 unsigned num_vs_params = 0;
375 unsigned param_vertex_id, param_instance_id;
376
377 vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 0))); /* RW_BUFFERS */
378 vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 1))); /* BINDLESS */
379 vs_params[num_vs_params++] = const_desc;
380 vs_params[num_vs_params++] = sampler_desc;
381 vs_params[num_vs_params++] = LLVMConstInt(ctx->i32,
382 S_VS_STATE_INDEXED(key->opt.cs_indexed), 0);
383 vs_params[num_vs_params++] = base_vertex;
384 vs_params[num_vs_params++] = start_instance;
385 vs_params[num_vs_params++] = ctx->i32_0; /* DrawID */
386 vs_params[num_vs_params++] = vb_desc;
387
388 vs_params[(param_vertex_id = num_vs_params++)] = NULL; /* VertexID */
389 vs_params[(param_instance_id = num_vs_params++)] = NULL; /* InstanceID */
390 vs_params[num_vs_params++] = ctx->i32_0; /* unused (PrimID) */
391 vs_params[num_vs_params++] = ctx->i32_0; /* unused */
392
393 assert(num_vs_params <= ARRAY_SIZE(vs_params));
394 assert(num_vs_params == LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(vs))));
395
396 /* Load descriptors. (load 8 dwords at once) */
397 LLVMValueRef input_indexbuf, output_indexbuf, tmp, desc[8];
398
399 tmp = LLVMBuildPointerCast(builder, index_buffers_and_constants,
400 ac_array_in_const32_addr_space(ctx->v8i32), "");
401 tmp = ac_build_load_to_sgpr(&ctx->ac, tmp, ctx->i32_0);
402
403 for (unsigned i = 0; i < 8; i++)
404 desc[i] = ac_llvm_extract_elem(&ctx->ac, tmp, i);
405
406 input_indexbuf = ac_build_gather_values(&ctx->ac, desc, 4);
407 output_indexbuf = ac_build_gather_values(&ctx->ac, desc + 4, 4);
408
409 /* Compute PrimID and InstanceID. */
410 LLVMValueRef global_thread_id =
411 ac_build_imad(&ctx->ac, block_id,
412 LLVMConstInt(ctx->i32, THREADGROUP_SIZE, 0), local_id);
413 LLVMValueRef prim_id = global_thread_id; /* PrimID within an instance */
414 LLVMValueRef instance_id = ctx->i32_0;
415
416 if (key->opt.cs_instancing) {
417 /* Unpack num_prims_udiv_terms. */
418 LLVMValueRef post_shift = LLVMBuildAnd(builder, num_prims_udiv_terms,
419 LLVMConstInt(ctx->i32, 0x1f, 0), "");
420 LLVMValueRef prims_per_instance = LLVMBuildLShr(builder, num_prims_udiv_terms,
421 LLVMConstInt(ctx->i32, 5, 0), "");
422 /* Divide the total prim_id by the number of prims per instance. */
423 instance_id = ac_build_fast_udiv_u31_d_not_one(&ctx->ac, prim_id,
424 num_prims_udiv_multiplier,
425 post_shift);
426 /* Compute the remainder. */
427 prim_id = LLVMBuildSub(builder, prim_id,
428 LLVMBuildMul(builder, instance_id,
429 prims_per_instance, ""), "");
430 }
431
432 /* Generate indices (like a non-indexed draw call). */
433 LLVMValueRef index[4] = {NULL, NULL, NULL, LLVMGetUndef(ctx->i32)};
434 unsigned vertices_per_prim = 3;
435
436 switch (key->opt.cs_prim_type) {
437 case PIPE_PRIM_TRIANGLES:
438 for (unsigned i = 0; i < 3; i++) {
439 index[i] = ac_build_imad(&ctx->ac, prim_id,
440 LLVMConstInt(ctx->i32, 3, 0),
441 LLVMConstInt(ctx->i32, i, 0));
442 }
443 break;
444 case PIPE_PRIM_TRIANGLE_STRIP:
445 for (unsigned i = 0; i < 3; i++) {
446 index[i] = LLVMBuildAdd(builder, prim_id,
447 LLVMConstInt(ctx->i32, i, 0), "");
448 }
449 break;
450 case PIPE_PRIM_TRIANGLE_FAN:
451 /* Vertex 1 is first and vertex 2 is last. This will go to the hw clipper
452 * and rasterizer as a normal triangle, so we need to put the provoking
453 * vertex into the correct index variable and preserve orientation at the same time.
454 * gl_VertexID is preserved, because it's equal to the index.
455 */
456 if (key->opt.cs_provoking_vertex_first) {
457 index[0] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
458 index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
459 index[2] = ctx->i32_0;
460 } else {
461 index[0] = ctx->i32_0;
462 index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
463 index[2] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
464 }
465 break;
466 default:
467 unreachable("unexpected primitive type");
468 }
469
470 /* Fetch indices. */
471 if (key->opt.cs_indexed) {
472 for (unsigned i = 0; i < 3; i++) {
473 index[i] = ac_build_buffer_load_format(&ctx->ac, input_indexbuf,
474 index[i], ctx->i32_0, 1,
475 0, true);
476 index[i] = ac_to_integer(&ctx->ac, index[i]);
477 }
478 }
479
480 /* Extract the ordered wave ID. */
481 if (VERTEX_COUNTER_GDS_MODE == 2) {
482 ordered_wave_id = LLVMBuildLShr(builder, ordered_wave_id,
483 LLVMConstInt(ctx->i32, 6, 0), "");
484 ordered_wave_id = LLVMBuildAnd(builder, ordered_wave_id,
485 LLVMConstInt(ctx->i32, 0xfff, 0), "");
486 }
487 LLVMValueRef thread_id =
488 LLVMBuildAnd(builder, local_id, LLVMConstInt(ctx->i32, 63, 0), "");
489
490 /* Every other triangle in a strip has a reversed vertex order, so we
491 * need to swap vertices of odd primitives to get the correct primitive
492 * orientation when converting triangle strips to triangles. Primitive
493 * restart complicates it, because a strip can start anywhere.
494 */
495 LLVMValueRef prim_restart_accepted = ctx->i1true;
496
497 if (key->opt.cs_prim_type == PIPE_PRIM_TRIANGLE_STRIP) {
498 /* Without primitive restart, odd primitives have reversed orientation.
499 * Only primitive restart can flip it with respect to the first vertex
500 * of the draw call.
501 */
502 LLVMValueRef first_is_odd = ctx->i1false;
503
504 /* Handle primitive restart. */
505 if (key->opt.cs_primitive_restart) {
506 /* Get the GDS primitive restart continue flag and clear
507 * the flag in vertex_counter. This flag is used when the draw
508 * call was split and we need to load the primitive orientation
509 * flag from GDS for the first wave too.
510 */
511 LLVMValueRef gds_prim_restart_continue =
512 LLVMBuildLShr(builder, vertex_counter,
513 LLVMConstInt(ctx->i32, 31, 0), "");
514 gds_prim_restart_continue =
515 LLVMBuildTrunc(builder, gds_prim_restart_continue, ctx->i1, "");
516 vertex_counter = LLVMBuildAnd(builder, vertex_counter,
517 LLVMConstInt(ctx->i32, 0x7fffffff, 0), "");
518
519 LLVMValueRef index0_is_reset;
520
521 for (unsigned i = 0; i < 3; i++) {
522 LLVMValueRef not_reset = LLVMBuildICmp(builder, LLVMIntNE, index[i],
523 restart_index, "");
524 if (i == 0)
525 index0_is_reset = LLVMBuildNot(builder, not_reset, "");
526 prim_restart_accepted = LLVMBuildAnd(builder, prim_restart_accepted,
527 not_reset, "");
528 }
529
530 /* If the previous waves flip the primitive orientation
531 * of the current triangle strip, it will be stored in GDS.
532 *
533 * Sometimes the correct orientation is not needed, in which case
534 * we don't need to execute this.
535 */
536 if (key->opt.cs_need_correct_orientation && VERTEX_COUNTER_GDS_MODE == 2) {
537 /* If there are reset indices in this wave, get the thread index
538 * where the most recent strip starts relative to each thread.
539 */
540 LLVMValueRef preceding_threads_mask =
541 LLVMBuildSub(builder,
542 LLVMBuildShl(builder, ctx->ac.i64_1,
543 LLVMBuildZExt(builder, thread_id, ctx->i64, ""), ""),
544 ctx->ac.i64_1, "");
545
546 LLVMValueRef reset_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, index0_is_reset);
547 LLVMValueRef preceding_reset_threadmask =
548 LLVMBuildAnd(builder, reset_threadmask, preceding_threads_mask, "");
549 LLVMValueRef strip_start =
550 ac_build_umsb(&ctx->ac, preceding_reset_threadmask, NULL);
551 strip_start = LLVMBuildAdd(builder, strip_start, ctx->i32_1, "");
552
553 /* This flips the orientatino based on reset indices within this wave only. */
554 first_is_odd = LLVMBuildTrunc(builder, strip_start, ctx->i1, "");
555
556 LLVMValueRef last_strip_start, prev_wave_state, ret, tmp;
557 LLVMValueRef is_first_wave, current_wave_resets_index;
558
559 /* Get the thread index where the last strip starts in this wave.
560 *
561 * If the last strip doesn't start in this wave, the thread index
562 * will be 0.
563 *
564 * If the last strip starts in the next wave, the thread index will
565 * be 64.
566 */
567 last_strip_start = ac_build_umsb(&ctx->ac, reset_threadmask, NULL);
568 last_strip_start = LLVMBuildAdd(builder, last_strip_start, ctx->i32_1, "");
569
570 struct si_thread0_section section;
571 si_enter_thread0_section(ctx, &section, thread_id);
572
573 /* This must be done in the thread 0 section, because
574 * we expect PrimID to be 0 for the whole first wave
575 * in this expression.
576 *
577 * NOTE: This will need to be different if we wanna support
578 * instancing with primitive restart.
579 */
580 is_first_wave = LLVMBuildICmp(builder, LLVMIntEQ, prim_id, ctx->i32_0, "");
581 is_first_wave = LLVMBuildAnd(builder, is_first_wave,
582 LLVMBuildNot(builder,
583 gds_prim_restart_continue, ""), "");
584 current_wave_resets_index = LLVMBuildICmp(builder, LLVMIntNE,
585 last_strip_start, ctx->i32_0, "");
586
587 ret = ac_build_alloca_undef(&ctx->ac, ctx->i32, "prev_state");
588
589 /* Save the last strip start primitive index in GDS and read
590 * the value that previous waves stored.
591 *
592 * if (is_first_wave || current_wave_resets_strip)
593 * // Read the value that previous waves stored and store a new one.
594 * first_is_odd = ds.ordered.swap(last_strip_start);
595 * else
596 * // Just read the value that previous waves stored.
597 * first_is_odd = ds.ordered.add(0);
598 */
599 ac_build_ifcc(&ctx->ac,
600 LLVMBuildOr(builder, is_first_wave,
601 current_wave_resets_index, ""), 12602);
602 {
603 /* The GDS address is always 0 with ordered append. */
604 tmp = si_build_ds_ordered_op(ctx, "swap",
605 ordered_wave_id, last_strip_start,
606 1, true, false);
607 LLVMBuildStore(builder, tmp, ret);
608 }
609 ac_build_else(&ctx->ac, 12603);
610 {
611 /* Just read the value from GDS. */
612 tmp = si_build_ds_ordered_op(ctx, "add",
613 ordered_wave_id, ctx->i32_0,
614 1, true, false);
615 LLVMBuildStore(builder, tmp, ret);
616 }
617 ac_build_endif(&ctx->ac, 12602);
618
619 prev_wave_state = LLVMBuildLoad(builder, ret, "");
620 /* Ignore the return value if this is the first wave. */
621 prev_wave_state = LLVMBuildSelect(builder, is_first_wave,
622 ctx->i32_0, prev_wave_state, "");
623 si_exit_thread0_section(&section, &prev_wave_state);
624 prev_wave_state = LLVMBuildTrunc(builder, prev_wave_state, ctx->i1, "");
625
626 /* If the strip start appears to be on thread 0 for the current primitive
627 * (meaning the reset index is not present in this wave and might have
628 * appeared in previous waves), use the value from GDS to determine
629 * primitive orientation.
630 *
631 * If the strip start is in this wave for the current primitive, use
632 * the value from the current wave to determine primitive orientation.
633 */
634 LLVMValueRef strip_start_is0 = LLVMBuildICmp(builder, LLVMIntEQ,
635 strip_start, ctx->i32_0, "");
636 first_is_odd = LLVMBuildSelect(builder, strip_start_is0, prev_wave_state,
637 first_is_odd, "");
638 }
639 }
640 /* prim_is_odd = (first_is_odd + current_is_odd) % 2. */
641 LLVMValueRef prim_is_odd =
642 LLVMBuildXor(builder, first_is_odd,
643 LLVMBuildTrunc(builder, thread_id, ctx->i1, ""), "");
644
645 /* Determine the primitive orientation.
646 * Only swap the vertices that are not the provoking vertex. We need to keep
647 * the provoking vertex in place.
648 */
649 if (key->opt.cs_provoking_vertex_first) {
650 LLVMValueRef index1 = index[1];
651 LLVMValueRef index2 = index[2];
652 index[1] = LLVMBuildSelect(builder, prim_is_odd, index2, index1, "");
653 index[2] = LLVMBuildSelect(builder, prim_is_odd, index1, index2, "");
654 } else {
655 LLVMValueRef index0 = index[0];
656 LLVMValueRef index1 = index[1];
657 index[0] = LLVMBuildSelect(builder, prim_is_odd, index1, index0, "");
658 index[1] = LLVMBuildSelect(builder, prim_is_odd, index0, index1, "");
659 }
660 }
661
662 /* Execute the vertex shader for each vertex to get vertex positions. */
663 LLVMValueRef pos[3][4];
664 for (unsigned i = 0; i < vertices_per_prim; i++) {
665 vs_params[param_vertex_id] = index[i];
666 vs_params[param_instance_id] = instance_id;
667
668 LLVMValueRef ret = ac_build_call(&ctx->ac, vs, vs_params, num_vs_params);
669 for (unsigned chan = 0; chan < 4; chan++)
670 pos[i][chan] = LLVMBuildExtractValue(builder, ret, chan, "");
671 }
672
673 /* Divide XYZ by W. */
674 for (unsigned i = 0; i < vertices_per_prim; i++) {
675 for (unsigned chan = 0; chan < 3; chan++)
676 pos[i][chan] = ac_build_fdiv(&ctx->ac, pos[i][chan], pos[i][3]);
677 }
678
679 /* Load the viewport state. */
680 LLVMValueRef vp = ac_build_load_invariant(&ctx->ac, index_buffers_and_constants,
681 LLVMConstInt(ctx->i32, 2, 0));
682 vp = LLVMBuildBitCast(builder, vp, ctx->v4f32, "");
683 vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
684 vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
685 vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
686 vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
687
688 /* Do culling. */
689 struct ac_cull_options options = {};
690 options.cull_front = key->opt.cs_cull_front;
691 options.cull_back = key->opt.cs_cull_back;
692 options.cull_view_xy = true;
693 options.cull_view_near_z = CULL_Z && key->opt.cs_cull_z;
694 options.cull_view_far_z = CULL_Z && key->opt.cs_cull_z;
695 options.cull_small_prims = true;
696 options.cull_zero_area = true;
697 options.cull_w = true;
698 options.use_halfz_clip_space = key->opt.cs_halfz_clip_space;
699
700 LLVMValueRef accepted =
701 ac_cull_triangle(&ctx->ac, pos, prim_restart_accepted,
702 vp_scale, vp_translate, smallprim_precision,
703 &options);
704
705 LLVMValueRef accepted_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
706
707 /* Count the number of active threads by doing bitcount(accepted). */
708 LLVMValueRef num_prims_accepted =
709 ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i64", ctx->i64,
710 &accepted_threadmask, 1, AC_FUNC_ATTR_READNONE);
711 num_prims_accepted = LLVMBuildTrunc(builder, num_prims_accepted, ctx->i32, "");
712
713 LLVMValueRef start;
714
715 /* Execute atomic_add on the vertex count. */
716 struct si_thread0_section section;
717 si_enter_thread0_section(ctx, &section, thread_id);
718 {
719 if (VERTEX_COUNTER_GDS_MODE == 0) {
720 LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
721 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
722 vertex_counter = si_expand_32bit_pointer(ctx, vertex_counter);
723 start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
724 vertex_counter, num_indices,
725 LLVMAtomicOrderingMonotonic, false);
726 } else if (VERTEX_COUNTER_GDS_MODE == 1) {
727 LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
728 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
729 vertex_counter = LLVMBuildIntToPtr(builder, vertex_counter,
730 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), "");
731 start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
732 vertex_counter, num_indices,
733 LLVMAtomicOrderingMonotonic, false);
734 } else if (VERTEX_COUNTER_GDS_MODE == 2) {
735 LLVMValueRef tmp_store = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
736
737 /* If the draw call was split into multiple subdraws, each using
738 * a separate draw packet, we need to start counting from 0 for
739 * the first compute wave of the subdraw.
740 *
741 * vertex_counter contains the primitive ID of the first thread
742 * in the first wave.
743 *
744 * This is only correct with VERTEX_COUNTER_GDS_MODE == 2:
745 */
746 LLVMValueRef is_first_wave =
747 LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
748 vertex_counter, "");
749
750 /* Store the primitive count for ordered append, not vertex count.
751 * The idea is to avoid GDS initialization via CP DMA. The shader
752 * effectively stores the first count using "swap".
753 *
754 * if (first_wave) {
755 * ds.ordered.swap(num_prims_accepted); // store the first primitive count
756 * previous = 0;
757 * } else {
758 * previous = ds.ordered.add(num_prims_accepted) // add the primitive count
759 * }
760 */
761 ac_build_ifcc(&ctx->ac, is_first_wave, 12604);
762 {
763 /* The GDS address is always 0 with ordered append. */
764 si_build_ds_ordered_op(ctx, "swap", ordered_wave_id,
765 num_prims_accepted, 0, true, true);
766 LLVMBuildStore(builder, ctx->i32_0, tmp_store);
767 }
768 ac_build_else(&ctx->ac, 12605);
769 {
770 LLVMBuildStore(builder,
771 si_build_ds_ordered_op(ctx, "add", ordered_wave_id,
772 num_prims_accepted, 0,
773 true, true),
774 tmp_store);
775 }
776 ac_build_endif(&ctx->ac, 12604);
777
778 start = LLVMBuildLoad(builder, tmp_store, "");
779 }
780 }
781 si_exit_thread0_section(&section, &start);
782
783 /* Write the final vertex count to memory. An EOS/EOP event could do this,
784 * but those events are super slow and should be avoided if performance
785 * is a concern. Thanks to GDS ordered append, we can emulate a CS_DONE
786 * event like this.
787 */
788 if (VERTEX_COUNTER_GDS_MODE == 2) {
789 ac_build_ifcc(&ctx->ac,
790 LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
791 last_wave_prim_id, ""), 12606);
792 LLVMValueRef count = LLVMBuildAdd(builder, start, num_prims_accepted, "");
793 count = LLVMBuildMul(builder, count,
794 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
795
796 /* GFX8 needs to disable caching, so that the CP can see the stored value.
797 * MTYPE=3 bypasses TC L2.
798 */
799 if (ctx->screen->info.chip_class <= GFX8) {
800 LLVMValueRef desc[] = {
801 vertex_count_addr,
802 LLVMConstInt(ctx->i32,
803 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0),
804 LLVMConstInt(ctx->i32, 4, 0),
805 LLVMConstInt(ctx->i32, S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
806 S_008F0C_MTYPE(3 /* uncached */), 0),
807 };
808 LLVMValueRef rsrc = ac_build_gather_values(&ctx->ac, desc, 4);
809 ac_build_buffer_store_dword(&ctx->ac, rsrc, count, 1, ctx->i32_0,
810 ctx->i32_0, 0, ac_glc | ac_slc, false);
811 } else {
812 LLVMBuildStore(builder, count,
813 si_expand_32bit_pointer(ctx, vertex_count_addr));
814 }
815 ac_build_endif(&ctx->ac, 12606);
816 } else {
817 /* For unordered modes that increment a vertex count instead of
818 * primitive count, convert it into the primitive index.
819 */
820 start = LLVMBuildUDiv(builder, start,
821 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
822 }
823
824 /* Now we need to store the indices of accepted primitives into
825 * the output index buffer.
826 */
827 ac_build_ifcc(&ctx->ac, accepted, 16607);
828 {
829 /* Get the number of bits set before the index of this thread. */
830 LLVMValueRef prim_index = ac_build_mbcnt(&ctx->ac, accepted_threadmask);
831
832 /* We have lowered instancing. Pack the instance ID into vertex ID. */
833 if (key->opt.cs_instancing) {
834 instance_id = LLVMBuildShl(builder, instance_id,
835 LLVMConstInt(ctx->i32, 16, 0), "");
836
837 for (unsigned i = 0; i < vertices_per_prim; i++)
838 index[i] = LLVMBuildOr(builder, index[i], instance_id, "");
839 }
840
841 if (VERTEX_COUNTER_GDS_MODE == 2) {
842 /* vertex_counter contains the first primitive ID
843 * for this dispatch. If the draw call was split into
844 * multiple subdraws, the first primitive ID is > 0
845 * for subsequent subdraws. Each subdraw uses a different
846 * portion of the output index buffer. Offset the store
847 * vindex by the first primitive ID to get the correct
848 * store address for the subdraw.
849 */
850 start = LLVMBuildAdd(builder, start, vertex_counter, "");
851 }
852
853 /* Write indices for accepted primitives. */
854 LLVMValueRef vindex = LLVMBuildAdd(builder, start, prim_index, "");
855 LLVMValueRef vdata = ac_build_gather_values(&ctx->ac, index, 3);
856
857 if (!ac_has_vec3_support(ctx->ac.chip_class, true))
858 vdata = ac_build_expand_to_vec4(&ctx->ac, vdata, 3);
859
860 ac_build_buffer_store_format(&ctx->ac, output_indexbuf, vdata,
861 vindex, ctx->i32_0, 3,
862 ac_glc | (INDEX_STORES_USE_SLC ? ac_slc : 0));
863 }
864 ac_build_endif(&ctx->ac, 16607);
865
866 LLVMBuildRetVoid(builder);
867 }
868
869 /* Return false if the shader isn't ready. */
870 static bool si_shader_select_prim_discard_cs(struct si_context *sctx,
871 const struct pipe_draw_info *info,
872 bool primitive_restart)
873 {
874 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
875 struct si_shader_key key;
876
877 /* Primitive restart needs ordered counters. */
878 assert(!primitive_restart || VERTEX_COUNTER_GDS_MODE == 2);
879 assert(!primitive_restart || info->instance_count == 1);
880
881 memset(&key, 0, sizeof(key));
882 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, &key, &key.part.vs.prolog);
883 assert(!key.part.vs.prolog.instance_divisor_is_fetched);
884
885 key.part.vs.prolog.unpack_instance_id_from_vertex_id = 0;
886 key.opt.vs_as_prim_discard_cs = 1;
887 key.opt.cs_prim_type = info->mode;
888 key.opt.cs_indexed = info->index_size != 0;
889 key.opt.cs_instancing = info->instance_count > 1;
890 key.opt.cs_primitive_restart = primitive_restart;
891 key.opt.cs_provoking_vertex_first = rs->provoking_vertex_first;
892
893 /* Primitive restart with triangle strips needs to preserve primitive
894 * orientation for cases where front and back primitive orientation matters.
895 */
896 if (primitive_restart) {
897 struct si_shader_selector *ps = sctx->ps_shader.cso;
898
899 key.opt.cs_need_correct_orientation =
900 rs->cull_front != rs->cull_back ||
901 ps->info.uses_frontface ||
902 (rs->two_side && ps->info.colors_read);
903 }
904
905 if (rs->rasterizer_discard) {
906 /* Just for performance testing and analysis of trivial bottlenecks.
907 * This should result in a very short compute shader. */
908 key.opt.cs_cull_front = 1;
909 key.opt.cs_cull_back = 1;
910 } else {
911 key.opt.cs_cull_front =
912 sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front;
913 key.opt.cs_cull_back =
914 sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back;
915 }
916
917 if (!rs->depth_clamp_any && CULL_Z) {
918 key.opt.cs_cull_z = 1;
919 key.opt.cs_halfz_clip_space = rs->clip_halfz;
920 }
921
922 sctx->cs_prim_discard_state.cso = sctx->vs_shader.cso;
923 sctx->cs_prim_discard_state.current = NULL;
924
925 struct si_compiler_ctx_state compiler_state;
926 compiler_state.compiler = &sctx->compiler;
927 compiler_state.debug = sctx->debug;
928 compiler_state.is_debug_context = sctx->is_debug;
929
930 return si_shader_select_with_key(sctx->screen, &sctx->cs_prim_discard_state,
931 &compiler_state, &key, -1, true) == 0 &&
932 /* Disallow compute shaders using the scratch buffer. */
933 sctx->cs_prim_discard_state.current->config.scratch_bytes_per_wave == 0;
934 }
935
936 static bool si_initialize_prim_discard_cmdbuf(struct si_context *sctx)
937 {
938 if (sctx->index_ring)
939 return true;
940
941 if (!sctx->prim_discard_compute_cs) {
942 struct radeon_winsys *ws = sctx->ws;
943 unsigned gds_size = VERTEX_COUNTER_GDS_MODE == 1 ? GDS_SIZE_UNORDERED :
944 VERTEX_COUNTER_GDS_MODE == 2 ? 8 : 0;
945 unsigned num_oa_counters = VERTEX_COUNTER_GDS_MODE == 2 ? 2 : 0;
946
947 if (gds_size) {
948 sctx->gds = ws->buffer_create(ws, gds_size, 4,
949 RADEON_DOMAIN_GDS, 0);
950 if (!sctx->gds)
951 return false;
952
953 ws->cs_add_buffer(sctx->gfx_cs, sctx->gds,
954 RADEON_USAGE_READWRITE, 0, 0);
955 }
956 if (num_oa_counters) {
957 assert(gds_size);
958 sctx->gds_oa = ws->buffer_create(ws, num_oa_counters,
959 1, RADEON_DOMAIN_OA, 0);
960 if (!sctx->gds_oa)
961 return false;
962
963 ws->cs_add_buffer(sctx->gfx_cs, sctx->gds_oa,
964 RADEON_USAGE_READWRITE, 0, 0);
965 }
966
967 sctx->prim_discard_compute_cs =
968 ws->cs_add_parallel_compute_ib(sctx->gfx_cs,
969 num_oa_counters > 0);
970 if (!sctx->prim_discard_compute_cs)
971 return false;
972 }
973
974 if (!sctx->index_ring) {
975 sctx->index_ring =
976 si_aligned_buffer_create(sctx->b.screen,
977 SI_RESOURCE_FLAG_UNMAPPABLE,
978 PIPE_USAGE_DEFAULT,
979 sctx->index_ring_size_per_ib * 2,
980 2 * 1024 * 1024);
981 if (!sctx->index_ring)
982 return false;
983 }
984 return true;
985 }
986
987 static bool si_check_ring_space(struct si_context *sctx, unsigned out_indexbuf_size)
988 {
989 return sctx->index_ring_offset +
990 align(out_indexbuf_size, sctx->screen->info.tcc_cache_line_size) <=
991 sctx->index_ring_size_per_ib;
992 }
993
994 enum si_prim_discard_outcome
995 si_prepare_prim_discard_or_split_draw(struct si_context *sctx,
996 const struct pipe_draw_info *info,
997 bool primitive_restart)
998 {
999 /* If the compute shader compilation isn't finished, this returns false. */
1000 if (!si_shader_select_prim_discard_cs(sctx, info, primitive_restart))
1001 return SI_PRIM_DISCARD_DISABLED;
1002
1003 if (!si_initialize_prim_discard_cmdbuf(sctx))
1004 return SI_PRIM_DISCARD_DISABLED;
1005
1006 struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
1007 unsigned prim = info->mode;
1008 unsigned count = info->count;
1009 unsigned instance_count = info->instance_count;
1010 unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(prim, count);
1011 unsigned num_prims = num_prims_per_instance * instance_count;
1012 unsigned out_indexbuf_size = num_prims * 12;
1013 bool ring_full = !si_check_ring_space(sctx, out_indexbuf_size);
1014 const unsigned split_prims_draw_level = SPLIT_PRIMS_DRAW_LEVEL;
1015
1016 /* Split draws at the draw call level if the ring is full. This makes
1017 * better use of the ring space.
1018 */
1019 if (ring_full &&
1020 num_prims > split_prims_draw_level &&
1021 instance_count == 1 && /* TODO: support splitting instanced draws */
1022 (1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) |
1023 (1 << PIPE_PRIM_TRIANGLE_STRIP))) {
1024 /* Split draws. */
1025 struct pipe_draw_info split_draw = *info;
1026 split_draw.primitive_restart = primitive_restart;
1027
1028 unsigned base_start = split_draw.start;
1029
1030 if (prim == PIPE_PRIM_TRIANGLES) {
1031 unsigned vert_count_per_subdraw = split_prims_draw_level * 3;
1032 assert(vert_count_per_subdraw < count);
1033
1034 for (unsigned start = 0; start < count; start += vert_count_per_subdraw) {
1035 split_draw.start = base_start + start;
1036 split_draw.count = MIN2(count - start, vert_count_per_subdraw);
1037
1038 sctx->b.draw_vbo(&sctx->b, &split_draw);
1039 }
1040 } else if (prim == PIPE_PRIM_TRIANGLE_STRIP) {
1041 /* No primitive pair can be split, because strips reverse orientation
1042 * for odd primitives. */
1043 STATIC_ASSERT(split_prims_draw_level % 2 == 0);
1044
1045 unsigned vert_count_per_subdraw = split_prims_draw_level;
1046
1047 for (unsigned start = 0; start < count - 2; start += vert_count_per_subdraw) {
1048 split_draw.start = base_start + start;
1049 split_draw.count = MIN2(count - start, vert_count_per_subdraw + 2);
1050
1051 sctx->b.draw_vbo(&sctx->b, &split_draw);
1052
1053 if (start == 0 &&
1054 primitive_restart &&
1055 sctx->cs_prim_discard_state.current->key.opt.cs_need_correct_orientation)
1056 sctx->preserve_prim_restart_gds_at_flush = true;
1057 }
1058 sctx->preserve_prim_restart_gds_at_flush = false;
1059 } else {
1060 assert(0);
1061 }
1062
1063 return SI_PRIM_DISCARD_DRAW_SPLIT;
1064 }
1065
1066 /* Just quit if the draw call doesn't fit into the ring and can't be split. */
1067 if (out_indexbuf_size > sctx->index_ring_size_per_ib) {
1068 if (SI_PRIM_DISCARD_DEBUG)
1069 puts("PD failed: draw call too big, can't be split");
1070 return SI_PRIM_DISCARD_DISABLED;
1071 }
1072
1073 unsigned num_subdraws = DIV_ROUND_UP(num_prims, SPLIT_PRIMS_PACKET_LEVEL);
1074 unsigned need_compute_dw = 11 /* shader */ + 34 /* first draw */ +
1075 24 * (num_subdraws - 1) + /* subdraws */
1076 20; /* leave some space at the end */
1077 unsigned need_gfx_dw = si_get_minimum_num_gfx_cs_dwords(sctx);
1078
1079 if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION)
1080 need_gfx_dw += 9; /* NOP(2) + WAIT_REG_MEM(7), then chain */
1081 else
1082 need_gfx_dw += num_subdraws * 8; /* use REWIND(2) + DRAW(6) */
1083
1084 if (ring_full ||
1085 (VERTEX_COUNTER_GDS_MODE == 1 && sctx->compute_gds_offset + 8 > GDS_SIZE_UNORDERED) ||
1086 !sctx->ws->cs_check_space(gfx_cs, need_gfx_dw, false)) {
1087 /* If the current IB is empty but the size is too small, add a NOP
1088 * packet to force a flush and get a bigger IB.
1089 */
1090 if (!radeon_emitted(gfx_cs, sctx->initial_gfx_cs_size) &&
1091 gfx_cs->current.cdw + need_gfx_dw > gfx_cs->current.max_dw) {
1092 radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
1093 radeon_emit(gfx_cs, 0);
1094 }
1095
1096 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
1097 }
1098
1099 /* The compute IB is always chained, but we need to call cs_check_space to add more space. */
1100 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1101 ASSERTED bool compute_has_space = sctx->ws->cs_check_space(cs, need_compute_dw, false);
1102 assert(compute_has_space);
1103 assert(si_check_ring_space(sctx, out_indexbuf_size));
1104 return SI_PRIM_DISCARD_ENABLED;
1105 }
1106
1107 void si_compute_signal_gfx(struct si_context *sctx)
1108 {
1109 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1110 unsigned writeback_L2_flags = 0;
1111
1112 /* The writeback L2 flags vary with each chip generation. */
1113 /* CI needs to flush vertex indices to memory. */
1114 if (sctx->chip_class <= GFX7)
1115 writeback_L2_flags = EVENT_TC_WB_ACTION_ENA;
1116 else if (sctx->chip_class == GFX8 && VERTEX_COUNTER_GDS_MODE == 0)
1117 writeback_L2_flags = EVENT_TC_WB_ACTION_ENA | EVENT_TC_NC_ACTION_ENA;
1118
1119 if (!sctx->compute_num_prims_in_batch)
1120 return;
1121
1122 assert(sctx->compute_rewind_va);
1123
1124 /* After the queued dispatches are done and vertex counts are written to
1125 * the gfx IB, signal the gfx IB to continue. CP doesn't wait for
1126 * the dispatches to finish, it only adds the CS_DONE event into the event
1127 * queue.
1128 */
1129 si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, writeback_L2_flags,
1130 sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
1131 writeback_L2_flags ? EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM :
1132 EOP_INT_SEL_NONE,
1133 EOP_DATA_SEL_VALUE_32BIT,
1134 NULL,
1135 sctx->compute_rewind_va |
1136 ((uint64_t)sctx->screen->info.address32_hi << 32),
1137 REWIND_SIGNAL_BIT, /* signaling value for the REWIND packet */
1138 SI_NOT_QUERY);
1139
1140 sctx->compute_rewind_va = 0;
1141 sctx->compute_num_prims_in_batch = 0;
1142 }
1143
1144 /* Dispatch a primitive discard compute shader. */
1145 void si_dispatch_prim_discard_cs_and_draw(struct si_context *sctx,
1146 const struct pipe_draw_info *info,
1147 unsigned index_size,
1148 unsigned base_vertex,
1149 uint64_t input_indexbuf_va,
1150 unsigned input_indexbuf_num_elements)
1151 {
1152 struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
1153 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1154 unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(info->mode, info->count);
1155 if (!num_prims_per_instance)
1156 return;
1157
1158 unsigned num_prims = num_prims_per_instance * info->instance_count;
1159 unsigned vertices_per_prim, output_indexbuf_format;
1160
1161 switch (info->mode) {
1162 case PIPE_PRIM_TRIANGLES:
1163 case PIPE_PRIM_TRIANGLE_STRIP:
1164 case PIPE_PRIM_TRIANGLE_FAN:
1165 vertices_per_prim = 3;
1166 output_indexbuf_format = V_008F0C_BUF_DATA_FORMAT_32_32_32;
1167 break;
1168 default:
1169 unreachable("unsupported primitive type");
1170 return;
1171 }
1172
1173 unsigned out_indexbuf_offset;
1174 uint64_t output_indexbuf_size = num_prims * vertices_per_prim * 4;
1175 bool first_dispatch = !sctx->prim_discard_compute_ib_initialized;
1176
1177 /* Initialize the compute IB if it's empty. */
1178 if (!sctx->prim_discard_compute_ib_initialized) {
1179 /* 1) State initialization. */
1180 sctx->compute_gds_offset = 0;
1181 sctx->compute_ib_last_shader = NULL;
1182
1183 if (sctx->last_ib_barrier_fence) {
1184 assert(!sctx->last_ib_barrier_buf);
1185 sctx->ws->cs_add_fence_dependency(gfx_cs,
1186 sctx->last_ib_barrier_fence,
1187 RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY);
1188 }
1189
1190 /* 2) IB initialization. */
1191
1192 /* This needs to be done at the beginning of IBs due to possible
1193 * TTM buffer moves in the kernel.
1194 *
1195 * TODO: update for GFX10
1196 */
1197 si_emit_surface_sync(sctx, cs,
1198 S_0085F0_TC_ACTION_ENA(1) |
1199 S_0085F0_TCL1_ACTION_ENA(1) |
1200 S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8) |
1201 S_0085F0_SH_ICACHE_ACTION_ENA(1) |
1202 S_0085F0_SH_KCACHE_ACTION_ENA(1));
1203
1204 /* Restore the GDS prim restart counter if needed. */
1205 if (sctx->preserve_prim_restart_gds_at_flush) {
1206 si_cp_copy_data(sctx, cs,
1207 COPY_DATA_GDS, NULL, 4,
1208 COPY_DATA_SRC_MEM, sctx->wait_mem_scratch, 4);
1209 }
1210
1211 si_emit_initial_compute_regs(sctx, cs);
1212
1213 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
1214 S_00B860_WAVES(sctx->scratch_waves) |
1215 S_00B860_WAVESIZE(0)); /* no scratch */
1216
1217 /* Only 1D grids are launched. */
1218 radeon_set_sh_reg_seq(cs, R_00B820_COMPUTE_NUM_THREAD_Y, 2);
1219 radeon_emit(cs, S_00B820_NUM_THREAD_FULL(1) |
1220 S_00B820_NUM_THREAD_PARTIAL(1));
1221 radeon_emit(cs, S_00B824_NUM_THREAD_FULL(1) |
1222 S_00B824_NUM_THREAD_PARTIAL(1));
1223
1224 radeon_set_sh_reg_seq(cs, R_00B814_COMPUTE_START_Y, 2);
1225 radeon_emit(cs, 0);
1226 radeon_emit(cs, 0);
1227
1228 /* Disable ordered alloc for OA resources. */
1229 for (unsigned i = 0; i < 2; i++) {
1230 radeon_set_uconfig_reg_seq(cs, R_031074_GDS_OA_CNTL, 3);
1231 radeon_emit(cs, S_031074_INDEX(i));
1232 radeon_emit(cs, 0);
1233 radeon_emit(cs, S_03107C_ENABLE(0));
1234 }
1235
1236 if (sctx->last_ib_barrier_buf) {
1237 assert(!sctx->last_ib_barrier_fence);
1238 radeon_add_to_buffer_list(sctx, gfx_cs, sctx->last_ib_barrier_buf,
1239 RADEON_USAGE_READ, RADEON_PRIO_FENCE);
1240 si_cp_wait_mem(sctx, cs,
1241 sctx->last_ib_barrier_buf->gpu_address +
1242 sctx->last_ib_barrier_buf_offset, 1, 1,
1243 WAIT_REG_MEM_EQUAL);
1244 }
1245
1246 sctx->prim_discard_compute_ib_initialized = true;
1247 }
1248
1249 /* Allocate the output index buffer. */
1250 output_indexbuf_size = align(output_indexbuf_size,
1251 sctx->screen->info.tcc_cache_line_size);
1252 assert(sctx->index_ring_offset + output_indexbuf_size <= sctx->index_ring_size_per_ib);
1253 out_indexbuf_offset = sctx->index_ring_base + sctx->index_ring_offset;
1254 sctx->index_ring_offset += output_indexbuf_size;
1255
1256 radeon_add_to_buffer_list(sctx, gfx_cs, sctx->index_ring, RADEON_USAGE_READWRITE,
1257 RADEON_PRIO_SHADER_RW_BUFFER);
1258 uint64_t out_indexbuf_va = sctx->index_ring->gpu_address + out_indexbuf_offset;
1259
1260 /* Prepare index buffer descriptors. */
1261 struct si_resource *indexbuf_desc = NULL;
1262 unsigned indexbuf_desc_offset;
1263 unsigned desc_size = 12 * 4;
1264 uint32_t *desc;
1265
1266 u_upload_alloc(sctx->b.const_uploader, 0, desc_size,
1267 si_optimal_tcc_alignment(sctx, desc_size),
1268 &indexbuf_desc_offset, (struct pipe_resource**)&indexbuf_desc,
1269 (void**)&desc);
1270 radeon_add_to_buffer_list(sctx, gfx_cs, indexbuf_desc, RADEON_USAGE_READ,
1271 RADEON_PRIO_DESCRIPTORS);
1272
1273 /* Input index buffer. */
1274 desc[0] = input_indexbuf_va;
1275 desc[1] = S_008F04_BASE_ADDRESS_HI(input_indexbuf_va >> 32) |
1276 S_008F04_STRIDE(index_size);
1277 desc[2] = input_indexbuf_num_elements * (sctx->chip_class == GFX8 ? index_size : 1);
1278 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1279 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
1280 S_008F0C_DATA_FORMAT(index_size == 1 ? V_008F0C_BUF_DATA_FORMAT_8 :
1281 index_size == 2 ? V_008F0C_BUF_DATA_FORMAT_16 :
1282 V_008F0C_BUF_DATA_FORMAT_32);
1283
1284 /* Output index buffer. */
1285 desc[4] = out_indexbuf_va;
1286 desc[5] = S_008F04_BASE_ADDRESS_HI(out_indexbuf_va >> 32) |
1287 S_008F04_STRIDE(vertices_per_prim * 4);
1288 desc[6] = num_prims * (sctx->chip_class == GFX8 ? vertices_per_prim * 4 : 1);
1289 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1290 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1291 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1292 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
1293 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
1294 S_008F0C_DATA_FORMAT(output_indexbuf_format);
1295
1296 /* Viewport state.
1297 * This is needed by the small primitive culling, because it's done
1298 * in screen space.
1299 */
1300 float scale[2], translate[2];
1301
1302 scale[0] = sctx->viewports.states[0].scale[0];
1303 scale[1] = sctx->viewports.states[0].scale[1];
1304 translate[0] = sctx->viewports.states[0].translate[0];
1305 translate[1] = sctx->viewports.states[0].translate[1];
1306
1307 /* The viewport shouldn't flip the X axis for the small prim culling to work. */
1308 assert(-scale[0] + translate[0] <= scale[0] + translate[0]);
1309
1310 /* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
1311 * This is because the viewport transformation inverts the clip space
1312 * bounding box, so min becomes max, which breaks small primitive
1313 * culling.
1314 */
1315 if (sctx->viewports.y_inverted) {
1316 scale[1] = -scale[1];
1317 translate[1] = -translate[1];
1318 }
1319
1320 /* Scale the framebuffer up, so that samples become pixels and small
1321 * primitive culling is the same for all sample counts.
1322 * This only works with the standard DX sample positions, because
1323 * the samples are evenly spaced on both X and Y axes.
1324 */
1325 unsigned num_samples = sctx->framebuffer.nr_samples;
1326 assert(num_samples >= 1);
1327
1328 for (unsigned i = 0; i < 2; i++) {
1329 scale[i] *= num_samples;
1330 translate[i] *= num_samples;
1331 }
1332
1333 desc[8] = fui(scale[0]);
1334 desc[9] = fui(scale[1]);
1335 desc[10] = fui(translate[0]);
1336 desc[11] = fui(translate[1]);
1337
1338 /* Better subpixel precision increases the efficiency of small
1339 * primitive culling. */
1340 unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
1341 float small_prim_cull_precision;
1342
1343 if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
1344 small_prim_cull_precision = num_samples / 4096.0;
1345 else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
1346 small_prim_cull_precision = num_samples / 1024.0;
1347 else
1348 small_prim_cull_precision = num_samples / 256.0;
1349
1350 /* Set user data SGPRs. */
1351 /* This can't be greater than 14 if we want the fastest launch rate. */
1352 unsigned user_sgprs = 13;
1353
1354 uint64_t index_buffers_va = indexbuf_desc->gpu_address + indexbuf_desc_offset;
1355 unsigned vs_const_desc = si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX);
1356 unsigned vs_sampler_desc = si_sampler_and_image_descriptors_idx(PIPE_SHADER_VERTEX);
1357 uint64_t vs_const_desc_va = sctx->descriptors[vs_const_desc].gpu_address;
1358 uint64_t vs_sampler_desc_va = sctx->descriptors[vs_sampler_desc].gpu_address;
1359 uint64_t vb_desc_va = sctx->vb_descriptors_buffer ?
1360 sctx->vb_descriptors_buffer->gpu_address +
1361 sctx->vb_descriptors_offset : 0;
1362 unsigned gds_offset, gds_size;
1363 struct si_fast_udiv_info32 num_prims_udiv = {};
1364
1365 if (info->instance_count > 1)
1366 num_prims_udiv = si_compute_fast_udiv_info32(num_prims_per_instance, 31);
1367
1368 /* Limitations on how these two are packed in the user SGPR. */
1369 assert(num_prims_udiv.post_shift < 32);
1370 assert(num_prims_per_instance < 1 << 27);
1371
1372 si_resource_reference(&indexbuf_desc, NULL);
1373
1374 bool primitive_restart = sctx->cs_prim_discard_state.current->key.opt.cs_primitive_restart;
1375
1376 if (VERTEX_COUNTER_GDS_MODE == 1) {
1377 gds_offset = sctx->compute_gds_offset;
1378 gds_size = primitive_restart ? 8 : 4;
1379 sctx->compute_gds_offset += gds_size;
1380
1381 /* Reset the counters in GDS for the first dispatch using WRITE_DATA.
1382 * The remainder of the GDS will be cleared after the dispatch packet
1383 * in parallel with compute shaders.
1384 */
1385 if (first_dispatch) {
1386 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + gds_size/4, 0));
1387 radeon_emit(cs, S_370_DST_SEL(V_370_GDS) | S_370_WR_CONFIRM(1));
1388 radeon_emit(cs, gds_offset);
1389 radeon_emit(cs, 0);
1390 radeon_emit(cs, 0); /* value to write */
1391 if (gds_size == 8)
1392 radeon_emit(cs, 0);
1393 }
1394 }
1395
1396 /* Set shader registers. */
1397 struct si_shader *shader = sctx->cs_prim_discard_state.current;
1398
1399 if (shader != sctx->compute_ib_last_shader) {
1400 radeon_add_to_buffer_list(sctx, gfx_cs, shader->bo, RADEON_USAGE_READ,
1401 RADEON_PRIO_SHADER_BINARY);
1402 uint64_t shader_va = shader->bo->gpu_address;
1403
1404 assert(shader->config.scratch_bytes_per_wave == 0);
1405 assert(shader->config.num_vgprs * WAVES_PER_TG <= 256 * 4);
1406
1407 radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
1408 radeon_emit(cs, shader_va >> 8);
1409 radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
1410
1411 radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
1412 radeon_emit(cs, S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
1413 S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
1414 S_00B848_FLOAT_MODE(shader->config.float_mode) |
1415 S_00B848_DX10_CLAMP(1));
1416 radeon_emit(cs, S_00B84C_SCRATCH_EN(0 /* no scratch */) |
1417 S_00B84C_USER_SGPR(user_sgprs) |
1418 S_00B84C_TGID_X_EN(1 /* only blockID.x is used */) |
1419 S_00B84C_TG_SIZE_EN(VERTEX_COUNTER_GDS_MODE == 2 /* need the wave ID */) |
1420 S_00B84C_TIDIG_COMP_CNT(0 /* only threadID.x is used */) |
1421 S_00B84C_LDS_SIZE(shader->config.lds_size));
1422
1423 radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
1424 ac_get_compute_resource_limits(&sctx->screen->info,
1425 WAVES_PER_TG,
1426 MAX_WAVES_PER_SH,
1427 THREADGROUPS_PER_CU));
1428 sctx->compute_ib_last_shader = shader;
1429 }
1430
1431 STATIC_ASSERT(SPLIT_PRIMS_PACKET_LEVEL % THREADGROUP_SIZE == 0);
1432
1433 /* Big draw calls are split into smaller dispatches and draw packets. */
1434 for (unsigned start_prim = 0; start_prim < num_prims; start_prim += SPLIT_PRIMS_PACKET_LEVEL) {
1435 unsigned num_subdraw_prims;
1436
1437 if (start_prim + SPLIT_PRIMS_PACKET_LEVEL < num_prims)
1438 num_subdraw_prims = SPLIT_PRIMS_PACKET_LEVEL;
1439 else
1440 num_subdraw_prims = num_prims - start_prim;
1441
1442 /* Small dispatches are executed back to back until a specific primitive
1443 * count is reached. Then, a CS_DONE is inserted to signal the gfx IB
1444 * to start drawing the batch. This batching adds latency to the gfx IB,
1445 * but CS_DONE and REWIND are too slow.
1446 */
1447 if (sctx->compute_num_prims_in_batch + num_subdraw_prims > PRIMS_PER_BATCH)
1448 si_compute_signal_gfx(sctx);
1449
1450 if (sctx->compute_num_prims_in_batch == 0) {
1451 assert((gfx_cs->gpu_address >> 32) == sctx->screen->info.address32_hi);
1452 sctx->compute_rewind_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 1) * 4;
1453
1454 if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION) {
1455 radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
1456 radeon_emit(gfx_cs, 0);
1457
1458 si_cp_wait_mem(sctx, gfx_cs,
1459 sctx->compute_rewind_va |
1460 (uint64_t)sctx->screen->info.address32_hi << 32,
1461 REWIND_SIGNAL_BIT, REWIND_SIGNAL_BIT,
1462 WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_PFP);
1463
1464 /* Use INDIRECT_BUFFER to chain to a different buffer
1465 * to discard the CP prefetch cache.
1466 */
1467 sctx->ws->cs_check_space(gfx_cs, 0, true);
1468 } else {
1469 radeon_emit(gfx_cs, PKT3(PKT3_REWIND, 0, 0));
1470 radeon_emit(gfx_cs, 0);
1471 }
1472 }
1473
1474 sctx->compute_num_prims_in_batch += num_subdraw_prims;
1475
1476 uint32_t count_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 4) * 4;
1477 uint64_t index_va = out_indexbuf_va + start_prim * 12;
1478
1479 /* Emit the draw packet into the gfx IB. */
1480 radeon_emit(gfx_cs, PKT3(PKT3_DRAW_INDEX_2, 4, 0));
1481 radeon_emit(gfx_cs, num_prims * vertices_per_prim);
1482 radeon_emit(gfx_cs, index_va);
1483 radeon_emit(gfx_cs, index_va >> 32);
1484 radeon_emit(gfx_cs, 0);
1485 radeon_emit(gfx_cs, V_0287F0_DI_SRC_SEL_DMA);
1486
1487 /* Continue with the compute IB. */
1488 if (start_prim == 0) {
1489 uint32_t gds_prim_restart_continue_bit = 0;
1490
1491 if (sctx->preserve_prim_restart_gds_at_flush) {
1492 assert(primitive_restart &&
1493 info->mode == PIPE_PRIM_TRIANGLE_STRIP);
1494 assert(start_prim < 1 << 31);
1495 gds_prim_restart_continue_bit = 1 << 31;
1496 }
1497
1498 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, user_sgprs);
1499 radeon_emit(cs, index_buffers_va);
1500 radeon_emit(cs,
1501 VERTEX_COUNTER_GDS_MODE == 0 ? count_va :
1502 VERTEX_COUNTER_GDS_MODE == 1 ? gds_offset :
1503 start_prim |
1504 gds_prim_restart_continue_bit);
1505 radeon_emit(cs, start_prim + num_subdraw_prims - 1);
1506 radeon_emit(cs, count_va);
1507 radeon_emit(cs, vb_desc_va);
1508 radeon_emit(cs, vs_const_desc_va);
1509 radeon_emit(cs, vs_sampler_desc_va);
1510 radeon_emit(cs, base_vertex);
1511 radeon_emit(cs, info->start_instance);
1512 radeon_emit(cs, num_prims_udiv.multiplier);
1513 radeon_emit(cs, num_prims_udiv.post_shift |
1514 (num_prims_per_instance << 5));
1515 radeon_emit(cs, info->restart_index);
1516 /* small-prim culling precision (same as rasterizer precision = QUANT_MODE) */
1517 radeon_emit(cs, fui(small_prim_cull_precision));
1518 } else {
1519 assert(VERTEX_COUNTER_GDS_MODE == 2);
1520 /* Only update the SGPRs that changed. */
1521 radeon_set_sh_reg_seq(cs, R_00B904_COMPUTE_USER_DATA_1, 3);
1522 radeon_emit(cs, start_prim);
1523 radeon_emit(cs, start_prim + num_subdraw_prims - 1);
1524 radeon_emit(cs, count_va);
1525 }
1526
1527 /* Set grid dimensions. */
1528 unsigned start_block = start_prim / THREADGROUP_SIZE;
1529 unsigned num_full_blocks = num_subdraw_prims / THREADGROUP_SIZE;
1530 unsigned partial_block_size = num_subdraw_prims % THREADGROUP_SIZE;
1531
1532 radeon_set_sh_reg(cs, R_00B810_COMPUTE_START_X, start_block);
1533 radeon_set_sh_reg(cs, R_00B81C_COMPUTE_NUM_THREAD_X,
1534 S_00B81C_NUM_THREAD_FULL(THREADGROUP_SIZE) |
1535 S_00B81C_NUM_THREAD_PARTIAL(partial_block_size));
1536
1537 radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) |
1538 PKT3_SHADER_TYPE_S(1));
1539 radeon_emit(cs, start_block + num_full_blocks + !!partial_block_size);
1540 radeon_emit(cs, 1);
1541 radeon_emit(cs, 1);
1542 radeon_emit(cs, S_00B800_COMPUTE_SHADER_EN(1) |
1543 S_00B800_PARTIAL_TG_EN(!!partial_block_size) |
1544 S_00B800_ORDERED_APPEND_ENBL(VERTEX_COUNTER_GDS_MODE == 2) |
1545 S_00B800_ORDER_MODE(0 /* launch in order */));
1546
1547 /* This is only for unordered append. Ordered append writes this from
1548 * the shader.
1549 *
1550 * Note that EOP and EOS events are super slow, so emulating the event
1551 * in a shader is an important optimization.
1552 */
1553 if (VERTEX_COUNTER_GDS_MODE == 1) {
1554 si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, 0,
1555 sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
1556 EOP_INT_SEL_NONE,
1557 EOP_DATA_SEL_GDS,
1558 NULL,
1559 count_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
1560 EOP_DATA_GDS(gds_offset / 4, 1),
1561 SI_NOT_QUERY);
1562
1563 /* Now that compute shaders are running, clear the remainder of GDS. */
1564 if (first_dispatch) {
1565 unsigned offset = gds_offset + gds_size;
1566 si_cp_dma_clear_buffer(sctx, cs, NULL, offset,
1567 GDS_SIZE_UNORDERED - offset,
1568 0,
1569 SI_CPDMA_SKIP_CHECK_CS_SPACE |
1570 SI_CPDMA_SKIP_GFX_SYNC |
1571 SI_CPDMA_SKIP_SYNC_BEFORE,
1572 SI_COHERENCY_NONE, L2_BYPASS);
1573 }
1574 }
1575 first_dispatch = false;
1576
1577 assert(cs->current.cdw <= cs->current.max_dw);
1578 assert(gfx_cs->current.cdw <= gfx_cs->current.max_dw);
1579 }
1580 }