radeonsi: change PIPE_SHADER to MESA_SHADER (si_shader_context::type)
[mesa.git] / src / gallium / drivers / radeonsi / si_fence.c
1 /*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include "si_build_pm4.h"
27 #include "util/os_time.h"
28 #include "util/u_memory.h"
29 #include "util/u_queue.h"
30 #include "util/u_upload_mgr.h"
31
32 #include <libsync.h>
33
34 struct si_fine_fence {
35 struct si_resource *buf;
36 unsigned offset;
37 };
38
39 struct si_multi_fence {
40 struct pipe_reference reference;
41 struct pipe_fence_handle *gfx;
42 struct pipe_fence_handle *sdma;
43 struct tc_unflushed_batch_token *tc_token;
44 struct util_queue_fence ready;
45
46 /* If the context wasn't flushed at fence creation, this is non-NULL. */
47 struct {
48 struct si_context *ctx;
49 unsigned ib_index;
50 } gfx_unflushed;
51
52 struct si_fine_fence fine;
53 };
54
55 /**
56 * Write an EOP event.
57 *
58 * \param event EVENT_TYPE_*
59 * \param event_flags Optional cache flush flags (TC)
60 * \param dst_sel MEM or TC_L2
61 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
62 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
63 * \param buf Buffer
64 * \param va GPU address
65 * \param old_value Previous fence value (for a bug workaround)
66 * \param new_value Fence value to write for this event.
67 */
68 void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
69 unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
70 struct si_resource *buf, uint64_t va, uint32_t new_fence,
71 unsigned query_type)
72 {
73 unsigned op = EVENT_TYPE(event) |
74 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
75 event_flags;
76 unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
77 bool compute_ib = !ctx->has_graphics || cs == ctx->prim_discard_compute_cs;
78
79 if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
80 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
81 * counters) must immediately precede every timestamp event to
82 * prevent a GPU hang on GFX9.
83 *
84 * Occlusion queries don't need to do it here, because they
85 * always do ZPASS_DONE before the timestamp.
86 */
87 if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
88 query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
89 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
90 struct si_resource *scratch = ctx->eop_bug_scratch;
91
92 assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0);
93 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
94 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
95 radeon_emit(cs, scratch->gpu_address);
96 radeon_emit(cs, scratch->gpu_address >> 32);
97
98 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
99 RADEON_PRIO_QUERY);
100 }
101
102 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
103 radeon_emit(cs, op);
104 radeon_emit(cs, sel);
105 radeon_emit(cs, va); /* address lo */
106 radeon_emit(cs, va >> 32); /* address hi */
107 radeon_emit(cs, new_fence); /* immediate data lo */
108 radeon_emit(cs, 0); /* immediate data hi */
109 if (ctx->chip_class >= GFX9)
110 radeon_emit(cs, 0); /* unused */
111 } else {
112 if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
113 struct si_resource *scratch = ctx->eop_bug_scratch;
114 uint64_t va = scratch->gpu_address;
115
116 /* Two EOP events are required to make all engines go idle
117 * (and optional cache flushes executed) before the timestamp
118 * is written.
119 */
120 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
121 radeon_emit(cs, op);
122 radeon_emit(cs, va);
123 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
124 radeon_emit(cs, 0); /* immediate data */
125 radeon_emit(cs, 0); /* unused */
126
127 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
128 RADEON_PRIO_QUERY);
129 }
130
131 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
132 radeon_emit(cs, op);
133 radeon_emit(cs, va);
134 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
135 radeon_emit(cs, new_fence); /* immediate data */
136 radeon_emit(cs, 0); /* unused */
137 }
138
139 if (buf) {
140 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
141 }
142 }
143
144 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
145 {
146 unsigned dwords = 6;
147
148 if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
149 dwords *= 2;
150
151 return dwords;
152 }
153
154 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
155 uint32_t mask, unsigned flags)
156 {
157 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
158 radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
159 radeon_emit(cs, va);
160 radeon_emit(cs, va >> 32);
161 radeon_emit(cs, ref); /* reference value */
162 radeon_emit(cs, mask); /* mask */
163 radeon_emit(cs, 4); /* poll interval */
164 }
165
166 static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
167 {
168 struct radeon_winsys *ws = sctx->ws;
169
170 if (sctx->sdma_cs)
171 ws->cs_add_fence_dependency(sctx->sdma_cs, fence, 0);
172 ws->cs_add_fence_dependency(sctx->gfx_cs, fence, 0);
173 }
174
175 static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
176 {
177 sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
178 }
179
180 static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
181 struct pipe_fence_handle *src)
182 {
183 struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
184 struct si_multi_fence **sdst = (struct si_multi_fence **)dst;
185 struct si_multi_fence *ssrc = (struct si_multi_fence *)src;
186
187 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
188 ws->fence_reference(&(*sdst)->gfx, NULL);
189 ws->fence_reference(&(*sdst)->sdma, NULL);
190 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
191 si_resource_reference(&(*sdst)->fine.buf, NULL);
192 FREE(*sdst);
193 }
194 *sdst = ssrc;
195 }
196
197 static struct si_multi_fence *si_create_multi_fence()
198 {
199 struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
200 if (!fence)
201 return NULL;
202
203 pipe_reference_init(&fence->reference, 1);
204 util_queue_fence_init(&fence->ready);
205
206 return fence;
207 }
208
209 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
210 struct tc_unflushed_batch_token *tc_token)
211 {
212 struct si_multi_fence *fence = si_create_multi_fence();
213 if (!fence)
214 return NULL;
215
216 util_queue_fence_reset(&fence->ready);
217 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
218
219 return (struct pipe_fence_handle *)fence;
220 }
221
222 static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
223 {
224 char *map =
225 rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | PIPE_TRANSFER_UNSYNCHRONIZED);
226 if (!map)
227 return false;
228
229 uint32_t *fence = (uint32_t *)(map + fine->offset);
230 return *fence != 0;
231 }
232
233 static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
234 {
235 uint32_t *fence_ptr;
236
237 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
238
239 /* Use cached system memory for the fence. */
240 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
241 (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
242 if (!fine->buf)
243 return;
244
245 *fence_ptr = 0;
246
247 if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
248 uint32_t value = 0x80000000;
249
250 si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
251 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
252 uint64_t fence_va = fine->buf->gpu_address + fine->offset;
253
254 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
255 si_cp_release_mem(ctx, ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
256 EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
257 PIPE_QUERY_GPU_FINISHED);
258 } else {
259 assert(false);
260 }
261 }
262
263 static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
264 struct pipe_fence_handle *fence, uint64_t timeout)
265 {
266 struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
267 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
268 struct si_context *sctx;
269 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
270
271 ctx = threaded_context_unwrap_sync(ctx);
272 sctx = (struct si_context *)(ctx ? ctx : NULL);
273
274 if (!util_queue_fence_is_signalled(&sfence->ready)) {
275 if (sfence->tc_token) {
276 /* Ensure that si_flush_from_st will be called for
277 * this fence, but only if we're in the API thread
278 * where the context is current.
279 *
280 * Note that the batch containing the flush may already
281 * be in flight in the driver thread, so the fence
282 * may not be ready yet when this call returns.
283 */
284 threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
285 }
286
287 if (!timeout)
288 return false;
289
290 if (timeout == PIPE_TIMEOUT_INFINITE) {
291 util_queue_fence_wait(&sfence->ready);
292 } else {
293 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
294 return false;
295 }
296
297 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
298 int64_t time = os_time_get_nano();
299 timeout = abs_timeout > time ? abs_timeout - time : 0;
300 }
301 }
302
303 if (sfence->sdma) {
304 if (!rws->fence_wait(rws, sfence->sdma, timeout))
305 return false;
306
307 /* Recompute the timeout after waiting. */
308 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
309 int64_t time = os_time_get_nano();
310 timeout = abs_timeout > time ? abs_timeout - time : 0;
311 }
312 }
313
314 if (!sfence->gfx)
315 return true;
316
317 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
318 rws->fence_reference(&sfence->gfx, NULL);
319 si_resource_reference(&sfence->fine.buf, NULL);
320 return true;
321 }
322
323 /* Flush the gfx IB if it hasn't been flushed yet. */
324 if (sctx && sfence->gfx_unflushed.ctx == sctx &&
325 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
326 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
327 * spec says:
328 *
329 * "If the sync object being blocked upon will not be
330 * signaled in finite time (for example, by an associated
331 * fence command issued previously, but not yet flushed to
332 * the graphics pipeline), then ClientWaitSync may hang
333 * forever. To help prevent this behavior, if
334 * ClientWaitSync is called and all of the following are
335 * true:
336 *
337 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
338 * * sync is unsignaled when ClientWaitSync is called,
339 * * and the calls to ClientWaitSync and FenceSync were
340 * issued from the same context,
341 *
342 * then the GL will behave as if the equivalent of Flush
343 * were inserted immediately after the creation of sync."
344 *
345 * This means we need to flush for such fences even when we're
346 * not going to wait.
347 */
348 si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
349 NULL);
350 sfence->gfx_unflushed.ctx = NULL;
351
352 if (!timeout)
353 return false;
354
355 /* Recompute the timeout after all that. */
356 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
357 int64_t time = os_time_get_nano();
358 timeout = abs_timeout > time ? abs_timeout - time : 0;
359 }
360 }
361
362 if (rws->fence_wait(rws, sfence->gfx, timeout))
363 return true;
364
365 /* Re-check in case the GPU is slow or hangs, but the commands before
366 * the fine-grained fence have completed. */
367 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
368 return true;
369
370 return false;
371 }
372
373 static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
374 enum pipe_fd_type type)
375 {
376 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
377 struct radeon_winsys *ws = sscreen->ws;
378 struct si_multi_fence *sfence;
379
380 *pfence = NULL;
381
382 sfence = si_create_multi_fence();
383 if (!sfence)
384 return;
385
386 switch (type) {
387 case PIPE_FD_TYPE_NATIVE_SYNC:
388 if (!sscreen->info.has_fence_to_handle)
389 goto finish;
390
391 sfence->gfx = ws->fence_import_sync_file(ws, fd);
392 break;
393
394 case PIPE_FD_TYPE_SYNCOBJ:
395 if (!sscreen->info.has_syncobj)
396 goto finish;
397
398 sfence->gfx = ws->fence_import_syncobj(ws, fd);
399 break;
400
401 default:
402 unreachable("bad fence fd type when importing");
403 }
404
405 finish:
406 if (!sfence->gfx) {
407 FREE(sfence);
408 return;
409 }
410
411 *pfence = (struct pipe_fence_handle *)sfence;
412 }
413
414 static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
415 {
416 struct si_screen *sscreen = (struct si_screen *)screen;
417 struct radeon_winsys *ws = sscreen->ws;
418 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
419 int gfx_fd = -1, sdma_fd = -1;
420
421 if (!sscreen->info.has_fence_to_handle)
422 return -1;
423
424 util_queue_fence_wait(&sfence->ready);
425
426 /* Deferred fences aren't supported. */
427 assert(!sfence->gfx_unflushed.ctx);
428 if (sfence->gfx_unflushed.ctx)
429 return -1;
430
431 if (sfence->sdma) {
432 sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma);
433 if (sdma_fd == -1)
434 return -1;
435 }
436 if (sfence->gfx) {
437 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
438 if (gfx_fd == -1) {
439 if (sdma_fd != -1)
440 close(sdma_fd);
441 return -1;
442 }
443 }
444
445 /* If we don't have FDs at this point, it means we don't have fences
446 * either. */
447 if (sdma_fd == -1 && gfx_fd == -1)
448 return ws->export_signalled_sync_file(ws);
449 if (sdma_fd == -1)
450 return gfx_fd;
451 if (gfx_fd == -1)
452 return sdma_fd;
453
454 /* Get a fence that will be a combination of both fences. */
455 sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
456 close(sdma_fd);
457 return gfx_fd;
458 }
459
460 static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
461 unsigned flags)
462 {
463 struct pipe_screen *screen = ctx->screen;
464 struct si_context *sctx = (struct si_context *)ctx;
465 struct radeon_winsys *ws = sctx->ws;
466 struct pipe_fence_handle *gfx_fence = NULL;
467 struct pipe_fence_handle *sdma_fence = NULL;
468 bool deferred_fence = false;
469 struct si_fine_fence fine = {};
470 unsigned rflags = PIPE_FLUSH_ASYNC;
471
472 if (flags & PIPE_FLUSH_END_OF_FRAME)
473 rflags |= PIPE_FLUSH_END_OF_FRAME;
474
475 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
476 assert(flags & PIPE_FLUSH_DEFERRED);
477 assert(fence);
478
479 si_fine_fence_set(sctx, &fine, flags);
480 }
481
482 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
483 if (sctx->sdma_cs)
484 si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
485
486 if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
487 if (fence)
488 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
489 if (!(flags & PIPE_FLUSH_DEFERRED))
490 ws->cs_sync_flush(sctx->gfx_cs);
491 } else {
492 /* Instead of flushing, create a deferred fence. Constraints:
493 * - the gallium frontend must allow a deferred flush.
494 * - the gallium frontend must request a fence.
495 * - fence_get_fd is not allowed.
496 * Thread safety in fence_finish must be ensured by the gallium frontend.
497 */
498 if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
499 gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
500 deferred_fence = true;
501 } else {
502 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
503 }
504 }
505
506 /* Both engines can signal out of order, so we need to keep both fences. */
507 if (fence) {
508 struct si_multi_fence *multi_fence;
509
510 if (flags & TC_FLUSH_ASYNC) {
511 multi_fence = (struct si_multi_fence *)*fence;
512 assert(multi_fence);
513 } else {
514 multi_fence = si_create_multi_fence();
515 if (!multi_fence) {
516 ws->fence_reference(&sdma_fence, NULL);
517 ws->fence_reference(&gfx_fence, NULL);
518 goto finish;
519 }
520
521 screen->fence_reference(screen, fence, NULL);
522 *fence = (struct pipe_fence_handle *)multi_fence;
523 }
524
525 /* If both fences are NULL, fence_finish will always return true. */
526 multi_fence->gfx = gfx_fence;
527 multi_fence->sdma = sdma_fence;
528
529 if (deferred_fence) {
530 multi_fence->gfx_unflushed.ctx = sctx;
531 multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
532 }
533
534 multi_fence->fine = fine;
535 fine.buf = NULL;
536
537 if (flags & TC_FLUSH_ASYNC) {
538 util_queue_fence_signal(&multi_fence->ready);
539 tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
540 }
541 }
542 assert(!fine.buf);
543 finish:
544 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
545 if (sctx->sdma_cs)
546 ws->cs_sync_flush(sctx->sdma_cs);
547 ws->cs_sync_flush(sctx->gfx_cs);
548 }
549 }
550
551 static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
552 {
553 struct si_context *sctx = (struct si_context *)ctx;
554 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
555
556 /* We should have at least one syncobj to signal */
557 assert(sfence->sdma || sfence->gfx);
558
559 if (sfence->sdma)
560 si_add_syncobj_signal(sctx, sfence->sdma);
561 if (sfence->gfx)
562 si_add_syncobj_signal(sctx, sfence->gfx);
563
564 /**
565 * The spec does not require a flush here. We insert a flush
566 * because syncobj based signals are not directly placed into
567 * the command stream. Instead the signal happens when the
568 * submission associated with the syncobj finishes execution.
569 *
570 * Therefore, we must make sure that we flush the pipe to avoid
571 * new work being emitted and getting executed before the signal
572 * operation.
573 *
574 * Set sctx->initial_gfx_cs_size to force IB submission even if
575 * it is empty.
576 */
577 sctx->initial_gfx_cs_size = 0;
578 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
579 }
580
581 static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
582 {
583 struct si_context *sctx = (struct si_context *)ctx;
584 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
585
586 util_queue_fence_wait(&sfence->ready);
587
588 /* Unflushed fences from the same context are no-ops. */
589 if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
590 return;
591
592 /* All unflushed commands will not start execution before this fence
593 * dependency is signalled. That's fine. Flushing is very expensive
594 * if we get fence_server_sync after every draw call. (which happens
595 * with Android/SurfaceFlinger)
596 *
597 * In a nutshell, when CPU overhead is greater than GPU overhead,
598 * or when the time it takes to execute an IB on the GPU is less than
599 * the time it takes to create and submit that IB, flushing decreases
600 * performance. Therefore, DO NOT FLUSH.
601 */
602 if (sfence->sdma)
603 si_add_fence_dependency(sctx, sfence->sdma);
604 if (sfence->gfx)
605 si_add_fence_dependency(sctx, sfence->gfx);
606 }
607
608 void si_init_fence_functions(struct si_context *ctx)
609 {
610 ctx->b.flush = si_flush_from_st;
611 ctx->b.create_fence_fd = si_create_fence_fd;
612 ctx->b.fence_server_sync = si_fence_server_sync;
613 ctx->b.fence_server_signal = si_fence_server_signal;
614 }
615
616 void si_init_screen_fence_functions(struct si_screen *screen)
617 {
618 screen->b.fence_finish = si_fence_finish;
619 screen->b.fence_reference = si_fence_reference;
620 screen->b.fence_get_fd = si_fence_get_fd;
621 }