radeonsi: separate code computing info for small primitive culling
[mesa.git] / src / gallium / drivers / radeonsi / si_compute_prim_discard.c
1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include "si_pipe.h"
27 #include "si_shader_internal.h"
28 #include "sid.h"
29 #include "si_build_pm4.h"
30 #include "ac_llvm_cull.h"
31
32 #include "util/u_prim.h"
33 #include "util/u_suballoc.h"
34 #include "util/u_upload_mgr.h"
35 #include "util/fast_idiv_by_const.h"
36
37 /* Based on:
38 * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
39 */
40
41 /* This file implements primitive culling using asynchronous compute.
42 * It's written to be GL conformant.
43 *
44 * It takes a monolithic VS in LLVM IR returning gl_Position and invokes it
45 * in a compute shader. The shader processes 1 primitive/thread by invoking
46 * the VS for each vertex to get the positions, decomposes strips and fans
47 * into triangles (if needed), eliminates primitive restart (if needed),
48 * does (W<0) culling, face culling, view XY culling, zero-area and
49 * small-primitive culling, and generates a new index buffer that doesn't
50 * contain culled primitives.
51 *
52 * The index buffer is generated using the Ordered Count feature of GDS,
53 * which is an atomic counter that is incremented in the wavefront launch
54 * order, so that the original primitive order is preserved.
55 *
56 * Another GDS ordered counter is used to eliminate primitive restart indices.
57 * If a restart index lands on an even thread ID, the compute shader has to flip
58 * the primitive orientation of the whole following triangle strip. The primitive
59 * orientation has to be correct after strip and fan decomposition for two-sided
60 * shading to behave correctly. The decomposition also needs to be aware of
61 * which vertex is the provoking vertex for flat shading to behave correctly.
62 *
63 * IB = a GPU command buffer
64 *
65 * Both the compute and gfx IBs run in parallel sort of like CE and DE.
66 * The gfx IB has a CP barrier (REWIND packet) before a draw packet. REWIND
67 * doesn't continue if its word isn't 0x80000000. Once compute shaders are
68 * finished culling, the last wave will write the final primitive count from
69 * GDS directly into the count word of the draw packet in the gfx IB, and
70 * a CS_DONE event will signal the REWIND packet to continue. It's really
71 * a direct draw with command buffer patching from the compute queue.
72 *
73 * The compute IB doesn't have to start when its corresponding gfx IB starts,
74 * but can start sooner. The compute IB is signaled to start after the last
75 * execution barrier in the *previous* gfx IB. This is handled as follows.
76 * The kernel GPU scheduler starts the compute IB after the previous gfx IB has
77 * started. The compute IB then waits (WAIT_REG_MEM) for a mid-IB fence that
78 * represents the barrier in the previous gfx IB.
79 *
80 * Features:
81 * - Triangle strips and fans are decomposed into an indexed triangle list.
82 * The decomposition differs based on the provoking vertex state.
83 * - Instanced draws are converted into non-instanced draws for 16-bit indices.
84 * (InstanceID is stored in the high bits of VertexID and unpacked by VS)
85 * - Primitive restart is fully supported with triangle strips, including
86 * correct primitive orientation across multiple waves. (restart indices
87 * reset primitive orientation)
88 * - W<0 culling (W<0 is behind the viewer, sort of like near Z culling).
89 * - Back face culling, incl. culling zero-area / degenerate primitives.
90 * - View XY culling.
91 * - View Z culling (disabled due to limited impact with perspective projection).
92 * - Small primitive culling for all MSAA modes and all quant modes.
93 *
94 * The following are not implemented:
95 * - ClipVertex/ClipDistance/CullDistance-based culling.
96 * - Scissor culling.
97 * - HiZ culling.
98 *
99 * Limitations (and unimplemented features that may be possible to implement):
100 * - Only triangles, triangle strips, and triangle fans are supported.
101 * - Primitive restart is only supported with triangle strips.
102 * - Instancing and primitive restart can't be used together.
103 * - Instancing is only supported with 16-bit indices and instance count <= 2^16.
104 * - The instance divisor buffer is unavailable, so all divisors must be
105 * either 0 or 1.
106 * - Multidraws where the vertex shader reads gl_DrawID are unsupported.
107 * - No support for tessellation and geometry shaders.
108 * (patch elimination where tess factors are 0 would be possible to implement)
109 * - The vertex shader must not contain memory stores.
110 * - All VS resources must not have a write usage in the command buffer.
111 * (TODO: all shader buffers currently set the write usage)
112 * - Bindless textures and images must not occur in the vertex shader.
113 *
114 * User data SGPR layout:
115 * INDEX_BUFFERS: pointer to constants
116 * 0..3: input index buffer - typed buffer view
117 * 4..7: output index buffer - typed buffer view
118 * 8..11: viewport state - scale.xy, translate.xy
119 * VERTEX_COUNTER: counter address or first primitive ID
120 * - If unordered memory counter: address of "count" in the draw packet
121 * and is incremented atomically by the shader.
122 * - If unordered GDS counter: address of "count" in GDS starting from 0,
123 * must be initialized to 0 before the dispatch.
124 * - If ordered GDS counter: the primitive ID that should reset the vertex
125 * counter to 0 in GDS
126 * LAST_WAVE_PRIM_ID: the primitive ID that should write the final vertex
127 * count to memory if using GDS ordered append
128 * VERTEX_COUNT_ADDR: where the last wave should write the vertex count if
129 * using GDS ordered append
130 * VS.VERTEX_BUFFERS: same value as VS
131 * VS.CONST_AND_SHADER_BUFFERS: same value as VS
132 * VS.SAMPLERS_AND_IMAGES: same value as VS
133 * VS.BASE_VERTEX: same value as VS
134 * VS.START_INSTANCE: same value as VS
135 * NUM_PRIMS_UDIV_MULTIPLIER: For fast 31-bit division by the number of primitives
136 * per instance for instancing.
137 * NUM_PRIMS_UDIV_TERMS:
138 * - Bits [0:4]: "post_shift" for fast 31-bit division for instancing.
139 * - Bits [5:31]: The number of primitives per instance for computing the remainder.
140 * PRIMITIVE_RESTART_INDEX
141 * SMALL_PRIM_CULLING_PRECISION: Scale the primitive bounding box by this number.
142 *
143 *
144 * The code contains 3 codepaths:
145 * - Unordered memory counter (for debugging, random primitive order, no primitive restart)
146 * - Unordered GDS counter (for debugging, random primitive order, no primitive restart)
147 * - Ordered GDS counter (it preserves the primitive order)
148 *
149 * How to test primitive restart (the most complicated part because it needs
150 * to get the primitive orientation right):
151 * Set THREADGROUP_SIZE to 2 to exercise both intra-wave and inter-wave
152 * primitive orientation flips with small draw calls, which is what most tests use.
153 * You can also enable draw call splitting into draw calls with just 2 primitives.
154 */
155
156 /* At least 256 is needed for the fastest wave launch rate from compute queues
157 * due to hw constraints. Nothing in the code needs more than 1 wave/threadgroup. */
158 #define THREADGROUP_SIZE 256 /* high numbers limit available VGPRs */
159 #define THREADGROUPS_PER_CU 1 /* TGs to launch on 1 CU before going onto the next, max 8 */
160 #define MAX_WAVES_PER_SH 0 /* no limit */
161 #define INDEX_STORES_USE_SLC 1 /* don't cache indices if L2 is full */
162 /* Don't cull Z. We already do (W < 0) culling for primitives behind the viewer. */
163 #define CULL_Z 0
164 /* 0 = unordered memory counter, 1 = unordered GDS counter, 2 = ordered GDS counter */
165 #define VERTEX_COUNTER_GDS_MODE 2
166 #define GDS_SIZE_UNORDERED (4 * 1024) /* only for the unordered GDS counter */
167
168 /* Grouping compute dispatches for small draw calls: How many primitives from multiple
169 * draw calls to process by compute before signaling the gfx IB. This reduces the number
170 * of EOP events + REWIND packets, because they decrease performance. */
171 #define PRIMS_PER_BATCH (512 * 1024)
172 /* Draw call splitting at the packet level. This allows signaling the gfx IB
173 * for big draw calls sooner, but doesn't allow context flushes between packets.
174 * Primitive restart is supported. Only implemented for ordered append. */
175 #define SPLIT_PRIMS_PACKET_LEVEL_VALUE PRIMS_PER_BATCH
176 /* If there is not enough ring buffer space for the current IB, split draw calls into
177 * this number of primitives, so that we can flush the context and get free ring space. */
178 #define SPLIT_PRIMS_DRAW_LEVEL PRIMS_PER_BATCH
179
180 /* Derived values. */
181 #define WAVES_PER_TG DIV_ROUND_UP(THREADGROUP_SIZE, 64)
182 #define SPLIT_PRIMS_PACKET_LEVEL (VERTEX_COUNTER_GDS_MODE == 2 ? \
183 SPLIT_PRIMS_PACKET_LEVEL_VALUE : \
184 UINT_MAX & ~(THREADGROUP_SIZE - 1))
185
186 #define REWIND_SIGNAL_BIT 0x80000000
187 /* For emulating the rewind packet on CI. */
188 #define FORCE_REWIND_EMULATION 0
189
190 void si_initialize_prim_discard_tunables(struct si_screen *sscreen,
191 bool is_aux_context,
192 unsigned *prim_discard_vertex_count_threshold,
193 unsigned *index_ring_size_per_ib)
194 {
195 *prim_discard_vertex_count_threshold = UINT_MAX; /* disable */
196
197 if (sscreen->info.chip_class == GFX6 || /* SI support is not implemented */
198 !sscreen->info.has_gds_ordered_append ||
199 sscreen->debug_flags & DBG(NO_PD) ||
200 is_aux_context)
201 return;
202
203 /* TODO: enable this after the GDS kernel memory management is fixed */
204 bool enable_on_pro_graphics_by_default = false;
205
206 if (sscreen->debug_flags & DBG(ALWAYS_PD) ||
207 sscreen->debug_flags & DBG(PD) ||
208 (enable_on_pro_graphics_by_default &&
209 sscreen->info.is_pro_graphics &&
210 (sscreen->info.family == CHIP_BONAIRE ||
211 sscreen->info.family == CHIP_HAWAII ||
212 sscreen->info.family == CHIP_TONGA ||
213 sscreen->info.family == CHIP_FIJI ||
214 sscreen->info.family == CHIP_POLARIS10 ||
215 sscreen->info.family == CHIP_POLARIS11 ||
216 sscreen->info.family == CHIP_VEGA10 ||
217 sscreen->info.family == CHIP_VEGA20))) {
218 *prim_discard_vertex_count_threshold = 6000 * 3; /* 6K triangles */
219
220 if (sscreen->debug_flags & DBG(ALWAYS_PD))
221 *prim_discard_vertex_count_threshold = 0; /* always enable */
222
223 const uint32_t MB = 1024 * 1024;
224 const uint64_t GB = 1024 * 1024 * 1024;
225
226 /* The total size is double this per context.
227 * Greater numbers allow bigger gfx IBs.
228 */
229 if (sscreen->info.vram_size <= 2 * GB)
230 *index_ring_size_per_ib = 64 * MB;
231 else if (sscreen->info.vram_size <= 4 * GB)
232 *index_ring_size_per_ib = 128 * MB;
233 else
234 *index_ring_size_per_ib = 256 * MB;
235 }
236 }
237
238 /* Opcode can be "add" or "swap". */
239 static LLVMValueRef
240 si_build_ds_ordered_op(struct si_shader_context *ctx, const char *opcode,
241 LLVMValueRef m0, LLVMValueRef value, unsigned ordered_count_index,
242 bool release, bool done)
243 {
244 LLVMValueRef args[] = {
245 LLVMBuildIntToPtr(ctx->ac.builder, m0,
246 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), ""),
247 value,
248 LLVMConstInt(ctx->i32, LLVMAtomicOrderingMonotonic, 0), /* ordering */
249 ctx->i32_0, /* scope */
250 ctx->i1false, /* volatile */
251 LLVMConstInt(ctx->i32, ordered_count_index, 0),
252 LLVMConstInt(ctx->i1, release, 0),
253 LLVMConstInt(ctx->i1, done, 0),
254 };
255
256 char intrinsic[64];
257 snprintf(intrinsic, sizeof(intrinsic), "llvm.amdgcn.ds.ordered.%s", opcode);
258 return ac_build_intrinsic(&ctx->ac, intrinsic, ctx->i32, args, ARRAY_SIZE(args), 0);
259 }
260
261 static LLVMValueRef si_expand_32bit_pointer(struct si_shader_context *ctx, LLVMValueRef ptr)
262 {
263 uint64_t hi = (uint64_t)ctx->screen->info.address32_hi << 32;
264 ptr = LLVMBuildZExt(ctx->ac.builder, ptr, ctx->i64, "");
265 ptr = LLVMBuildOr(ctx->ac.builder, ptr, LLVMConstInt(ctx->i64, hi, 0), "");
266 return LLVMBuildIntToPtr(ctx->ac.builder, ptr,
267 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GLOBAL), "");
268 }
269
270 struct si_thread0_section {
271 struct si_shader_context *ctx;
272 LLVMValueRef vgpr_result; /* a VGPR for the value on thread 0. */
273 LLVMValueRef saved_exec;
274 };
275
276 /* Enter a section that only executes on thread 0. */
277 static void si_enter_thread0_section(struct si_shader_context *ctx,
278 struct si_thread0_section *section,
279 LLVMValueRef thread_id)
280 {
281 section->ctx = ctx;
282 section->vgpr_result = ac_build_alloca_undef(&ctx->ac, ctx->i32, "result0");
283
284 /* This IF has 4 instructions:
285 * v_and_b32_e32 v, 63, v ; get the thread ID
286 * v_cmp_eq_u32_e32 vcc, 0, v ; thread ID == 0
287 * s_and_saveexec_b64 s, vcc
288 * s_cbranch_execz BB0_4
289 *
290 * It could just be s_and_saveexec_b64 s, 1.
291 */
292 ac_build_ifcc(&ctx->ac,
293 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, thread_id,
294 ctx->i32_0, ""), 12601);
295 }
296
297 /* Exit a section that only executes on thread 0 and broadcast the result
298 * to all threads. */
299 static void si_exit_thread0_section(struct si_thread0_section *section,
300 LLVMValueRef *result)
301 {
302 struct si_shader_context *ctx = section->ctx;
303
304 LLVMBuildStore(ctx->ac.builder, *result, section->vgpr_result);
305
306 ac_build_endif(&ctx->ac, 12601);
307
308 /* Broadcast the result from thread 0 to all threads. */
309 *result = ac_build_readlane(&ctx->ac,
310 LLVMBuildLoad(ctx->ac.builder, section->vgpr_result, ""), NULL);
311 }
312
313 void si_build_prim_discard_compute_shader(struct si_shader_context *ctx)
314 {
315 struct si_shader_key *key = &ctx->shader->key;
316 LLVMBuilderRef builder = ctx->ac.builder;
317 LLVMValueRef vs = ctx->main_fn;
318
319 /* Always inline the VS function. */
320 ac_add_function_attr(ctx->ac.context, vs, -1, AC_FUNC_ATTR_ALWAYSINLINE);
321 LLVMSetLinkage(vs, LLVMPrivateLinkage);
322
323 enum ac_arg_type const_desc_type;
324 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
325 ctx->shader->selector->info.shader_buffers_declared == 0)
326 const_desc_type = AC_ARG_CONST_FLOAT_PTR;
327 else
328 const_desc_type = AC_ARG_CONST_DESC_PTR;
329
330 memset(&ctx->args, 0, sizeof(ctx->args));
331
332 struct ac_arg param_index_buffers_and_constants, param_vertex_counter;
333 struct ac_arg param_vb_desc, param_const_desc;
334 struct ac_arg param_base_vertex, param_start_instance;
335 struct ac_arg param_block_id, param_local_id, param_ordered_wave_id;
336 struct ac_arg param_restart_index, param_smallprim_precision;
337 struct ac_arg param_num_prims_udiv_multiplier, param_num_prims_udiv_terms;
338 struct ac_arg param_sampler_desc, param_last_wave_prim_id, param_vertex_count_addr;
339
340 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
341 &param_index_buffers_and_constants);
342 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_vertex_counter);
343 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_last_wave_prim_id);
344 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_vertex_count_addr);
345 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
346 &param_vb_desc);
347 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, const_desc_type,
348 &param_const_desc);
349 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
350 &param_sampler_desc);
351 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_base_vertex);
352 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_start_instance);
353 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_num_prims_udiv_multiplier);
354 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_num_prims_udiv_terms);
355 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_restart_index);
356 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, &param_smallprim_precision);
357
358 /* Block ID and thread ID inputs. */
359 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_block_id);
360 if (VERTEX_COUNTER_GDS_MODE == 2)
361 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &param_ordered_wave_id);
362 ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &param_local_id);
363
364 /* Create the compute shader function. */
365 unsigned old_type = ctx->type;
366 ctx->type = PIPE_SHADER_COMPUTE;
367 si_llvm_create_func(ctx, "prim_discard_cs", NULL, 0, THREADGROUP_SIZE);
368 ctx->type = old_type;
369
370 if (VERTEX_COUNTER_GDS_MODE == 1) {
371 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size",
372 GDS_SIZE_UNORDERED);
373 }
374
375 /* Assemble parameters for VS. */
376 LLVMValueRef vs_params[16];
377 unsigned num_vs_params = 0;
378 unsigned param_vertex_id, param_instance_id;
379
380 vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 0))); /* RW_BUFFERS */
381 vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 1))); /* BINDLESS */
382 vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_const_desc);
383 vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_sampler_desc);
384 vs_params[num_vs_params++] = LLVMConstInt(ctx->i32,
385 S_VS_STATE_INDEXED(key->opt.cs_indexed), 0);
386 vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_base_vertex);
387 vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_start_instance);
388 vs_params[num_vs_params++] = ctx->i32_0; /* DrawID */
389 vs_params[num_vs_params++] = ac_get_arg(&ctx->ac, param_vb_desc);
390
391 vs_params[(param_vertex_id = num_vs_params++)] = NULL; /* VertexID */
392 vs_params[(param_instance_id = num_vs_params++)] = NULL; /* InstanceID */
393 vs_params[num_vs_params++] = ctx->i32_0; /* unused (PrimID) */
394 vs_params[num_vs_params++] = ctx->i32_0; /* unused */
395
396 assert(num_vs_params <= ARRAY_SIZE(vs_params));
397 assert(num_vs_params == LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(vs))));
398
399 /* Load descriptors. (load 8 dwords at once) */
400 LLVMValueRef input_indexbuf, output_indexbuf, tmp, desc[8];
401
402 LLVMValueRef index_buffers_and_constants = ac_get_arg(&ctx->ac, param_index_buffers_and_constants);
403 tmp = LLVMBuildPointerCast(builder, index_buffers_and_constants,
404 ac_array_in_const32_addr_space(ctx->v8i32), "");
405 tmp = ac_build_load_to_sgpr(&ctx->ac, tmp, ctx->i32_0);
406
407 for (unsigned i = 0; i < 8; i++)
408 desc[i] = ac_llvm_extract_elem(&ctx->ac, tmp, i);
409
410 input_indexbuf = ac_build_gather_values(&ctx->ac, desc, 4);
411 output_indexbuf = ac_build_gather_values(&ctx->ac, desc + 4, 4);
412
413 /* Compute PrimID and InstanceID. */
414 LLVMValueRef global_thread_id =
415 ac_build_imad(&ctx->ac, ac_get_arg(&ctx->ac, param_block_id),
416 LLVMConstInt(ctx->i32, THREADGROUP_SIZE, 0),
417 ac_get_arg(&ctx->ac, param_local_id));
418 LLVMValueRef prim_id = global_thread_id; /* PrimID within an instance */
419 LLVMValueRef instance_id = ctx->i32_0;
420
421 if (key->opt.cs_instancing) {
422 LLVMValueRef num_prims_udiv_terms =
423 ac_get_arg(&ctx->ac, param_num_prims_udiv_terms);
424 LLVMValueRef num_prims_udiv_multiplier =
425 ac_get_arg(&ctx->ac, param_num_prims_udiv_multiplier);
426 /* Unpack num_prims_udiv_terms. */
427 LLVMValueRef post_shift = LLVMBuildAnd(builder, num_prims_udiv_terms,
428 LLVMConstInt(ctx->i32, 0x1f, 0), "");
429 LLVMValueRef prims_per_instance = LLVMBuildLShr(builder, num_prims_udiv_terms,
430 LLVMConstInt(ctx->i32, 5, 0), "");
431 /* Divide the total prim_id by the number of prims per instance. */
432 instance_id = ac_build_fast_udiv_u31_d_not_one(&ctx->ac, prim_id,
433 num_prims_udiv_multiplier,
434 post_shift);
435 /* Compute the remainder. */
436 prim_id = LLVMBuildSub(builder, prim_id,
437 LLVMBuildMul(builder, instance_id,
438 prims_per_instance, ""), "");
439 }
440
441 /* Generate indices (like a non-indexed draw call). */
442 LLVMValueRef index[4] = {NULL, NULL, NULL, LLVMGetUndef(ctx->i32)};
443 unsigned vertices_per_prim = 3;
444
445 switch (key->opt.cs_prim_type) {
446 case PIPE_PRIM_TRIANGLES:
447 for (unsigned i = 0; i < 3; i++) {
448 index[i] = ac_build_imad(&ctx->ac, prim_id,
449 LLVMConstInt(ctx->i32, 3, 0),
450 LLVMConstInt(ctx->i32, i, 0));
451 }
452 break;
453 case PIPE_PRIM_TRIANGLE_STRIP:
454 for (unsigned i = 0; i < 3; i++) {
455 index[i] = LLVMBuildAdd(builder, prim_id,
456 LLVMConstInt(ctx->i32, i, 0), "");
457 }
458 break;
459 case PIPE_PRIM_TRIANGLE_FAN:
460 /* Vertex 1 is first and vertex 2 is last. This will go to the hw clipper
461 * and rasterizer as a normal triangle, so we need to put the provoking
462 * vertex into the correct index variable and preserve orientation at the same time.
463 * gl_VertexID is preserved, because it's equal to the index.
464 */
465 if (key->opt.cs_provoking_vertex_first) {
466 index[0] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
467 index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
468 index[2] = ctx->i32_0;
469 } else {
470 index[0] = ctx->i32_0;
471 index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
472 index[2] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
473 }
474 break;
475 default:
476 unreachable("unexpected primitive type");
477 }
478
479 /* Fetch indices. */
480 if (key->opt.cs_indexed) {
481 for (unsigned i = 0; i < 3; i++) {
482 index[i] = ac_build_buffer_load_format(&ctx->ac, input_indexbuf,
483 index[i], ctx->i32_0, 1,
484 0, true);
485 index[i] = ac_to_integer(&ctx->ac, index[i]);
486 }
487 }
488
489 LLVMValueRef ordered_wave_id = ac_get_arg(&ctx->ac, param_ordered_wave_id);
490
491 /* Extract the ordered wave ID. */
492 if (VERTEX_COUNTER_GDS_MODE == 2) {
493 ordered_wave_id = LLVMBuildLShr(builder, ordered_wave_id,
494 LLVMConstInt(ctx->i32, 6, 0), "");
495 ordered_wave_id = LLVMBuildAnd(builder, ordered_wave_id,
496 LLVMConstInt(ctx->i32, 0xfff, 0), "");
497 }
498 LLVMValueRef thread_id =
499 LLVMBuildAnd(builder, ac_get_arg(&ctx->ac, param_local_id),
500 LLVMConstInt(ctx->i32, 63, 0), "");
501
502 /* Every other triangle in a strip has a reversed vertex order, so we
503 * need to swap vertices of odd primitives to get the correct primitive
504 * orientation when converting triangle strips to triangles. Primitive
505 * restart complicates it, because a strip can start anywhere.
506 */
507 LLVMValueRef prim_restart_accepted = ctx->i1true;
508 LLVMValueRef vertex_counter = ac_get_arg(&ctx->ac, param_vertex_counter);
509
510 if (key->opt.cs_prim_type == PIPE_PRIM_TRIANGLE_STRIP) {
511 /* Without primitive restart, odd primitives have reversed orientation.
512 * Only primitive restart can flip it with respect to the first vertex
513 * of the draw call.
514 */
515 LLVMValueRef first_is_odd = ctx->i1false;
516
517 /* Handle primitive restart. */
518 if (key->opt.cs_primitive_restart) {
519 /* Get the GDS primitive restart continue flag and clear
520 * the flag in vertex_counter. This flag is used when the draw
521 * call was split and we need to load the primitive orientation
522 * flag from GDS for the first wave too.
523 */
524 LLVMValueRef gds_prim_restart_continue =
525 LLVMBuildLShr(builder, vertex_counter,
526 LLVMConstInt(ctx->i32, 31, 0), "");
527 gds_prim_restart_continue =
528 LLVMBuildTrunc(builder, gds_prim_restart_continue, ctx->i1, "");
529 vertex_counter = LLVMBuildAnd(builder, vertex_counter,
530 LLVMConstInt(ctx->i32, 0x7fffffff, 0), "");
531
532 LLVMValueRef index0_is_reset;
533
534 for (unsigned i = 0; i < 3; i++) {
535 LLVMValueRef not_reset = LLVMBuildICmp(builder, LLVMIntNE, index[i],
536 ac_get_arg(&ctx->ac, param_restart_index),
537 "");
538 if (i == 0)
539 index0_is_reset = LLVMBuildNot(builder, not_reset, "");
540 prim_restart_accepted = LLVMBuildAnd(builder, prim_restart_accepted,
541 not_reset, "");
542 }
543
544 /* If the previous waves flip the primitive orientation
545 * of the current triangle strip, it will be stored in GDS.
546 *
547 * Sometimes the correct orientation is not needed, in which case
548 * we don't need to execute this.
549 */
550 if (key->opt.cs_need_correct_orientation && VERTEX_COUNTER_GDS_MODE == 2) {
551 /* If there are reset indices in this wave, get the thread index
552 * where the most recent strip starts relative to each thread.
553 */
554 LLVMValueRef preceding_threads_mask =
555 LLVMBuildSub(builder,
556 LLVMBuildShl(builder, ctx->ac.i64_1,
557 LLVMBuildZExt(builder, thread_id, ctx->i64, ""), ""),
558 ctx->ac.i64_1, "");
559
560 LLVMValueRef reset_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, index0_is_reset);
561 LLVMValueRef preceding_reset_threadmask =
562 LLVMBuildAnd(builder, reset_threadmask, preceding_threads_mask, "");
563 LLVMValueRef strip_start =
564 ac_build_umsb(&ctx->ac, preceding_reset_threadmask, NULL);
565 strip_start = LLVMBuildAdd(builder, strip_start, ctx->i32_1, "");
566
567 /* This flips the orientatino based on reset indices within this wave only. */
568 first_is_odd = LLVMBuildTrunc(builder, strip_start, ctx->i1, "");
569
570 LLVMValueRef last_strip_start, prev_wave_state, ret, tmp;
571 LLVMValueRef is_first_wave, current_wave_resets_index;
572
573 /* Get the thread index where the last strip starts in this wave.
574 *
575 * If the last strip doesn't start in this wave, the thread index
576 * will be 0.
577 *
578 * If the last strip starts in the next wave, the thread index will
579 * be 64.
580 */
581 last_strip_start = ac_build_umsb(&ctx->ac, reset_threadmask, NULL);
582 last_strip_start = LLVMBuildAdd(builder, last_strip_start, ctx->i32_1, "");
583
584 struct si_thread0_section section;
585 si_enter_thread0_section(ctx, &section, thread_id);
586
587 /* This must be done in the thread 0 section, because
588 * we expect PrimID to be 0 for the whole first wave
589 * in this expression.
590 *
591 * NOTE: This will need to be different if we wanna support
592 * instancing with primitive restart.
593 */
594 is_first_wave = LLVMBuildICmp(builder, LLVMIntEQ, prim_id, ctx->i32_0, "");
595 is_first_wave = LLVMBuildAnd(builder, is_first_wave,
596 LLVMBuildNot(builder,
597 gds_prim_restart_continue, ""), "");
598 current_wave_resets_index = LLVMBuildICmp(builder, LLVMIntNE,
599 last_strip_start, ctx->i32_0, "");
600
601 ret = ac_build_alloca_undef(&ctx->ac, ctx->i32, "prev_state");
602
603 /* Save the last strip start primitive index in GDS and read
604 * the value that previous waves stored.
605 *
606 * if (is_first_wave || current_wave_resets_strip)
607 * // Read the value that previous waves stored and store a new one.
608 * first_is_odd = ds.ordered.swap(last_strip_start);
609 * else
610 * // Just read the value that previous waves stored.
611 * first_is_odd = ds.ordered.add(0);
612 */
613 ac_build_ifcc(&ctx->ac,
614 LLVMBuildOr(builder, is_first_wave,
615 current_wave_resets_index, ""), 12602);
616 {
617 /* The GDS address is always 0 with ordered append. */
618 tmp = si_build_ds_ordered_op(ctx, "swap",
619 ordered_wave_id, last_strip_start,
620 1, true, false);
621 LLVMBuildStore(builder, tmp, ret);
622 }
623 ac_build_else(&ctx->ac, 12603);
624 {
625 /* Just read the value from GDS. */
626 tmp = si_build_ds_ordered_op(ctx, "add",
627 ordered_wave_id, ctx->i32_0,
628 1, true, false);
629 LLVMBuildStore(builder, tmp, ret);
630 }
631 ac_build_endif(&ctx->ac, 12602);
632
633 prev_wave_state = LLVMBuildLoad(builder, ret, "");
634 /* Ignore the return value if this is the first wave. */
635 prev_wave_state = LLVMBuildSelect(builder, is_first_wave,
636 ctx->i32_0, prev_wave_state, "");
637 si_exit_thread0_section(&section, &prev_wave_state);
638 prev_wave_state = LLVMBuildTrunc(builder, prev_wave_state, ctx->i1, "");
639
640 /* If the strip start appears to be on thread 0 for the current primitive
641 * (meaning the reset index is not present in this wave and might have
642 * appeared in previous waves), use the value from GDS to determine
643 * primitive orientation.
644 *
645 * If the strip start is in this wave for the current primitive, use
646 * the value from the current wave to determine primitive orientation.
647 */
648 LLVMValueRef strip_start_is0 = LLVMBuildICmp(builder, LLVMIntEQ,
649 strip_start, ctx->i32_0, "");
650 first_is_odd = LLVMBuildSelect(builder, strip_start_is0, prev_wave_state,
651 first_is_odd, "");
652 }
653 }
654 /* prim_is_odd = (first_is_odd + current_is_odd) % 2. */
655 LLVMValueRef prim_is_odd =
656 LLVMBuildXor(builder, first_is_odd,
657 LLVMBuildTrunc(builder, thread_id, ctx->i1, ""), "");
658
659 /* Determine the primitive orientation.
660 * Only swap the vertices that are not the provoking vertex. We need to keep
661 * the provoking vertex in place.
662 */
663 if (key->opt.cs_provoking_vertex_first) {
664 LLVMValueRef index1 = index[1];
665 LLVMValueRef index2 = index[2];
666 index[1] = LLVMBuildSelect(builder, prim_is_odd, index2, index1, "");
667 index[2] = LLVMBuildSelect(builder, prim_is_odd, index1, index2, "");
668 } else {
669 LLVMValueRef index0 = index[0];
670 LLVMValueRef index1 = index[1];
671 index[0] = LLVMBuildSelect(builder, prim_is_odd, index1, index0, "");
672 index[1] = LLVMBuildSelect(builder, prim_is_odd, index0, index1, "");
673 }
674 }
675
676 /* Execute the vertex shader for each vertex to get vertex positions. */
677 LLVMValueRef pos[3][4];
678 for (unsigned i = 0; i < vertices_per_prim; i++) {
679 vs_params[param_vertex_id] = index[i];
680 vs_params[param_instance_id] = instance_id;
681
682 LLVMValueRef ret = ac_build_call(&ctx->ac, vs, vs_params, num_vs_params);
683 for (unsigned chan = 0; chan < 4; chan++)
684 pos[i][chan] = LLVMBuildExtractValue(builder, ret, chan, "");
685 }
686
687 /* Divide XYZ by W. */
688 for (unsigned i = 0; i < vertices_per_prim; i++) {
689 for (unsigned chan = 0; chan < 3; chan++)
690 pos[i][chan] = ac_build_fdiv(&ctx->ac, pos[i][chan], pos[i][3]);
691 }
692
693 /* Load the viewport state. */
694 LLVMValueRef vp = ac_build_load_invariant(&ctx->ac, index_buffers_and_constants,
695 LLVMConstInt(ctx->i32, 2, 0));
696 vp = LLVMBuildBitCast(builder, vp, ctx->v4f32, "");
697 LLVMValueRef vp_scale[2], vp_translate[2];
698 vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
699 vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
700 vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
701 vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
702
703 /* Do culling. */
704 struct ac_cull_options options = {};
705 options.cull_front = key->opt.cs_cull_front;
706 options.cull_back = key->opt.cs_cull_back;
707 options.cull_view_xy = true;
708 options.cull_view_near_z = CULL_Z && key->opt.cs_cull_z;
709 options.cull_view_far_z = CULL_Z && key->opt.cs_cull_z;
710 options.cull_small_prims = true;
711 options.cull_zero_area = true;
712 options.cull_w = true;
713 options.use_halfz_clip_space = key->opt.cs_halfz_clip_space;
714
715 LLVMValueRef accepted =
716 ac_cull_triangle(&ctx->ac, pos, prim_restart_accepted,
717 vp_scale, vp_translate,
718 ac_get_arg(&ctx->ac, param_smallprim_precision),
719 &options);
720
721 LLVMValueRef accepted_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
722
723 /* Count the number of active threads by doing bitcount(accepted). */
724 LLVMValueRef num_prims_accepted =
725 ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i64", ctx->i64,
726 &accepted_threadmask, 1, AC_FUNC_ATTR_READNONE);
727 num_prims_accepted = LLVMBuildTrunc(builder, num_prims_accepted, ctx->i32, "");
728
729 LLVMValueRef start;
730
731 /* Execute atomic_add on the vertex count. */
732 struct si_thread0_section section;
733 si_enter_thread0_section(ctx, &section, thread_id);
734 {
735 if (VERTEX_COUNTER_GDS_MODE == 0) {
736 LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
737 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
738 vertex_counter = si_expand_32bit_pointer(ctx, vertex_counter);
739 start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
740 vertex_counter, num_indices,
741 LLVMAtomicOrderingMonotonic, false);
742 } else if (VERTEX_COUNTER_GDS_MODE == 1) {
743 LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
744 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
745 vertex_counter = LLVMBuildIntToPtr(builder, vertex_counter,
746 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), "");
747 start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
748 vertex_counter, num_indices,
749 LLVMAtomicOrderingMonotonic, false);
750 } else if (VERTEX_COUNTER_GDS_MODE == 2) {
751 LLVMValueRef tmp_store = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
752
753 /* If the draw call was split into multiple subdraws, each using
754 * a separate draw packet, we need to start counting from 0 for
755 * the first compute wave of the subdraw.
756 *
757 * vertex_counter contains the primitive ID of the first thread
758 * in the first wave.
759 *
760 * This is only correct with VERTEX_COUNTER_GDS_MODE == 2:
761 */
762 LLVMValueRef is_first_wave =
763 LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
764 vertex_counter, "");
765
766 /* Store the primitive count for ordered append, not vertex count.
767 * The idea is to avoid GDS initialization via CP DMA. The shader
768 * effectively stores the first count using "swap".
769 *
770 * if (first_wave) {
771 * ds.ordered.swap(num_prims_accepted); // store the first primitive count
772 * previous = 0;
773 * } else {
774 * previous = ds.ordered.add(num_prims_accepted) // add the primitive count
775 * }
776 */
777 ac_build_ifcc(&ctx->ac, is_first_wave, 12604);
778 {
779 /* The GDS address is always 0 with ordered append. */
780 si_build_ds_ordered_op(ctx, "swap", ordered_wave_id,
781 num_prims_accepted, 0, true, true);
782 LLVMBuildStore(builder, ctx->i32_0, tmp_store);
783 }
784 ac_build_else(&ctx->ac, 12605);
785 {
786 LLVMBuildStore(builder,
787 si_build_ds_ordered_op(ctx, "add", ordered_wave_id,
788 num_prims_accepted, 0,
789 true, true),
790 tmp_store);
791 }
792 ac_build_endif(&ctx->ac, 12604);
793
794 start = LLVMBuildLoad(builder, tmp_store, "");
795 }
796 }
797 si_exit_thread0_section(&section, &start);
798
799 /* Write the final vertex count to memory. An EOS/EOP event could do this,
800 * but those events are super slow and should be avoided if performance
801 * is a concern. Thanks to GDS ordered append, we can emulate a CS_DONE
802 * event like this.
803 */
804 if (VERTEX_COUNTER_GDS_MODE == 2) {
805 ac_build_ifcc(&ctx->ac,
806 LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
807 ac_get_arg(&ctx->ac, param_last_wave_prim_id), ""),
808 12606);
809 LLVMValueRef count = LLVMBuildAdd(builder, start, num_prims_accepted, "");
810 count = LLVMBuildMul(builder, count,
811 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
812
813 /* GFX8 needs to disable caching, so that the CP can see the stored value.
814 * MTYPE=3 bypasses TC L2.
815 */
816 if (ctx->screen->info.chip_class <= GFX8) {
817 LLVMValueRef desc[] = {
818 ac_get_arg(&ctx->ac, param_vertex_count_addr),
819 LLVMConstInt(ctx->i32,
820 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0),
821 LLVMConstInt(ctx->i32, 4, 0),
822 LLVMConstInt(ctx->i32, S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
823 S_008F0C_MTYPE(3 /* uncached */), 0),
824 };
825 LLVMValueRef rsrc = ac_build_gather_values(&ctx->ac, desc, 4);
826 ac_build_buffer_store_dword(&ctx->ac, rsrc, count, 1, ctx->i32_0,
827 ctx->i32_0, 0, ac_glc | ac_slc);
828 } else {
829 LLVMBuildStore(builder, count,
830 si_expand_32bit_pointer(ctx,
831 ac_get_arg(&ctx->ac,
832 param_vertex_count_addr)));
833 }
834 ac_build_endif(&ctx->ac, 12606);
835 } else {
836 /* For unordered modes that increment a vertex count instead of
837 * primitive count, convert it into the primitive index.
838 */
839 start = LLVMBuildUDiv(builder, start,
840 LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
841 }
842
843 /* Now we need to store the indices of accepted primitives into
844 * the output index buffer.
845 */
846 ac_build_ifcc(&ctx->ac, accepted, 16607);
847 {
848 /* Get the number of bits set before the index of this thread. */
849 LLVMValueRef prim_index = ac_build_mbcnt(&ctx->ac, accepted_threadmask);
850
851 /* We have lowered instancing. Pack the instance ID into vertex ID. */
852 if (key->opt.cs_instancing) {
853 instance_id = LLVMBuildShl(builder, instance_id,
854 LLVMConstInt(ctx->i32, 16, 0), "");
855
856 for (unsigned i = 0; i < vertices_per_prim; i++)
857 index[i] = LLVMBuildOr(builder, index[i], instance_id, "");
858 }
859
860 if (VERTEX_COUNTER_GDS_MODE == 2) {
861 /* vertex_counter contains the first primitive ID
862 * for this dispatch. If the draw call was split into
863 * multiple subdraws, the first primitive ID is > 0
864 * for subsequent subdraws. Each subdraw uses a different
865 * portion of the output index buffer. Offset the store
866 * vindex by the first primitive ID to get the correct
867 * store address for the subdraw.
868 */
869 start = LLVMBuildAdd(builder, start, vertex_counter, "");
870 }
871
872 /* Write indices for accepted primitives. */
873 LLVMValueRef vindex = LLVMBuildAdd(builder, start, prim_index, "");
874 LLVMValueRef vdata = ac_build_gather_values(&ctx->ac, index, 3);
875
876 if (!ac_has_vec3_support(ctx->ac.chip_class, true))
877 vdata = ac_build_expand_to_vec4(&ctx->ac, vdata, 3);
878
879 ac_build_buffer_store_format(&ctx->ac, output_indexbuf, vdata,
880 vindex, ctx->i32_0, 3,
881 ac_glc | (INDEX_STORES_USE_SLC ? ac_slc : 0));
882 }
883 ac_build_endif(&ctx->ac, 16607);
884
885 LLVMBuildRetVoid(builder);
886 }
887
888 /* Return false if the shader isn't ready. */
889 static bool si_shader_select_prim_discard_cs(struct si_context *sctx,
890 const struct pipe_draw_info *info,
891 bool primitive_restart)
892 {
893 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
894 struct si_shader_key key;
895
896 /* Primitive restart needs ordered counters. */
897 assert(!primitive_restart || VERTEX_COUNTER_GDS_MODE == 2);
898 assert(!primitive_restart || info->instance_count == 1);
899
900 memset(&key, 0, sizeof(key));
901 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, &key, &key.part.vs.prolog);
902 assert(!key.part.vs.prolog.instance_divisor_is_fetched);
903
904 key.part.vs.prolog.unpack_instance_id_from_vertex_id = 0;
905 key.opt.vs_as_prim_discard_cs = 1;
906 key.opt.cs_prim_type = info->mode;
907 key.opt.cs_indexed = info->index_size != 0;
908 key.opt.cs_instancing = info->instance_count > 1;
909 key.opt.cs_primitive_restart = primitive_restart;
910 key.opt.cs_provoking_vertex_first = rs->provoking_vertex_first;
911
912 /* Primitive restart with triangle strips needs to preserve primitive
913 * orientation for cases where front and back primitive orientation matters.
914 */
915 if (primitive_restart) {
916 struct si_shader_selector *ps = sctx->ps_shader.cso;
917
918 key.opt.cs_need_correct_orientation =
919 rs->cull_front != rs->cull_back ||
920 ps->info.uses_frontface ||
921 (rs->two_side && ps->info.colors_read);
922 }
923
924 if (rs->rasterizer_discard) {
925 /* Just for performance testing and analysis of trivial bottlenecks.
926 * This should result in a very short compute shader. */
927 key.opt.cs_cull_front = 1;
928 key.opt.cs_cull_back = 1;
929 } else {
930 key.opt.cs_cull_front =
931 sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front;
932 key.opt.cs_cull_back =
933 sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back;
934 }
935
936 if (!rs->depth_clamp_any && CULL_Z) {
937 key.opt.cs_cull_z = 1;
938 key.opt.cs_halfz_clip_space = rs->clip_halfz;
939 }
940
941 sctx->cs_prim_discard_state.cso = sctx->vs_shader.cso;
942 sctx->cs_prim_discard_state.current = NULL;
943
944 if (!sctx->compiler.passes)
945 si_init_compiler(sctx->screen, &sctx->compiler);
946
947 struct si_compiler_ctx_state compiler_state;
948 compiler_state.compiler = &sctx->compiler;
949 compiler_state.debug = sctx->debug;
950 compiler_state.is_debug_context = sctx->is_debug;
951
952 return si_shader_select_with_key(sctx->screen, &sctx->cs_prim_discard_state,
953 &compiler_state, &key, -1, true) == 0 &&
954 /* Disallow compute shaders using the scratch buffer. */
955 sctx->cs_prim_discard_state.current->config.scratch_bytes_per_wave == 0;
956 }
957
958 static bool si_initialize_prim_discard_cmdbuf(struct si_context *sctx)
959 {
960 if (sctx->index_ring)
961 return true;
962
963 if (!sctx->prim_discard_compute_cs) {
964 struct radeon_winsys *ws = sctx->ws;
965 unsigned gds_size = VERTEX_COUNTER_GDS_MODE == 1 ? GDS_SIZE_UNORDERED :
966 VERTEX_COUNTER_GDS_MODE == 2 ? 8 : 0;
967 unsigned num_oa_counters = VERTEX_COUNTER_GDS_MODE == 2 ? 2 : 0;
968
969 if (gds_size) {
970 sctx->gds = ws->buffer_create(ws, gds_size, 4,
971 RADEON_DOMAIN_GDS, 0);
972 if (!sctx->gds)
973 return false;
974
975 ws->cs_add_buffer(sctx->gfx_cs, sctx->gds,
976 RADEON_USAGE_READWRITE, 0, 0);
977 }
978 if (num_oa_counters) {
979 assert(gds_size);
980 sctx->gds_oa = ws->buffer_create(ws, num_oa_counters,
981 1, RADEON_DOMAIN_OA, 0);
982 if (!sctx->gds_oa)
983 return false;
984
985 ws->cs_add_buffer(sctx->gfx_cs, sctx->gds_oa,
986 RADEON_USAGE_READWRITE, 0, 0);
987 }
988
989 sctx->prim_discard_compute_cs =
990 ws->cs_add_parallel_compute_ib(sctx->gfx_cs,
991 num_oa_counters > 0);
992 if (!sctx->prim_discard_compute_cs)
993 return false;
994 }
995
996 if (!sctx->index_ring) {
997 sctx->index_ring =
998 si_aligned_buffer_create(sctx->b.screen,
999 SI_RESOURCE_FLAG_UNMAPPABLE,
1000 PIPE_USAGE_DEFAULT,
1001 sctx->index_ring_size_per_ib * 2,
1002 sctx->screen->info.pte_fragment_size);
1003 if (!sctx->index_ring)
1004 return false;
1005 }
1006 return true;
1007 }
1008
1009 static bool si_check_ring_space(struct si_context *sctx, unsigned out_indexbuf_size)
1010 {
1011 return sctx->index_ring_offset +
1012 align(out_indexbuf_size, sctx->screen->info.tcc_cache_line_size) <=
1013 sctx->index_ring_size_per_ib;
1014 }
1015
1016 enum si_prim_discard_outcome
1017 si_prepare_prim_discard_or_split_draw(struct si_context *sctx,
1018 const struct pipe_draw_info *info,
1019 bool primitive_restart)
1020 {
1021 /* If the compute shader compilation isn't finished, this returns false. */
1022 if (!si_shader_select_prim_discard_cs(sctx, info, primitive_restart))
1023 return SI_PRIM_DISCARD_DISABLED;
1024
1025 if (!si_initialize_prim_discard_cmdbuf(sctx))
1026 return SI_PRIM_DISCARD_DISABLED;
1027
1028 struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
1029 unsigned prim = info->mode;
1030 unsigned count = info->count;
1031 unsigned instance_count = info->instance_count;
1032 unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(prim, count);
1033 unsigned num_prims = num_prims_per_instance * instance_count;
1034 unsigned out_indexbuf_size = num_prims * 12;
1035 bool ring_full = !si_check_ring_space(sctx, out_indexbuf_size);
1036 const unsigned split_prims_draw_level = SPLIT_PRIMS_DRAW_LEVEL;
1037
1038 /* Split draws at the draw call level if the ring is full. This makes
1039 * better use of the ring space.
1040 */
1041 if (ring_full &&
1042 num_prims > split_prims_draw_level &&
1043 instance_count == 1 && /* TODO: support splitting instanced draws */
1044 (1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) |
1045 (1 << PIPE_PRIM_TRIANGLE_STRIP))) {
1046 /* Split draws. */
1047 struct pipe_draw_info split_draw = *info;
1048 split_draw.primitive_restart = primitive_restart;
1049
1050 unsigned base_start = split_draw.start;
1051
1052 if (prim == PIPE_PRIM_TRIANGLES) {
1053 unsigned vert_count_per_subdraw = split_prims_draw_level * 3;
1054 assert(vert_count_per_subdraw < count);
1055
1056 for (unsigned start = 0; start < count; start += vert_count_per_subdraw) {
1057 split_draw.start = base_start + start;
1058 split_draw.count = MIN2(count - start, vert_count_per_subdraw);
1059
1060 sctx->b.draw_vbo(&sctx->b, &split_draw);
1061 }
1062 } else if (prim == PIPE_PRIM_TRIANGLE_STRIP) {
1063 /* No primitive pair can be split, because strips reverse orientation
1064 * for odd primitives. */
1065 STATIC_ASSERT(split_prims_draw_level % 2 == 0);
1066
1067 unsigned vert_count_per_subdraw = split_prims_draw_level;
1068
1069 for (unsigned start = 0; start < count - 2; start += vert_count_per_subdraw) {
1070 split_draw.start = base_start + start;
1071 split_draw.count = MIN2(count - start, vert_count_per_subdraw + 2);
1072
1073 sctx->b.draw_vbo(&sctx->b, &split_draw);
1074
1075 if (start == 0 &&
1076 primitive_restart &&
1077 sctx->cs_prim_discard_state.current->key.opt.cs_need_correct_orientation)
1078 sctx->preserve_prim_restart_gds_at_flush = true;
1079 }
1080 sctx->preserve_prim_restart_gds_at_flush = false;
1081 } else {
1082 assert(0);
1083 }
1084
1085 return SI_PRIM_DISCARD_DRAW_SPLIT;
1086 }
1087
1088 /* Just quit if the draw call doesn't fit into the ring and can't be split. */
1089 if (out_indexbuf_size > sctx->index_ring_size_per_ib) {
1090 if (SI_PRIM_DISCARD_DEBUG)
1091 puts("PD failed: draw call too big, can't be split");
1092 return SI_PRIM_DISCARD_DISABLED;
1093 }
1094
1095 unsigned num_subdraws = DIV_ROUND_UP(num_prims, SPLIT_PRIMS_PACKET_LEVEL);
1096 unsigned need_compute_dw = 11 /* shader */ + 34 /* first draw */ +
1097 24 * (num_subdraws - 1) + /* subdraws */
1098 20; /* leave some space at the end */
1099 unsigned need_gfx_dw = si_get_minimum_num_gfx_cs_dwords(sctx);
1100
1101 if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION)
1102 need_gfx_dw += 9; /* NOP(2) + WAIT_REG_MEM(7), then chain */
1103 else
1104 need_gfx_dw += num_subdraws * 8; /* use REWIND(2) + DRAW(6) */
1105
1106 if (ring_full ||
1107 (VERTEX_COUNTER_GDS_MODE == 1 && sctx->compute_gds_offset + 8 > GDS_SIZE_UNORDERED) ||
1108 !sctx->ws->cs_check_space(gfx_cs, need_gfx_dw, false)) {
1109 /* If the current IB is empty but the size is too small, add a NOP
1110 * packet to force a flush and get a bigger IB.
1111 */
1112 if (!radeon_emitted(gfx_cs, sctx->initial_gfx_cs_size) &&
1113 gfx_cs->current.cdw + need_gfx_dw > gfx_cs->current.max_dw) {
1114 radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
1115 radeon_emit(gfx_cs, 0);
1116 }
1117
1118 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
1119 }
1120
1121 /* The compute IB is always chained, but we need to call cs_check_space to add more space. */
1122 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1123 ASSERTED bool compute_has_space = sctx->ws->cs_check_space(cs, need_compute_dw, false);
1124 assert(compute_has_space);
1125 assert(si_check_ring_space(sctx, out_indexbuf_size));
1126 return SI_PRIM_DISCARD_ENABLED;
1127 }
1128
1129 void si_compute_signal_gfx(struct si_context *sctx)
1130 {
1131 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1132 unsigned writeback_L2_flags = 0;
1133
1134 /* The writeback L2 flags vary with each chip generation. */
1135 /* CI needs to flush vertex indices to memory. */
1136 if (sctx->chip_class <= GFX7)
1137 writeback_L2_flags = EVENT_TC_WB_ACTION_ENA;
1138 else if (sctx->chip_class == GFX8 && VERTEX_COUNTER_GDS_MODE == 0)
1139 writeback_L2_flags = EVENT_TC_WB_ACTION_ENA | EVENT_TC_NC_ACTION_ENA;
1140
1141 if (!sctx->compute_num_prims_in_batch)
1142 return;
1143
1144 assert(sctx->compute_rewind_va);
1145
1146 /* After the queued dispatches are done and vertex counts are written to
1147 * the gfx IB, signal the gfx IB to continue. CP doesn't wait for
1148 * the dispatches to finish, it only adds the CS_DONE event into the event
1149 * queue.
1150 */
1151 si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, writeback_L2_flags,
1152 sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
1153 writeback_L2_flags ? EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM :
1154 EOP_INT_SEL_NONE,
1155 EOP_DATA_SEL_VALUE_32BIT,
1156 NULL,
1157 sctx->compute_rewind_va |
1158 ((uint64_t)sctx->screen->info.address32_hi << 32),
1159 REWIND_SIGNAL_BIT, /* signaling value for the REWIND packet */
1160 SI_NOT_QUERY);
1161
1162 sctx->compute_rewind_va = 0;
1163 sctx->compute_num_prims_in_batch = 0;
1164 }
1165
1166 /* Dispatch a primitive discard compute shader. */
1167 void si_dispatch_prim_discard_cs_and_draw(struct si_context *sctx,
1168 const struct pipe_draw_info *info,
1169 unsigned index_size,
1170 unsigned base_vertex,
1171 uint64_t input_indexbuf_va,
1172 unsigned input_indexbuf_num_elements)
1173 {
1174 struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
1175 struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
1176 unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(info->mode, info->count);
1177 if (!num_prims_per_instance)
1178 return;
1179
1180 unsigned num_prims = num_prims_per_instance * info->instance_count;
1181 unsigned vertices_per_prim, output_indexbuf_format;
1182
1183 switch (info->mode) {
1184 case PIPE_PRIM_TRIANGLES:
1185 case PIPE_PRIM_TRIANGLE_STRIP:
1186 case PIPE_PRIM_TRIANGLE_FAN:
1187 vertices_per_prim = 3;
1188 output_indexbuf_format = V_008F0C_BUF_DATA_FORMAT_32_32_32;
1189 break;
1190 default:
1191 unreachable("unsupported primitive type");
1192 return;
1193 }
1194
1195 unsigned out_indexbuf_offset;
1196 uint64_t output_indexbuf_size = num_prims * vertices_per_prim * 4;
1197 bool first_dispatch = !sctx->prim_discard_compute_ib_initialized;
1198
1199 /* Initialize the compute IB if it's empty. */
1200 if (!sctx->prim_discard_compute_ib_initialized) {
1201 /* 1) State initialization. */
1202 sctx->compute_gds_offset = 0;
1203 sctx->compute_ib_last_shader = NULL;
1204
1205 if (sctx->last_ib_barrier_fence) {
1206 assert(!sctx->last_ib_barrier_buf);
1207 sctx->ws->cs_add_fence_dependency(gfx_cs,
1208 sctx->last_ib_barrier_fence,
1209 RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY);
1210 }
1211
1212 /* 2) IB initialization. */
1213
1214 /* This needs to be done at the beginning of IBs due to possible
1215 * TTM buffer moves in the kernel.
1216 *
1217 * TODO: update for GFX10
1218 */
1219 si_emit_surface_sync(sctx, cs,
1220 S_0085F0_TC_ACTION_ENA(1) |
1221 S_0085F0_TCL1_ACTION_ENA(1) |
1222 S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8) |
1223 S_0085F0_SH_ICACHE_ACTION_ENA(1) |
1224 S_0085F0_SH_KCACHE_ACTION_ENA(1));
1225
1226 /* Restore the GDS prim restart counter if needed. */
1227 if (sctx->preserve_prim_restart_gds_at_flush) {
1228 si_cp_copy_data(sctx, cs,
1229 COPY_DATA_GDS, NULL, 4,
1230 COPY_DATA_SRC_MEM, sctx->wait_mem_scratch, 4);
1231 }
1232
1233 si_emit_initial_compute_regs(sctx, cs);
1234
1235 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
1236 S_00B860_WAVES(sctx->scratch_waves) |
1237 S_00B860_WAVESIZE(0)); /* no scratch */
1238
1239 /* Only 1D grids are launched. */
1240 radeon_set_sh_reg_seq(cs, R_00B820_COMPUTE_NUM_THREAD_Y, 2);
1241 radeon_emit(cs, S_00B820_NUM_THREAD_FULL(1) |
1242 S_00B820_NUM_THREAD_PARTIAL(1));
1243 radeon_emit(cs, S_00B824_NUM_THREAD_FULL(1) |
1244 S_00B824_NUM_THREAD_PARTIAL(1));
1245
1246 radeon_set_sh_reg_seq(cs, R_00B814_COMPUTE_START_Y, 2);
1247 radeon_emit(cs, 0);
1248 radeon_emit(cs, 0);
1249
1250 /* Disable ordered alloc for OA resources. */
1251 for (unsigned i = 0; i < 2; i++) {
1252 radeon_set_uconfig_reg_seq(cs, R_031074_GDS_OA_CNTL, 3);
1253 radeon_emit(cs, S_031074_INDEX(i));
1254 radeon_emit(cs, 0);
1255 radeon_emit(cs, S_03107C_ENABLE(0));
1256 }
1257
1258 if (sctx->last_ib_barrier_buf) {
1259 assert(!sctx->last_ib_barrier_fence);
1260 radeon_add_to_buffer_list(sctx, gfx_cs, sctx->last_ib_barrier_buf,
1261 RADEON_USAGE_READ, RADEON_PRIO_FENCE);
1262 si_cp_wait_mem(sctx, cs,
1263 sctx->last_ib_barrier_buf->gpu_address +
1264 sctx->last_ib_barrier_buf_offset, 1, 1,
1265 WAIT_REG_MEM_EQUAL);
1266 }
1267
1268 sctx->prim_discard_compute_ib_initialized = true;
1269 }
1270
1271 /* Allocate the output index buffer. */
1272 output_indexbuf_size = align(output_indexbuf_size,
1273 sctx->screen->info.tcc_cache_line_size);
1274 assert(sctx->index_ring_offset + output_indexbuf_size <= sctx->index_ring_size_per_ib);
1275 out_indexbuf_offset = sctx->index_ring_base + sctx->index_ring_offset;
1276 sctx->index_ring_offset += output_indexbuf_size;
1277
1278 radeon_add_to_buffer_list(sctx, gfx_cs, sctx->index_ring, RADEON_USAGE_READWRITE,
1279 RADEON_PRIO_SHADER_RW_BUFFER);
1280 uint64_t out_indexbuf_va = sctx->index_ring->gpu_address + out_indexbuf_offset;
1281
1282 /* Prepare index buffer descriptors. */
1283 struct si_resource *indexbuf_desc = NULL;
1284 unsigned indexbuf_desc_offset;
1285 unsigned desc_size = 12 * 4;
1286 uint32_t *desc;
1287
1288 u_upload_alloc(sctx->b.const_uploader, 0, desc_size,
1289 si_optimal_tcc_alignment(sctx, desc_size),
1290 &indexbuf_desc_offset, (struct pipe_resource**)&indexbuf_desc,
1291 (void**)&desc);
1292 radeon_add_to_buffer_list(sctx, gfx_cs, indexbuf_desc, RADEON_USAGE_READ,
1293 RADEON_PRIO_DESCRIPTORS);
1294
1295 /* Input index buffer. */
1296 desc[0] = input_indexbuf_va;
1297 desc[1] = S_008F04_BASE_ADDRESS_HI(input_indexbuf_va >> 32) |
1298 S_008F04_STRIDE(index_size);
1299 desc[2] = input_indexbuf_num_elements * (sctx->chip_class == GFX8 ? index_size : 1);
1300 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1301 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
1302 S_008F0C_DATA_FORMAT(index_size == 1 ? V_008F0C_BUF_DATA_FORMAT_8 :
1303 index_size == 2 ? V_008F0C_BUF_DATA_FORMAT_16 :
1304 V_008F0C_BUF_DATA_FORMAT_32);
1305
1306 /* Output index buffer. */
1307 desc[4] = out_indexbuf_va;
1308 desc[5] = S_008F04_BASE_ADDRESS_HI(out_indexbuf_va >> 32) |
1309 S_008F04_STRIDE(vertices_per_prim * 4);
1310 desc[6] = num_prims * (sctx->chip_class == GFX8 ? vertices_per_prim * 4 : 1);
1311 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1312 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1313 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1314 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
1315 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
1316 S_008F0C_DATA_FORMAT(output_indexbuf_format);
1317
1318 /* Viewport state. */
1319 struct si_small_prim_cull_info cull_info;
1320 si_get_small_prim_cull_info(sctx, &cull_info);
1321
1322 desc[8] = fui(cull_info.scale[0]);
1323 desc[9] = fui(cull_info.scale[1]);
1324 desc[10] = fui(cull_info.translate[0]);
1325 desc[11] = fui(cull_info.translate[1]);
1326
1327 /* Better subpixel precision increases the efficiency of small
1328 * primitive culling. */
1329 unsigned num_samples = sctx->framebuffer.nr_samples;
1330 unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
1331 float small_prim_cull_precision;
1332
1333 if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
1334 small_prim_cull_precision = num_samples / 4096.0;
1335 else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
1336 small_prim_cull_precision = num_samples / 1024.0;
1337 else
1338 small_prim_cull_precision = num_samples / 256.0;
1339
1340 /* Set user data SGPRs. */
1341 /* This can't be greater than 14 if we want the fastest launch rate. */
1342 unsigned user_sgprs = 13;
1343
1344 uint64_t index_buffers_va = indexbuf_desc->gpu_address + indexbuf_desc_offset;
1345 unsigned vs_const_desc = si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX);
1346 unsigned vs_sampler_desc = si_sampler_and_image_descriptors_idx(PIPE_SHADER_VERTEX);
1347 uint64_t vs_const_desc_va = sctx->descriptors[vs_const_desc].gpu_address;
1348 uint64_t vs_sampler_desc_va = sctx->descriptors[vs_sampler_desc].gpu_address;
1349 uint64_t vb_desc_va = sctx->vb_descriptors_buffer ?
1350 sctx->vb_descriptors_buffer->gpu_address +
1351 sctx->vb_descriptors_offset : 0;
1352 unsigned gds_offset, gds_size;
1353 struct si_fast_udiv_info32 num_prims_udiv = {};
1354
1355 if (info->instance_count > 1)
1356 num_prims_udiv = si_compute_fast_udiv_info32(num_prims_per_instance, 31);
1357
1358 /* Limitations on how these two are packed in the user SGPR. */
1359 assert(num_prims_udiv.post_shift < 32);
1360 assert(num_prims_per_instance < 1 << 27);
1361
1362 si_resource_reference(&indexbuf_desc, NULL);
1363
1364 bool primitive_restart = sctx->cs_prim_discard_state.current->key.opt.cs_primitive_restart;
1365
1366 if (VERTEX_COUNTER_GDS_MODE == 1) {
1367 gds_offset = sctx->compute_gds_offset;
1368 gds_size = primitive_restart ? 8 : 4;
1369 sctx->compute_gds_offset += gds_size;
1370
1371 /* Reset the counters in GDS for the first dispatch using WRITE_DATA.
1372 * The remainder of the GDS will be cleared after the dispatch packet
1373 * in parallel with compute shaders.
1374 */
1375 if (first_dispatch) {
1376 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + gds_size/4, 0));
1377 radeon_emit(cs, S_370_DST_SEL(V_370_GDS) | S_370_WR_CONFIRM(1));
1378 radeon_emit(cs, gds_offset);
1379 radeon_emit(cs, 0);
1380 radeon_emit(cs, 0); /* value to write */
1381 if (gds_size == 8)
1382 radeon_emit(cs, 0);
1383 }
1384 }
1385
1386 /* Set shader registers. */
1387 struct si_shader *shader = sctx->cs_prim_discard_state.current;
1388
1389 if (shader != sctx->compute_ib_last_shader) {
1390 radeon_add_to_buffer_list(sctx, gfx_cs, shader->bo, RADEON_USAGE_READ,
1391 RADEON_PRIO_SHADER_BINARY);
1392 uint64_t shader_va = shader->bo->gpu_address;
1393
1394 assert(shader->config.scratch_bytes_per_wave == 0);
1395 assert(shader->config.num_vgprs * WAVES_PER_TG <= 256 * 4);
1396
1397 radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
1398 radeon_emit(cs, shader_va >> 8);
1399 radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
1400
1401 radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
1402 radeon_emit(cs, S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
1403 S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
1404 S_00B848_FLOAT_MODE(shader->config.float_mode) |
1405 S_00B848_DX10_CLAMP(1));
1406 radeon_emit(cs, S_00B84C_SCRATCH_EN(0 /* no scratch */) |
1407 S_00B84C_USER_SGPR(user_sgprs) |
1408 S_00B84C_TGID_X_EN(1 /* only blockID.x is used */) |
1409 S_00B84C_TG_SIZE_EN(VERTEX_COUNTER_GDS_MODE == 2 /* need the wave ID */) |
1410 S_00B84C_TIDIG_COMP_CNT(0 /* only threadID.x is used */) |
1411 S_00B84C_LDS_SIZE(shader->config.lds_size));
1412
1413 radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
1414 ac_get_compute_resource_limits(&sctx->screen->info,
1415 WAVES_PER_TG,
1416 MAX_WAVES_PER_SH,
1417 THREADGROUPS_PER_CU));
1418 sctx->compute_ib_last_shader = shader;
1419 }
1420
1421 STATIC_ASSERT(SPLIT_PRIMS_PACKET_LEVEL % THREADGROUP_SIZE == 0);
1422
1423 /* Big draw calls are split into smaller dispatches and draw packets. */
1424 for (unsigned start_prim = 0; start_prim < num_prims; start_prim += SPLIT_PRIMS_PACKET_LEVEL) {
1425 unsigned num_subdraw_prims;
1426
1427 if (start_prim + SPLIT_PRIMS_PACKET_LEVEL < num_prims)
1428 num_subdraw_prims = SPLIT_PRIMS_PACKET_LEVEL;
1429 else
1430 num_subdraw_prims = num_prims - start_prim;
1431
1432 /* Small dispatches are executed back to back until a specific primitive
1433 * count is reached. Then, a CS_DONE is inserted to signal the gfx IB
1434 * to start drawing the batch. This batching adds latency to the gfx IB,
1435 * but CS_DONE and REWIND are too slow.
1436 */
1437 if (sctx->compute_num_prims_in_batch + num_subdraw_prims > PRIMS_PER_BATCH)
1438 si_compute_signal_gfx(sctx);
1439
1440 if (sctx->compute_num_prims_in_batch == 0) {
1441 assert((gfx_cs->gpu_address >> 32) == sctx->screen->info.address32_hi);
1442 sctx->compute_rewind_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 1) * 4;
1443
1444 if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION) {
1445 radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
1446 radeon_emit(gfx_cs, 0);
1447
1448 si_cp_wait_mem(sctx, gfx_cs,
1449 sctx->compute_rewind_va |
1450 (uint64_t)sctx->screen->info.address32_hi << 32,
1451 REWIND_SIGNAL_BIT, REWIND_SIGNAL_BIT,
1452 WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_PFP);
1453
1454 /* Use INDIRECT_BUFFER to chain to a different buffer
1455 * to discard the CP prefetch cache.
1456 */
1457 sctx->ws->cs_check_space(gfx_cs, 0, true);
1458 } else {
1459 radeon_emit(gfx_cs, PKT3(PKT3_REWIND, 0, 0));
1460 radeon_emit(gfx_cs, 0);
1461 }
1462 }
1463
1464 sctx->compute_num_prims_in_batch += num_subdraw_prims;
1465
1466 uint32_t count_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 4) * 4;
1467 uint64_t index_va = out_indexbuf_va + start_prim * 12;
1468
1469 /* Emit the draw packet into the gfx IB. */
1470 radeon_emit(gfx_cs, PKT3(PKT3_DRAW_INDEX_2, 4, 0));
1471 radeon_emit(gfx_cs, num_prims * vertices_per_prim);
1472 radeon_emit(gfx_cs, index_va);
1473 radeon_emit(gfx_cs, index_va >> 32);
1474 radeon_emit(gfx_cs, 0);
1475 radeon_emit(gfx_cs, V_0287F0_DI_SRC_SEL_DMA);
1476
1477 /* Continue with the compute IB. */
1478 if (start_prim == 0) {
1479 uint32_t gds_prim_restart_continue_bit = 0;
1480
1481 if (sctx->preserve_prim_restart_gds_at_flush) {
1482 assert(primitive_restart &&
1483 info->mode == PIPE_PRIM_TRIANGLE_STRIP);
1484 assert(start_prim < 1 << 31);
1485 gds_prim_restart_continue_bit = 1 << 31;
1486 }
1487
1488 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, user_sgprs);
1489 radeon_emit(cs, index_buffers_va);
1490 radeon_emit(cs,
1491 VERTEX_COUNTER_GDS_MODE == 0 ? count_va :
1492 VERTEX_COUNTER_GDS_MODE == 1 ? gds_offset :
1493 start_prim |
1494 gds_prim_restart_continue_bit);
1495 radeon_emit(cs, start_prim + num_subdraw_prims - 1);
1496 radeon_emit(cs, count_va);
1497 radeon_emit(cs, vb_desc_va);
1498 radeon_emit(cs, vs_const_desc_va);
1499 radeon_emit(cs, vs_sampler_desc_va);
1500 radeon_emit(cs, base_vertex);
1501 radeon_emit(cs, info->start_instance);
1502 radeon_emit(cs, num_prims_udiv.multiplier);
1503 radeon_emit(cs, num_prims_udiv.post_shift |
1504 (num_prims_per_instance << 5));
1505 radeon_emit(cs, info->restart_index);
1506 /* small-prim culling precision (same as rasterizer precision = QUANT_MODE) */
1507 radeon_emit(cs, fui(small_prim_cull_precision));
1508 } else {
1509 assert(VERTEX_COUNTER_GDS_MODE == 2);
1510 /* Only update the SGPRs that changed. */
1511 radeon_set_sh_reg_seq(cs, R_00B904_COMPUTE_USER_DATA_1, 3);
1512 radeon_emit(cs, start_prim);
1513 radeon_emit(cs, start_prim + num_subdraw_prims - 1);
1514 radeon_emit(cs, count_va);
1515 }
1516
1517 /* Set grid dimensions. */
1518 unsigned start_block = start_prim / THREADGROUP_SIZE;
1519 unsigned num_full_blocks = num_subdraw_prims / THREADGROUP_SIZE;
1520 unsigned partial_block_size = num_subdraw_prims % THREADGROUP_SIZE;
1521
1522 radeon_set_sh_reg(cs, R_00B810_COMPUTE_START_X, start_block);
1523 radeon_set_sh_reg(cs, R_00B81C_COMPUTE_NUM_THREAD_X,
1524 S_00B81C_NUM_THREAD_FULL(THREADGROUP_SIZE) |
1525 S_00B81C_NUM_THREAD_PARTIAL(partial_block_size));
1526
1527 radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) |
1528 PKT3_SHADER_TYPE_S(1));
1529 radeon_emit(cs, start_block + num_full_blocks + !!partial_block_size);
1530 radeon_emit(cs, 1);
1531 radeon_emit(cs, 1);
1532 radeon_emit(cs, S_00B800_COMPUTE_SHADER_EN(1) |
1533 S_00B800_PARTIAL_TG_EN(!!partial_block_size) |
1534 S_00B800_ORDERED_APPEND_ENBL(VERTEX_COUNTER_GDS_MODE == 2) |
1535 S_00B800_ORDER_MODE(0 /* launch in order */));
1536
1537 /* This is only for unordered append. Ordered append writes this from
1538 * the shader.
1539 *
1540 * Note that EOP and EOS events are super slow, so emulating the event
1541 * in a shader is an important optimization.
1542 */
1543 if (VERTEX_COUNTER_GDS_MODE == 1) {
1544 si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, 0,
1545 sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
1546 EOP_INT_SEL_NONE,
1547 EOP_DATA_SEL_GDS,
1548 NULL,
1549 count_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
1550 EOP_DATA_GDS(gds_offset / 4, 1),
1551 SI_NOT_QUERY);
1552
1553 /* Now that compute shaders are running, clear the remainder of GDS. */
1554 if (first_dispatch) {
1555 unsigned offset = gds_offset + gds_size;
1556 si_cp_dma_clear_buffer(sctx, cs, NULL, offset,
1557 GDS_SIZE_UNORDERED - offset,
1558 0,
1559 SI_CPDMA_SKIP_CHECK_CS_SPACE |
1560 SI_CPDMA_SKIP_GFX_SYNC |
1561 SI_CPDMA_SKIP_SYNC_BEFORE,
1562 SI_COHERENCY_NONE, L2_BYPASS);
1563 }
1564 }
1565 first_dispatch = false;
1566
1567 assert(cs->current.cdw <= cs->current.max_dw);
1568 assert(gfx_cs->current.cdw <= gfx_cs->current.max_dw);
1569 }
1570 }