3b4bed70b2d6e647b1a63aab6addb1e3bf30e70f
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_strings.h"
29 #include "tgsi/tgsi_util.h"
30 #include "tgsi/tgsi_dump.h"
31 #include "tgsi/tgsi_from_mesa.h"
32
33 #include "ac_binary.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36 #include "ac_rtld.h"
37 #include "ac_llvm_util.h"
38 #include "si_shader_internal.h"
39 #include "si_pipe.h"
40 #include "sid.h"
41
42 #include "compiler/nir/nir.h"
43
44 static const char scratch_rsrc_dword0_symbol[] =
45 "SCRATCH_RSRC_DWORD0";
46
47 static const char scratch_rsrc_dword1_symbol[] =
48 "SCRATCH_RSRC_DWORD1";
49
50 static void si_init_shader_ctx(struct si_shader_context *ctx,
51 struct si_screen *sscreen,
52 struct ac_llvm_compiler *compiler,
53 unsigned wave_size,
54 bool nir);
55
56 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
57 struct lp_build_tgsi_context *bld_base,
58 struct lp_build_emit_data *emit_data);
59
60 static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
61
62 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
63 union si_shader_part_key *key);
64 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
65 union si_shader_part_key *key);
66 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
67 union si_shader_part_key *key);
68 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
69 union si_shader_part_key *key);
70 static void si_fix_resource_usage(struct si_screen *sscreen,
71 struct si_shader *shader);
72
73 /* Ideally pass the sample mask input to the PS epilog as v14, which
74 * is its usual location, so that the shader doesn't have to add v_mov.
75 */
76 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
77
78 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
79 LLVMTypeRef type)
80 {
81 if (type == ctx->ac.i64 || type == ctx->ac.f64)
82 return true;
83
84 return false;
85 }
86
87 /** Whether the shader runs as a combination of multiple API shaders */
88 static bool is_multi_part_shader(struct si_shader_context *ctx)
89 {
90 if (ctx->screen->info.chip_class <= GFX8)
91 return false;
92
93 return ctx->shader->key.as_ls ||
94 ctx->shader->key.as_es ||
95 ctx->type == PIPE_SHADER_TESS_CTRL ||
96 ctx->type == PIPE_SHADER_GEOMETRY;
97 }
98
99 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
100 static bool is_merged_shader(struct si_shader_context *ctx)
101 {
102 return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
103 }
104
105 void si_init_function_info(struct si_function_info *fninfo)
106 {
107 fninfo->num_params = 0;
108 fninfo->num_sgpr_params = 0;
109 }
110
111 unsigned add_arg_assign(struct si_function_info *fninfo,
112 enum si_arg_regfile regfile, LLVMTypeRef type,
113 LLVMValueRef *assign)
114 {
115 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
116
117 unsigned idx = fninfo->num_params++;
118 assert(idx < ARRAY_SIZE(fninfo->types));
119
120 if (regfile == ARG_SGPR)
121 fninfo->num_sgpr_params = fninfo->num_params;
122
123 fninfo->types[idx] = type;
124 fninfo->assign[idx] = assign;
125 return idx;
126 }
127
128 static unsigned add_arg(struct si_function_info *fninfo,
129 enum si_arg_regfile regfile, LLVMTypeRef type)
130 {
131 return add_arg_assign(fninfo, regfile, type, NULL);
132 }
133
134 static void add_arg_assign_checked(struct si_function_info *fninfo,
135 enum si_arg_regfile regfile, LLVMTypeRef type,
136 LLVMValueRef *assign, unsigned idx)
137 {
138 ASSERTED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
139 assert(actual == idx);
140 }
141
142 static void add_arg_checked(struct si_function_info *fninfo,
143 enum si_arg_regfile regfile, LLVMTypeRef type,
144 unsigned idx)
145 {
146 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
147 }
148
149 /**
150 * Returns a unique index for a per-patch semantic name and index. The index
151 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
152 * can be calculated.
153 */
154 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
155 {
156 switch (semantic_name) {
157 case TGSI_SEMANTIC_TESSOUTER:
158 return 0;
159 case TGSI_SEMANTIC_TESSINNER:
160 return 1;
161 case TGSI_SEMANTIC_PATCH:
162 assert(index < 30);
163 return 2 + index;
164
165 default:
166 assert(!"invalid semantic name");
167 return 0;
168 }
169 }
170
171 /**
172 * Returns a unique index for a semantic name and index. The index must be
173 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
174 * calculated.
175 */
176 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
177 unsigned is_varying)
178 {
179 switch (semantic_name) {
180 case TGSI_SEMANTIC_POSITION:
181 return 0;
182 case TGSI_SEMANTIC_GENERIC:
183 /* Since some shader stages use the the highest used IO index
184 * to determine the size to allocate for inputs/outputs
185 * (in LDS, tess and GS rings). GENERIC should be placed right
186 * after POSITION to make that size as small as possible.
187 */
188 if (index < SI_MAX_IO_GENERIC)
189 return 1 + index;
190
191 assert(!"invalid generic index");
192 return 0;
193 case TGSI_SEMANTIC_FOG:
194 return SI_MAX_IO_GENERIC + 1;
195 case TGSI_SEMANTIC_COLOR:
196 assert(index < 2);
197 return SI_MAX_IO_GENERIC + 2 + index;
198 case TGSI_SEMANTIC_BCOLOR:
199 assert(index < 2);
200 /* If it's a varying, COLOR and BCOLOR alias. */
201 if (is_varying)
202 return SI_MAX_IO_GENERIC + 2 + index;
203 else
204 return SI_MAX_IO_GENERIC + 4 + index;
205 case TGSI_SEMANTIC_TEXCOORD:
206 assert(index < 8);
207 return SI_MAX_IO_GENERIC + 6 + index;
208
209 /* These are rarely used between LS and HS or ES and GS. */
210 case TGSI_SEMANTIC_CLIPDIST:
211 assert(index < 2);
212 return SI_MAX_IO_GENERIC + 6 + 8 + index;
213 case TGSI_SEMANTIC_CLIPVERTEX:
214 return SI_MAX_IO_GENERIC + 6 + 8 + 2;
215 case TGSI_SEMANTIC_PSIZE:
216 return SI_MAX_IO_GENERIC + 6 + 8 + 3;
217
218 /* These can't be written by LS, HS, and ES. */
219 case TGSI_SEMANTIC_LAYER:
220 return SI_MAX_IO_GENERIC + 6 + 8 + 4;
221 case TGSI_SEMANTIC_VIEWPORT_INDEX:
222 return SI_MAX_IO_GENERIC + 6 + 8 + 5;
223 case TGSI_SEMANTIC_PRIMID:
224 STATIC_ASSERT(SI_MAX_IO_GENERIC + 6 + 8 + 6 <= 63);
225 return SI_MAX_IO_GENERIC + 6 + 8 + 6;
226 default:
227 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
228 assert(!"invalid semantic name");
229 return 0;
230 }
231 }
232
233 /**
234 * Get the value of a shader input parameter and extract a bitfield.
235 */
236 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
237 LLVMValueRef value, unsigned rshift,
238 unsigned bitwidth)
239 {
240 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
241 value = ac_to_integer(&ctx->ac, value);
242
243 if (rshift)
244 value = LLVMBuildLShr(ctx->ac.builder, value,
245 LLVMConstInt(ctx->i32, rshift, 0), "");
246
247 if (rshift + bitwidth < 32) {
248 unsigned mask = (1 << bitwidth) - 1;
249 value = LLVMBuildAnd(ctx->ac.builder, value,
250 LLVMConstInt(ctx->i32, mask, 0), "");
251 }
252
253 return value;
254 }
255
256 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
257 unsigned param, unsigned rshift,
258 unsigned bitwidth)
259 {
260 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
261
262 return unpack_llvm_param(ctx, value, rshift, bitwidth);
263 }
264
265 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
266 {
267 switch (ctx->type) {
268 case PIPE_SHADER_TESS_CTRL:
269 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
270
271 case PIPE_SHADER_TESS_EVAL:
272 return LLVMGetParam(ctx->main_fn,
273 ctx->param_tes_rel_patch_id);
274
275 default:
276 assert(0);
277 return NULL;
278 }
279 }
280
281 /* Tessellation shaders pass outputs to the next shader using LDS.
282 *
283 * LS outputs = TCS inputs
284 * TCS outputs = TES inputs
285 *
286 * The LDS layout is:
287 * - TCS inputs for patch 0
288 * - TCS inputs for patch 1
289 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
290 * - ...
291 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
292 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
293 * - TCS outputs for patch 1
294 * - Per-patch TCS outputs for patch 1
295 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
296 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
297 * - ...
298 *
299 * All three shaders VS(LS), TCS, TES share the same LDS space.
300 */
301
302 static LLVMValueRef
303 get_tcs_in_patch_stride(struct si_shader_context *ctx)
304 {
305 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
306 }
307
308 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
309 {
310 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
311
312 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
313 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
314
315 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
316 }
317
318 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
319 {
320 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
321
322 return LLVMConstInt(ctx->i32, stride, 0);
323 }
324
325 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
326 {
327 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
328 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
329
330 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
331 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
332 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
333 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
334 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
335 num_patch_outputs * 4;
336 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
337 }
338
339 static LLVMValueRef
340 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
341 {
342 return LLVMBuildMul(ctx->ac.builder,
343 si_unpack_param(ctx,
344 ctx->param_tcs_out_lds_offsets,
345 0, 16),
346 LLVMConstInt(ctx->i32, 4, 0), "");
347 }
348
349 static LLVMValueRef
350 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
351 {
352 return LLVMBuildMul(ctx->ac.builder,
353 si_unpack_param(ctx,
354 ctx->param_tcs_out_lds_offsets,
355 16, 16),
356 LLVMConstInt(ctx->i32, 4, 0), "");
357 }
358
359 static LLVMValueRef
360 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
361 {
362 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
363 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
364
365 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
366 }
367
368 static LLVMValueRef
369 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
370 {
371 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
372 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
373 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
374
375 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
376 }
377
378 static LLVMValueRef
379 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
380 {
381 LLVMValueRef patch0_patch_data_offset =
382 get_tcs_out_patch0_patch_data_offset(ctx);
383 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
384 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
385
386 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
387 }
388
389 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
390 {
391 unsigned tcs_out_vertices =
392 ctx->shader->selector ?
393 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
394
395 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
396 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
397 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
398
399 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
400 }
401
402 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
403 {
404 unsigned stride;
405
406 switch (ctx->type) {
407 case PIPE_SHADER_VERTEX:
408 stride = ctx->shader->selector->lshs_vertex_stride / 4;
409 return LLVMConstInt(ctx->i32, stride, 0);
410
411 case PIPE_SHADER_TESS_CTRL:
412 if (ctx->screen->info.chip_class >= GFX9 &&
413 ctx->shader->is_monolithic) {
414 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
415 return LLVMConstInt(ctx->i32, stride, 0);
416 }
417 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
418
419 default:
420 assert(0);
421 return NULL;
422 }
423 }
424
425 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
426 LLVMValueRef i32, unsigned index)
427 {
428 assert(index <= 1);
429
430 if (index == 1)
431 return LLVMBuildAShr(ctx->ac.builder, i32,
432 LLVMConstInt(ctx->i32, 16, 0), "");
433
434 return LLVMBuildSExt(ctx->ac.builder,
435 LLVMBuildTrunc(ctx->ac.builder, i32,
436 ctx->ac.i16, ""),
437 ctx->i32, "");
438 }
439
440 void si_llvm_load_input_vs(
441 struct si_shader_context *ctx,
442 unsigned input_index,
443 LLVMValueRef out[4])
444 {
445 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
446 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
447
448 if (vs_blit_property) {
449 LLVMValueRef vertex_id = ctx->abi.vertex_id;
450 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
451 LLVMIntULE, vertex_id,
452 ctx->i32_1, "");
453 /* Use LLVMIntNE, because we have 3 vertices and only
454 * the middle one should use y2.
455 */
456 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
457 LLVMIntNE, vertex_id,
458 ctx->i32_1, "");
459
460 if (input_index == 0) {
461 /* Position: */
462 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
463 ctx->param_vs_blit_inputs);
464 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
465 ctx->param_vs_blit_inputs + 1);
466
467 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
468 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
469 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
470 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
471
472 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
473 x1, x2, "");
474 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
475 y1, y2, "");
476
477 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
478 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
479 out[2] = LLVMGetParam(ctx->main_fn,
480 ctx->param_vs_blit_inputs + 2);
481 out[3] = ctx->ac.f32_1;
482 return;
483 }
484
485 /* Color or texture coordinates: */
486 assert(input_index == 1);
487
488 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
489 for (int i = 0; i < 4; i++) {
490 out[i] = LLVMGetParam(ctx->main_fn,
491 ctx->param_vs_blit_inputs + 3 + i);
492 }
493 } else {
494 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
495 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
496 ctx->param_vs_blit_inputs + 3);
497 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
498 ctx->param_vs_blit_inputs + 4);
499 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
500 ctx->param_vs_blit_inputs + 5);
501 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
502 ctx->param_vs_blit_inputs + 6);
503
504 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
505 x1, x2, "");
506 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
507 y1, y2, "");
508 out[2] = LLVMGetParam(ctx->main_fn,
509 ctx->param_vs_blit_inputs + 7);
510 out[3] = LLVMGetParam(ctx->main_fn,
511 ctx->param_vs_blit_inputs + 8);
512 }
513 return;
514 }
515
516 union si_vs_fix_fetch fix_fetch;
517 LLVMValueRef t_list_ptr;
518 LLVMValueRef t_offset;
519 LLVMValueRef t_list;
520 LLVMValueRef vertex_index;
521 LLVMValueRef tmp;
522
523 /* Load the T list */
524 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
525
526 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
527
528 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
529
530 vertex_index = LLVMGetParam(ctx->main_fn,
531 ctx->param_vertex_index0 +
532 input_index);
533
534 /* Use the open-coded implementation for all loads of doubles and
535 * of dword-sized data that needs fixups. We need to insert conversion
536 * code anyway, and the amd/common code does it for us.
537 *
538 * Note: On LLVM <= 8, we can only open-code formats with
539 * channel size >= 4 bytes.
540 */
541 bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
542 fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
543 if (opencode ||
544 (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
545 (fix_fetch.u.log_size == 2)) {
546 tmp = ac_build_opencoded_load_format(
547 &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
548 fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
549 t_list, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
550 for (unsigned i = 0; i < 4; ++i)
551 out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
552 return;
553 }
554
555 /* Do multiple loads for special formats. */
556 unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
557 LLVMValueRef fetches[4];
558 unsigned num_fetches;
559 unsigned fetch_stride;
560 unsigned channels_per_fetch;
561
562 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
563 num_fetches = MIN2(required_channels, 3);
564 fetch_stride = 1 << fix_fetch.u.log_size;
565 channels_per_fetch = 1;
566 } else {
567 num_fetches = 1;
568 fetch_stride = 0;
569 channels_per_fetch = required_channels;
570 }
571
572 for (unsigned i = 0; i < num_fetches; ++i) {
573 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
574 fetches[i] = ac_build_buffer_load_format(&ctx->ac, t_list, vertex_index, voffset,
575 channels_per_fetch, 0, true);
576 }
577
578 if (num_fetches == 1 && channels_per_fetch > 1) {
579 LLVMValueRef fetch = fetches[0];
580 for (unsigned i = 0; i < channels_per_fetch; ++i) {
581 tmp = LLVMConstInt(ctx->i32, i, false);
582 fetches[i] = LLVMBuildExtractElement(
583 ctx->ac.builder, fetch, tmp, "");
584 }
585 num_fetches = channels_per_fetch;
586 channels_per_fetch = 1;
587 }
588
589 for (unsigned i = num_fetches; i < 4; ++i)
590 fetches[i] = LLVMGetUndef(ctx->f32);
591
592 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
593 required_channels == 4) {
594 if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
595 fetches[3] = ctx->ac.i32_1;
596 else
597 fetches[3] = ctx->ac.f32_1;
598 } else if (fix_fetch.u.log_size == 3 &&
599 (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
600 fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
601 fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
602 required_channels == 4) {
603 /* For 2_10_10_10, the hardware returns an unsigned value;
604 * convert it to a signed one.
605 */
606 LLVMValueRef tmp = fetches[3];
607 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
608
609 /* First, recover the sign-extended signed integer value. */
610 if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
611 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
612 else
613 tmp = ac_to_integer(&ctx->ac, tmp);
614
615 /* For the integer-like cases, do a natural sign extension.
616 *
617 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
618 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
619 * exponent.
620 */
621 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
622 fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
623 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
624 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
625
626 /* Convert back to the right type. */
627 if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
628 LLVMValueRef clamp;
629 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
630 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
631 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
632 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
633 } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
634 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
635 }
636
637 fetches[3] = tmp;
638 }
639
640 for (unsigned i = 0; i < 4; ++i)
641 out[i] = ac_to_float(&ctx->ac, fetches[i]);
642 }
643
644 static void declare_input_vs(
645 struct si_shader_context *ctx,
646 unsigned input_index,
647 const struct tgsi_full_declaration *decl,
648 LLVMValueRef out[4])
649 {
650 si_llvm_load_input_vs(ctx, input_index, out);
651 }
652
653 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
654 unsigned swizzle)
655 {
656 if (swizzle > 0)
657 return ctx->i32_0;
658
659 switch (ctx->type) {
660 case PIPE_SHADER_VERTEX:
661 return LLVMGetParam(ctx->main_fn,
662 ctx->param_vs_prim_id);
663 case PIPE_SHADER_TESS_CTRL:
664 return ctx->abi.tcs_patch_id;
665 case PIPE_SHADER_TESS_EVAL:
666 return ctx->abi.tes_patch_id;
667 case PIPE_SHADER_GEOMETRY:
668 return ctx->abi.gs_prim_id;
669 default:
670 assert(0);
671 return ctx->i32_0;
672 }
673 }
674
675 /**
676 * Return the value of tgsi_ind_register for indexing.
677 * This is the indirect index with the constant offset added to it.
678 */
679 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
680 const struct tgsi_ind_register *ind,
681 unsigned addr_mul,
682 int rel_index)
683 {
684 LLVMValueRef result;
685
686 if (ind->File == TGSI_FILE_ADDRESS) {
687 result = ctx->addrs[ind->Index][ind->Swizzle];
688 result = LLVMBuildLoad(ctx->ac.builder, result, "");
689 } else {
690 struct tgsi_full_src_register src = {};
691
692 src.Register.File = ind->File;
693 src.Register.Index = ind->Index;
694
695 /* Set the second index to 0 for constants. */
696 if (ind->File == TGSI_FILE_CONSTANT)
697 src.Register.Dimension = 1;
698
699 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
700 TGSI_TYPE_SIGNED,
701 ind->Swizzle);
702 result = ac_to_integer(&ctx->ac, result);
703 }
704
705 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
706 LLVMConstInt(ctx->i32, rel_index, 0));
707 }
708
709 /**
710 * Like si_get_indirect_index, but restricts the return value to a (possibly
711 * undefined) value inside [0..num).
712 */
713 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
714 const struct tgsi_ind_register *ind,
715 int rel_index, unsigned num)
716 {
717 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
718
719 return si_llvm_bound_index(ctx, result, num);
720 }
721
722 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
723 LLVMValueRef vertex_dw_stride,
724 LLVMValueRef base_addr,
725 LLVMValueRef vertex_index,
726 LLVMValueRef param_index,
727 unsigned input_index,
728 ubyte *name,
729 ubyte *index,
730 bool is_patch)
731 {
732 if (vertex_dw_stride) {
733 base_addr = ac_build_imad(&ctx->ac, vertex_index,
734 vertex_dw_stride, base_addr);
735 }
736
737 if (param_index) {
738 base_addr = ac_build_imad(&ctx->ac, param_index,
739 LLVMConstInt(ctx->i32, 4, 0), base_addr);
740 }
741
742 int param = is_patch ?
743 si_shader_io_get_unique_index_patch(name[input_index],
744 index[input_index]) :
745 si_shader_io_get_unique_index(name[input_index],
746 index[input_index], false);
747
748 /* Add the base address of the element. */
749 return LLVMBuildAdd(ctx->ac.builder, base_addr,
750 LLVMConstInt(ctx->i32, param * 4, 0), "");
751 }
752
753 /**
754 * Calculate a dword address given an input or output register and a stride.
755 */
756 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
757 const struct tgsi_full_dst_register *dst,
758 const struct tgsi_full_src_register *src,
759 LLVMValueRef vertex_dw_stride,
760 LLVMValueRef base_addr)
761 {
762 struct tgsi_shader_info *info = &ctx->shader->selector->info;
763 ubyte *name, *index, *array_first;
764 int input_index;
765 struct tgsi_full_dst_register reg;
766 LLVMValueRef vertex_index = NULL;
767 LLVMValueRef ind_index = NULL;
768
769 /* Set the register description. The address computation is the same
770 * for sources and destinations. */
771 if (src) {
772 reg.Register.File = src->Register.File;
773 reg.Register.Index = src->Register.Index;
774 reg.Register.Indirect = src->Register.Indirect;
775 reg.Register.Dimension = src->Register.Dimension;
776 reg.Indirect = src->Indirect;
777 reg.Dimension = src->Dimension;
778 reg.DimIndirect = src->DimIndirect;
779 } else
780 reg = *dst;
781
782 /* If the register is 2-dimensional (e.g. an array of vertices
783 * in a primitive), calculate the base address of the vertex. */
784 if (reg.Register.Dimension) {
785 if (reg.Dimension.Indirect)
786 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
787 1, reg.Dimension.Index);
788 else
789 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
790 }
791
792 /* Get information about the register. */
793 if (reg.Register.File == TGSI_FILE_INPUT) {
794 name = info->input_semantic_name;
795 index = info->input_semantic_index;
796 array_first = info->input_array_first;
797 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
798 name = info->output_semantic_name;
799 index = info->output_semantic_index;
800 array_first = info->output_array_first;
801 } else {
802 assert(0);
803 return NULL;
804 }
805
806 if (reg.Register.Indirect) {
807 /* Add the relative address of the element. */
808 if (reg.Indirect.ArrayID)
809 input_index = array_first[reg.Indirect.ArrayID];
810 else
811 input_index = reg.Register.Index;
812
813 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
814 1, reg.Register.Index - input_index);
815 } else {
816 input_index = reg.Register.Index;
817 }
818
819 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
820 base_addr, vertex_index,
821 ind_index, input_index,
822 name, index,
823 !reg.Register.Dimension);
824 }
825
826 /* The offchip buffer layout for TCS->TES is
827 *
828 * - attribute 0 of patch 0 vertex 0
829 * - attribute 0 of patch 0 vertex 1
830 * - attribute 0 of patch 0 vertex 2
831 * ...
832 * - attribute 0 of patch 1 vertex 0
833 * - attribute 0 of patch 1 vertex 1
834 * ...
835 * - attribute 1 of patch 0 vertex 0
836 * - attribute 1 of patch 0 vertex 1
837 * ...
838 * - per patch attribute 0 of patch 0
839 * - per patch attribute 0 of patch 1
840 * ...
841 *
842 * Note that every attribute has 4 components.
843 */
844 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
845 LLVMValueRef rel_patch_id,
846 LLVMValueRef vertex_index,
847 LLVMValueRef param_index)
848 {
849 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
850 LLVMValueRef param_stride, constant16;
851
852 vertices_per_patch = get_num_tcs_out_vertices(ctx);
853 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
854 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
855 num_patches, "");
856
857 constant16 = LLVMConstInt(ctx->i32, 16, 0);
858 if (vertex_index) {
859 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
860 vertices_per_patch, vertex_index);
861 param_stride = total_vertices;
862 } else {
863 base_addr = rel_patch_id;
864 param_stride = num_patches;
865 }
866
867 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
868 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
869
870 if (!vertex_index) {
871 LLVMValueRef patch_data_offset =
872 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
873
874 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
875 patch_data_offset, "");
876 }
877 return base_addr;
878 }
879
880 /* This is a generic helper that can be shared by the NIR and TGSI backends */
881 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
882 struct si_shader_context *ctx,
883 LLVMValueRef vertex_index,
884 LLVMValueRef param_index,
885 unsigned param_base,
886 ubyte *name,
887 ubyte *index,
888 bool is_patch)
889 {
890 unsigned param_index_base;
891
892 param_index_base = is_patch ?
893 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
894 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
895
896 if (param_index) {
897 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
898 LLVMConstInt(ctx->i32, param_index_base, 0),
899 "");
900 } else {
901 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
902 }
903
904 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
905 vertex_index, param_index);
906 }
907
908 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
909 struct si_shader_context *ctx,
910 const struct tgsi_full_dst_register *dst,
911 const struct tgsi_full_src_register *src)
912 {
913 struct tgsi_shader_info *info = &ctx->shader->selector->info;
914 ubyte *name, *index, *array_first;
915 struct tgsi_full_src_register reg;
916 LLVMValueRef vertex_index = NULL;
917 LLVMValueRef param_index = NULL;
918 unsigned param_base;
919
920 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
921
922 if (reg.Register.Dimension) {
923
924 if (reg.Dimension.Indirect)
925 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
926 1, reg.Dimension.Index);
927 else
928 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
929 }
930
931 /* Get information about the register. */
932 if (reg.Register.File == TGSI_FILE_INPUT) {
933 name = info->input_semantic_name;
934 index = info->input_semantic_index;
935 array_first = info->input_array_first;
936 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
937 name = info->output_semantic_name;
938 index = info->output_semantic_index;
939 array_first = info->output_array_first;
940 } else {
941 assert(0);
942 return NULL;
943 }
944
945 if (reg.Register.Indirect) {
946 if (reg.Indirect.ArrayID)
947 param_base = array_first[reg.Indirect.ArrayID];
948 else
949 param_base = reg.Register.Index;
950
951 param_index = si_get_indirect_index(ctx, &reg.Indirect,
952 1, reg.Register.Index - param_base);
953
954 } else {
955 param_base = reg.Register.Index;
956 }
957
958 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
959 param_index, param_base,
960 name, index, !reg.Register.Dimension);
961 }
962
963 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
964 LLVMTypeRef type, unsigned swizzle,
965 LLVMValueRef buffer, LLVMValueRef offset,
966 LLVMValueRef base, bool can_speculate)
967 {
968 struct si_shader_context *ctx = si_shader_context(bld_base);
969 LLVMValueRef value, value2;
970 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
971
972 if (swizzle == ~0) {
973 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
974 0, ac_glc, can_speculate, false);
975
976 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
977 }
978
979 if (!llvm_type_is_64bit(ctx, type)) {
980 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
981 0, ac_glc, can_speculate, false);
982
983 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
984 return LLVMBuildExtractElement(ctx->ac.builder, value,
985 LLVMConstInt(ctx->i32, swizzle, 0), "");
986 }
987
988 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
989 swizzle * 4, ac_glc, can_speculate, false);
990
991 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
992 swizzle * 4 + 4, ac_glc, can_speculate, false);
993
994 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
995 }
996
997 /**
998 * Load from LSHS LDS storage.
999 *
1000 * \param type output value type
1001 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1002 * \param dw_addr address in dwords
1003 */
1004 static LLVMValueRef lshs_lds_load(struct lp_build_tgsi_context *bld_base,
1005 LLVMTypeRef type, unsigned swizzle,
1006 LLVMValueRef dw_addr)
1007 {
1008 struct si_shader_context *ctx = si_shader_context(bld_base);
1009 LLVMValueRef value;
1010
1011 if (swizzle == ~0) {
1012 LLVMValueRef values[TGSI_NUM_CHANNELS];
1013
1014 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1015 values[chan] = lshs_lds_load(bld_base, type, chan, dw_addr);
1016
1017 return ac_build_gather_values(&ctx->ac, values,
1018 TGSI_NUM_CHANNELS);
1019 }
1020
1021 /* Split 64-bit loads. */
1022 if (llvm_type_is_64bit(ctx, type)) {
1023 LLVMValueRef lo, hi;
1024
1025 lo = lshs_lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1026 hi = lshs_lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1027 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1028 }
1029
1030 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1031 LLVMConstInt(ctx->i32, swizzle, 0), "");
1032
1033 value = ac_lds_load(&ctx->ac, dw_addr);
1034
1035 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1036 }
1037
1038 /**
1039 * Store to LSHS LDS storage.
1040 *
1041 * \param swizzle offset (typically 0..3)
1042 * \param dw_addr address in dwords
1043 * \param value value to store
1044 */
1045 static void lshs_lds_store(struct si_shader_context *ctx,
1046 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1047 LLVMValueRef value)
1048 {
1049 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1050 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1051
1052 ac_lds_store(&ctx->ac, dw_addr, value);
1053 }
1054
1055 enum si_tess_ring {
1056 TCS_FACTOR_RING,
1057 TESS_OFFCHIP_RING_TCS,
1058 TESS_OFFCHIP_RING_TES,
1059 };
1060
1061 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1062 enum si_tess_ring ring)
1063 {
1064 LLVMBuilderRef builder = ctx->ac.builder;
1065 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1066 ctx->param_tcs_out_lds_layout;
1067 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1068
1069 /* TCS only receives high 13 bits of the address. */
1070 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1071 addr = LLVMBuildAnd(builder, addr,
1072 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1073 }
1074
1075 if (ring == TCS_FACTOR_RING) {
1076 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1077 addr = LLVMBuildAdd(builder, addr,
1078 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1079 }
1080
1081 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1082 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1083 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1084 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1085
1086 if (ctx->screen->info.chip_class >= GFX10)
1087 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1088 S_008F0C_OOB_SELECT(3) |
1089 S_008F0C_RESOURCE_LEVEL(1);
1090 else
1091 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1092 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1093
1094 LLVMValueRef desc[4];
1095 desc[0] = addr;
1096 desc[1] = LLVMConstInt(ctx->i32,
1097 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1098 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1099 desc[3] = LLVMConstInt(ctx->i32, rsrc3, false);
1100
1101 return ac_build_gather_values(&ctx->ac, desc, 4);
1102 }
1103
1104 static LLVMValueRef fetch_input_tcs(
1105 struct lp_build_tgsi_context *bld_base,
1106 const struct tgsi_full_src_register *reg,
1107 enum tgsi_opcode_type type, unsigned swizzle_in)
1108 {
1109 struct si_shader_context *ctx = si_shader_context(bld_base);
1110 LLVMValueRef dw_addr, stride;
1111 unsigned swizzle = swizzle_in & 0xffff;
1112 stride = get_tcs_in_vertex_dw_stride(ctx);
1113 dw_addr = get_tcs_in_current_patch_offset(ctx);
1114 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1115
1116 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1117 }
1118
1119 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1120 LLVMTypeRef type,
1121 LLVMValueRef vertex_index,
1122 LLVMValueRef param_index,
1123 unsigned const_index,
1124 unsigned location,
1125 unsigned driver_location,
1126 unsigned component,
1127 unsigned num_components,
1128 bool is_patch,
1129 bool is_compact,
1130 bool load_input)
1131 {
1132 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1133 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1134 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1135 LLVMValueRef dw_addr, stride;
1136
1137 driver_location = driver_location / 4;
1138
1139 if (load_input) {
1140 stride = get_tcs_in_vertex_dw_stride(ctx);
1141 dw_addr = get_tcs_in_current_patch_offset(ctx);
1142 } else {
1143 if (is_patch) {
1144 stride = NULL;
1145 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1146 } else {
1147 stride = get_tcs_out_vertex_dw_stride(ctx);
1148 dw_addr = get_tcs_out_current_patch_offset(ctx);
1149 }
1150 }
1151
1152 if (!param_index) {
1153 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1154 }
1155
1156 ubyte *names;
1157 ubyte *indices;
1158 if (load_input) {
1159 names = info->input_semantic_name;
1160 indices = info->input_semantic_index;
1161 } else {
1162 names = info->output_semantic_name;
1163 indices = info->output_semantic_index;
1164 }
1165
1166 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1167 vertex_index, param_index,
1168 driver_location,
1169 names, indices,
1170 is_patch);
1171
1172 LLVMValueRef value[4];
1173 for (unsigned i = 0; i < num_components; i++) {
1174 unsigned offset = i;
1175 if (llvm_type_is_64bit(ctx, type))
1176 offset *= 2;
1177
1178 offset += component;
1179 value[i + component] = lshs_lds_load(bld_base, type, offset, dw_addr);
1180 }
1181
1182 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1183 }
1184
1185 static LLVMValueRef fetch_output_tcs(
1186 struct lp_build_tgsi_context *bld_base,
1187 const struct tgsi_full_src_register *reg,
1188 enum tgsi_opcode_type type, unsigned swizzle_in)
1189 {
1190 struct si_shader_context *ctx = si_shader_context(bld_base);
1191 LLVMValueRef dw_addr, stride;
1192 unsigned swizzle = (swizzle_in & 0xffff);
1193
1194 if (reg->Register.Dimension) {
1195 stride = get_tcs_out_vertex_dw_stride(ctx);
1196 dw_addr = get_tcs_out_current_patch_offset(ctx);
1197 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1198 } else {
1199 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1200 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1201 }
1202
1203 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1204 }
1205
1206 static LLVMValueRef fetch_input_tes(
1207 struct lp_build_tgsi_context *bld_base,
1208 const struct tgsi_full_src_register *reg,
1209 enum tgsi_opcode_type type, unsigned swizzle_in)
1210 {
1211 struct si_shader_context *ctx = si_shader_context(bld_base);
1212 LLVMValueRef base, addr;
1213 unsigned swizzle = (swizzle_in & 0xffff);
1214
1215 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1216 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1217
1218 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1219 ctx->tess_offchip_ring, base, addr, true);
1220 }
1221
1222 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1223 LLVMTypeRef type,
1224 LLVMValueRef vertex_index,
1225 LLVMValueRef param_index,
1226 unsigned const_index,
1227 unsigned location,
1228 unsigned driver_location,
1229 unsigned component,
1230 unsigned num_components,
1231 bool is_patch,
1232 bool is_compact,
1233 bool load_input)
1234 {
1235 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1236 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1237 LLVMValueRef base, addr;
1238
1239 driver_location = driver_location / 4;
1240
1241 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1242
1243 if (!param_index) {
1244 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1245 }
1246
1247 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1248 param_index, driver_location,
1249 info->input_semantic_name,
1250 info->input_semantic_index,
1251 is_patch);
1252
1253 /* TODO: This will generate rather ordinary llvm code, although it
1254 * should be easy for the optimiser to fix up. In future we might want
1255 * to refactor buffer_load(), but for now this maximises code sharing
1256 * between the NIR and TGSI backends.
1257 */
1258 LLVMValueRef value[4];
1259 for (unsigned i = 0; i < num_components; i++) {
1260 unsigned offset = i;
1261 if (llvm_type_is_64bit(ctx, type)) {
1262 offset *= 2;
1263 if (offset == 4) {
1264 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1265 vertex_index,
1266 param_index,
1267 driver_location + 1,
1268 info->input_semantic_name,
1269 info->input_semantic_index,
1270 is_patch);
1271 }
1272
1273 offset = offset % 4;
1274 }
1275
1276 offset += component;
1277 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1278 ctx->tess_offchip_ring, base, addr, true);
1279 }
1280
1281 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1282 }
1283
1284 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1285 const struct tgsi_full_instruction *inst,
1286 const struct tgsi_opcode_info *info,
1287 unsigned index,
1288 LLVMValueRef dst[4])
1289 {
1290 struct si_shader_context *ctx = si_shader_context(bld_base);
1291 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1292 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1293 unsigned chan_index;
1294 LLVMValueRef dw_addr, stride;
1295 LLVMValueRef buffer, base, buf_addr;
1296 LLVMValueRef values[4];
1297 bool skip_lds_store;
1298 bool is_tess_factor = false, is_tess_inner = false;
1299
1300 /* Only handle per-patch and per-vertex outputs here.
1301 * Vectors will be lowered to scalars and this function will be called again.
1302 */
1303 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1304 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1305 si_llvm_emit_store(bld_base, inst, info, index, dst);
1306 return;
1307 }
1308
1309 if (reg->Register.Dimension) {
1310 stride = get_tcs_out_vertex_dw_stride(ctx);
1311 dw_addr = get_tcs_out_current_patch_offset(ctx);
1312 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1313 skip_lds_store = !sh_info->reads_pervertex_outputs;
1314 } else {
1315 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1316 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1317 skip_lds_store = !sh_info->reads_perpatch_outputs;
1318
1319 if (!reg->Register.Indirect) {
1320 int name = sh_info->output_semantic_name[reg->Register.Index];
1321
1322 /* Always write tess factors into LDS for the TCS epilog. */
1323 if (name == TGSI_SEMANTIC_TESSINNER ||
1324 name == TGSI_SEMANTIC_TESSOUTER) {
1325 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1326 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1327 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1328 is_tess_factor = true;
1329 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1330 }
1331 }
1332 }
1333
1334 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1335
1336 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1337 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1338
1339 uint32_t writemask = reg->Register.WriteMask;
1340 while (writemask) {
1341 chan_index = u_bit_scan(&writemask);
1342 LLVMValueRef value = dst[chan_index];
1343
1344 if (inst->Instruction.Saturate)
1345 value = ac_build_clamp(&ctx->ac, value);
1346
1347 /* Skip LDS stores if there is no LDS read of this output. */
1348 if (!skip_lds_store)
1349 lshs_lds_store(ctx, chan_index, dw_addr, value);
1350
1351 value = ac_to_integer(&ctx->ac, value);
1352 values[chan_index] = value;
1353
1354 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1355 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1356 buf_addr, base,
1357 4 * chan_index, ac_glc, false);
1358 }
1359
1360 /* Write tess factors into VGPRs for the epilog. */
1361 if (is_tess_factor &&
1362 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1363 if (!is_tess_inner) {
1364 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1365 ctx->invoc0_tess_factors[chan_index]);
1366 } else if (chan_index < 2) {
1367 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1368 ctx->invoc0_tess_factors[4 + chan_index]);
1369 }
1370 }
1371 }
1372
1373 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1374 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1375 values, 4);
1376 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1377 base, 0, ac_glc, false);
1378 }
1379 }
1380
1381 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1382 const struct nir_variable *var,
1383 LLVMValueRef vertex_index,
1384 LLVMValueRef param_index,
1385 unsigned const_index,
1386 LLVMValueRef src,
1387 unsigned writemask)
1388 {
1389 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1390 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1391 const unsigned component = var->data.location_frac;
1392 const bool is_patch = var->data.patch;
1393 unsigned driver_location = var->data.driver_location;
1394 LLVMValueRef dw_addr, stride;
1395 LLVMValueRef buffer, base, addr;
1396 LLVMValueRef values[8];
1397 bool skip_lds_store;
1398 bool is_tess_factor = false, is_tess_inner = false;
1399
1400 driver_location = driver_location / 4;
1401
1402 bool is_const = !param_index;
1403 if (!param_index)
1404 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1405
1406 if (!is_patch) {
1407 stride = get_tcs_out_vertex_dw_stride(ctx);
1408 dw_addr = get_tcs_out_current_patch_offset(ctx);
1409 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1410 vertex_index, param_index,
1411 driver_location,
1412 info->output_semantic_name,
1413 info->output_semantic_index,
1414 is_patch);
1415
1416 skip_lds_store = !info->reads_pervertex_outputs;
1417 } else {
1418 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1419 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1420 vertex_index, param_index,
1421 driver_location,
1422 info->output_semantic_name,
1423 info->output_semantic_index,
1424 is_patch);
1425
1426 skip_lds_store = !info->reads_perpatch_outputs;
1427
1428 if (is_const && const_index == 0) {
1429 int name = info->output_semantic_name[driver_location];
1430
1431 /* Always write tess factors into LDS for the TCS epilog. */
1432 if (name == TGSI_SEMANTIC_TESSINNER ||
1433 name == TGSI_SEMANTIC_TESSOUTER) {
1434 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1435 skip_lds_store = !info->reads_tessfactor_outputs &&
1436 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1437 is_tess_factor = true;
1438 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1439 }
1440 }
1441 }
1442
1443 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1444
1445 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1446
1447 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1448 param_index, driver_location,
1449 info->output_semantic_name,
1450 info->output_semantic_index,
1451 is_patch);
1452
1453 for (unsigned chan = 0; chan < 8; chan++) {
1454 if (!(writemask & (1 << chan)))
1455 continue;
1456 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1457
1458 unsigned buffer_store_offset = chan % 4;
1459 if (chan == 4) {
1460 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1461 vertex_index,
1462 param_index,
1463 driver_location + 1,
1464 info->output_semantic_name,
1465 info->output_semantic_index,
1466 is_patch);
1467 }
1468
1469 /* Skip LDS stores if there is no LDS read of this output. */
1470 if (!skip_lds_store)
1471 lshs_lds_store(ctx, chan, dw_addr, value);
1472
1473 value = ac_to_integer(&ctx->ac, value);
1474 values[chan] = value;
1475
1476 if (writemask != 0xF && !is_tess_factor) {
1477 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1478 addr, base,
1479 4 * buffer_store_offset,
1480 ac_glc, false);
1481 }
1482
1483 /* Write tess factors into VGPRs for the epilog. */
1484 if (is_tess_factor &&
1485 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1486 if (!is_tess_inner) {
1487 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1488 ctx->invoc0_tess_factors[chan]);
1489 } else if (chan < 2) {
1490 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1491 ctx->invoc0_tess_factors[4 + chan]);
1492 }
1493 }
1494 }
1495
1496 if (writemask == 0xF && !is_tess_factor) {
1497 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1498 values, 4);
1499 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1500 base, 0, ac_glc, false);
1501 }
1502 }
1503
1504 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1505 unsigned input_index,
1506 unsigned vtx_offset_param,
1507 LLVMTypeRef type,
1508 unsigned swizzle)
1509 {
1510 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1511 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1512 struct si_shader *shader = ctx->shader;
1513 LLVMValueRef vtx_offset, soffset;
1514 struct tgsi_shader_info *info = &shader->selector->info;
1515 unsigned semantic_name = info->input_semantic_name[input_index];
1516 unsigned semantic_index = info->input_semantic_index[input_index];
1517 unsigned param;
1518 LLVMValueRef value;
1519
1520 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1521
1522 /* GFX9 has the ESGS ring in LDS. */
1523 if (ctx->screen->info.chip_class >= GFX9) {
1524 unsigned index = vtx_offset_param;
1525
1526 switch (index / 2) {
1527 case 0:
1528 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1529 index % 2 ? 16 : 0, 16);
1530 break;
1531 case 1:
1532 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1533 index % 2 ? 16 : 0, 16);
1534 break;
1535 case 2:
1536 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1537 index % 2 ? 16 : 0, 16);
1538 break;
1539 default:
1540 assert(0);
1541 return NULL;
1542 }
1543
1544 unsigned offset = param * 4 + swizzle;
1545 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1546 LLVMConstInt(ctx->i32, offset, false), "");
1547
1548 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset);
1549 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1550 if (llvm_type_is_64bit(ctx, type)) {
1551 ptr = LLVMBuildGEP(ctx->ac.builder, ptr,
1552 &ctx->ac.i32_1, 1, "");
1553 LLVMValueRef values[2] = {
1554 value,
1555 LLVMBuildLoad(ctx->ac.builder, ptr, "")
1556 };
1557 value = ac_build_gather_values(&ctx->ac, values, 2);
1558 }
1559 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1560 }
1561
1562 /* GFX6: input load from the ESGS ring in memory. */
1563 if (swizzle == ~0) {
1564 LLVMValueRef values[TGSI_NUM_CHANNELS];
1565 unsigned chan;
1566 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1567 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1568 type, chan);
1569 }
1570 return ac_build_gather_values(&ctx->ac, values,
1571 TGSI_NUM_CHANNELS);
1572 }
1573
1574 /* Get the vertex offset parameter on GFX6. */
1575 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1576
1577 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1578 LLVMConstInt(ctx->i32, 4, 0), "");
1579
1580 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1581
1582 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1583 vtx_offset, soffset, 0, ac_glc, true, false);
1584 if (llvm_type_is_64bit(ctx, type)) {
1585 LLVMValueRef value2;
1586 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1587
1588 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1589 ctx->i32_0, vtx_offset, soffset,
1590 0, ac_glc, true, false);
1591 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1592 }
1593 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1594 }
1595
1596 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1597 unsigned location,
1598 unsigned driver_location,
1599 unsigned component,
1600 unsigned num_components,
1601 unsigned vertex_index,
1602 unsigned const_index,
1603 LLVMTypeRef type)
1604 {
1605 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1606
1607 LLVMValueRef value[4];
1608 for (unsigned i = 0; i < num_components; i++) {
1609 unsigned offset = i;
1610 if (llvm_type_is_64bit(ctx, type))
1611 offset *= 2;
1612
1613 offset += component;
1614 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4 + const_index,
1615 vertex_index, type, offset);
1616 }
1617
1618 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1619 }
1620
1621 static LLVMValueRef fetch_input_gs(
1622 struct lp_build_tgsi_context *bld_base,
1623 const struct tgsi_full_src_register *reg,
1624 enum tgsi_opcode_type type,
1625 unsigned swizzle_in)
1626 {
1627 struct si_shader_context *ctx = si_shader_context(bld_base);
1628 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1629 unsigned swizzle = swizzle_in & 0xffff;
1630
1631 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1632 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1633 return si_get_primitive_id(ctx, swizzle);
1634
1635 if (!reg->Register.Dimension)
1636 return NULL;
1637
1638 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1639 reg->Dimension.Index,
1640 tgsi2llvmtype(bld_base, type),
1641 swizzle);
1642 }
1643
1644 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1645 {
1646 switch (interpolate) {
1647 case TGSI_INTERPOLATE_CONSTANT:
1648 return 0;
1649
1650 case TGSI_INTERPOLATE_LINEAR:
1651 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1652 return SI_PARAM_LINEAR_SAMPLE;
1653 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1654 return SI_PARAM_LINEAR_CENTROID;
1655 else
1656 return SI_PARAM_LINEAR_CENTER;
1657 break;
1658 case TGSI_INTERPOLATE_COLOR:
1659 case TGSI_INTERPOLATE_PERSPECTIVE:
1660 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1661 return SI_PARAM_PERSP_SAMPLE;
1662 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1663 return SI_PARAM_PERSP_CENTROID;
1664 else
1665 return SI_PARAM_PERSP_CENTER;
1666 break;
1667 default:
1668 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1669 return -1;
1670 }
1671 }
1672
1673 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1674 unsigned attr_index, unsigned chan,
1675 LLVMValueRef prim_mask,
1676 LLVMValueRef i, LLVMValueRef j)
1677 {
1678 if (i || j) {
1679 return ac_build_fs_interp(&ctx->ac,
1680 LLVMConstInt(ctx->i32, chan, 0),
1681 LLVMConstInt(ctx->i32, attr_index, 0),
1682 prim_mask, i, j);
1683 }
1684 return ac_build_fs_interp_mov(&ctx->ac,
1685 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1686 LLVMConstInt(ctx->i32, chan, 0),
1687 LLVMConstInt(ctx->i32, attr_index, 0),
1688 prim_mask);
1689 }
1690
1691 /**
1692 * Interpolate a fragment shader input.
1693 *
1694 * @param ctx context
1695 * @param input_index index of the input in hardware
1696 * @param semantic_name TGSI_SEMANTIC_*
1697 * @param semantic_index semantic index
1698 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1699 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1700 * @param interp_param interpolation weights (i,j)
1701 * @param prim_mask SI_PARAM_PRIM_MASK
1702 * @param face SI_PARAM_FRONT_FACE
1703 * @param result the return value (4 components)
1704 */
1705 static void interp_fs_input(struct si_shader_context *ctx,
1706 unsigned input_index,
1707 unsigned semantic_name,
1708 unsigned semantic_index,
1709 unsigned num_interp_inputs,
1710 unsigned colors_read_mask,
1711 LLVMValueRef interp_param,
1712 LLVMValueRef prim_mask,
1713 LLVMValueRef face,
1714 LLVMValueRef result[4])
1715 {
1716 LLVMValueRef i = NULL, j = NULL;
1717 unsigned chan;
1718
1719 /* fs.constant returns the param from the middle vertex, so it's not
1720 * really useful for flat shading. It's meant to be used for custom
1721 * interpolation (but the intrinsic can't fetch from the other two
1722 * vertices).
1723 *
1724 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1725 * to do the right thing. The only reason we use fs.constant is that
1726 * fs.interp cannot be used on integers, because they can be equal
1727 * to NaN.
1728 *
1729 * When interp is false we will use fs.constant or for newer llvm,
1730 * amdgcn.interp.mov.
1731 */
1732 bool interp = interp_param != NULL;
1733
1734 if (interp) {
1735 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1736 LLVMVectorType(ctx->f32, 2), "");
1737
1738 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1739 ctx->i32_0, "");
1740 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1741 ctx->i32_1, "");
1742 }
1743
1744 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1745 ctx->shader->key.part.ps.prolog.color_two_side) {
1746 LLVMValueRef is_face_positive;
1747
1748 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1749 * otherwise it's at offset "num_inputs".
1750 */
1751 unsigned back_attr_offset = num_interp_inputs;
1752 if (semantic_index == 1 && colors_read_mask & 0xf)
1753 back_attr_offset += 1;
1754
1755 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1756 face, ctx->i32_0, "");
1757
1758 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1759 LLVMValueRef front, back;
1760
1761 front = si_build_fs_interp(ctx,
1762 input_index, chan,
1763 prim_mask, i, j);
1764 back = si_build_fs_interp(ctx,
1765 back_attr_offset, chan,
1766 prim_mask, i, j);
1767
1768 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1769 is_face_positive,
1770 front,
1771 back,
1772 "");
1773 }
1774 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1775 result[0] = si_build_fs_interp(ctx, input_index,
1776 0, prim_mask, i, j);
1777 result[1] =
1778 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1779 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1780 } else {
1781 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1782 result[chan] = si_build_fs_interp(ctx,
1783 input_index, chan,
1784 prim_mask, i, j);
1785 }
1786 }
1787 }
1788
1789 void si_llvm_load_input_fs(
1790 struct si_shader_context *ctx,
1791 unsigned input_index,
1792 LLVMValueRef out[4])
1793 {
1794 struct si_shader *shader = ctx->shader;
1795 struct tgsi_shader_info *info = &shader->selector->info;
1796 LLVMValueRef main_fn = ctx->main_fn;
1797 LLVMValueRef interp_param = NULL;
1798 int interp_param_idx;
1799 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1800 unsigned semantic_index = info->input_semantic_index[input_index];
1801 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1802 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1803
1804 /* Get colors from input VGPRs (set by the prolog). */
1805 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1806 unsigned colors_read = shader->selector->info.colors_read;
1807 unsigned mask = colors_read >> (semantic_index * 4);
1808 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1809 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1810 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1811
1812 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1813 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1814 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1815 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1816 return;
1817 }
1818
1819 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1820 if (interp_param_idx == -1)
1821 return;
1822 else if (interp_param_idx) {
1823 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1824 }
1825
1826 interp_fs_input(ctx, input_index, semantic_name,
1827 semantic_index, 0, /* this param is unused */
1828 shader->selector->info.colors_read, interp_param,
1829 ctx->abi.prim_mask,
1830 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1831 &out[0]);
1832 }
1833
1834 static void declare_input_fs(
1835 struct si_shader_context *ctx,
1836 unsigned input_index,
1837 const struct tgsi_full_declaration *decl,
1838 LLVMValueRef out[4])
1839 {
1840 si_llvm_load_input_fs(ctx, input_index, out);
1841 }
1842
1843 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1844 {
1845 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1846 }
1847
1848 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1849 {
1850 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1851
1852 /* For non-indexed draws, the base vertex set by the driver
1853 * (for direct draws) or the CP (for indirect draws) is the
1854 * first vertex ID, but GLSL expects 0 to be returned.
1855 */
1856 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1857 ctx->param_vs_state_bits);
1858 LLVMValueRef indexed;
1859
1860 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1861 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1862
1863 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1864 ctx->i32_0, "");
1865 }
1866
1867 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1868 {
1869 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1870
1871 LLVMValueRef values[3];
1872 LLVMValueRef result;
1873 unsigned i;
1874 unsigned *properties = ctx->shader->selector->info.properties;
1875
1876 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1877 unsigned sizes[3] = {
1878 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1879 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1880 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1881 };
1882
1883 for (i = 0; i < 3; ++i)
1884 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1885
1886 result = ac_build_gather_values(&ctx->ac, values, 3);
1887 } else {
1888 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1889 }
1890
1891 return result;
1892 }
1893
1894 /**
1895 * Load a dword from a constant buffer.
1896 */
1897 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1898 LLVMValueRef resource,
1899 LLVMValueRef offset)
1900 {
1901 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1902 0, 0, true, true);
1903 }
1904
1905 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1906 {
1907 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1908 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1909 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1910 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1911
1912 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1913 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1914 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1915
1916 LLVMValueRef pos[4] = {
1917 buffer_load_const(ctx, resource, offset0),
1918 buffer_load_const(ctx, resource, offset1),
1919 LLVMConstReal(ctx->f32, 0),
1920 LLVMConstReal(ctx->f32, 0)
1921 };
1922
1923 return ac_build_gather_values(&ctx->ac, pos, 4);
1924 }
1925
1926 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1927 {
1928 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1929 return ac_to_integer(&ctx->ac, abi->sample_coverage);
1930 }
1931
1932 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
1933 {
1934 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1935 LLVMValueRef coord[4] = {
1936 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1937 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1938 ctx->ac.f32_0,
1939 ctx->ac.f32_0
1940 };
1941
1942 /* For triangles, the vector should be (u, v, 1-u-v). */
1943 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1944 PIPE_PRIM_TRIANGLES) {
1945 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1946 LLVMBuildFAdd(ctx->ac.builder,
1947 coord[0], coord[1], ""), "");
1948 }
1949 return ac_build_gather_values(&ctx->ac, coord, 4);
1950 }
1951
1952 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1953 unsigned semantic_name)
1954 {
1955 LLVMValueRef base, addr;
1956
1957 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1958
1959 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1960 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1961 LLVMConstInt(ctx->i32, param, 0));
1962
1963 return buffer_load(&ctx->bld_base, ctx->f32,
1964 ~0, ctx->tess_offchip_ring, base, addr, true);
1965
1966 }
1967
1968 static LLVMValueRef load_tess_level_default(struct si_shader_context *ctx,
1969 unsigned semantic_name)
1970 {
1971 LLVMValueRef buf, slot, val[4];
1972 int i, offset;
1973
1974 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
1975 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1976 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
1977 offset = semantic_name == TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL ? 4 : 0;
1978
1979 for (i = 0; i < 4; i++)
1980 val[i] = buffer_load_const(ctx, buf,
1981 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
1982 return ac_build_gather_values(&ctx->ac, val, 4);
1983 }
1984
1985 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1986 unsigned varying_id,
1987 bool load_default_state)
1988 {
1989 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1990 unsigned semantic_name;
1991
1992 if (load_default_state) {
1993 switch (varying_id) {
1994 case VARYING_SLOT_TESS_LEVEL_INNER:
1995 semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL;
1996 break;
1997 case VARYING_SLOT_TESS_LEVEL_OUTER:
1998 semantic_name = TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL;
1999 break;
2000 default:
2001 unreachable("unknown tess level");
2002 }
2003 return load_tess_level_default(ctx, semantic_name);
2004 }
2005
2006 switch (varying_id) {
2007 case VARYING_SLOT_TESS_LEVEL_INNER:
2008 semantic_name = TGSI_SEMANTIC_TESSINNER;
2009 break;
2010 case VARYING_SLOT_TESS_LEVEL_OUTER:
2011 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2012 break;
2013 default:
2014 unreachable("unknown tess level");
2015 }
2016
2017 return load_tess_level(ctx, semantic_name);
2018
2019 }
2020
2021 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2022 {
2023 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2024 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2025 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2026 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2027 return get_num_tcs_out_vertices(ctx);
2028 else
2029 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2030 }
2031
2032 void si_load_system_value(struct si_shader_context *ctx,
2033 unsigned index,
2034 const struct tgsi_full_declaration *decl)
2035 {
2036 LLVMValueRef value = 0;
2037
2038 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2039
2040 switch (decl->Semantic.Name) {
2041 case TGSI_SEMANTIC_INSTANCEID:
2042 value = ctx->abi.instance_id;
2043 break;
2044
2045 case TGSI_SEMANTIC_VERTEXID:
2046 value = LLVMBuildAdd(ctx->ac.builder,
2047 ctx->abi.vertex_id,
2048 ctx->abi.base_vertex, "");
2049 break;
2050
2051 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2052 /* Unused. Clarify the meaning in indexed vs. non-indexed
2053 * draws if this is ever used again. */
2054 assert(false);
2055 break;
2056
2057 case TGSI_SEMANTIC_BASEVERTEX:
2058 value = get_base_vertex(&ctx->abi);
2059 break;
2060
2061 case TGSI_SEMANTIC_BASEINSTANCE:
2062 value = ctx->abi.start_instance;
2063 break;
2064
2065 case TGSI_SEMANTIC_DRAWID:
2066 value = ctx->abi.draw_id;
2067 break;
2068
2069 case TGSI_SEMANTIC_INVOCATIONID:
2070 if (ctx->type == PIPE_SHADER_TESS_CTRL) {
2071 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2072 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
2073 if (ctx->screen->info.chip_class >= GFX10) {
2074 value = LLVMBuildAnd(ctx->ac.builder,
2075 ctx->abi.gs_invocation_id,
2076 LLVMConstInt(ctx->i32, 127, 0), "");
2077 } else {
2078 value = ctx->abi.gs_invocation_id;
2079 }
2080 } else {
2081 assert(!"INVOCATIONID not implemented");
2082 }
2083 break;
2084
2085 case TGSI_SEMANTIC_POSITION:
2086 {
2087 LLVMValueRef pos[4] = {
2088 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2089 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2090 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2091 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2092 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2093 };
2094 value = ac_build_gather_values(&ctx->ac, pos, 4);
2095 break;
2096 }
2097
2098 case TGSI_SEMANTIC_FACE:
2099 value = ctx->abi.front_face;
2100 break;
2101
2102 case TGSI_SEMANTIC_SAMPLEID:
2103 value = si_get_sample_id(ctx);
2104 break;
2105
2106 case TGSI_SEMANTIC_SAMPLEPOS: {
2107 LLVMValueRef pos[4] = {
2108 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2109 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2110 LLVMConstReal(ctx->f32, 0),
2111 LLVMConstReal(ctx->f32, 0)
2112 };
2113 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2114 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2115 value = ac_build_gather_values(&ctx->ac, pos, 4);
2116 break;
2117 }
2118
2119 case TGSI_SEMANTIC_SAMPLEMASK:
2120 /* This can only occur with the OpenGL Core profile, which
2121 * doesn't support smoothing.
2122 */
2123 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2124 break;
2125
2126 case TGSI_SEMANTIC_TESSCOORD:
2127 value = si_load_tess_coord(&ctx->abi);
2128 break;
2129
2130 case TGSI_SEMANTIC_VERTICESIN:
2131 value = si_load_patch_vertices_in(&ctx->abi);
2132 break;
2133
2134 case TGSI_SEMANTIC_TESSINNER:
2135 case TGSI_SEMANTIC_TESSOUTER:
2136 value = load_tess_level(ctx, decl->Semantic.Name);
2137 break;
2138
2139 case TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL:
2140 case TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL:
2141 value = load_tess_level_default(ctx, decl->Semantic.Name);
2142 break;
2143
2144 case TGSI_SEMANTIC_PRIMID:
2145 value = si_get_primitive_id(ctx, 0);
2146 break;
2147
2148 case TGSI_SEMANTIC_GRID_SIZE:
2149 value = ctx->abi.num_work_groups;
2150 break;
2151
2152 case TGSI_SEMANTIC_BLOCK_SIZE:
2153 value = get_block_size(&ctx->abi);
2154 break;
2155
2156 case TGSI_SEMANTIC_BLOCK_ID:
2157 {
2158 LLVMValueRef values[3];
2159
2160 for (int i = 0; i < 3; i++) {
2161 values[i] = ctx->i32_0;
2162 if (ctx->abi.workgroup_ids[i]) {
2163 values[i] = ctx->abi.workgroup_ids[i];
2164 }
2165 }
2166 value = ac_build_gather_values(&ctx->ac, values, 3);
2167 break;
2168 }
2169
2170 case TGSI_SEMANTIC_THREAD_ID:
2171 value = ctx->abi.local_invocation_ids;
2172 break;
2173
2174 case TGSI_SEMANTIC_HELPER_INVOCATION:
2175 value = ac_build_load_helper_invocation(&ctx->ac);
2176 break;
2177
2178 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2179 value = LLVMConstInt(ctx->i32, ctx->ac.wave_size, 0);
2180 break;
2181
2182 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2183 value = ac_get_thread_id(&ctx->ac);
2184 break;
2185
2186 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2187 {
2188 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2189 if (ctx->ac.wave_size == 64)
2190 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2191 value = LLVMBuildShl(ctx->ac.builder,
2192 LLVMConstInt(ctx->ac.iN_wavemask, 1, 0), id, "");
2193 if (ctx->ac.wave_size == 32)
2194 value = LLVMBuildZExt(ctx->ac.builder, value, ctx->i64, "");
2195 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2196 break;
2197 }
2198
2199 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2200 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2201 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2202 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2203 {
2204 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2205 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2206 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2207 /* All bits set except LSB */
2208 value = LLVMConstInt(ctx->ac.iN_wavemask, -2, 0);
2209 } else {
2210 /* All bits set */
2211 value = LLVMConstInt(ctx->ac.iN_wavemask, -1, 0);
2212 }
2213 if (ctx->ac.wave_size == 64)
2214 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2215 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2216 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2217 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2218 value = LLVMBuildNot(ctx->ac.builder, value, "");
2219 if (ctx->ac.wave_size == 32)
2220 value = LLVMBuildZExt(ctx->ac.builder, value, ctx->i64, "");
2221 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2222 break;
2223 }
2224
2225 case TGSI_SEMANTIC_CS_USER_DATA_AMD:
2226 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2227 break;
2228
2229 default:
2230 assert(!"unknown system value");
2231 return;
2232 }
2233
2234 ctx->system_values[index] = value;
2235 }
2236
2237 void si_declare_compute_memory(struct si_shader_context *ctx)
2238 {
2239 struct si_shader_selector *sel = ctx->shader->selector;
2240 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2241
2242 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2243 LLVMValueRef var;
2244
2245 assert(!ctx->ac.lds);
2246
2247 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2248 LLVMArrayType(ctx->i8, lds_size),
2249 "compute_lds",
2250 AC_ADDR_SPACE_LDS);
2251 LLVMSetAlignment(var, 64 * 1024);
2252
2253 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2254 }
2255
2256 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2257 const struct tgsi_full_declaration *decl)
2258 {
2259 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2260 assert(decl->Range.First == decl->Range.Last);
2261
2262 si_declare_compute_memory(ctx);
2263 }
2264
2265 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2266 {
2267 LLVMValueRef ptr =
2268 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2269 struct si_shader_selector *sel = ctx->shader->selector;
2270
2271 /* Do the bounds checking with a descriptor, because
2272 * doing computation and manual bounds checking of 64-bit
2273 * addresses generates horrible VALU code with very high
2274 * VGPR usage and very low SIMD occupancy.
2275 */
2276 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2277
2278 LLVMValueRef desc0, desc1;
2279 desc0 = ptr;
2280 desc1 = LLVMConstInt(ctx->i32,
2281 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2282
2283 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2284 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2285 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2286 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2287
2288 if (ctx->screen->info.chip_class >= GFX10)
2289 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2290 S_008F0C_OOB_SELECT(3) |
2291 S_008F0C_RESOURCE_LEVEL(1);
2292 else
2293 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2294 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2295
2296 LLVMValueRef desc_elems[] = {
2297 desc0,
2298 desc1,
2299 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2300 LLVMConstInt(ctx->i32, rsrc3, false)
2301 };
2302
2303 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2304 }
2305
2306 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2307 {
2308 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2309 ctx->param_const_and_shader_buffers);
2310
2311 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2312 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2313 }
2314
2315 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2316 {
2317 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2318 struct si_shader_selector *sel = ctx->shader->selector;
2319
2320 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2321
2322 if (sel->info.const_buffers_declared == 1 &&
2323 sel->info.shader_buffers_declared == 0) {
2324 return load_const_buffer_desc_fast_path(ctx);
2325 }
2326
2327 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2328 index = LLVMBuildAdd(ctx->ac.builder, index,
2329 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2330
2331 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2332 }
2333
2334 static LLVMValueRef
2335 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2336 {
2337 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2338 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2339 ctx->param_const_and_shader_buffers);
2340
2341 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2342 index = LLVMBuildSub(ctx->ac.builder,
2343 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2344 index, "");
2345
2346 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2347 }
2348
2349 static LLVMValueRef fetch_constant(
2350 struct lp_build_tgsi_context *bld_base,
2351 const struct tgsi_full_src_register *reg,
2352 enum tgsi_opcode_type type,
2353 unsigned swizzle_in)
2354 {
2355 struct si_shader_context *ctx = si_shader_context(bld_base);
2356 struct si_shader_selector *sel = ctx->shader->selector;
2357 const struct tgsi_ind_register *ireg = &reg->Indirect;
2358 unsigned buf, idx;
2359 unsigned swizzle = swizzle_in & 0xffff;
2360
2361 LLVMValueRef addr, bufp;
2362
2363 if (swizzle_in == LP_CHAN_ALL) {
2364 unsigned chan;
2365 LLVMValueRef values[4];
2366 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2367 values[chan] = fetch_constant(bld_base, reg, type, chan);
2368
2369 return ac_build_gather_values(&ctx->ac, values, 4);
2370 }
2371
2372 /* Split 64-bit loads. */
2373 if (tgsi_type_is_64bit(type)) {
2374 LLVMValueRef lo, hi;
2375
2376 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2377 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2378 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2379 lo, hi);
2380 }
2381
2382 idx = reg->Register.Index * 4 + swizzle;
2383 if (reg->Register.Indirect) {
2384 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2385 } else {
2386 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2387 }
2388
2389 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2390 if (sel->info.const_buffers_declared == 1 &&
2391 sel->info.shader_buffers_declared == 0) {
2392 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2393 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2394 return bitcast(bld_base, type, result);
2395 }
2396
2397 assert(reg->Register.Dimension);
2398 buf = reg->Dimension.Index;
2399
2400 if (reg->Dimension.Indirect) {
2401 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2402 LLVMValueRef index;
2403 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2404 reg->Dimension.Index,
2405 ctx->num_const_buffers);
2406 index = LLVMBuildAdd(ctx->ac.builder, index,
2407 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2408 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2409 } else
2410 bufp = load_const_buffer_desc(ctx, buf);
2411
2412 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2413 }
2414
2415 /* Initialize arguments for the shader export intrinsic */
2416 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2417 LLVMValueRef *values,
2418 unsigned target,
2419 struct ac_export_args *args)
2420 {
2421 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2422 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2423 unsigned chan;
2424 bool is_int8, is_int10;
2425
2426 /* Default is 0xf. Adjusted below depending on the format. */
2427 args->enabled_channels = 0xf; /* writemask */
2428
2429 /* Specify whether the EXEC mask represents the valid mask */
2430 args->valid_mask = 0;
2431
2432 /* Specify whether this is the last export */
2433 args->done = 0;
2434
2435 /* Specify the target we are exporting */
2436 args->target = target;
2437
2438 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2439 const struct si_shader_key *key = &ctx->shader->key;
2440 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2441 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2442
2443 assert(cbuf >= 0 && cbuf < 8);
2444 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2445 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2446 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2447 }
2448
2449 args->compr = false;
2450 args->out[0] = f32undef;
2451 args->out[1] = f32undef;
2452 args->out[2] = f32undef;
2453 args->out[3] = f32undef;
2454
2455 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2456 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2457 unsigned bits, bool hi) = NULL;
2458
2459 switch (spi_shader_col_format) {
2460 case V_028714_SPI_SHADER_ZERO:
2461 args->enabled_channels = 0; /* writemask */
2462 args->target = V_008DFC_SQ_EXP_NULL;
2463 break;
2464
2465 case V_028714_SPI_SHADER_32_R:
2466 args->enabled_channels = 1; /* writemask */
2467 args->out[0] = values[0];
2468 break;
2469
2470 case V_028714_SPI_SHADER_32_GR:
2471 args->enabled_channels = 0x3; /* writemask */
2472 args->out[0] = values[0];
2473 args->out[1] = values[1];
2474 break;
2475
2476 case V_028714_SPI_SHADER_32_AR:
2477 if (ctx->screen->info.chip_class >= GFX10) {
2478 args->enabled_channels = 0x3; /* writemask */
2479 args->out[0] = values[0];
2480 args->out[1] = values[3];
2481 } else {
2482 args->enabled_channels = 0x9; /* writemask */
2483 args->out[0] = values[0];
2484 args->out[3] = values[3];
2485 }
2486 break;
2487
2488 case V_028714_SPI_SHADER_FP16_ABGR:
2489 packf = ac_build_cvt_pkrtz_f16;
2490 break;
2491
2492 case V_028714_SPI_SHADER_UNORM16_ABGR:
2493 packf = ac_build_cvt_pknorm_u16;
2494 break;
2495
2496 case V_028714_SPI_SHADER_SNORM16_ABGR:
2497 packf = ac_build_cvt_pknorm_i16;
2498 break;
2499
2500 case V_028714_SPI_SHADER_UINT16_ABGR:
2501 packi = ac_build_cvt_pk_u16;
2502 break;
2503
2504 case V_028714_SPI_SHADER_SINT16_ABGR:
2505 packi = ac_build_cvt_pk_i16;
2506 break;
2507
2508 case V_028714_SPI_SHADER_32_ABGR:
2509 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2510 break;
2511 }
2512
2513 /* Pack f16 or norm_i16/u16. */
2514 if (packf) {
2515 for (chan = 0; chan < 2; chan++) {
2516 LLVMValueRef pack_args[2] = {
2517 values[2 * chan],
2518 values[2 * chan + 1]
2519 };
2520 LLVMValueRef packed;
2521
2522 packed = packf(&ctx->ac, pack_args);
2523 args->out[chan] = ac_to_float(&ctx->ac, packed);
2524 }
2525 args->compr = 1; /* COMPR flag */
2526 }
2527 /* Pack i16/u16. */
2528 if (packi) {
2529 for (chan = 0; chan < 2; chan++) {
2530 LLVMValueRef pack_args[2] = {
2531 ac_to_integer(&ctx->ac, values[2 * chan]),
2532 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2533 };
2534 LLVMValueRef packed;
2535
2536 packed = packi(&ctx->ac, pack_args,
2537 is_int8 ? 8 : is_int10 ? 10 : 16,
2538 chan == 1);
2539 args->out[chan] = ac_to_float(&ctx->ac, packed);
2540 }
2541 args->compr = 1; /* COMPR flag */
2542 }
2543 }
2544
2545 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2546 LLVMValueRef alpha)
2547 {
2548 struct si_shader_context *ctx = si_shader_context(bld_base);
2549
2550 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2551 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2552 [PIPE_FUNC_LESS] = LLVMRealOLT,
2553 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2554 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2555 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2556 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2557 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2558 };
2559 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2560 assert(cond);
2561
2562 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2563 SI_PARAM_ALPHA_REF);
2564 LLVMValueRef alpha_pass =
2565 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2566 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2567 } else {
2568 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2569 }
2570 }
2571
2572 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2573 LLVMValueRef alpha,
2574 unsigned samplemask_param)
2575 {
2576 struct si_shader_context *ctx = si_shader_context(bld_base);
2577 LLVMValueRef coverage;
2578
2579 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2580 coverage = LLVMGetParam(ctx->main_fn,
2581 samplemask_param);
2582 coverage = ac_to_integer(&ctx->ac, coverage);
2583
2584 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2585 ctx->i32,
2586 &coverage, 1, AC_FUNC_ATTR_READNONE);
2587
2588 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2589 ctx->f32, "");
2590
2591 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2592 LLVMConstReal(ctx->f32,
2593 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2594
2595 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2596 }
2597
2598 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2599 struct ac_export_args *pos, LLVMValueRef *out_elts)
2600 {
2601 unsigned reg_index;
2602 unsigned chan;
2603 unsigned const_chan;
2604 LLVMValueRef base_elt;
2605 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2606 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2607 SI_VS_CONST_CLIP_PLANES, 0);
2608 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2609
2610 for (reg_index = 0; reg_index < 2; reg_index ++) {
2611 struct ac_export_args *args = &pos[2 + reg_index];
2612
2613 args->out[0] =
2614 args->out[1] =
2615 args->out[2] =
2616 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2617
2618 /* Compute dot products of position and user clip plane vectors */
2619 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2620 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2621 LLVMValueRef addr =
2622 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2623 const_chan) * 4, 0);
2624 base_elt = buffer_load_const(ctx, const_resource,
2625 addr);
2626 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2627 out_elts[const_chan], args->out[chan]);
2628 }
2629 }
2630
2631 args->enabled_channels = 0xf;
2632 args->valid_mask = 0;
2633 args->done = 0;
2634 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2635 args->compr = 0;
2636 }
2637 }
2638
2639 static void si_dump_streamout(struct pipe_stream_output_info *so)
2640 {
2641 unsigned i;
2642
2643 if (so->num_outputs)
2644 fprintf(stderr, "STREAMOUT\n");
2645
2646 for (i = 0; i < so->num_outputs; i++) {
2647 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2648 so->output[i].start_component;
2649 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2650 i, so->output[i].output_buffer,
2651 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2652 so->output[i].register_index,
2653 mask & 1 ? "x" : "",
2654 mask & 2 ? "y" : "",
2655 mask & 4 ? "z" : "",
2656 mask & 8 ? "w" : "");
2657 }
2658 }
2659
2660 void si_emit_streamout_output(struct si_shader_context *ctx,
2661 LLVMValueRef const *so_buffers,
2662 LLVMValueRef const *so_write_offsets,
2663 struct pipe_stream_output *stream_out,
2664 struct si_shader_output_values *shader_out)
2665 {
2666 unsigned buf_idx = stream_out->output_buffer;
2667 unsigned start = stream_out->start_component;
2668 unsigned num_comps = stream_out->num_components;
2669 LLVMValueRef out[4];
2670
2671 assert(num_comps && num_comps <= 4);
2672 if (!num_comps || num_comps > 4)
2673 return;
2674
2675 /* Load the output as int. */
2676 for (int j = 0; j < num_comps; j++) {
2677 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2678
2679 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2680 }
2681
2682 /* Pack the output. */
2683 LLVMValueRef vdata = NULL;
2684
2685 switch (num_comps) {
2686 case 1: /* as i32 */
2687 vdata = out[0];
2688 break;
2689 case 2: /* as v2i32 */
2690 case 3: /* as v3i32 */
2691 if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
2692 vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
2693 break;
2694 }
2695 /* as v4i32 (aligned to 4) */
2696 out[3] = LLVMGetUndef(ctx->i32);
2697 /* fall through */
2698 case 4: /* as v4i32 */
2699 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2700 break;
2701 }
2702
2703 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2704 vdata, num_comps,
2705 so_write_offsets[buf_idx],
2706 ctx->i32_0,
2707 stream_out->dst_offset * 4, ac_glc | ac_slc, false);
2708 }
2709
2710 /**
2711 * Write streamout data to buffers for vertex stream @p stream (different
2712 * vertex streams can occur for GS copy shaders).
2713 */
2714 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2715 struct si_shader_output_values *outputs,
2716 unsigned noutput, unsigned stream)
2717 {
2718 struct si_shader_selector *sel = ctx->shader->selector;
2719 struct pipe_stream_output_info *so = &sel->so;
2720 LLVMBuilderRef builder = ctx->ac.builder;
2721 int i;
2722
2723 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2724 LLVMValueRef so_vtx_count =
2725 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2726
2727 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2728
2729 /* can_emit = tid < so_vtx_count; */
2730 LLVMValueRef can_emit =
2731 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2732
2733 /* Emit the streamout code conditionally. This actually avoids
2734 * out-of-bounds buffer access. The hw tells us via the SGPR
2735 * (so_vtx_count) which threads are allowed to emit streamout data. */
2736 ac_build_ifcc(&ctx->ac, can_emit, 6501);
2737 {
2738 /* The buffer offset is computed as follows:
2739 * ByteOffset = streamout_offset[buffer_id]*4 +
2740 * (streamout_write_index + thread_id)*stride[buffer_id] +
2741 * attrib_offset
2742 */
2743
2744 LLVMValueRef so_write_index =
2745 LLVMGetParam(ctx->main_fn,
2746 ctx->param_streamout_write_index);
2747
2748 /* Compute (streamout_write_index + thread_id). */
2749 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2750
2751 /* Load the descriptor and compute the write offset for each
2752 * enabled buffer. */
2753 LLVMValueRef so_write_offset[4] = {};
2754 LLVMValueRef so_buffers[4];
2755 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2756 ctx->param_rw_buffers);
2757
2758 for (i = 0; i < 4; i++) {
2759 if (!so->stride[i])
2760 continue;
2761
2762 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2763 SI_VS_STREAMOUT_BUF0 + i, 0);
2764
2765 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2766
2767 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2768 ctx->param_streamout_offset[i]);
2769 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2770
2771 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2772 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2773 so_offset);
2774 }
2775
2776 /* Write streamout data. */
2777 for (i = 0; i < so->num_outputs; i++) {
2778 unsigned reg = so->output[i].register_index;
2779
2780 if (reg >= noutput)
2781 continue;
2782
2783 if (stream != so->output[i].stream)
2784 continue;
2785
2786 si_emit_streamout_output(ctx, so_buffers, so_write_offset,
2787 &so->output[i], &outputs[reg]);
2788 }
2789 }
2790 ac_build_endif(&ctx->ac, 6501);
2791 }
2792
2793 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2794 LLVMValueRef *values)
2795 {
2796 struct ac_export_args args;
2797
2798 si_llvm_init_export_args(ctx, values,
2799 V_008DFC_SQ_EXP_PARAM + index, &args);
2800 ac_build_export(&ctx->ac, &args);
2801 }
2802
2803 static void si_build_param_exports(struct si_shader_context *ctx,
2804 struct si_shader_output_values *outputs,
2805 unsigned noutput)
2806 {
2807 struct si_shader *shader = ctx->shader;
2808 unsigned param_count = 0;
2809
2810 for (unsigned i = 0; i < noutput; i++) {
2811 unsigned semantic_name = outputs[i].semantic_name;
2812 unsigned semantic_index = outputs[i].semantic_index;
2813
2814 if (outputs[i].vertex_stream[0] != 0 &&
2815 outputs[i].vertex_stream[1] != 0 &&
2816 outputs[i].vertex_stream[2] != 0 &&
2817 outputs[i].vertex_stream[3] != 0)
2818 continue;
2819
2820 switch (semantic_name) {
2821 case TGSI_SEMANTIC_LAYER:
2822 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2823 case TGSI_SEMANTIC_CLIPDIST:
2824 case TGSI_SEMANTIC_COLOR:
2825 case TGSI_SEMANTIC_BCOLOR:
2826 case TGSI_SEMANTIC_PRIMID:
2827 case TGSI_SEMANTIC_FOG:
2828 case TGSI_SEMANTIC_TEXCOORD:
2829 case TGSI_SEMANTIC_GENERIC:
2830 break;
2831 default:
2832 continue;
2833 }
2834
2835 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2836 semantic_index < SI_MAX_IO_GENERIC) &&
2837 shader->key.opt.kill_outputs &
2838 (1ull << si_shader_io_get_unique_index(semantic_name,
2839 semantic_index, true)))
2840 continue;
2841
2842 si_export_param(ctx, param_count, outputs[i].values);
2843
2844 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2845 shader->info.vs_output_param_offset[i] = param_count++;
2846 }
2847
2848 shader->info.nr_param_exports = param_count;
2849 }
2850
2851 /**
2852 * Vertex color clamping.
2853 *
2854 * This uses a state constant loaded in a user data SGPR and
2855 * an IF statement is added that clamps all colors if the constant
2856 * is true.
2857 */
2858 static void si_vertex_color_clamping(struct si_shader_context *ctx,
2859 struct si_shader_output_values *outputs,
2860 unsigned noutput)
2861 {
2862 LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
2863 bool has_colors = false;
2864
2865 /* Store original colors to alloca variables. */
2866 for (unsigned i = 0; i < noutput; i++) {
2867 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2868 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2869 continue;
2870
2871 for (unsigned j = 0; j < 4; j++) {
2872 addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
2873 LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
2874 }
2875 has_colors = true;
2876 }
2877
2878 if (!has_colors)
2879 return;
2880
2881 /* The state is in the first bit of the user SGPR. */
2882 LLVMValueRef cond = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2883 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");
2884
2885 ac_build_ifcc(&ctx->ac, cond, 6502);
2886
2887 /* Store clamped colors to alloca variables within the conditional block. */
2888 for (unsigned i = 0; i < noutput; i++) {
2889 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2890 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2891 continue;
2892
2893 for (unsigned j = 0; j < 4; j++) {
2894 LLVMBuildStore(ctx->ac.builder,
2895 ac_build_clamp(&ctx->ac, outputs[i].values[j]),
2896 addr[i][j]);
2897 }
2898 }
2899 ac_build_endif(&ctx->ac, 6502);
2900
2901 /* Load clamped colors */
2902 for (unsigned i = 0; i < noutput; i++) {
2903 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2904 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2905 continue;
2906
2907 for (unsigned j = 0; j < 4; j++) {
2908 outputs[i].values[j] =
2909 LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
2910 }
2911 }
2912 }
2913
2914 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2915 * (position and parameter data only).
2916 */
2917 void si_llvm_export_vs(struct si_shader_context *ctx,
2918 struct si_shader_output_values *outputs,
2919 unsigned noutput)
2920 {
2921 struct si_shader *shader = ctx->shader;
2922 struct ac_export_args pos_args[4] = {};
2923 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2924 unsigned pos_idx;
2925 int i;
2926
2927 si_vertex_color_clamping(ctx, outputs, noutput);
2928
2929 /* Build position exports. */
2930 for (i = 0; i < noutput; i++) {
2931 switch (outputs[i].semantic_name) {
2932 case TGSI_SEMANTIC_POSITION:
2933 si_llvm_init_export_args(ctx, outputs[i].values,
2934 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2935 break;
2936 case TGSI_SEMANTIC_PSIZE:
2937 psize_value = outputs[i].values[0];
2938 break;
2939 case TGSI_SEMANTIC_LAYER:
2940 layer_value = outputs[i].values[0];
2941 break;
2942 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2943 viewport_index_value = outputs[i].values[0];
2944 break;
2945 case TGSI_SEMANTIC_EDGEFLAG:
2946 edgeflag_value = outputs[i].values[0];
2947 break;
2948 case TGSI_SEMANTIC_CLIPDIST:
2949 if (!shader->key.opt.clip_disable) {
2950 unsigned index = 2 + outputs[i].semantic_index;
2951 si_llvm_init_export_args(ctx, outputs[i].values,
2952 V_008DFC_SQ_EXP_POS + index,
2953 &pos_args[index]);
2954 }
2955 break;
2956 case TGSI_SEMANTIC_CLIPVERTEX:
2957 if (!shader->key.opt.clip_disable) {
2958 si_llvm_emit_clipvertex(ctx, pos_args,
2959 outputs[i].values);
2960 }
2961 break;
2962 }
2963 }
2964
2965 /* We need to add the position output manually if it's missing. */
2966 if (!pos_args[0].out[0]) {
2967 pos_args[0].enabled_channels = 0xf; /* writemask */
2968 pos_args[0].valid_mask = 0; /* EXEC mask */
2969 pos_args[0].done = 0; /* last export? */
2970 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2971 pos_args[0].compr = 0; /* COMPR flag */
2972 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2973 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2974 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2975 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2976 }
2977
2978 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2979 if (shader->selector->info.writes_psize ||
2980 shader->selector->pos_writes_edgeflag ||
2981 shader->selector->info.writes_viewport_index ||
2982 shader->selector->info.writes_layer) {
2983 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2984 (shader->selector->pos_writes_edgeflag << 1) |
2985 (shader->selector->info.writes_layer << 2);
2986
2987 pos_args[1].valid_mask = 0; /* EXEC mask */
2988 pos_args[1].done = 0; /* last export? */
2989 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2990 pos_args[1].compr = 0; /* COMPR flag */
2991 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2992 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2993 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2994 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2995
2996 if (shader->selector->info.writes_psize)
2997 pos_args[1].out[0] = psize_value;
2998
2999 if (shader->selector->pos_writes_edgeflag) {
3000 /* The output is a float, but the hw expects an integer
3001 * with the first bit containing the edge flag. */
3002 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
3003 edgeflag_value,
3004 ctx->i32, "");
3005 edgeflag_value = ac_build_umin(&ctx->ac,
3006 edgeflag_value,
3007 ctx->i32_1);
3008
3009 /* The LLVM intrinsic expects a float. */
3010 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
3011 }
3012
3013 if (ctx->screen->info.chip_class >= GFX9) {
3014 /* GFX9 has the layer in out.z[10:0] and the viewport
3015 * index in out.z[19:16].
3016 */
3017 if (shader->selector->info.writes_layer)
3018 pos_args[1].out[2] = layer_value;
3019
3020 if (shader->selector->info.writes_viewport_index) {
3021 LLVMValueRef v = viewport_index_value;
3022
3023 v = ac_to_integer(&ctx->ac, v);
3024 v = LLVMBuildShl(ctx->ac.builder, v,
3025 LLVMConstInt(ctx->i32, 16, 0), "");
3026 v = LLVMBuildOr(ctx->ac.builder, v,
3027 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3028 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3029 pos_args[1].enabled_channels |= 1 << 2;
3030 }
3031 } else {
3032 if (shader->selector->info.writes_layer)
3033 pos_args[1].out[2] = layer_value;
3034
3035 if (shader->selector->info.writes_viewport_index) {
3036 pos_args[1].out[3] = viewport_index_value;
3037 pos_args[1].enabled_channels |= 1 << 3;
3038 }
3039 }
3040 }
3041
3042 for (i = 0; i < 4; i++)
3043 if (pos_args[i].out[0])
3044 shader->info.nr_pos_exports++;
3045
3046 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
3047 * Setting valid_mask=1 prevents it and has no other effect.
3048 */
3049 if (ctx->screen->info.family == CHIP_NAVI10 ||
3050 ctx->screen->info.family == CHIP_NAVI12 ||
3051 ctx->screen->info.family == CHIP_NAVI14)
3052 pos_args[0].valid_mask = 1;
3053
3054 pos_idx = 0;
3055 for (i = 0; i < 4; i++) {
3056 if (!pos_args[i].out[0])
3057 continue;
3058
3059 /* Specify the target we are exporting */
3060 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3061
3062 if (pos_idx == shader->info.nr_pos_exports)
3063 /* Specify that this is the last export */
3064 pos_args[i].done = 1;
3065
3066 ac_build_export(&ctx->ac, &pos_args[i]);
3067 }
3068
3069 /* Build parameter exports. */
3070 si_build_param_exports(ctx, outputs, noutput);
3071 }
3072
3073 /**
3074 * Forward all outputs from the vertex shader to the TES. This is only used
3075 * for the fixed function TCS.
3076 */
3077 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3078 {
3079 struct si_shader_context *ctx = si_shader_context(bld_base);
3080 LLVMValueRef invocation_id, buffer, buffer_offset;
3081 LLVMValueRef lds_vertex_stride, lds_base;
3082 uint64_t inputs;
3083
3084 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3085 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3086 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3087
3088 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3089 lds_base = get_tcs_in_current_patch_offset(ctx);
3090 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3091 lds_base);
3092
3093 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3094 while (inputs) {
3095 unsigned i = u_bit_scan64(&inputs);
3096
3097 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3098 LLVMConstInt(ctx->i32, 4 * i, 0),
3099 "");
3100
3101 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3102 get_rel_patch_id(ctx),
3103 invocation_id,
3104 LLVMConstInt(ctx->i32, i, 0));
3105
3106 LLVMValueRef value = lshs_lds_load(bld_base, ctx->ac.i32, ~0, lds_ptr);
3107
3108 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3109 buffer_offset, 0, ac_glc, false);
3110 }
3111 }
3112
3113 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3114 LLVMValueRef rel_patch_id,
3115 LLVMValueRef invocation_id,
3116 LLVMValueRef tcs_out_current_patch_data_offset,
3117 LLVMValueRef invoc0_tf_outer[4],
3118 LLVMValueRef invoc0_tf_inner[2])
3119 {
3120 struct si_shader_context *ctx = si_shader_context(bld_base);
3121 struct si_shader *shader = ctx->shader;
3122 unsigned tess_inner_index, tess_outer_index;
3123 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3124 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3125 unsigned stride, outer_comps, inner_comps, i, offset;
3126
3127 /* Add a barrier before loading tess factors from LDS. */
3128 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3129 si_llvm_emit_barrier(NULL, bld_base, NULL);
3130
3131 /* Do this only for invocation 0, because the tess levels are per-patch,
3132 * not per-vertex.
3133 *
3134 * This can't jump, because invocation 0 executes this. It should
3135 * at least mask out the loads and stores for other invocations.
3136 */
3137 ac_build_ifcc(&ctx->ac,
3138 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3139 invocation_id, ctx->i32_0, ""), 6503);
3140
3141 /* Determine the layout of one tess factor element in the buffer. */
3142 switch (shader->key.part.tcs.epilog.prim_mode) {
3143 case PIPE_PRIM_LINES:
3144 stride = 2; /* 2 dwords, 1 vec2 store */
3145 outer_comps = 2;
3146 inner_comps = 0;
3147 break;
3148 case PIPE_PRIM_TRIANGLES:
3149 stride = 4; /* 4 dwords, 1 vec4 store */
3150 outer_comps = 3;
3151 inner_comps = 1;
3152 break;
3153 case PIPE_PRIM_QUADS:
3154 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3155 outer_comps = 4;
3156 inner_comps = 2;
3157 break;
3158 default:
3159 assert(0);
3160 return;
3161 }
3162
3163 for (i = 0; i < 4; i++) {
3164 inner[i] = LLVMGetUndef(ctx->i32);
3165 outer[i] = LLVMGetUndef(ctx->i32);
3166 }
3167
3168 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3169 /* Tess factors are in VGPRs. */
3170 for (i = 0; i < outer_comps; i++)
3171 outer[i] = out[i] = invoc0_tf_outer[i];
3172 for (i = 0; i < inner_comps; i++)
3173 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3174 } else {
3175 /* Load tess_inner and tess_outer from LDS.
3176 * Any invocation can write them, so we can't get them from a temporary.
3177 */
3178 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3179 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3180
3181 lds_base = tcs_out_current_patch_data_offset;
3182 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3183 LLVMConstInt(ctx->i32,
3184 tess_inner_index * 4, 0), "");
3185 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3186 LLVMConstInt(ctx->i32,
3187 tess_outer_index * 4, 0), "");
3188
3189 for (i = 0; i < outer_comps; i++) {
3190 outer[i] = out[i] =
3191 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3192 }
3193 for (i = 0; i < inner_comps; i++) {
3194 inner[i] = out[outer_comps+i] =
3195 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3196 }
3197 }
3198
3199 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3200 /* For isolines, the hardware expects tess factors in the
3201 * reverse order from what GLSL / TGSI specify.
3202 */
3203 LLVMValueRef tmp = out[0];
3204 out[0] = out[1];
3205 out[1] = tmp;
3206 }
3207
3208 /* Convert the outputs to vectors for stores. */
3209 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3210 vec1 = NULL;
3211
3212 if (stride > 4)
3213 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3214
3215 /* Get the buffer. */
3216 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3217
3218 /* Get the offset. */
3219 tf_base = LLVMGetParam(ctx->main_fn,
3220 ctx->param_tcs_factor_offset);
3221 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3222 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3223
3224 ac_build_ifcc(&ctx->ac,
3225 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3226 rel_patch_id, ctx->i32_0, ""), 6504);
3227
3228 /* Store the dynamic HS control word. */
3229 offset = 0;
3230 if (ctx->screen->info.chip_class <= GFX8) {
3231 ac_build_buffer_store_dword(&ctx->ac, buffer,
3232 LLVMConstInt(ctx->i32, 0x80000000, 0),
3233 1, ctx->i32_0, tf_base,
3234 offset, ac_glc, false);
3235 offset += 4;
3236 }
3237
3238 ac_build_endif(&ctx->ac, 6504);
3239
3240 /* Store the tessellation factors. */
3241 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3242 MIN2(stride, 4), byteoffset, tf_base,
3243 offset, ac_glc, false);
3244 offset += 16;
3245 if (vec1)
3246 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3247 stride - 4, byteoffset, tf_base,
3248 offset, ac_glc, false);
3249
3250 /* Store the tess factors into the offchip buffer if TES reads them. */
3251 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3252 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3253 LLVMValueRef tf_inner_offset;
3254 unsigned param_outer, param_inner;
3255
3256 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3257 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3258
3259 param_outer = si_shader_io_get_unique_index_patch(
3260 TGSI_SEMANTIC_TESSOUTER, 0);
3261 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3262 LLVMConstInt(ctx->i32, param_outer, 0));
3263
3264 unsigned outer_vec_size =
3265 ac_has_vec3_support(ctx->screen->info.chip_class, false) ?
3266 outer_comps : util_next_power_of_two(outer_comps);
3267 outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size);
3268
3269 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3270 outer_comps, tf_outer_offset,
3271 base, 0, ac_glc, false);
3272 if (inner_comps) {
3273 param_inner = si_shader_io_get_unique_index_patch(
3274 TGSI_SEMANTIC_TESSINNER, 0);
3275 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3276 LLVMConstInt(ctx->i32, param_inner, 0));
3277
3278 inner_vec = inner_comps == 1 ? inner[0] :
3279 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3280 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3281 inner_comps, tf_inner_offset,
3282 base, 0, ac_glc, false);
3283 }
3284 }
3285
3286 ac_build_endif(&ctx->ac, 6503);
3287 }
3288
3289 static LLVMValueRef
3290 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3291 unsigned param, unsigned return_index)
3292 {
3293 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3294 LLVMGetParam(ctx->main_fn, param),
3295 return_index, "");
3296 }
3297
3298 static LLVMValueRef
3299 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3300 unsigned param, unsigned return_index)
3301 {
3302 LLVMBuilderRef builder = ctx->ac.builder;
3303 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3304
3305 return LLVMBuildInsertValue(builder, ret,
3306 ac_to_float(&ctx->ac, p),
3307 return_index, "");
3308 }
3309
3310 static LLVMValueRef
3311 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3312 unsigned param, unsigned return_index)
3313 {
3314 LLVMBuilderRef builder = ctx->ac.builder;
3315 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3316 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3317 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3318 }
3319
3320 /* This only writes the tessellation factor levels. */
3321 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3322 unsigned max_outputs,
3323 LLVMValueRef *addrs)
3324 {
3325 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3326 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3327 LLVMBuilderRef builder = ctx->ac.builder;
3328 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3329
3330 si_copy_tcs_inputs(bld_base);
3331
3332 rel_patch_id = get_rel_patch_id(ctx);
3333 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3334 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3335
3336 if (ctx->screen->info.chip_class >= GFX9) {
3337 LLVMBasicBlockRef blocks[2] = {
3338 LLVMGetInsertBlock(builder),
3339 ctx->merged_wrap_if_entry_block
3340 };
3341 LLVMValueRef values[2];
3342
3343 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
3344
3345 values[0] = rel_patch_id;
3346 values[1] = LLVMGetUndef(ctx->i32);
3347 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3348
3349 values[0] = tf_lds_offset;
3350 values[1] = LLVMGetUndef(ctx->i32);
3351 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3352
3353 values[0] = invocation_id;
3354 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3355 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3356 }
3357
3358 /* Return epilog parameters from this function. */
3359 LLVMValueRef ret = ctx->return_value;
3360 unsigned vgpr;
3361
3362 if (ctx->screen->info.chip_class >= GFX9) {
3363 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3364 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3365 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3366 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3367 /* Tess offchip and tess factor offsets are at the beginning. */
3368 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3369 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3370 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3371 } else {
3372 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3373 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3374 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3375 GFX6_SGPR_TCS_OUT_LAYOUT);
3376 /* Tess offchip and tess factor offsets are after user SGPRs. */
3377 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3378 GFX6_TCS_NUM_USER_SGPR);
3379 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3380 GFX6_TCS_NUM_USER_SGPR + 1);
3381 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3382 }
3383
3384 /* VGPRs */
3385 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3386 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3387 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3388
3389 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3390 * the invocation_id output does not alias the tcs_rel_ids input,
3391 * which saves a V_MOV on gfx9.
3392 */
3393 vgpr += 2;
3394
3395 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3396 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3397
3398 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3399 vgpr++; /* skip the tess factor LDS offset */
3400 for (unsigned i = 0; i < 6; i++) {
3401 LLVMValueRef value =
3402 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3403 value = ac_to_float(&ctx->ac, value);
3404 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3405 }
3406 } else {
3407 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3408 }
3409 ctx->return_value = ret;
3410 }
3411
3412 /* Pass TCS inputs from LS to TCS on GFX9. */
3413 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3414 {
3415 LLVMValueRef ret = ctx->return_value;
3416
3417 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3418 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3419 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3420 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3421 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3422 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3423
3424 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3425 8 + SI_SGPR_RW_BUFFERS);
3426 ret = si_insert_input_ptr(ctx, ret,
3427 ctx->param_bindless_samplers_and_images,
3428 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3429
3430 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3431 8 + SI_SGPR_VS_STATE_BITS);
3432
3433 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3434 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3435 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3436 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3437 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3438 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3439
3440 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3441 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3442 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3443 vgpr++, "");
3444 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3445 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3446 vgpr++, "");
3447 ctx->return_value = ret;
3448 }
3449
3450 /* Pass GS inputs from ES to GS on GFX9. */
3451 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3452 {
3453 LLVMBuilderRef builder = ctx->ac.builder;
3454 LLVMValueRef ret = ctx->return_value;
3455
3456 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3457 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3458 if (ctx->shader->key.as_ngg)
3459 ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
3460 else
3461 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3462 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3463 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3464
3465 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3466 8 + SI_SGPR_RW_BUFFERS);
3467 ret = si_insert_input_ptr(ctx, ret,
3468 ctx->param_bindless_samplers_and_images,
3469 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3470 if (ctx->screen->use_ngg) {
3471 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits,
3472 8 + SI_SGPR_VS_STATE_BITS);
3473 }
3474
3475 unsigned vgpr;
3476 if (ctx->type == PIPE_SHADER_VERTEX)
3477 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3478 else
3479 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3480
3481 for (unsigned i = 0; i < 5; i++) {
3482 unsigned param = ctx->param_gs_vtx01_offset + i;
3483 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3484 }
3485 ctx->return_value = ret;
3486 }
3487
3488 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3489 unsigned max_outputs,
3490 LLVMValueRef *addrs)
3491 {
3492 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3493 struct si_shader *shader = ctx->shader;
3494 struct tgsi_shader_info *info = &shader->selector->info;
3495 unsigned i, chan;
3496 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3497 ctx->param_rel_auto_id);
3498 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3499 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3500 vertex_dw_stride, "");
3501
3502 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3503 * its inputs from it. */
3504 for (i = 0; i < info->num_outputs; i++) {
3505 unsigned name = info->output_semantic_name[i];
3506 unsigned index = info->output_semantic_index[i];
3507
3508 /* The ARB_shader_viewport_layer_array spec contains the
3509 * following issue:
3510 *
3511 * 2) What happens if gl_ViewportIndex or gl_Layer is
3512 * written in the vertex shader and a geometry shader is
3513 * present?
3514 *
3515 * RESOLVED: The value written by the last vertex processing
3516 * stage is used. If the last vertex processing stage
3517 * (vertex, tessellation evaluation or geometry) does not
3518 * statically assign to gl_ViewportIndex or gl_Layer, index
3519 * or layer zero is assumed.
3520 *
3521 * So writes to those outputs in VS-as-LS are simply ignored.
3522 */
3523 if (name == TGSI_SEMANTIC_LAYER ||
3524 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3525 continue;
3526
3527 int param = si_shader_io_get_unique_index(name, index, false);
3528 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3529 LLVMConstInt(ctx->i32, param * 4, 0), "");
3530
3531 for (chan = 0; chan < 4; chan++) {
3532 if (!(info->output_usagemask[i] & (1 << chan)))
3533 continue;
3534
3535 lshs_lds_store(ctx, chan, dw_addr,
3536 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3537 }
3538 }
3539
3540 if (ctx->screen->info.chip_class >= GFX9)
3541 si_set_ls_return_value_for_tcs(ctx);
3542 }
3543
3544 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3545 unsigned max_outputs,
3546 LLVMValueRef *addrs)
3547 {
3548 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3549 struct si_shader *es = ctx->shader;
3550 struct tgsi_shader_info *info = &es->selector->info;
3551 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3552 ctx->param_es2gs_offset);
3553 LLVMValueRef lds_base = NULL;
3554 unsigned chan;
3555 int i;
3556
3557 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3558 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3559 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3560 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3561 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3562 LLVMBuildMul(ctx->ac.builder, wave_idx,
3563 LLVMConstInt(ctx->i32, ctx->ac.wave_size, false), ""), "");
3564 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3565 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3566 }
3567
3568 for (i = 0; i < info->num_outputs; i++) {
3569 int param;
3570
3571 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3572 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3573 continue;
3574
3575 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3576 info->output_semantic_index[i], false);
3577
3578 for (chan = 0; chan < 4; chan++) {
3579 if (!(info->output_usagemask[i] & (1 << chan)))
3580 continue;
3581
3582 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3583 out_val = ac_to_integer(&ctx->ac, out_val);
3584
3585 /* GFX9 has the ESGS ring in LDS. */
3586 if (ctx->screen->info.chip_class >= GFX9) {
3587 LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false);
3588 idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, "");
3589 ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val);
3590 continue;
3591 }
3592
3593 ac_build_buffer_store_dword(&ctx->ac,
3594 ctx->esgs_ring,
3595 out_val, 1, NULL, soffset,
3596 (4 * param + chan) * 4,
3597 ac_glc | ac_slc, true);
3598 }
3599 }
3600
3601 if (ctx->screen->info.chip_class >= GFX9)
3602 si_set_es_return_value_for_gs(ctx);
3603 }
3604
3605 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3606 {
3607 if (ctx->screen->info.chip_class >= GFX9)
3608 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3609 else
3610 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3611 }
3612
3613 static void emit_gs_epilogue(struct si_shader_context *ctx)
3614 {
3615 if (ctx->shader->key.as_ngg) {
3616 gfx10_ngg_gs_emit_epilogue(ctx);
3617 return;
3618 }
3619
3620 if (ctx->screen->info.chip_class >= GFX10)
3621 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
3622
3623 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3624 si_get_gs_wave_id(ctx));
3625
3626 if (ctx->screen->info.chip_class >= GFX9)
3627 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
3628 }
3629
3630 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3631 unsigned max_outputs,
3632 LLVMValueRef *addrs)
3633 {
3634 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3635 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3636
3637 assert(info->num_outputs <= max_outputs);
3638
3639 emit_gs_epilogue(ctx);
3640 }
3641
3642 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3643 {
3644 struct si_shader_context *ctx = si_shader_context(bld_base);
3645 emit_gs_epilogue(ctx);
3646 }
3647
3648 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3649 unsigned max_outputs,
3650 LLVMValueRef *addrs)
3651 {
3652 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3653 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3654 struct si_shader_output_values *outputs = NULL;
3655 int i,j;
3656
3657 assert(!ctx->shader->is_gs_copy_shader);
3658 assert(info->num_outputs <= max_outputs);
3659
3660 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3661
3662 for (i = 0; i < info->num_outputs; i++) {
3663 outputs[i].semantic_name = info->output_semantic_name[i];
3664 outputs[i].semantic_index = info->output_semantic_index[i];
3665
3666 for (j = 0; j < 4; j++) {
3667 outputs[i].values[j] =
3668 LLVMBuildLoad(ctx->ac.builder,
3669 addrs[4 * i + j],
3670 "");
3671 outputs[i].vertex_stream[j] =
3672 (info->output_streams[i] >> (2 * j)) & 3;
3673 }
3674 }
3675
3676 if (!ctx->screen->use_ngg_streamout &&
3677 ctx->shader->selector->so.num_outputs)
3678 si_llvm_emit_streamout(ctx, outputs, i, 0);
3679
3680 /* Export PrimitiveID. */
3681 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3682 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3683 outputs[i].semantic_index = 0;
3684 outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
3685 for (j = 1; j < 4; j++)
3686 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3687
3688 memset(outputs[i].vertex_stream, 0,
3689 sizeof(outputs[i].vertex_stream));
3690 i++;
3691 }
3692
3693 si_llvm_export_vs(ctx, outputs, i);
3694 FREE(outputs);
3695 }
3696
3697 static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
3698 unsigned max_outputs,
3699 LLVMValueRef *addrs)
3700 {
3701 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3702 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3703 LLVMValueRef pos[4] = {};
3704
3705 assert(info->num_outputs <= max_outputs);
3706
3707 for (unsigned i = 0; i < info->num_outputs; i++) {
3708 if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
3709 continue;
3710
3711 for (unsigned chan = 0; chan < 4; chan++)
3712 pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3713 break;
3714 }
3715 assert(pos[0] != NULL);
3716
3717 /* Return the position output. */
3718 LLVMValueRef ret = ctx->return_value;
3719 for (unsigned chan = 0; chan < 4; chan++)
3720 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
3721 ctx->return_value = ret;
3722 }
3723
3724 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3725 {
3726 struct si_shader_context *ctx = si_shader_context(bld_base);
3727
3728 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3729 &ctx->outputs[0][0]);
3730 }
3731
3732 struct si_ps_exports {
3733 unsigned num;
3734 struct ac_export_args args[10];
3735 };
3736
3737 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3738 LLVMValueRef depth, LLVMValueRef stencil,
3739 LLVMValueRef samplemask, struct si_ps_exports *exp)
3740 {
3741 struct si_shader_context *ctx = si_shader_context(bld_base);
3742 struct ac_export_args args;
3743
3744 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3745
3746 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3747 }
3748
3749 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3750 LLVMValueRef *color, unsigned index,
3751 unsigned samplemask_param,
3752 bool is_last, struct si_ps_exports *exp)
3753 {
3754 struct si_shader_context *ctx = si_shader_context(bld_base);
3755 int i;
3756
3757 /* Clamp color */
3758 if (ctx->shader->key.part.ps.epilog.clamp_color)
3759 for (i = 0; i < 4; i++)
3760 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3761
3762 /* Alpha to one */
3763 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3764 color[3] = ctx->ac.f32_1;
3765
3766 /* Alpha test */
3767 if (index == 0 &&
3768 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3769 si_alpha_test(bld_base, color[3]);
3770
3771 /* Line & polygon smoothing */
3772 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3773 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3774 samplemask_param);
3775
3776 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3777 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3778 struct ac_export_args args[8];
3779 int c, last = -1;
3780
3781 /* Get the export arguments, also find out what the last one is. */
3782 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3783 si_llvm_init_export_args(ctx, color,
3784 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3785 if (args[c].enabled_channels)
3786 last = c;
3787 }
3788
3789 /* Emit all exports. */
3790 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3791 if (is_last && last == c) {
3792 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3793 args[c].done = 1; /* DONE bit */
3794 } else if (!args[c].enabled_channels)
3795 continue; /* unnecessary NULL export */
3796
3797 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3798 }
3799 } else {
3800 struct ac_export_args args;
3801
3802 /* Export */
3803 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3804 &args);
3805 if (is_last) {
3806 args.valid_mask = 1; /* whether the EXEC mask is valid */
3807 args.done = 1; /* DONE bit */
3808 } else if (!args.enabled_channels)
3809 return; /* unnecessary NULL export */
3810
3811 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3812 }
3813 }
3814
3815 static void si_emit_ps_exports(struct si_shader_context *ctx,
3816 struct si_ps_exports *exp)
3817 {
3818 for (unsigned i = 0; i < exp->num; i++)
3819 ac_build_export(&ctx->ac, &exp->args[i]);
3820 }
3821
3822 /**
3823 * Return PS outputs in this order:
3824 *
3825 * v[0:3] = color0.xyzw
3826 * v[4:7] = color1.xyzw
3827 * ...
3828 * vN+0 = Depth
3829 * vN+1 = Stencil
3830 * vN+2 = SampleMask
3831 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3832 *
3833 * The alpha-ref SGPR is returned via its original location.
3834 */
3835 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3836 unsigned max_outputs,
3837 LLVMValueRef *addrs)
3838 {
3839 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3840 struct si_shader *shader = ctx->shader;
3841 struct tgsi_shader_info *info = &shader->selector->info;
3842 LLVMBuilderRef builder = ctx->ac.builder;
3843 unsigned i, j, first_vgpr, vgpr;
3844
3845 LLVMValueRef color[8][4] = {};
3846 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3847 LLVMValueRef ret;
3848
3849 if (ctx->postponed_kill)
3850 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3851
3852 /* Read the output values. */
3853 for (i = 0; i < info->num_outputs; i++) {
3854 unsigned semantic_name = info->output_semantic_name[i];
3855 unsigned semantic_index = info->output_semantic_index[i];
3856
3857 switch (semantic_name) {
3858 case TGSI_SEMANTIC_COLOR:
3859 assert(semantic_index < 8);
3860 for (j = 0; j < 4; j++) {
3861 LLVMValueRef ptr = addrs[4 * i + j];
3862 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3863 color[semantic_index][j] = result;
3864 }
3865 break;
3866 case TGSI_SEMANTIC_POSITION:
3867 depth = LLVMBuildLoad(builder,
3868 addrs[4 * i + 2], "");
3869 break;
3870 case TGSI_SEMANTIC_STENCIL:
3871 stencil = LLVMBuildLoad(builder,
3872 addrs[4 * i + 1], "");
3873 break;
3874 case TGSI_SEMANTIC_SAMPLEMASK:
3875 samplemask = LLVMBuildLoad(builder,
3876 addrs[4 * i + 0], "");
3877 break;
3878 default:
3879 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
3880 semantic_name);
3881 }
3882 }
3883
3884 /* Fill the return structure. */
3885 ret = ctx->return_value;
3886
3887 /* Set SGPRs. */
3888 ret = LLVMBuildInsertValue(builder, ret,
3889 ac_to_integer(&ctx->ac,
3890 LLVMGetParam(ctx->main_fn,
3891 SI_PARAM_ALPHA_REF)),
3892 SI_SGPR_ALPHA_REF, "");
3893
3894 /* Set VGPRs */
3895 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3896 for (i = 0; i < ARRAY_SIZE(color); i++) {
3897 if (!color[i][0])
3898 continue;
3899
3900 for (j = 0; j < 4; j++)
3901 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3902 }
3903 if (depth)
3904 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3905 if (stencil)
3906 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3907 if (samplemask)
3908 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3909
3910 /* Add the input sample mask for smoothing at the end. */
3911 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3912 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3913 ret = LLVMBuildInsertValue(builder, ret,
3914 LLVMGetParam(ctx->main_fn,
3915 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3916
3917 ctx->return_value = ret;
3918 }
3919
3920 static void membar_emit(
3921 const struct lp_build_tgsi_action *action,
3922 struct lp_build_tgsi_context *bld_base,
3923 struct lp_build_emit_data *emit_data)
3924 {
3925 struct si_shader_context *ctx = si_shader_context(bld_base);
3926 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3927 unsigned flags = LLVMConstIntGetZExtValue(src0);
3928 unsigned wait_flags = 0;
3929
3930 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3931 wait_flags |= AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE;
3932
3933 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3934 TGSI_MEMBAR_SHADER_BUFFER |
3935 TGSI_MEMBAR_SHADER_IMAGE))
3936 wait_flags |= AC_WAIT_VLOAD | AC_WAIT_VSTORE;
3937
3938 if (flags & TGSI_MEMBAR_SHARED)
3939 wait_flags |= AC_WAIT_LGKM;
3940
3941 ac_build_waitcnt(&ctx->ac, wait_flags);
3942 }
3943
3944 static void clock_emit(
3945 const struct lp_build_tgsi_action *action,
3946 struct lp_build_tgsi_context *bld_base,
3947 struct lp_build_emit_data *emit_data)
3948 {
3949 struct si_shader_context *ctx = si_shader_context(bld_base);
3950 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3951
3952 emit_data->output[0] =
3953 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3954 emit_data->output[1] =
3955 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3956 }
3957
3958 static void si_llvm_emit_ddxy(
3959 const struct lp_build_tgsi_action *action,
3960 struct lp_build_tgsi_context *bld_base,
3961 struct lp_build_emit_data *emit_data)
3962 {
3963 struct si_shader_context *ctx = si_shader_context(bld_base);
3964 unsigned opcode = emit_data->info->opcode;
3965 LLVMValueRef val;
3966 int idx;
3967 unsigned mask;
3968
3969 if (opcode == TGSI_OPCODE_DDX_FINE)
3970 mask = AC_TID_MASK_LEFT;
3971 else if (opcode == TGSI_OPCODE_DDY_FINE)
3972 mask = AC_TID_MASK_TOP;
3973 else
3974 mask = AC_TID_MASK_TOP_LEFT;
3975
3976 /* for DDX we want to next X pixel, DDY next Y pixel. */
3977 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3978
3979 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3980 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3981 emit_data->output[emit_data->chan] = val;
3982 }
3983
3984 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3985 struct lp_build_tgsi_context *bld_base,
3986 struct lp_build_emit_data *emit_data)
3987 {
3988 struct si_shader_context *ctx = si_shader_context(bld_base);
3989 struct si_shader *shader = ctx->shader;
3990 const struct tgsi_shader_info *info = &shader->selector->info;
3991 LLVMValueRef interp_param;
3992 const struct tgsi_full_instruction *inst = emit_data->inst;
3993 const struct tgsi_full_src_register *input = &inst->Src[0];
3994 int input_base, input_array_size;
3995 int chan;
3996 int i;
3997 LLVMValueRef prim_mask = ctx->abi.prim_mask;
3998 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
3999 int interp_param_idx;
4000 unsigned interp;
4001 unsigned location;
4002
4003 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4004 /* offset is in second src, first two channels */
4005 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4006 TGSI_CHAN_X);
4007 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
4008 TGSI_CHAN_Y);
4009 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4010 LLVMValueRef sample_position;
4011 LLVMValueRef sample_id;
4012 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4013
4014 /* fetch sample ID, then fetch its sample position,
4015 * and place into first two channels.
4016 */
4017 sample_id = lp_build_emit_fetch(bld_base,
4018 emit_data->inst, 1, TGSI_CHAN_X);
4019 sample_id = ac_to_integer(&ctx->ac, sample_id);
4020
4021 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4022 * Language 4.50 spec says about interpolateAtSample:
4023 *
4024 * "Returns the value of the input interpolant variable at
4025 * the location of sample number sample. If multisample
4026 * buffers are not available, the input variable will be
4027 * evaluated at the center of the pixel. If sample sample
4028 * does not exist, the position used to interpolate the
4029 * input variable is undefined."
4030 *
4031 * This means that sample_id values outside of the valid are
4032 * in fact valid input, and the usual mechanism for loading the
4033 * sample position doesn't work.
4034 */
4035 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4036 LLVMValueRef center[4] = {
4037 LLVMConstReal(ctx->f32, 0.5),
4038 LLVMConstReal(ctx->f32, 0.5),
4039 ctx->ac.f32_0,
4040 ctx->ac.f32_0,
4041 };
4042
4043 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4044 } else {
4045 sample_position = load_sample_position(&ctx->abi, sample_id);
4046 }
4047
4048 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4049 ctx->i32_0, "");
4050
4051 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4052 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4053 ctx->i32_1, "");
4054 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4055 }
4056
4057 assert(input->Register.File == TGSI_FILE_INPUT);
4058
4059 if (input->Register.Indirect) {
4060 unsigned array_id = input->Indirect.ArrayID;
4061
4062 if (array_id) {
4063 input_base = info->input_array_first[array_id];
4064 input_array_size = info->input_array_last[array_id] - input_base + 1;
4065 } else {
4066 input_base = inst->Src[0].Register.Index;
4067 input_array_size = info->num_inputs - input_base;
4068 }
4069
4070 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4071 1, input->Register.Index - input_base);
4072 } else {
4073 input_base = inst->Src[0].Register.Index;
4074 input_array_size = 1;
4075 array_idx = ctx->i32_0;
4076 }
4077
4078 interp = shader->selector->info.input_interpolate[input_base];
4079
4080 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4081 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4082 location = TGSI_INTERPOLATE_LOC_CENTER;
4083 else
4084 location = TGSI_INTERPOLATE_LOC_CENTROID;
4085
4086 interp_param_idx = lookup_interp_param_index(interp, location);
4087 if (interp_param_idx == -1)
4088 return;
4089 else if (interp_param_idx)
4090 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4091 else
4092 interp_param = NULL;
4093
4094 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4095 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4096 LLVMValueRef ij_out[2];
4097 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4098
4099 /*
4100 * take the I then J parameters, and the DDX/Y for it, and
4101 * calculate the IJ inputs for the interpolator.
4102 * temp1 = ddx * offset/sample.x + I;
4103 * interp_param.I = ddy * offset/sample.y + temp1;
4104 * temp1 = ddx * offset/sample.x + J;
4105 * interp_param.J = ddy * offset/sample.y + temp1;
4106 */
4107 for (i = 0; i < 2; i++) {
4108 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4109 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4110 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4111 ddxy_out, ix_ll, "");
4112 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4113 ddxy_out, iy_ll, "");
4114 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4115 interp_param, ix_ll, "");
4116 LLVMValueRef temp;
4117
4118 interp_el = ac_to_float(&ctx->ac, interp_el);
4119
4120 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4121 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4122 }
4123 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4124 }
4125
4126 if (interp_param)
4127 interp_param = ac_to_float(&ctx->ac, interp_param);
4128
4129 for (chan = 0; chan < 4; chan++) {
4130 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4131 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4132
4133 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4134 LLVMValueRef v, i = NULL, j = NULL;
4135
4136 if (interp_param) {
4137 i = LLVMBuildExtractElement(
4138 ctx->ac.builder, interp_param, ctx->i32_0, "");
4139 j = LLVMBuildExtractElement(
4140 ctx->ac.builder, interp_param, ctx->i32_1, "");
4141 }
4142 v = si_build_fs_interp(ctx, input_base + idx, schan,
4143 prim_mask, i, j);
4144
4145 gather = LLVMBuildInsertElement(ctx->ac.builder,
4146 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4147 }
4148
4149 emit_data->output[chan] = LLVMBuildExtractElement(
4150 ctx->ac.builder, gather, array_idx, "");
4151 }
4152 }
4153
4154 static void vote_all_emit(
4155 const struct lp_build_tgsi_action *action,
4156 struct lp_build_tgsi_context *bld_base,
4157 struct lp_build_emit_data *emit_data)
4158 {
4159 struct si_shader_context *ctx = si_shader_context(bld_base);
4160
4161 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4162 emit_data->output[emit_data->chan] =
4163 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4164 }
4165
4166 static void vote_any_emit(
4167 const struct lp_build_tgsi_action *action,
4168 struct lp_build_tgsi_context *bld_base,
4169 struct lp_build_emit_data *emit_data)
4170 {
4171 struct si_shader_context *ctx = si_shader_context(bld_base);
4172
4173 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4174 emit_data->output[emit_data->chan] =
4175 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4176 }
4177
4178 static void vote_eq_emit(
4179 const struct lp_build_tgsi_action *action,
4180 struct lp_build_tgsi_context *bld_base,
4181 struct lp_build_emit_data *emit_data)
4182 {
4183 struct si_shader_context *ctx = si_shader_context(bld_base);
4184
4185 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4186 emit_data->output[emit_data->chan] =
4187 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4188 }
4189
4190 static void ballot_emit(
4191 const struct lp_build_tgsi_action *action,
4192 struct lp_build_tgsi_context *bld_base,
4193 struct lp_build_emit_data *emit_data)
4194 {
4195 struct si_shader_context *ctx = si_shader_context(bld_base);
4196 LLVMBuilderRef builder = ctx->ac.builder;
4197 LLVMValueRef tmp;
4198
4199 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4200 tmp = ac_build_ballot(&ctx->ac, tmp);
4201
4202 emit_data->output[0] = LLVMBuildTrunc(builder, tmp, ctx->i32, "");
4203
4204 if (ctx->ac.wave_size == 32) {
4205 emit_data->output[1] = ctx->i32_0;
4206 } else {
4207 tmp = LLVMBuildLShr(builder, tmp, LLVMConstInt(ctx->i64, 32, 0), "");
4208 emit_data->output[1] = LLVMBuildTrunc(builder, tmp, ctx->i32, "");
4209 }
4210 }
4211
4212 static void read_lane_emit(
4213 const struct lp_build_tgsi_action *action,
4214 struct lp_build_tgsi_context *bld_base,
4215 struct lp_build_emit_data *emit_data)
4216 {
4217 struct si_shader_context *ctx = si_shader_context(bld_base);
4218
4219 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4220 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4221 0, emit_data->src_chan);
4222
4223 /* Always read the source invocation (= lane) from the X channel. */
4224 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4225 1, TGSI_CHAN_X);
4226 emit_data->arg_count = 2;
4227 }
4228
4229 /* We currently have no other way to prevent LLVM from lifting the icmp
4230 * calls to a dominating basic block.
4231 */
4232 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4233
4234 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4235 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4236
4237 emit_data->output[emit_data->chan] =
4238 ac_build_intrinsic(&ctx->ac, action->intr_name,
4239 ctx->i32, emit_data->args, emit_data->arg_count,
4240 AC_FUNC_ATTR_READNONE |
4241 AC_FUNC_ATTR_CONVERGENT);
4242 }
4243
4244 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4245 struct lp_build_emit_data *emit_data)
4246 {
4247 struct si_shader_context *ctx = si_shader_context(bld_base);
4248 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4249 LLVMValueRef imm;
4250 unsigned stream;
4251
4252 assert(src0.File == TGSI_FILE_IMMEDIATE);
4253
4254 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4255 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4256 return stream;
4257 }
4258
4259 /* Emit one vertex from the geometry shader */
4260 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4261 unsigned stream,
4262 LLVMValueRef *addrs)
4263 {
4264 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4265
4266 if (ctx->shader->key.as_ngg) {
4267 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
4268 return;
4269 }
4270
4271 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4272 struct si_shader *shader = ctx->shader;
4273 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4274 ctx->param_gs2vs_offset);
4275 LLVMValueRef gs_next_vertex;
4276 LLVMValueRef can_emit;
4277 unsigned chan, offset;
4278 int i;
4279
4280 /* Write vertex attribute values to GSVS ring */
4281 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4282 ctx->gs_next_vertex[stream],
4283 "");
4284
4285 /* If this thread has already emitted the declared maximum number of
4286 * vertices, skip the write: excessive vertex emissions are not
4287 * supposed to have any effect.
4288 *
4289 * If the shader has no writes to memory, kill it instead. This skips
4290 * further memory loads and may allow LLVM to skip to the end
4291 * altogether.
4292 */
4293 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4294 LLVMConstInt(ctx->i32,
4295 shader->selector->gs_max_out_vertices, 0), "");
4296
4297 bool use_kill = !info->writes_memory;
4298 if (use_kill) {
4299 ac_build_kill_if_false(&ctx->ac, can_emit);
4300 } else {
4301 ac_build_ifcc(&ctx->ac, can_emit, 6505);
4302 }
4303
4304 offset = 0;
4305 for (i = 0; i < info->num_outputs; i++) {
4306 for (chan = 0; chan < 4; chan++) {
4307 if (!(info->output_usagemask[i] & (1 << chan)) ||
4308 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4309 continue;
4310
4311 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4312 LLVMValueRef voffset =
4313 LLVMConstInt(ctx->i32, offset *
4314 shader->selector->gs_max_out_vertices, 0);
4315 offset++;
4316
4317 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4318 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4319 LLVMConstInt(ctx->i32, 4, 0), "");
4320
4321 out_val = ac_to_integer(&ctx->ac, out_val);
4322
4323 ac_build_buffer_store_dword(&ctx->ac,
4324 ctx->gsvs_ring[stream],
4325 out_val, 1,
4326 voffset, soffset, 0,
4327 ac_glc | ac_slc, true);
4328 }
4329 }
4330
4331 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4332 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4333
4334 /* Signal vertex emission if vertex data was written. */
4335 if (offset) {
4336 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4337 si_get_gs_wave_id(ctx));
4338 }
4339
4340 if (!use_kill)
4341 ac_build_endif(&ctx->ac, 6505);
4342 }
4343
4344 /* Emit one vertex from the geometry shader */
4345 static void si_tgsi_emit_vertex(
4346 const struct lp_build_tgsi_action *action,
4347 struct lp_build_tgsi_context *bld_base,
4348 struct lp_build_emit_data *emit_data)
4349 {
4350 struct si_shader_context *ctx = si_shader_context(bld_base);
4351 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4352
4353 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4354 }
4355
4356 /* Cut one primitive from the geometry shader */
4357 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4358 unsigned stream)
4359 {
4360 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4361
4362 if (ctx->shader->key.as_ngg) {
4363 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
4364 return;
4365 }
4366
4367 /* Signal primitive cut */
4368 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4369 si_get_gs_wave_id(ctx));
4370 }
4371
4372 /* Cut one primitive from the geometry shader */
4373 static void si_tgsi_emit_primitive(
4374 const struct lp_build_tgsi_action *action,
4375 struct lp_build_tgsi_context *bld_base,
4376 struct lp_build_emit_data *emit_data)
4377 {
4378 struct si_shader_context *ctx = si_shader_context(bld_base);
4379
4380 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4381 }
4382
4383 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4384 struct lp_build_tgsi_context *bld_base,
4385 struct lp_build_emit_data *emit_data)
4386 {
4387 struct si_shader_context *ctx = si_shader_context(bld_base);
4388
4389 /* GFX6 only (thanks to a hw bug workaround):
4390 * The real barrier instruction isn’t needed, because an entire patch
4391 * always fits into a single wave.
4392 */
4393 if (ctx->screen->info.chip_class == GFX6 &&
4394 ctx->type == PIPE_SHADER_TESS_CTRL) {
4395 ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
4396 return;
4397 }
4398
4399 ac_build_s_barrier(&ctx->ac);
4400 }
4401
4402 void si_create_function(struct si_shader_context *ctx,
4403 const char *name,
4404 LLVMTypeRef *returns, unsigned num_returns,
4405 struct si_function_info *fninfo,
4406 unsigned max_workgroup_size)
4407 {
4408 int i;
4409
4410 si_llvm_create_func(ctx, name, returns, num_returns,
4411 fninfo->types, fninfo->num_params);
4412 ctx->return_value = LLVMGetUndef(ctx->return_type);
4413
4414 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4415 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4416
4417 /* The combination of:
4418 * - noalias
4419 * - dereferenceable
4420 * - invariant.load
4421 * allows the optimization passes to move loads and reduces
4422 * SGPR spilling significantly.
4423 */
4424 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4425 AC_FUNC_ATTR_INREG);
4426
4427 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4428 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4429 AC_FUNC_ATTR_NOALIAS);
4430 ac_add_attr_dereferenceable(P, UINT64_MAX);
4431 }
4432 }
4433
4434 for (i = 0; i < fninfo->num_params; ++i) {
4435 if (fninfo->assign[i])
4436 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4437 }
4438
4439 if (ctx->screen->info.address32_hi) {
4440 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4441 "amdgpu-32bit-address-high-bits",
4442 ctx->screen->info.address32_hi);
4443 }
4444
4445 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
4446
4447 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4448 "no-signed-zeros-fp-math",
4449 "true");
4450 }
4451
4452 static void declare_streamout_params(struct si_shader_context *ctx,
4453 struct pipe_stream_output_info *so,
4454 struct si_function_info *fninfo)
4455 {
4456 if (ctx->screen->use_ngg_streamout)
4457 return;
4458
4459 /* Streamout SGPRs. */
4460 if (so->num_outputs) {
4461 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4462 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4463 else
4464 ctx->param_streamout_config = fninfo->num_params - 1;
4465
4466 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4467 }
4468 /* A streamout buffer offset is loaded if the stride is non-zero. */
4469 for (int i = 0; i < 4; i++) {
4470 if (!so->stride[i])
4471 continue;
4472
4473 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4474 }
4475 }
4476
4477 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4478 {
4479 switch (shader->selector->type) {
4480 case PIPE_SHADER_VERTEX:
4481 case PIPE_SHADER_TESS_EVAL:
4482 return shader->key.as_ngg ? 128 : 0;
4483
4484 case PIPE_SHADER_TESS_CTRL:
4485 /* Return this so that LLVM doesn't remove s_barrier
4486 * instructions on chips where we use s_barrier. */
4487 return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;
4488
4489 case PIPE_SHADER_GEOMETRY:
4490 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;
4491
4492 case PIPE_SHADER_COMPUTE:
4493 break; /* see below */
4494
4495 default:
4496 return 0;
4497 }
4498
4499 const unsigned *properties = shader->selector->info.properties;
4500 unsigned max_work_group_size =
4501 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4502 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4503 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4504
4505 if (!max_work_group_size) {
4506 /* This is a variable group size compute shader,
4507 * compile it for the maximum possible group size.
4508 */
4509 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4510 }
4511 return max_work_group_size;
4512 }
4513
4514 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4515 struct si_function_info *fninfo,
4516 bool assign_params)
4517 {
4518 LLVMTypeRef const_shader_buf_type;
4519
4520 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4521 ctx->shader->selector->info.shader_buffers_declared == 0)
4522 const_shader_buf_type = ctx->f32;
4523 else
4524 const_shader_buf_type = ctx->v4i32;
4525
4526 unsigned const_and_shader_buffers =
4527 add_arg(fninfo, ARG_SGPR,
4528 ac_array_in_const32_addr_space(const_shader_buf_type));
4529
4530 if (assign_params)
4531 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4532 }
4533
4534 static void declare_samplers_and_images(struct si_shader_context *ctx,
4535 struct si_function_info *fninfo,
4536 bool assign_params)
4537 {
4538 unsigned samplers_and_images =
4539 add_arg(fninfo, ARG_SGPR,
4540 ac_array_in_const32_addr_space(ctx->v8i32));
4541
4542 if (assign_params)
4543 ctx->param_samplers_and_images = samplers_and_images;
4544 }
4545
4546 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4547 struct si_function_info *fninfo,
4548 bool assign_params)
4549 {
4550 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4551 declare_samplers_and_images(ctx, fninfo, assign_params);
4552 }
4553
4554 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4555 struct si_function_info *fninfo)
4556 {
4557 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4558 ac_array_in_const32_addr_space(ctx->v4i32));
4559 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4560 ac_array_in_const32_addr_space(ctx->v8i32));
4561 }
4562
4563 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4564 struct si_function_info *fninfo)
4565 {
4566 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4567 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4568 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4569 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4570 }
4571
4572 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4573 struct si_function_info *fninfo,
4574 unsigned *num_prolog_vgprs)
4575 {
4576 struct si_shader *shader = ctx->shader;
4577
4578 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4579 if (shader->key.as_ls) {
4580 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4581 if (ctx->screen->info.chip_class >= GFX10) {
4582 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user VGPR */
4583 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4584 } else {
4585 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4586 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4587 }
4588 } else if (ctx->screen->info.chip_class >= GFX10) {
4589 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4590 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr or PrimID (legacy) */
4591 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4592 } else {
4593 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4594 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4595 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4596 }
4597
4598 if (!shader->is_gs_copy_shader) {
4599 /* Vertex load indices. */
4600 ctx->param_vertex_index0 = fninfo->num_params;
4601 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4602 add_arg(fninfo, ARG_VGPR, ctx->i32);
4603 *num_prolog_vgprs += shader->selector->info.num_inputs;
4604 }
4605 }
4606
4607 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4608 struct si_function_info *fninfo,
4609 unsigned vs_blit_property)
4610 {
4611 ctx->param_vs_blit_inputs = fninfo->num_params;
4612 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4613 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4614 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4615
4616 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4617 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4618 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4619 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4620 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4621 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4622 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4623 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4624 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4625 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4626 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4627 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4628 }
4629 }
4630
4631 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4632 struct si_function_info *fninfo)
4633 {
4634 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4635 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4636 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4637 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4638 }
4639
4640 enum {
4641 /* Convenient merged shader definitions. */
4642 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4643 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4644 };
4645
4646 static void create_function(struct si_shader_context *ctx)
4647 {
4648 struct si_shader *shader = ctx->shader;
4649 struct si_function_info fninfo;
4650 LLVMTypeRef returns[16+32*4];
4651 unsigned i, num_return_sgprs;
4652 unsigned num_returns = 0;
4653 unsigned num_prolog_vgprs = 0;
4654 unsigned type = ctx->type;
4655 unsigned vs_blit_property =
4656 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
4657
4658 si_init_function_info(&fninfo);
4659
4660 /* Set MERGED shaders. */
4661 if (ctx->screen->info.chip_class >= GFX9) {
4662 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4663 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4664 else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
4665 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4666 }
4667
4668 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4669
4670 switch (type) {
4671 case PIPE_SHADER_VERTEX:
4672 declare_global_desc_pointers(ctx, &fninfo);
4673
4674 if (vs_blit_property) {
4675 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4676
4677 /* VGPRs */
4678 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4679 break;
4680 }
4681
4682 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4683 declare_vs_specific_input_sgprs(ctx, &fninfo);
4684 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4685 ac_array_in_const32_addr_space(ctx->v4i32));
4686
4687 if (shader->key.as_es) {
4688 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4689 } else if (shader->key.as_ls) {
4690 /* no extra parameters */
4691 } else {
4692 if (shader->is_gs_copy_shader) {
4693 fninfo.num_params = ctx->param_vs_state_bits + 1;
4694 fninfo.num_sgpr_params = fninfo.num_params;
4695 }
4696
4697 /* The locations of the other parameters are assigned dynamically. */
4698 declare_streamout_params(ctx, &shader->selector->so,
4699 &fninfo);
4700 }
4701
4702 /* VGPRs */
4703 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4704
4705 /* Return values */
4706 if (shader->key.opt.vs_as_prim_discard_cs) {
4707 for (i = 0; i < 4; i++)
4708 returns[num_returns++] = ctx->f32; /* VGPRs */
4709 }
4710 break;
4711
4712 case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
4713 declare_global_desc_pointers(ctx, &fninfo);
4714 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4715 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4716 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4717 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4718 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4719 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4720 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4721
4722 /* VGPRs */
4723 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4724 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4725
4726 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4727 * placed after the user SGPRs.
4728 */
4729 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4730 returns[num_returns++] = ctx->i32; /* SGPRs */
4731 for (i = 0; i < 11; i++)
4732 returns[num_returns++] = ctx->f32; /* VGPRs */
4733 break;
4734
4735 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4736 /* Merged stages have 8 system SGPRs at the beginning. */
4737 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4738 declare_per_stage_desc_pointers(ctx, &fninfo,
4739 ctx->type == PIPE_SHADER_TESS_CTRL);
4740 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4741 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4742 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4743 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4744 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4745 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4746
4747 declare_global_desc_pointers(ctx, &fninfo);
4748 declare_per_stage_desc_pointers(ctx, &fninfo,
4749 ctx->type == PIPE_SHADER_VERTEX);
4750 declare_vs_specific_input_sgprs(ctx, &fninfo);
4751
4752 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4753 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4754 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4755 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4756 ac_array_in_const32_addr_space(ctx->v4i32));
4757
4758 /* VGPRs (first TCS, then VS) */
4759 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4760 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4761
4762 if (ctx->type == PIPE_SHADER_VERTEX) {
4763 declare_vs_input_vgprs(ctx, &fninfo,
4764 &num_prolog_vgprs);
4765
4766 /* LS return values are inputs to the TCS main shader part. */
4767 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4768 returns[num_returns++] = ctx->i32; /* SGPRs */
4769 for (i = 0; i < 2; i++)
4770 returns[num_returns++] = ctx->f32; /* VGPRs */
4771 } else {
4772 /* TCS return values are inputs to the TCS epilog.
4773 *
4774 * param_tcs_offchip_offset, param_tcs_factor_offset,
4775 * param_tcs_offchip_layout, and param_rw_buffers
4776 * should be passed to the epilog.
4777 */
4778 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4779 returns[num_returns++] = ctx->i32; /* SGPRs */
4780 for (i = 0; i < 11; i++)
4781 returns[num_returns++] = ctx->f32; /* VGPRs */
4782 }
4783 break;
4784
4785 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4786 /* Merged stages have 8 system SGPRs at the beginning. */
4787 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4788 declare_per_stage_desc_pointers(ctx, &fninfo,
4789 ctx->type == PIPE_SHADER_GEOMETRY);
4790
4791 if (ctx->shader->key.as_ngg)
4792 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
4793 else
4794 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4795
4796 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4797 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4798 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4799 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4800 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4801
4802 declare_global_desc_pointers(ctx, &fninfo);
4803 if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
4804 declare_per_stage_desc_pointers(ctx, &fninfo,
4805 (ctx->type == PIPE_SHADER_VERTEX ||
4806 ctx->type == PIPE_SHADER_TESS_EVAL));
4807 }
4808
4809 if (ctx->type == PIPE_SHADER_VERTEX) {
4810 if (vs_blit_property)
4811 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4812 else
4813 declare_vs_specific_input_sgprs(ctx, &fninfo);
4814 } else {
4815 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4816 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4817 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4818 /* Declare as many input SGPRs as the VS has. */
4819 }
4820
4821 if (ctx->type == PIPE_SHADER_VERTEX) {
4822 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4823 ac_array_in_const32_addr_space(ctx->v4i32));
4824 }
4825
4826 /* VGPRs (first GS, then VS/TES) */
4827 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4828 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4829 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4830 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4831 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4832
4833 if (ctx->type == PIPE_SHADER_VERTEX) {
4834 declare_vs_input_vgprs(ctx, &fninfo,
4835 &num_prolog_vgprs);
4836 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4837 declare_tes_input_vgprs(ctx, &fninfo);
4838 }
4839
4840 if (ctx->shader->key.as_es &&
4841 (ctx->type == PIPE_SHADER_VERTEX ||
4842 ctx->type == PIPE_SHADER_TESS_EVAL)) {
4843 unsigned num_user_sgprs;
4844
4845 if (ctx->type == PIPE_SHADER_VERTEX)
4846 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4847 else
4848 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4849
4850 /* ES return values are inputs to GS. */
4851 for (i = 0; i < 8 + num_user_sgprs; i++)
4852 returns[num_returns++] = ctx->i32; /* SGPRs */
4853 for (i = 0; i < 5; i++)
4854 returns[num_returns++] = ctx->f32; /* VGPRs */
4855 }
4856 break;
4857
4858 case PIPE_SHADER_TESS_EVAL:
4859 declare_global_desc_pointers(ctx, &fninfo);
4860 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4861 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4862 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4863 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4864
4865 if (shader->key.as_es) {
4866 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4867 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4868 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4869 } else {
4870 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4871 declare_streamout_params(ctx, &shader->selector->so,
4872 &fninfo);
4873 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4874 }
4875
4876 /* VGPRs */
4877 declare_tes_input_vgprs(ctx, &fninfo);
4878 break;
4879
4880 case PIPE_SHADER_GEOMETRY:
4881 declare_global_desc_pointers(ctx, &fninfo);
4882 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4883 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4884 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4885
4886 /* VGPRs */
4887 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4888 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4889 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4890 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4891 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4892 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4893 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4894 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4895 break;
4896
4897 case PIPE_SHADER_FRAGMENT:
4898 declare_global_desc_pointers(ctx, &fninfo);
4899 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4900 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4901 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4902 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4903
4904 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4905 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4906 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4907 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4908 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4909 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4910 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4911 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4912 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4913 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4914 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4915 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4916 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4917 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4918 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4919 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4920 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4921 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4922 shader->info.face_vgpr_index = 20;
4923 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4924 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4925 shader->info.ancillary_vgpr_index = 21;
4926 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4927 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4928 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4929
4930 /* Color inputs from the prolog. */
4931 if (shader->selector->info.colors_read) {
4932 unsigned num_color_elements =
4933 util_bitcount(shader->selector->info.colors_read);
4934
4935 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4936 for (i = 0; i < num_color_elements; i++)
4937 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4938
4939 num_prolog_vgprs += num_color_elements;
4940 }
4941
4942 /* Outputs for the epilog. */
4943 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4944 num_returns =
4945 num_return_sgprs +
4946 util_bitcount(shader->selector->info.colors_written) * 4 +
4947 shader->selector->info.writes_z +
4948 shader->selector->info.writes_stencil +
4949 shader->selector->info.writes_samplemask +
4950 1 /* SampleMaskIn */;
4951
4952 num_returns = MAX2(num_returns,
4953 num_return_sgprs +
4954 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4955
4956 for (i = 0; i < num_return_sgprs; i++)
4957 returns[i] = ctx->i32;
4958 for (; i < num_returns; i++)
4959 returns[i] = ctx->f32;
4960 break;
4961
4962 case PIPE_SHADER_COMPUTE:
4963 declare_global_desc_pointers(ctx, &fninfo);
4964 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4965 if (shader->selector->info.uses_grid_size)
4966 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4967 if (shader->selector->info.uses_block_size &&
4968 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4969 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4970
4971 unsigned cs_user_data_dwords =
4972 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_COMPONENTS_AMD];
4973 if (cs_user_data_dwords) {
4974 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4975 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4976 }
4977
4978 for (i = 0; i < 3; i++) {
4979 ctx->abi.workgroup_ids[i] = NULL;
4980 if (shader->selector->info.uses_block_id[i])
4981 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4982 }
4983
4984 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4985 break;
4986 default:
4987 assert(0 && "unimplemented shader");
4988 return;
4989 }
4990
4991 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4992 si_get_max_workgroup_size(shader));
4993
4994 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4995 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
4996 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4997 "InitialPSInputAddr",
4998 S_0286D0_PERSP_SAMPLE_ENA(1) |
4999 S_0286D0_PERSP_CENTER_ENA(1) |
5000 S_0286D0_PERSP_CENTROID_ENA(1) |
5001 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5002 S_0286D0_LINEAR_CENTER_ENA(1) |
5003 S_0286D0_LINEAR_CENTROID_ENA(1) |
5004 S_0286D0_FRONT_FACE_ENA(1) |
5005 S_0286D0_ANCILLARY_ENA(1) |
5006 S_0286D0_POS_FIXED_PT_ENA(1));
5007 }
5008
5009 shader->info.num_input_sgprs = 0;
5010 shader->info.num_input_vgprs = 0;
5011
5012 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5013 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5014
5015 for (; i < fninfo.num_params; ++i)
5016 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5017
5018 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5019 shader->info.num_input_vgprs -= num_prolog_vgprs;
5020
5021 if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
5022 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5023 /* The LSHS size is not known until draw time, so we append it
5024 * at the end of whatever LDS use there may be in the rest of
5025 * the shader (currently none, unless LLVM decides to do its
5026 * own LDS-based lowering).
5027 */
5028 ctx->ac.lds = LLVMAddGlobalInAddressSpace(
5029 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5030 "__lds_end", AC_ADDR_SPACE_LDS);
5031 LLVMSetAlignment(ctx->ac.lds, 256);
5032 } else {
5033 ac_declare_lds_as_pointer(&ctx->ac);
5034 }
5035 }
5036 }
5037
5038 /* Ensure that the esgs ring is declared.
5039 *
5040 * We declare it with 64KB alignment as a hint that the
5041 * pointer value will always be 0.
5042 */
5043 static void declare_esgs_ring(struct si_shader_context *ctx)
5044 {
5045 if (ctx->esgs_ring)
5046 return;
5047
5048 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
5049
5050 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
5051 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5052 "esgs_ring",
5053 AC_ADDR_SPACE_LDS);
5054 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
5055 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
5056 }
5057
5058 /**
5059 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5060 * for later use.
5061 */
5062 static void preload_ring_buffers(struct si_shader_context *ctx)
5063 {
5064 LLVMBuilderRef builder = ctx->ac.builder;
5065
5066 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5067 ctx->param_rw_buffers);
5068
5069 if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) {
5070 if (ctx->screen->info.chip_class <= GFX8) {
5071 unsigned ring =
5072 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5073 : SI_ES_RING_ESGS;
5074 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5075
5076 ctx->esgs_ring =
5077 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5078 } else {
5079 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5080 /* Declare the ESGS ring as an explicit LDS symbol. */
5081 declare_esgs_ring(ctx);
5082 } else {
5083 ac_declare_lds_as_pointer(&ctx->ac);
5084 ctx->esgs_ring = ctx->ac.lds;
5085 }
5086 }
5087 }
5088
5089 if (ctx->shader->is_gs_copy_shader) {
5090 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5091
5092 ctx->gsvs_ring[0] =
5093 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5094 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5095 const struct si_shader_selector *sel = ctx->shader->selector;
5096 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5097 LLVMValueRef base_ring;
5098
5099 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5100
5101 /* The conceptual layout of the GSVS ring is
5102 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5103 * but the real memory layout is swizzled across
5104 * threads:
5105 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5106 * t16v0c0 ..
5107 * Override the buffer descriptor accordingly.
5108 */
5109 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5110 uint64_t stream_offset = 0;
5111
5112 for (unsigned stream = 0; stream < 4; ++stream) {
5113 unsigned num_components;
5114 unsigned stride;
5115 unsigned num_records;
5116 LLVMValueRef ring, tmp;
5117
5118 num_components = sel->info.num_stream_output_components[stream];
5119 if (!num_components)
5120 continue;
5121
5122 stride = 4 * num_components * sel->gs_max_out_vertices;
5123
5124 /* Limit on the stride field for <= GFX7. */
5125 assert(stride < (1 << 14));
5126
5127 num_records = ctx->ac.wave_size;
5128
5129 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5130 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5131 tmp = LLVMBuildAdd(builder, tmp,
5132 LLVMConstInt(ctx->i64,
5133 stream_offset, 0), "");
5134 stream_offset += stride * ctx->ac.wave_size;
5135
5136 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5137 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5138 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5139 tmp = LLVMBuildOr(builder, tmp,
5140 LLVMConstInt(ctx->i32,
5141 S_008F04_STRIDE(stride) |
5142 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5143 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5144 ring = LLVMBuildInsertElement(builder, ring,
5145 LLVMConstInt(ctx->i32, num_records, 0),
5146 LLVMConstInt(ctx->i32, 2, 0), "");
5147
5148 uint32_t rsrc3 =
5149 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5150 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5151 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5152 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5153 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5154 S_008F0C_ADD_TID_ENABLE(1);
5155
5156 if (ctx->ac.chip_class >= GFX10) {
5157 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5158 S_008F0C_OOB_SELECT(2) |
5159 S_008F0C_RESOURCE_LEVEL(1);
5160 } else {
5161 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5162 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5163 S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
5164 }
5165
5166 ring = LLVMBuildInsertElement(builder, ring,
5167 LLVMConstInt(ctx->i32, rsrc3, false),
5168 LLVMConstInt(ctx->i32, 3, 0), "");
5169
5170 ctx->gsvs_ring[stream] = ring;
5171 }
5172 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5173 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5174 }
5175 }
5176
5177 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5178 LLVMValueRef param_rw_buffers,
5179 unsigned param_pos_fixed_pt)
5180 {
5181 LLVMBuilderRef builder = ctx->ac.builder;
5182 LLVMValueRef slot, desc, offset, row, bit, address[2];
5183
5184 /* Use the fixed-point gl_FragCoord input.
5185 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5186 * per coordinate to get the repeating effect.
5187 */
5188 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5189 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5190
5191 /* Load the buffer descriptor. */
5192 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5193 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5194
5195 /* The stipple pattern is 32x32, each row has 32 bits. */
5196 offset = LLVMBuildMul(builder, address[1],
5197 LLVMConstInt(ctx->i32, 4, 0), "");
5198 row = buffer_load_const(ctx, desc, offset);
5199 row = ac_to_integer(&ctx->ac, row);
5200 bit = LLVMBuildLShr(builder, row, address[0], "");
5201 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5202 ac_build_kill_if_false(&ctx->ac, bit);
5203 }
5204
5205 /* For the UMR disassembler. */
5206 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5207 #define DEBUGGER_NUM_MARKERS 5
5208
5209 static bool si_shader_binary_open(struct si_screen *screen,
5210 struct si_shader *shader,
5211 struct ac_rtld_binary *rtld)
5212 {
5213 const struct si_shader_selector *sel = shader->selector;
5214 const char *part_elfs[5];
5215 size_t part_sizes[5];
5216 unsigned num_parts = 0;
5217
5218 #define add_part(shader_or_part) \
5219 if (shader_or_part) { \
5220 part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
5221 part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
5222 num_parts++; \
5223 }
5224
5225 add_part(shader->prolog);
5226 add_part(shader->previous_stage);
5227 add_part(shader->prolog2);
5228 add_part(shader);
5229 add_part(shader->epilog);
5230
5231 #undef add_part
5232
5233 struct ac_rtld_symbol lds_symbols[2];
5234 unsigned num_lds_symbols = 0;
5235
5236 if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
5237 (sel->type == PIPE_SHADER_GEOMETRY || shader->key.as_ngg)) {
5238 /* We add this symbol even on LLVM <= 8 to ensure that
5239 * shader->config.lds_size is set correctly below.
5240 */
5241 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5242 sym->name = "esgs_ring";
5243 sym->size = shader->gs_info.esgs_ring_size;
5244 sym->align = 64 * 1024;
5245 }
5246
5247 if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
5248 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5249 sym->name = "ngg_emit";
5250 sym->size = shader->ngg.ngg_emit_size * 4;
5251 sym->align = 4;
5252 }
5253
5254 bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
5255 .info = &screen->info,
5256 .options = {
5257 .halt_at_entry = screen->options.halt_shaders,
5258 },
5259 .shader_type = tgsi_processor_to_shader_stage(sel->type),
5260 .wave_size = si_get_shader_wave_size(shader),
5261 .num_parts = num_parts,
5262 .elf_ptrs = part_elfs,
5263 .elf_sizes = part_sizes,
5264 .num_shared_lds_symbols = num_lds_symbols,
5265 .shared_lds_symbols = lds_symbols });
5266
5267 if (rtld->lds_size > 0) {
5268 unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
5269 shader->config.lds_size =
5270 align(rtld->lds_size, alloc_granularity) / alloc_granularity;
5271 }
5272
5273 return ok;
5274 }
5275
5276 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
5277 {
5278 struct ac_rtld_binary rtld;
5279 si_shader_binary_open(screen, shader, &rtld);
5280 return rtld.rx_size;
5281 }
5282
5283 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
5284 {
5285 uint64_t *scratch_va = data;
5286
5287 if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
5288 *value = (uint32_t)*scratch_va;
5289 return true;
5290 }
5291 if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
5292 /* Enable scratch coalescing. */
5293 *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
5294 S_008F04_SWIZZLE_ENABLE(1);
5295 return true;
5296 }
5297
5298 return false;
5299 }
5300
5301 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
5302 uint64_t scratch_va)
5303 {
5304 struct ac_rtld_binary binary;
5305 if (!si_shader_binary_open(sscreen, shader, &binary))
5306 return false;
5307
5308 si_resource_reference(&shader->bo, NULL);
5309 shader->bo = si_aligned_buffer_create(&sscreen->b,
5310 sscreen->info.cpdma_prefetch_writes_memory ?
5311 0 : SI_RESOURCE_FLAG_READ_ONLY,
5312 PIPE_USAGE_IMMUTABLE,
5313 align(binary.rx_size, SI_CPDMA_ALIGNMENT),
5314 256);
5315 if (!shader->bo)
5316 return false;
5317
5318 /* Upload. */
5319 struct ac_rtld_upload_info u = {};
5320 u.binary = &binary;
5321 u.get_external_symbol = si_get_external_symbol;
5322 u.cb_data = &scratch_va;
5323 u.rx_va = shader->bo->gpu_address;
5324 u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5325 PIPE_TRANSFER_READ_WRITE |
5326 PIPE_TRANSFER_UNSYNCHRONIZED |
5327 RADEON_TRANSFER_TEMPORARY);
5328 if (!u.rx_ptr)
5329 return false;
5330
5331 bool ok = ac_rtld_upload(&u);
5332
5333 sscreen->ws->buffer_unmap(shader->bo->buf);
5334 ac_rtld_close(&binary);
5335
5336 return ok;
5337 }
5338
5339 static void si_shader_dump_disassembly(struct si_screen *screen,
5340 const struct si_shader_binary *binary,
5341 enum pipe_shader_type shader_type,
5342 unsigned wave_size,
5343 struct pipe_debug_callback *debug,
5344 const char *name, FILE *file)
5345 {
5346 struct ac_rtld_binary rtld_binary;
5347
5348 if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
5349 .info = &screen->info,
5350 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5351 .wave_size = wave_size,
5352 .num_parts = 1,
5353 .elf_ptrs = &binary->elf_buffer,
5354 .elf_sizes = &binary->elf_size }))
5355 return;
5356
5357 const char *disasm;
5358 size_t nbytes;
5359
5360 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
5361 goto out;
5362
5363 if (nbytes > INT_MAX)
5364 goto out;
5365
5366 if (debug && debug->debug_message) {
5367 /* Very long debug messages are cut off, so send the
5368 * disassembly one line at a time. This causes more
5369 * overhead, but on the plus side it simplifies
5370 * parsing of resulting logs.
5371 */
5372 pipe_debug_message(debug, SHADER_INFO,
5373 "Shader Disassembly Begin");
5374
5375 uint64_t line = 0;
5376 while (line < nbytes) {
5377 int count = nbytes - line;
5378 const char *nl = memchr(disasm + line, '\n', nbytes - line);
5379 if (nl)
5380 count = nl - (disasm + line);
5381
5382 if (count) {
5383 pipe_debug_message(debug, SHADER_INFO,
5384 "%.*s", count, disasm + line);
5385 }
5386
5387 line += count + 1;
5388 }
5389
5390 pipe_debug_message(debug, SHADER_INFO,
5391 "Shader Disassembly End");
5392 }
5393
5394 if (file) {
5395 fprintf(file, "Shader %s disassembly:\n", name);
5396 fprintf(file, "%*s", (int)nbytes, disasm);
5397 }
5398
5399 out:
5400 ac_rtld_close(&rtld_binary);
5401 }
5402
5403 static void si_calculate_max_simd_waves(struct si_shader *shader)
5404 {
5405 struct si_screen *sscreen = shader->selector->screen;
5406 struct ac_shader_config *conf = &shader->config;
5407 unsigned num_inputs = shader->selector->info.num_inputs;
5408 unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
5409 unsigned lds_per_wave = 0;
5410 unsigned max_simd_waves;
5411
5412 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5413
5414 /* Compute LDS usage for PS. */
5415 switch (shader->selector->type) {
5416 case PIPE_SHADER_FRAGMENT:
5417 /* The minimum usage per wave is (num_inputs * 48). The maximum
5418 * usage is (num_inputs * 48 * 16).
5419 * We can get anything in between and it varies between waves.
5420 *
5421 * The 48 bytes per input for a single primitive is equal to
5422 * 4 bytes/component * 4 components/input * 3 points.
5423 *
5424 * Other stages don't know the size at compile time or don't
5425 * allocate LDS per wave, but instead they do it per thread group.
5426 */
5427 lds_per_wave = conf->lds_size * lds_increment +
5428 align(num_inputs * 48, lds_increment);
5429 break;
5430 case PIPE_SHADER_COMPUTE:
5431 if (shader->selector) {
5432 unsigned max_workgroup_size =
5433 si_get_max_workgroup_size(shader);
5434 lds_per_wave = (conf->lds_size * lds_increment) /
5435 DIV_ROUND_UP(max_workgroup_size,
5436 sscreen->compute_wave_size);
5437 }
5438 break;
5439 default:;
5440 }
5441
5442 /* Compute the per-SIMD wave counts. */
5443 if (conf->num_sgprs) {
5444 max_simd_waves =
5445 MIN2(max_simd_waves,
5446 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5447 }
5448
5449 if (conf->num_vgprs)
5450 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5451
5452 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5453 * 16KB makes some SIMDs unoccupied). */
5454 if (lds_per_wave)
5455 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5456
5457 shader->info.max_simd_waves = max_simd_waves;
5458 }
5459
5460 void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
5461 struct si_shader *shader,
5462 struct pipe_debug_callback *debug)
5463 {
5464 const struct ac_shader_config *conf = &shader->config;
5465
5466 if (screen->options.debug_disassembly)
5467 si_shader_dump_disassembly(screen, &shader->binary,
5468 shader->selector->type,
5469 si_get_shader_wave_size(shader),
5470 debug, "main", NULL);
5471
5472 pipe_debug_message(debug, SHADER_INFO,
5473 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5474 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5475 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5476 conf->num_sgprs, conf->num_vgprs,
5477 si_get_shader_binary_size(screen, shader),
5478 conf->lds_size, conf->scratch_bytes_per_wave,
5479 shader->info.max_simd_waves, conf->spilled_sgprs,
5480 conf->spilled_vgprs, shader->info.private_mem_vgprs);
5481 }
5482
5483 static void si_shader_dump_stats(struct si_screen *sscreen,
5484 struct si_shader *shader,
5485 FILE *file,
5486 bool check_debug_option)
5487 {
5488 const struct ac_shader_config *conf = &shader->config;
5489
5490 if (!check_debug_option ||
5491 si_can_dump_shader(sscreen, shader->selector->type)) {
5492 if (shader->selector->type == PIPE_SHADER_FRAGMENT) {
5493 fprintf(file, "*** SHADER CONFIG ***\n"
5494 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5495 "SPI_PS_INPUT_ENA = 0x%04x\n",
5496 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5497 }
5498
5499 fprintf(file, "*** SHADER STATS ***\n"
5500 "SGPRS: %d\n"
5501 "VGPRS: %d\n"
5502 "Spilled SGPRs: %d\n"
5503 "Spilled VGPRs: %d\n"
5504 "Private memory VGPRs: %d\n"
5505 "Code Size: %d bytes\n"
5506 "LDS: %d blocks\n"
5507 "Scratch: %d bytes per wave\n"
5508 "Max Waves: %d\n"
5509 "********************\n\n\n",
5510 conf->num_sgprs, conf->num_vgprs,
5511 conf->spilled_sgprs, conf->spilled_vgprs,
5512 shader->info.private_mem_vgprs,
5513 si_get_shader_binary_size(sscreen, shader),
5514 conf->lds_size, conf->scratch_bytes_per_wave,
5515 shader->info.max_simd_waves);
5516 }
5517 }
5518
5519 const char *si_get_shader_name(const struct si_shader *shader)
5520 {
5521 switch (shader->selector->type) {
5522 case PIPE_SHADER_VERTEX:
5523 if (shader->key.as_es)
5524 return "Vertex Shader as ES";
5525 else if (shader->key.as_ls)
5526 return "Vertex Shader as LS";
5527 else if (shader->key.opt.vs_as_prim_discard_cs)
5528 return "Vertex Shader as Primitive Discard CS";
5529 else if (shader->key.as_ngg)
5530 return "Vertex Shader as ESGS";
5531 else
5532 return "Vertex Shader as VS";
5533 case PIPE_SHADER_TESS_CTRL:
5534 return "Tessellation Control Shader";
5535 case PIPE_SHADER_TESS_EVAL:
5536 if (shader->key.as_es)
5537 return "Tessellation Evaluation Shader as ES";
5538 else if (shader->key.as_ngg)
5539 return "Tessellation Evaluation Shader as ESGS";
5540 else
5541 return "Tessellation Evaluation Shader as VS";
5542 case PIPE_SHADER_GEOMETRY:
5543 if (shader->is_gs_copy_shader)
5544 return "GS Copy Shader as VS";
5545 else
5546 return "Geometry Shader";
5547 case PIPE_SHADER_FRAGMENT:
5548 return "Pixel Shader";
5549 case PIPE_SHADER_COMPUTE:
5550 return "Compute Shader";
5551 default:
5552 return "Unknown Shader";
5553 }
5554 }
5555
5556 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
5557 struct pipe_debug_callback *debug,
5558 FILE *file, bool check_debug_option)
5559 {
5560 enum pipe_shader_type shader_type = shader->selector->type;
5561
5562 if (!check_debug_option ||
5563 si_can_dump_shader(sscreen, shader_type))
5564 si_dump_shader_key(shader, file);
5565
5566 if (!check_debug_option && shader->binary.llvm_ir_string) {
5567 if (shader->previous_stage &&
5568 shader->previous_stage->binary.llvm_ir_string) {
5569 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5570 si_get_shader_name(shader));
5571 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5572 }
5573
5574 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5575 si_get_shader_name(shader));
5576 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5577 }
5578
5579 if (!check_debug_option ||
5580 (si_can_dump_shader(sscreen, shader_type) &&
5581 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5582 unsigned wave_size = si_get_shader_wave_size(shader);
5583
5584 fprintf(file, "\n%s:\n", si_get_shader_name(shader));
5585
5586 if (shader->prolog)
5587 si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
5588 shader_type, wave_size, debug, "prolog", file);
5589 if (shader->previous_stage)
5590 si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
5591 shader_type, wave_size, debug, "previous stage", file);
5592 if (shader->prolog2)
5593 si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
5594 shader_type, wave_size, debug, "prolog2", file);
5595
5596 si_shader_dump_disassembly(sscreen, &shader->binary, shader_type,
5597 wave_size, debug, "main", file);
5598
5599 if (shader->epilog)
5600 si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
5601 shader_type, wave_size, debug, "epilog", file);
5602 fprintf(file, "\n");
5603 }
5604
5605 si_shader_dump_stats(sscreen, shader, file, check_debug_option);
5606 }
5607
5608 static int si_compile_llvm(struct si_screen *sscreen,
5609 struct si_shader_binary *binary,
5610 struct ac_shader_config *conf,
5611 struct ac_llvm_compiler *compiler,
5612 LLVMModuleRef mod,
5613 struct pipe_debug_callback *debug,
5614 enum pipe_shader_type shader_type,
5615 unsigned wave_size,
5616 const char *name,
5617 bool less_optimized)
5618 {
5619 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5620
5621 if (si_can_dump_shader(sscreen, shader_type)) {
5622 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5623
5624 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5625 fprintf(stderr, "%s LLVM IR:\n\n", name);
5626 ac_dump_module(mod);
5627 fprintf(stderr, "\n");
5628 }
5629 }
5630
5631 if (sscreen->record_llvm_ir) {
5632 char *ir = LLVMPrintModuleToString(mod);
5633 binary->llvm_ir_string = strdup(ir);
5634 LLVMDisposeMessage(ir);
5635 }
5636
5637 if (!si_replace_shader(count, binary)) {
5638 unsigned r = si_llvm_compile(mod, binary, compiler, debug,
5639 less_optimized, wave_size);
5640 if (r)
5641 return r;
5642 }
5643
5644 struct ac_rtld_binary rtld;
5645 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
5646 .info = &sscreen->info,
5647 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5648 .wave_size = wave_size,
5649 .num_parts = 1,
5650 .elf_ptrs = &binary->elf_buffer,
5651 .elf_sizes = &binary->elf_size }))
5652 return -1;
5653
5654 bool ok = ac_rtld_read_config(&rtld, conf);
5655 ac_rtld_close(&rtld);
5656 if (!ok)
5657 return -1;
5658
5659 /* Enable 64-bit and 16-bit denormals, because there is no performance
5660 * cost.
5661 *
5662 * If denormals are enabled, all floating-point output modifiers are
5663 * ignored.
5664 *
5665 * Don't enable denormals for 32-bit floats, because:
5666 * - Floating-point output modifiers would be ignored by the hw.
5667 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5668 * have to stop using those.
5669 * - GFX6 & GFX7 would be very slow.
5670 */
5671 conf->float_mode |= V_00B028_FP_64_DENORMS;
5672
5673 return 0;
5674 }
5675
5676 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5677 {
5678 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5679 LLVMBuildRetVoid(ctx->ac.builder);
5680 else
5681 LLVMBuildRet(ctx->ac.builder, ret);
5682 }
5683
5684 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5685 struct si_shader *
5686 si_generate_gs_copy_shader(struct si_screen *sscreen,
5687 struct ac_llvm_compiler *compiler,
5688 struct si_shader_selector *gs_selector,
5689 struct pipe_debug_callback *debug)
5690 {
5691 struct si_shader_context ctx;
5692 struct si_shader *shader;
5693 LLVMBuilderRef builder;
5694 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5695 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5696 int i;
5697
5698
5699 shader = CALLOC_STRUCT(si_shader);
5700 if (!shader)
5701 return NULL;
5702
5703 /* We can leave the fence as permanently signaled because the GS copy
5704 * shader only becomes visible globally after it has been compiled. */
5705 util_queue_fence_init(&shader->ready);
5706
5707 shader->selector = gs_selector;
5708 shader->is_gs_copy_shader = true;
5709
5710 si_init_shader_ctx(&ctx, sscreen, compiler,
5711 si_get_wave_size(sscreen, PIPE_SHADER_VERTEX, false, false),
5712 false);
5713 ctx.shader = shader;
5714 ctx.type = PIPE_SHADER_VERTEX;
5715
5716 builder = ctx.ac.builder;
5717
5718 create_function(&ctx);
5719 preload_ring_buffers(&ctx);
5720
5721 LLVMValueRef voffset =
5722 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5723 LLVMConstInt(ctx.i32, 4, 0), "");
5724
5725 /* Fetch the vertex stream ID.*/
5726 LLVMValueRef stream_id;
5727
5728 if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs)
5729 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5730 else
5731 stream_id = ctx.i32_0;
5732
5733 /* Fill in output information. */
5734 for (i = 0; i < gsinfo->num_outputs; ++i) {
5735 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5736 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5737
5738 for (int chan = 0; chan < 4; chan++) {
5739 outputs[i].vertex_stream[chan] =
5740 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5741 }
5742 }
5743
5744 LLVMBasicBlockRef end_bb;
5745 LLVMValueRef switch_inst;
5746
5747 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5748 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5749
5750 for (int stream = 0; stream < 4; stream++) {
5751 LLVMBasicBlockRef bb;
5752 unsigned offset;
5753
5754 if (!gsinfo->num_stream_output_components[stream])
5755 continue;
5756
5757 if (stream > 0 && !gs_selector->so.num_outputs)
5758 continue;
5759
5760 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5761 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5762 LLVMPositionBuilderAtEnd(builder, bb);
5763
5764 /* Fetch vertex data from GSVS ring */
5765 offset = 0;
5766 for (i = 0; i < gsinfo->num_outputs; ++i) {
5767 for (unsigned chan = 0; chan < 4; chan++) {
5768 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5769 outputs[i].vertex_stream[chan] != stream) {
5770 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5771 continue;
5772 }
5773
5774 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5775 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5776 offset++;
5777
5778 outputs[i].values[chan] =
5779 ac_build_buffer_load(&ctx.ac,
5780 ctx.gsvs_ring[0], 1,
5781 ctx.i32_0, voffset,
5782 soffset, 0, ac_glc | ac_slc,
5783 true, false);
5784 }
5785 }
5786
5787 /* Streamout and exports. */
5788 if (!sscreen->use_ngg_streamout && gs_selector->so.num_outputs) {
5789 si_llvm_emit_streamout(&ctx, outputs,
5790 gsinfo->num_outputs,
5791 stream);
5792 }
5793
5794 if (stream == 0)
5795 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5796
5797 LLVMBuildBr(builder, end_bb);
5798 }
5799
5800 LLVMPositionBuilderAtEnd(builder, end_bb);
5801
5802 LLVMBuildRetVoid(ctx.ac.builder);
5803
5804 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5805 si_llvm_optimize_module(&ctx);
5806
5807 bool ok = false;
5808 if (si_compile_llvm(sscreen, &ctx.shader->binary,
5809 &ctx.shader->config, ctx.compiler,
5810 ctx.ac.module,
5811 debug, PIPE_SHADER_GEOMETRY, ctx.ac.wave_size,
5812 "GS Copy Shader", false) == 0) {
5813 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5814 fprintf(stderr, "GS Copy Shader:\n");
5815 si_shader_dump(sscreen, ctx.shader, debug, stderr, true);
5816
5817 if (!ctx.shader->config.scratch_bytes_per_wave)
5818 ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
5819 else
5820 ok = true;
5821 }
5822
5823 si_llvm_dispose(&ctx);
5824
5825 if (!ok) {
5826 FREE(shader);
5827 shader = NULL;
5828 } else {
5829 si_fix_resource_usage(sscreen, shader);
5830 }
5831 return shader;
5832 }
5833
5834 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5835 const struct si_vs_prolog_bits *prolog,
5836 const char *prefix, FILE *f)
5837 {
5838 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5839 prefix, prolog->instance_divisor_is_one);
5840 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5841 prefix, prolog->instance_divisor_is_fetched);
5842 fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n",
5843 prefix, prolog->unpack_instance_id_from_vertex_id);
5844 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5845 prefix, prolog->ls_vgpr_fix);
5846
5847 fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
5848 fprintf(f, " mono.vs.fix_fetch = {");
5849 for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
5850 union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
5851 if (i)
5852 fprintf(f, ", ");
5853 if (!fix.bits)
5854 fprintf(f, "0");
5855 else
5856 fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
5857 fix.u.num_channels_m1, fix.u.format);
5858 }
5859 fprintf(f, "}\n");
5860 }
5861
5862 static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
5863 {
5864 const struct si_shader_key *key = &shader->key;
5865 enum pipe_shader_type shader_type = shader->selector->type;
5866
5867 fprintf(f, "SHADER KEY\n");
5868
5869 switch (shader_type) {
5870 case PIPE_SHADER_VERTEX:
5871 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5872 "part.vs.prolog", f);
5873 fprintf(f, " as_es = %u\n", key->as_es);
5874 fprintf(f, " as_ls = %u\n", key->as_ls);
5875 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5876 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5877 key->mono.u.vs_export_prim_id);
5878 fprintf(f, " opt.vs_as_prim_discard_cs = %u\n",
5879 key->opt.vs_as_prim_discard_cs);
5880 fprintf(f, " opt.cs_prim_type = %s\n",
5881 tgsi_primitive_names[key->opt.cs_prim_type]);
5882 fprintf(f, " opt.cs_indexed = %u\n",
5883 key->opt.cs_indexed);
5884 fprintf(f, " opt.cs_instancing = %u\n",
5885 key->opt.cs_instancing);
5886 fprintf(f, " opt.cs_primitive_restart = %u\n",
5887 key->opt.cs_primitive_restart);
5888 fprintf(f, " opt.cs_provoking_vertex_first = %u\n",
5889 key->opt.cs_provoking_vertex_first);
5890 fprintf(f, " opt.cs_need_correct_orientation = %u\n",
5891 key->opt.cs_need_correct_orientation);
5892 fprintf(f, " opt.cs_cull_front = %u\n",
5893 key->opt.cs_cull_front);
5894 fprintf(f, " opt.cs_cull_back = %u\n",
5895 key->opt.cs_cull_back);
5896 fprintf(f, " opt.cs_cull_z = %u\n",
5897 key->opt.cs_cull_z);
5898 fprintf(f, " opt.cs_halfz_clip_space = %u\n",
5899 key->opt.cs_halfz_clip_space);
5900 break;
5901
5902 case PIPE_SHADER_TESS_CTRL:
5903 if (shader->selector->screen->info.chip_class >= GFX9) {
5904 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5905 "part.tcs.ls_prolog", f);
5906 }
5907 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5908 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5909 break;
5910
5911 case PIPE_SHADER_TESS_EVAL:
5912 fprintf(f, " as_es = %u\n", key->as_es);
5913 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5914 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5915 key->mono.u.vs_export_prim_id);
5916 break;
5917
5918 case PIPE_SHADER_GEOMETRY:
5919 if (shader->is_gs_copy_shader)
5920 break;
5921
5922 if (shader->selector->screen->info.chip_class >= GFX9 &&
5923 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5924 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5925 "part.gs.vs_prolog", f);
5926 }
5927 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5928 fprintf(f, " part.gs.prolog.gfx9_prev_is_vs = %u\n", key->part.gs.prolog.gfx9_prev_is_vs);
5929 fprintf(f, " as_ngg = %u\n", key->as_ngg);
5930 break;
5931
5932 case PIPE_SHADER_COMPUTE:
5933 break;
5934
5935 case PIPE_SHADER_FRAGMENT:
5936 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5937 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5938 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5939 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5940 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5941 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5942 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5943 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5944 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5945 fprintf(f, " part.ps.prolog.samplemask_log_ps_iter = %u\n", key->part.ps.prolog.samplemask_log_ps_iter);
5946 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5947 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5948 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5949 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5950 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5951 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5952 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5953 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5954 fprintf(f, " mono.u.ps.interpolate_at_sample_force_center = %u\n", key->mono.u.ps.interpolate_at_sample_force_center);
5955 fprintf(f, " mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
5956 fprintf(f, " mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
5957 fprintf(f, " mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
5958 break;
5959
5960 default:
5961 assert(0);
5962 }
5963
5964 if ((shader_type == PIPE_SHADER_GEOMETRY ||
5965 shader_type == PIPE_SHADER_TESS_EVAL ||
5966 shader_type == PIPE_SHADER_VERTEX) &&
5967 !key->as_es && !key->as_ls) {
5968 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5969 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5970 }
5971 }
5972
5973 static void si_init_shader_ctx(struct si_shader_context *ctx,
5974 struct si_screen *sscreen,
5975 struct ac_llvm_compiler *compiler,
5976 unsigned wave_size,
5977 bool nir)
5978 {
5979 struct lp_build_tgsi_context *bld_base;
5980
5981 si_llvm_context_init(ctx, sscreen, compiler, wave_size,
5982 nir ? 64 : wave_size);
5983
5984 bld_base = &ctx->bld_base;
5985 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5986
5987 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5988 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5989 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5990
5991 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5992
5993 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5994
5995 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5996 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5997 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5998 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5999
6000 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
6001 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
6002 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
6003 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
6004 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
6005 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
6006 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6007 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6008
6009 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6010 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6011 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6012 }
6013
6014 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6015 {
6016 struct si_shader *shader = ctx->shader;
6017 struct tgsi_shader_info *info = &shader->selector->info;
6018
6019 if ((ctx->type != PIPE_SHADER_VERTEX &&
6020 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6021 shader->key.as_ls ||
6022 shader->key.as_es)
6023 return;
6024
6025 ac_optimize_vs_outputs(&ctx->ac,
6026 ctx->main_fn,
6027 shader->info.vs_output_param_offset,
6028 info->num_outputs,
6029 &shader->info.nr_param_exports);
6030 }
6031
6032 static void si_init_exec_from_input(struct si_shader_context *ctx,
6033 unsigned param, unsigned bitoffset)
6034 {
6035 LLVMValueRef args[] = {
6036 LLVMGetParam(ctx->main_fn, param),
6037 LLVMConstInt(ctx->i32, bitoffset, 0),
6038 };
6039 ac_build_intrinsic(&ctx->ac,
6040 "llvm.amdgcn.init.exec.from.input",
6041 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6042 }
6043
6044 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6045 const struct si_vs_prolog_bits *key)
6046 {
6047 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6048 * VS prolog. */
6049 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6050 }
6051
6052 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6053 {
6054 struct si_shader *shader = ctx->shader;
6055 struct si_shader_selector *sel = shader->selector;
6056 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6057
6058 // TODO clean all this up!
6059 switch (ctx->type) {
6060 case PIPE_SHADER_VERTEX:
6061 ctx->load_input = declare_input_vs;
6062 if (shader->key.as_ls)
6063 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6064 else if (shader->key.as_es)
6065 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6066 else if (shader->key.opt.vs_as_prim_discard_cs)
6067 ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
6068 else if (shader->key.as_ngg)
6069 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6070 else
6071 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6072 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6073 ctx->abi.load_base_vertex = get_base_vertex;
6074 break;
6075 case PIPE_SHADER_TESS_CTRL:
6076 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6077 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6078 ctx->abi.load_tess_level = si_load_tess_level;
6079 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6080 bld_base->emit_store = store_output_tcs;
6081 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6082 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6083 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6084 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6085 break;
6086 case PIPE_SHADER_TESS_EVAL:
6087 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6088 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6089 ctx->abi.load_tess_coord = si_load_tess_coord;
6090 ctx->abi.load_tess_level = si_load_tess_level;
6091 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6092 if (shader->key.as_es)
6093 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6094 else if (shader->key.as_ngg)
6095 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6096 else
6097 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6098 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6099 break;
6100 case PIPE_SHADER_GEOMETRY:
6101 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6102 ctx->abi.load_inputs = si_nir_load_input_gs;
6103 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6104 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6105 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6106 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6107 break;
6108 case PIPE_SHADER_FRAGMENT:
6109 ctx->load_input = declare_input_fs;
6110 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6111 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6112 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6113 ctx->abi.load_sample_position = load_sample_position;
6114 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6115 ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
6116 ctx->abi.emit_kill = si_llvm_emit_kill;
6117 break;
6118 case PIPE_SHADER_COMPUTE:
6119 ctx->abi.load_local_group_size = get_block_size;
6120 break;
6121 default:
6122 assert(!"Unsupported shader type");
6123 return false;
6124 }
6125
6126 ctx->abi.load_ubo = load_ubo;
6127 ctx->abi.load_ssbo = load_ssbo;
6128
6129 create_function(ctx);
6130 preload_ring_buffers(ctx);
6131
6132 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6133 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6134 for (unsigned i = 0; i < 6; i++) {
6135 ctx->invoc0_tess_factors[i] =
6136 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6137 }
6138 }
6139
6140 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6141 for (unsigned i = 0; i < 4; i++) {
6142 ctx->gs_next_vertex[i] =
6143 ac_build_alloca(&ctx->ac, ctx->i32, "");
6144 }
6145 if (shader->key.as_ngg) {
6146 for (unsigned i = 0; i < 4; ++i) {
6147 ctx->gs_curprim_verts[i] =
6148 ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
6149 ctx->gs_generated_prims[i] =
6150 ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
6151 }
6152
6153 unsigned scratch_size = 8;
6154 if (sel->so.num_outputs)
6155 scratch_size = 44;
6156
6157 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
6158 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6159 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6160 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
6161 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6162
6163 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6164 LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
6165 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
6166 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
6167 }
6168 }
6169
6170 if (ctx->type != PIPE_SHADER_GEOMETRY &&
6171 (shader->key.as_ngg && !shader->key.as_es)) {
6172 /* Unconditionally declare scratch space base for streamout and
6173 * vertex compaction. Whether space is actually allocated is
6174 * determined during linking / PM4 creation.
6175 *
6176 * Add an extra dword per vertex to ensure an odd stride, which
6177 * avoids bank conflicts for SoA accesses.
6178 */
6179 declare_esgs_ring(ctx);
6180
6181 /* This is really only needed when streamout and / or vertex
6182 * compaction is enabled.
6183 */
6184 LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
6185 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6186 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6187 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
6188 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6189 }
6190
6191 /* For GFX9 merged shaders:
6192 * - Set EXEC for the first shader. If the prolog is present, set
6193 * EXEC there instead.
6194 * - Add a barrier before the second shader.
6195 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6196 * an if-statement. This is required for correctness in geometry
6197 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6198 * GS_CUT messages.
6199 *
6200 * For monolithic merged shaders, the first shader is wrapped in an
6201 * if-block together with its prolog in si_build_wrapper_function.
6202 *
6203 * NGG vertex and tess eval shaders running as the last
6204 * vertex/geometry stage handle execution explicitly using
6205 * if-statements.
6206 */
6207 if (ctx->screen->info.chip_class >= GFX9) {
6208 if (!shader->is_monolithic &&
6209 sel->info.num_instructions > 1 && /* not empty shader */
6210 (shader->key.as_es || shader->key.as_ls) &&
6211 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6212 (ctx->type == PIPE_SHADER_VERTEX &&
6213 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6214 si_init_exec_from_input(ctx,
6215 ctx->param_merged_wave_info, 0);
6216 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6217 ctx->type == PIPE_SHADER_GEOMETRY ||
6218 (shader->key.as_ngg && !shader->key.as_es)) {
6219 LLVMValueRef num_threads;
6220 bool nested_barrier;
6221
6222 if (!shader->is_monolithic ||
6223 (ctx->type == PIPE_SHADER_TESS_EVAL &&
6224 (shader->key.as_ngg && !shader->key.as_es)))
6225 ac_init_exec_full_mask(&ctx->ac);
6226
6227 if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6228 ctx->type == PIPE_SHADER_GEOMETRY) {
6229 if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
6230 gfx10_ngg_gs_emit_prologue(ctx);
6231 nested_barrier = false;
6232 } else {
6233 nested_barrier = true;
6234 }
6235
6236 /* Number of patches / primitives */
6237 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6238 } else {
6239 /* Number of vertices */
6240 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
6241 nested_barrier = false;
6242 }
6243
6244 LLVMValueRef ena =
6245 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6246 ac_get_thread_id(&ctx->ac), num_threads, "");
6247
6248 ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
6249 ctx->merged_wrap_if_label = 11500;
6250 ac_build_ifcc(&ctx->ac, ena, ctx->merged_wrap_if_label);
6251
6252 if (nested_barrier) {
6253 /* Execute a barrier before the second shader in
6254 * a merged shader.
6255 *
6256 * Execute the barrier inside the conditional block,
6257 * so that empty waves can jump directly to s_endpgm,
6258 * which will also signal the barrier.
6259 *
6260 * This is possible in gfx9, because an empty wave
6261 * for the second shader does not participate in
6262 * the epilogue. With NGG, empty waves may still
6263 * be required to export data (e.g. GS output vertices),
6264 * so we cannot let them exit early.
6265 *
6266 * If the shader is TCS and the TCS epilog is present
6267 * and contains a barrier, it will wait there and then
6268 * reach s_endpgm.
6269 */
6270 si_llvm_emit_barrier(NULL, bld_base, NULL);
6271 }
6272 }
6273 }
6274
6275 if (sel->force_correct_derivs_after_kill) {
6276 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6277 /* true = don't kill. */
6278 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6279 ctx->postponed_kill);
6280 }
6281
6282 if (sel->tokens) {
6283 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6284 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6285 return false;
6286 }
6287 } else {
6288 if (!si_nir_build_llvm(ctx, sel->nir)) {
6289 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6290 return false;
6291 }
6292 }
6293
6294 si_llvm_build_ret(ctx, ctx->return_value);
6295 return true;
6296 }
6297
6298 /**
6299 * Compute the VS prolog key, which contains all the information needed to
6300 * build the VS prolog function, and set shader->info bits where needed.
6301 *
6302 * \param info Shader info of the vertex shader.
6303 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6304 * \param prolog_key Key of the VS prolog
6305 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6306 * \param key Output shader part key.
6307 */
6308 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6309 unsigned num_input_sgprs,
6310 const struct si_vs_prolog_bits *prolog_key,
6311 struct si_shader *shader_out,
6312 union si_shader_part_key *key)
6313 {
6314 memset(key, 0, sizeof(*key));
6315 key->vs_prolog.states = *prolog_key;
6316 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6317 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6318 key->vs_prolog.as_ls = shader_out->key.as_ls;
6319 key->vs_prolog.as_es = shader_out->key.as_es;
6320 key->vs_prolog.as_ngg = shader_out->key.as_ngg;
6321
6322 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6323 key->vs_prolog.as_ls = 1;
6324 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6325 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6326 key->vs_prolog.as_es = 1;
6327 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6328 } else if (shader_out->key.as_ngg) {
6329 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6330 }
6331
6332 /* Enable loading the InstanceID VGPR. */
6333 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6334
6335 if ((key->vs_prolog.states.instance_divisor_is_one |
6336 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6337 shader_out->info.uses_instanceid = true;
6338 }
6339
6340 /**
6341 * Compute the PS prolog key, which contains all the information needed to
6342 * build the PS prolog function, and set related bits in shader->config.
6343 */
6344 static void si_get_ps_prolog_key(struct si_shader *shader,
6345 union si_shader_part_key *key,
6346 bool separate_prolog)
6347 {
6348 struct tgsi_shader_info *info = &shader->selector->info;
6349
6350 memset(key, 0, sizeof(*key));
6351 key->ps_prolog.states = shader->key.part.ps.prolog;
6352 key->ps_prolog.colors_read = info->colors_read;
6353 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6354 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6355 key->ps_prolog.wqm = info->uses_derivatives &&
6356 (key->ps_prolog.colors_read ||
6357 key->ps_prolog.states.force_persp_sample_interp ||
6358 key->ps_prolog.states.force_linear_sample_interp ||
6359 key->ps_prolog.states.force_persp_center_interp ||
6360 key->ps_prolog.states.force_linear_center_interp ||
6361 key->ps_prolog.states.bc_optimize_for_persp ||
6362 key->ps_prolog.states.bc_optimize_for_linear);
6363 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6364
6365 if (info->colors_read) {
6366 unsigned *color = shader->selector->color_attr_index;
6367
6368 if (shader->key.part.ps.prolog.color_two_side) {
6369 /* BCOLORs are stored after the last input. */
6370 key->ps_prolog.num_interp_inputs = info->num_inputs;
6371 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6372 if (separate_prolog)
6373 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6374 }
6375
6376 for (unsigned i = 0; i < 2; i++) {
6377 unsigned interp = info->input_interpolate[color[i]];
6378 unsigned location = info->input_interpolate_loc[color[i]];
6379
6380 if (!(info->colors_read & (0xf << i*4)))
6381 continue;
6382
6383 key->ps_prolog.color_attr_index[i] = color[i];
6384
6385 if (shader->key.part.ps.prolog.flatshade_colors &&
6386 interp == TGSI_INTERPOLATE_COLOR)
6387 interp = TGSI_INTERPOLATE_CONSTANT;
6388
6389 switch (interp) {
6390 case TGSI_INTERPOLATE_CONSTANT:
6391 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6392 break;
6393 case TGSI_INTERPOLATE_PERSPECTIVE:
6394 case TGSI_INTERPOLATE_COLOR:
6395 /* Force the interpolation location for colors here. */
6396 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6397 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6398 if (shader->key.part.ps.prolog.force_persp_center_interp)
6399 location = TGSI_INTERPOLATE_LOC_CENTER;
6400
6401 switch (location) {
6402 case TGSI_INTERPOLATE_LOC_SAMPLE:
6403 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6404 if (separate_prolog) {
6405 shader->config.spi_ps_input_ena |=
6406 S_0286CC_PERSP_SAMPLE_ENA(1);
6407 }
6408 break;
6409 case TGSI_INTERPOLATE_LOC_CENTER:
6410 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6411 if (separate_prolog) {
6412 shader->config.spi_ps_input_ena |=
6413 S_0286CC_PERSP_CENTER_ENA(1);
6414 }
6415 break;
6416 case TGSI_INTERPOLATE_LOC_CENTROID:
6417 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6418 if (separate_prolog) {
6419 shader->config.spi_ps_input_ena |=
6420 S_0286CC_PERSP_CENTROID_ENA(1);
6421 }
6422 break;
6423 default:
6424 assert(0);
6425 }
6426 break;
6427 case TGSI_INTERPOLATE_LINEAR:
6428 /* Force the interpolation location for colors here. */
6429 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6430 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6431 if (shader->key.part.ps.prolog.force_linear_center_interp)
6432 location = TGSI_INTERPOLATE_LOC_CENTER;
6433
6434 /* The VGPR assignment for non-monolithic shaders
6435 * works because InitialPSInputAddr is set on the
6436 * main shader and PERSP_PULL_MODEL is never used.
6437 */
6438 switch (location) {
6439 case TGSI_INTERPOLATE_LOC_SAMPLE:
6440 key->ps_prolog.color_interp_vgpr_index[i] =
6441 separate_prolog ? 6 : 9;
6442 if (separate_prolog) {
6443 shader->config.spi_ps_input_ena |=
6444 S_0286CC_LINEAR_SAMPLE_ENA(1);
6445 }
6446 break;
6447 case TGSI_INTERPOLATE_LOC_CENTER:
6448 key->ps_prolog.color_interp_vgpr_index[i] =
6449 separate_prolog ? 8 : 11;
6450 if (separate_prolog) {
6451 shader->config.spi_ps_input_ena |=
6452 S_0286CC_LINEAR_CENTER_ENA(1);
6453 }
6454 break;
6455 case TGSI_INTERPOLATE_LOC_CENTROID:
6456 key->ps_prolog.color_interp_vgpr_index[i] =
6457 separate_prolog ? 10 : 13;
6458 if (separate_prolog) {
6459 shader->config.spi_ps_input_ena |=
6460 S_0286CC_LINEAR_CENTROID_ENA(1);
6461 }
6462 break;
6463 default:
6464 assert(0);
6465 }
6466 break;
6467 default:
6468 assert(0);
6469 }
6470 }
6471 }
6472 }
6473
6474 /**
6475 * Check whether a PS prolog is required based on the key.
6476 */
6477 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6478 {
6479 return key->ps_prolog.colors_read ||
6480 key->ps_prolog.states.force_persp_sample_interp ||
6481 key->ps_prolog.states.force_linear_sample_interp ||
6482 key->ps_prolog.states.force_persp_center_interp ||
6483 key->ps_prolog.states.force_linear_center_interp ||
6484 key->ps_prolog.states.bc_optimize_for_persp ||
6485 key->ps_prolog.states.bc_optimize_for_linear ||
6486 key->ps_prolog.states.poly_stipple ||
6487 key->ps_prolog.states.samplemask_log_ps_iter;
6488 }
6489
6490 /**
6491 * Compute the PS epilog key, which contains all the information needed to
6492 * build the PS epilog function.
6493 */
6494 static void si_get_ps_epilog_key(struct si_shader *shader,
6495 union si_shader_part_key *key)
6496 {
6497 struct tgsi_shader_info *info = &shader->selector->info;
6498 memset(key, 0, sizeof(*key));
6499 key->ps_epilog.colors_written = info->colors_written;
6500 key->ps_epilog.writes_z = info->writes_z;
6501 key->ps_epilog.writes_stencil = info->writes_stencil;
6502 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6503 key->ps_epilog.states = shader->key.part.ps.epilog;
6504 }
6505
6506 /**
6507 * Build the GS prolog function. Rotate the input vertices for triangle strips
6508 * with adjacency.
6509 */
6510 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6511 union si_shader_part_key *key)
6512 {
6513 unsigned num_sgprs, num_vgprs;
6514 struct si_function_info fninfo;
6515 LLVMBuilderRef builder = ctx->ac.builder;
6516 LLVMTypeRef returns[48];
6517 LLVMValueRef func, ret;
6518
6519 si_init_function_info(&fninfo);
6520
6521 if (ctx->screen->info.chip_class >= GFX9) {
6522 if (key->gs_prolog.states.gfx9_prev_is_vs)
6523 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6524 else
6525 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6526 num_vgprs = 5; /* ES inputs are not needed by GS */
6527 } else {
6528 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6529 num_vgprs = 8;
6530 }
6531
6532 for (unsigned i = 0; i < num_sgprs; ++i) {
6533 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6534 returns[i] = ctx->i32;
6535 }
6536
6537 for (unsigned i = 0; i < num_vgprs; ++i) {
6538 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6539 returns[num_sgprs + i] = ctx->f32;
6540 }
6541
6542 /* Create the function. */
6543 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6544 &fninfo, 0);
6545 func = ctx->main_fn;
6546
6547 /* Set the full EXEC mask for the prolog, because we are only fiddling
6548 * with registers here. The main shader part will set the correct EXEC
6549 * mask.
6550 */
6551 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6552 ac_init_exec_full_mask(&ctx->ac);
6553
6554 /* Copy inputs to outputs. This should be no-op, as the registers match,
6555 * but it will prevent the compiler from overwriting them unintentionally.
6556 */
6557 ret = ctx->return_value;
6558 for (unsigned i = 0; i < num_sgprs; i++) {
6559 LLVMValueRef p = LLVMGetParam(func, i);
6560 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6561 }
6562 for (unsigned i = 0; i < num_vgprs; i++) {
6563 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6564 p = ac_to_float(&ctx->ac, p);
6565 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6566 }
6567
6568 if (key->gs_prolog.states.tri_strip_adj_fix) {
6569 /* Remap the input vertices for every other primitive. */
6570 const unsigned gfx6_vtx_params[6] = {
6571 num_sgprs,
6572 num_sgprs + 1,
6573 num_sgprs + 3,
6574 num_sgprs + 4,
6575 num_sgprs + 5,
6576 num_sgprs + 6
6577 };
6578 const unsigned gfx9_vtx_params[3] = {
6579 num_sgprs,
6580 num_sgprs + 1,
6581 num_sgprs + 4,
6582 };
6583 LLVMValueRef vtx_in[6], vtx_out[6];
6584 LLVMValueRef prim_id, rotate;
6585
6586 if (ctx->screen->info.chip_class >= GFX9) {
6587 for (unsigned i = 0; i < 3; i++) {
6588 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6589 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6590 }
6591 } else {
6592 for (unsigned i = 0; i < 6; i++)
6593 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6594 }
6595
6596 prim_id = LLVMGetParam(func, num_sgprs + 2);
6597 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6598
6599 for (unsigned i = 0; i < 6; ++i) {
6600 LLVMValueRef base, rotated;
6601 base = vtx_in[i];
6602 rotated = vtx_in[(i + 4) % 6];
6603 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6604 }
6605
6606 if (ctx->screen->info.chip_class >= GFX9) {
6607 for (unsigned i = 0; i < 3; i++) {
6608 LLVMValueRef hi, out;
6609
6610 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6611 LLVMConstInt(ctx->i32, 16, 0), "");
6612 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6613 out = ac_to_float(&ctx->ac, out);
6614 ret = LLVMBuildInsertValue(builder, ret, out,
6615 gfx9_vtx_params[i], "");
6616 }
6617 } else {
6618 for (unsigned i = 0; i < 6; i++) {
6619 LLVMValueRef out;
6620
6621 out = ac_to_float(&ctx->ac, vtx_out[i]);
6622 ret = LLVMBuildInsertValue(builder, ret, out,
6623 gfx6_vtx_params[i], "");
6624 }
6625 }
6626 }
6627
6628 LLVMBuildRet(builder, ret);
6629 }
6630
6631 /**
6632 * Given a list of shader part functions, build a wrapper function that
6633 * runs them in sequence to form a monolithic shader.
6634 */
6635 static void si_build_wrapper_function(struct si_shader_context *ctx,
6636 LLVMValueRef *parts,
6637 unsigned num_parts,
6638 unsigned main_part,
6639 unsigned next_shader_first_part)
6640 {
6641 LLVMBuilderRef builder = ctx->ac.builder;
6642 /* PS epilog has one arg per color component; gfx9 merged shader
6643 * prologs need to forward 32 user SGPRs.
6644 */
6645 struct si_function_info fninfo;
6646 LLVMValueRef initial[64], out[64];
6647 LLVMTypeRef function_type;
6648 unsigned num_first_params;
6649 unsigned num_out, initial_num_out;
6650 ASSERTED unsigned num_out_sgpr; /* used in debug checks */
6651 ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
6652 unsigned num_sgprs, num_vgprs;
6653 unsigned gprs;
6654
6655 si_init_function_info(&fninfo);
6656
6657 for (unsigned i = 0; i < num_parts; ++i) {
6658 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6659 AC_FUNC_ATTR_ALWAYSINLINE);
6660 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6661 }
6662
6663 /* The parameters of the wrapper function correspond to those of the
6664 * first part in terms of SGPRs and VGPRs, but we use the types of the
6665 * main part to get the right types. This is relevant for the
6666 * dereferenceable attribute on descriptor table pointers.
6667 */
6668 num_sgprs = 0;
6669 num_vgprs = 0;
6670
6671 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6672 num_first_params = LLVMCountParamTypes(function_type);
6673
6674 for (unsigned i = 0; i < num_first_params; ++i) {
6675 LLVMValueRef param = LLVMGetParam(parts[0], i);
6676
6677 if (ac_is_sgpr_param(param)) {
6678 assert(num_vgprs == 0);
6679 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6680 } else {
6681 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6682 }
6683 }
6684
6685 gprs = 0;
6686 while (gprs < num_sgprs + num_vgprs) {
6687 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6688 LLVMTypeRef type = LLVMTypeOf(param);
6689 unsigned size = ac_get_type_size(type) / 4;
6690
6691 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6692
6693 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6694 assert(gprs + size <= num_sgprs + num_vgprs &&
6695 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6696
6697 gprs += size;
6698 }
6699
6700 /* Prepare the return type. */
6701 unsigned num_returns = 0;
6702 LLVMTypeRef returns[32], last_func_type, return_type;
6703
6704 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
6705 return_type = LLVMGetReturnType(last_func_type);
6706
6707 switch (LLVMGetTypeKind(return_type)) {
6708 case LLVMStructTypeKind:
6709 num_returns = LLVMCountStructElementTypes(return_type);
6710 assert(num_returns <= ARRAY_SIZE(returns));
6711 LLVMGetStructElementTypes(return_type, returns);
6712 break;
6713 case LLVMVoidTypeKind:
6714 break;
6715 default:
6716 unreachable("unexpected type");
6717 }
6718
6719 si_create_function(ctx, "wrapper", returns, num_returns, &fninfo,
6720 si_get_max_workgroup_size(ctx->shader));
6721
6722 if (is_merged_shader(ctx))
6723 ac_init_exec_full_mask(&ctx->ac);
6724
6725 /* Record the arguments of the function as if they were an output of
6726 * a previous part.
6727 */
6728 num_out = 0;
6729 num_out_sgpr = 0;
6730
6731 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6732 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6733 LLVMTypeRef param_type = LLVMTypeOf(param);
6734 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6735 unsigned size = ac_get_type_size(param_type) / 4;
6736
6737 if (size == 1) {
6738 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6739 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6740 param_type = ctx->i32;
6741 }
6742
6743 if (param_type != out_type)
6744 param = LLVMBuildBitCast(builder, param, out_type, "");
6745 out[num_out++] = param;
6746 } else {
6747 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6748
6749 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6750 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6751 param_type = ctx->i64;
6752 }
6753
6754 if (param_type != vector_type)
6755 param = LLVMBuildBitCast(builder, param, vector_type, "");
6756
6757 for (unsigned j = 0; j < size; ++j)
6758 out[num_out++] = LLVMBuildExtractElement(
6759 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6760 }
6761
6762 if (i < fninfo.num_sgpr_params)
6763 num_out_sgpr = num_out;
6764 }
6765
6766 memcpy(initial, out, sizeof(out));
6767 initial_num_out = num_out;
6768 initial_num_out_sgpr = num_out_sgpr;
6769
6770 /* Now chain the parts. */
6771 LLVMValueRef ret = NULL;
6772 for (unsigned part = 0; part < num_parts; ++part) {
6773 LLVMValueRef in[48];
6774 LLVMTypeRef ret_type;
6775 unsigned out_idx = 0;
6776 unsigned num_params = LLVMCountParams(parts[part]);
6777
6778 /* Merged shaders are executed conditionally depending
6779 * on the number of enabled threads passed in the input SGPRs. */
6780 if (is_multi_part_shader(ctx) && part == 0) {
6781 LLVMValueRef ena, count = initial[3];
6782
6783 count = LLVMBuildAnd(builder, count,
6784 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6785 ena = LLVMBuildICmp(builder, LLVMIntULT,
6786 ac_get_thread_id(&ctx->ac), count, "");
6787 ac_build_ifcc(&ctx->ac, ena, 6506);
6788 }
6789
6790 /* Derive arguments for the next part from outputs of the
6791 * previous one.
6792 */
6793 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6794 LLVMValueRef param;
6795 LLVMTypeRef param_type;
6796 bool is_sgpr;
6797 unsigned param_size;
6798 LLVMValueRef arg = NULL;
6799
6800 param = LLVMGetParam(parts[part], param_idx);
6801 param_type = LLVMTypeOf(param);
6802 param_size = ac_get_type_size(param_type) / 4;
6803 is_sgpr = ac_is_sgpr_param(param);
6804
6805 if (is_sgpr) {
6806 ac_add_function_attr(ctx->ac.context, parts[part],
6807 param_idx + 1, AC_FUNC_ATTR_INREG);
6808 } else if (out_idx < num_out_sgpr) {
6809 /* Skip returned SGPRs the current part doesn't
6810 * declare on the input. */
6811 out_idx = num_out_sgpr;
6812 }
6813
6814 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6815
6816 if (param_size == 1)
6817 arg = out[out_idx];
6818 else
6819 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6820
6821 if (LLVMTypeOf(arg) != param_type) {
6822 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6823 if (LLVMGetPointerAddressSpace(param_type) ==
6824 AC_ADDR_SPACE_CONST_32BIT) {
6825 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6826 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6827 } else {
6828 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6829 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6830 }
6831 } else {
6832 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6833 }
6834 }
6835
6836 in[param_idx] = arg;
6837 out_idx += param_size;
6838 }
6839
6840 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
6841
6842 if (is_multi_part_shader(ctx) &&
6843 part + 1 == next_shader_first_part) {
6844 ac_build_endif(&ctx->ac, 6506);
6845
6846 /* The second half of the merged shader should use
6847 * the inputs from the toplevel (wrapper) function,
6848 * not the return value from the last call.
6849 *
6850 * That's because the last call was executed condi-
6851 * tionally, so we can't consume it in the main
6852 * block.
6853 */
6854 memcpy(out, initial, sizeof(initial));
6855 num_out = initial_num_out;
6856 num_out_sgpr = initial_num_out_sgpr;
6857 continue;
6858 }
6859
6860 /* Extract the returned GPRs. */
6861 ret_type = LLVMTypeOf(ret);
6862 num_out = 0;
6863 num_out_sgpr = 0;
6864
6865 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6866 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6867
6868 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6869
6870 for (unsigned i = 0; i < ret_size; ++i) {
6871 LLVMValueRef val =
6872 LLVMBuildExtractValue(builder, ret, i, "");
6873
6874 assert(num_out < ARRAY_SIZE(out));
6875 out[num_out++] = val;
6876
6877 if (LLVMTypeOf(val) == ctx->i32) {
6878 assert(num_out_sgpr + 1 == num_out);
6879 num_out_sgpr = num_out;
6880 }
6881 }
6882 }
6883 }
6884
6885 /* Return the value from the last part. */
6886 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6887 LLVMBuildRetVoid(builder);
6888 else
6889 LLVMBuildRet(builder, ret);
6890 }
6891
6892 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6893 struct si_shader_selector *sel)
6894 {
6895 if (!compiler->low_opt_passes)
6896 return false;
6897
6898 /* Assume a slow CPU. */
6899 assert(!sel->screen->info.has_dedicated_vram &&
6900 sel->screen->info.chip_class <= GFX8);
6901
6902 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6903 * buffer stores. */
6904 return sel->type == PIPE_SHADER_COMPUTE &&
6905 sel->info.num_memory_instructions > 1000;
6906 }
6907
6908 int si_compile_tgsi_shader(struct si_screen *sscreen,
6909 struct ac_llvm_compiler *compiler,
6910 struct si_shader *shader,
6911 struct pipe_debug_callback *debug)
6912 {
6913 struct si_shader_selector *sel = shader->selector;
6914 struct si_shader_context ctx;
6915 int r = -1;
6916
6917 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6918 * conversion fails. */
6919 if (si_can_dump_shader(sscreen, sel->type) &&
6920 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6921 if (sel->tokens)
6922 tgsi_dump(sel->tokens, 0);
6923 else
6924 nir_print_shader(sel->nir, stderr);
6925 si_dump_streamout(&sel->so);
6926 }
6927
6928 si_init_shader_ctx(&ctx, sscreen, compiler, si_get_shader_wave_size(shader),
6929 sel->nir != NULL);
6930 si_llvm_context_set_ir(&ctx, shader);
6931
6932 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6933 sizeof(shader->info.vs_output_param_offset));
6934
6935 shader->info.uses_instanceid = sel->info.uses_instanceid;
6936
6937 if (!si_compile_tgsi_main(&ctx)) {
6938 si_llvm_dispose(&ctx);
6939 return -1;
6940 }
6941
6942 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6943 LLVMValueRef parts[2];
6944 bool need_prolog = sel->vs_needs_prolog;
6945
6946 parts[1] = ctx.main_fn;
6947
6948 if (need_prolog) {
6949 union si_shader_part_key prolog_key;
6950 si_get_vs_prolog_key(&sel->info,
6951 shader->info.num_input_sgprs,
6952 &shader->key.part.vs.prolog,
6953 shader, &prolog_key);
6954 si_build_vs_prolog_function(&ctx, &prolog_key);
6955 parts[0] = ctx.main_fn;
6956 }
6957
6958 si_build_wrapper_function(&ctx, parts + !need_prolog,
6959 1 + need_prolog, need_prolog, 0);
6960
6961 if (ctx.shader->key.opt.vs_as_prim_discard_cs)
6962 si_build_prim_discard_compute_shader(&ctx);
6963 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6964 if (sscreen->info.chip_class >= GFX9) {
6965 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6966 LLVMValueRef parts[4];
6967 bool vs_needs_prolog =
6968 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6969
6970 /* TCS main part */
6971 parts[2] = ctx.main_fn;
6972
6973 /* TCS epilog */
6974 union si_shader_part_key tcs_epilog_key;
6975 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6976 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6977 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6978 parts[3] = ctx.main_fn;
6979
6980 /* VS as LS main part */
6981 struct si_shader shader_ls = {};
6982 shader_ls.selector = ls;
6983 shader_ls.key.as_ls = 1;
6984 shader_ls.key.mono = shader->key.mono;
6985 shader_ls.key.opt = shader->key.opt;
6986 shader_ls.is_monolithic = true;
6987 si_llvm_context_set_ir(&ctx, &shader_ls);
6988
6989 if (!si_compile_tgsi_main(&ctx)) {
6990 si_llvm_dispose(&ctx);
6991 return -1;
6992 }
6993 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6994 parts[1] = ctx.main_fn;
6995
6996 /* LS prolog */
6997 if (vs_needs_prolog) {
6998 union si_shader_part_key vs_prolog_key;
6999 si_get_vs_prolog_key(&ls->info,
7000 shader_ls.info.num_input_sgprs,
7001 &shader->key.part.tcs.ls_prolog,
7002 shader, &vs_prolog_key);
7003 vs_prolog_key.vs_prolog.is_monolithic = true;
7004 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7005 parts[0] = ctx.main_fn;
7006 }
7007
7008 /* Reset the shader context. */
7009 ctx.shader = shader;
7010 ctx.type = PIPE_SHADER_TESS_CTRL;
7011
7012 si_build_wrapper_function(&ctx,
7013 parts + !vs_needs_prolog,
7014 4 - !vs_needs_prolog, vs_needs_prolog,
7015 vs_needs_prolog ? 2 : 1);
7016 } else {
7017 LLVMValueRef parts[2];
7018 union si_shader_part_key epilog_key;
7019
7020 parts[0] = ctx.main_fn;
7021
7022 memset(&epilog_key, 0, sizeof(epilog_key));
7023 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7024 si_build_tcs_epilog_function(&ctx, &epilog_key);
7025 parts[1] = ctx.main_fn;
7026
7027 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
7028 }
7029 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7030 if (ctx.screen->info.chip_class >= GFX9) {
7031 struct si_shader_selector *es = shader->key.part.gs.es;
7032 LLVMValueRef es_prolog = NULL;
7033 LLVMValueRef es_main = NULL;
7034 LLVMValueRef gs_prolog = NULL;
7035 LLVMValueRef gs_main = ctx.main_fn;
7036
7037 /* GS prolog */
7038 union si_shader_part_key gs_prolog_key;
7039 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
7040 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7041 gs_prolog_key.gs_prolog.is_monolithic = true;
7042 gs_prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
7043 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
7044 gs_prolog = ctx.main_fn;
7045
7046 /* ES main part */
7047 struct si_shader shader_es = {};
7048 shader_es.selector = es;
7049 shader_es.key.as_es = 1;
7050 shader_es.key.as_ngg = shader->key.as_ngg;
7051 shader_es.key.mono = shader->key.mono;
7052 shader_es.key.opt = shader->key.opt;
7053 shader_es.is_monolithic = true;
7054 si_llvm_context_set_ir(&ctx, &shader_es);
7055
7056 if (!si_compile_tgsi_main(&ctx)) {
7057 si_llvm_dispose(&ctx);
7058 return -1;
7059 }
7060 shader->info.uses_instanceid |= es->info.uses_instanceid;
7061 es_main = ctx.main_fn;
7062
7063 /* ES prolog */
7064 if (es->vs_needs_prolog) {
7065 union si_shader_part_key vs_prolog_key;
7066 si_get_vs_prolog_key(&es->info,
7067 shader_es.info.num_input_sgprs,
7068 &shader->key.part.gs.vs_prolog,
7069 shader, &vs_prolog_key);
7070 vs_prolog_key.vs_prolog.is_monolithic = true;
7071 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7072 es_prolog = ctx.main_fn;
7073 }
7074
7075 /* Reset the shader context. */
7076 ctx.shader = shader;
7077 ctx.type = PIPE_SHADER_GEOMETRY;
7078
7079 /* Prepare the array of shader parts. */
7080 LLVMValueRef parts[4];
7081 unsigned num_parts = 0, main_part, next_first_part;
7082
7083 if (es_prolog)
7084 parts[num_parts++] = es_prolog;
7085
7086 parts[main_part = num_parts++] = es_main;
7087 parts[next_first_part = num_parts++] = gs_prolog;
7088 parts[num_parts++] = gs_main;
7089
7090 si_build_wrapper_function(&ctx, parts, num_parts,
7091 main_part, next_first_part);
7092 } else {
7093 LLVMValueRef parts[2];
7094 union si_shader_part_key prolog_key;
7095
7096 parts[1] = ctx.main_fn;
7097
7098 memset(&prolog_key, 0, sizeof(prolog_key));
7099 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7100 si_build_gs_prolog_function(&ctx, &prolog_key);
7101 parts[0] = ctx.main_fn;
7102
7103 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
7104 }
7105 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7106 LLVMValueRef parts[3];
7107 union si_shader_part_key prolog_key;
7108 union si_shader_part_key epilog_key;
7109 bool need_prolog;
7110
7111 si_get_ps_prolog_key(shader, &prolog_key, false);
7112 need_prolog = si_need_ps_prolog(&prolog_key);
7113
7114 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7115
7116 if (need_prolog) {
7117 si_build_ps_prolog_function(&ctx, &prolog_key);
7118 parts[0] = ctx.main_fn;
7119 }
7120
7121 si_get_ps_epilog_key(shader, &epilog_key);
7122 si_build_ps_epilog_function(&ctx, &epilog_key);
7123 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7124
7125 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7126 need_prolog ? 1 : 0, 0);
7127 }
7128
7129 si_llvm_optimize_module(&ctx);
7130
7131 /* Post-optimization transformations and analysis. */
7132 si_optimize_vs_outputs(&ctx);
7133
7134 if ((debug && debug->debug_message) ||
7135 si_can_dump_shader(sscreen, ctx.type)) {
7136 ctx.shader->info.private_mem_vgprs =
7137 ac_count_scratch_private_memory(ctx.main_fn);
7138 }
7139
7140 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7141 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7142 LLVMPointerTypeKind);
7143
7144 /* Compile to bytecode. */
7145 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7146 ctx.ac.module, debug, ctx.type, ctx.ac.wave_size,
7147 si_get_shader_name(shader),
7148 si_should_optimize_less(compiler, shader->selector));
7149 si_llvm_dispose(&ctx);
7150 if (r) {
7151 fprintf(stderr, "LLVM failed to compile shader\n");
7152 return r;
7153 }
7154
7155 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7156 * LLVM 3.9svn has this bug.
7157 */
7158 if (sel->type == PIPE_SHADER_COMPUTE) {
7159 unsigned wave_size = sscreen->compute_wave_size;
7160 unsigned max_vgprs = 256;
7161 unsigned max_sgprs = sscreen->info.chip_class >= GFX8 ? 800 : 512;
7162 unsigned max_sgprs_per_wave = 128;
7163 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7164 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7165 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7166
7167 max_vgprs = max_vgprs / min_waves_per_simd;
7168 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7169
7170 if (shader->config.num_sgprs > max_sgprs ||
7171 shader->config.num_vgprs > max_vgprs) {
7172 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7173 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7174 shader->config.num_sgprs, shader->config.num_vgprs,
7175 max_sgprs, max_vgprs);
7176
7177 /* Just terminate the process, because dependent
7178 * shaders can hang due to bad input data, but use
7179 * the env var to allow shader-db to work.
7180 */
7181 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7182 abort();
7183 }
7184 }
7185
7186 /* Add the scratch offset to input SGPRs. */
7187 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
7188 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7189
7190 /* Calculate the number of fragment input VGPRs. */
7191 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7192 shader->info.num_input_vgprs = 0;
7193 shader->info.face_vgpr_index = -1;
7194 shader->info.ancillary_vgpr_index = -1;
7195
7196 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7197 shader->info.num_input_vgprs += 2;
7198 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7199 shader->info.num_input_vgprs += 2;
7200 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7201 shader->info.num_input_vgprs += 2;
7202 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7203 shader->info.num_input_vgprs += 3;
7204 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7205 shader->info.num_input_vgprs += 2;
7206 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7207 shader->info.num_input_vgprs += 2;
7208 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7209 shader->info.num_input_vgprs += 2;
7210 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7211 shader->info.num_input_vgprs += 1;
7212 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7213 shader->info.num_input_vgprs += 1;
7214 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7215 shader->info.num_input_vgprs += 1;
7216 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7217 shader->info.num_input_vgprs += 1;
7218 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7219 shader->info.num_input_vgprs += 1;
7220 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7221 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7222 shader->info.num_input_vgprs += 1;
7223 }
7224 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7225 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7226 shader->info.num_input_vgprs += 1;
7227 }
7228 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7229 shader->info.num_input_vgprs += 1;
7230 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7231 shader->info.num_input_vgprs += 1;
7232 }
7233
7234 si_calculate_max_simd_waves(shader);
7235 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
7236 return 0;
7237 }
7238
7239 /**
7240 * Create, compile and return a shader part (prolog or epilog).
7241 *
7242 * \param sscreen screen
7243 * \param list list of shader parts of the same category
7244 * \param type shader type
7245 * \param key shader part key
7246 * \param prolog whether the part being requested is a prolog
7247 * \param tm LLVM target machine
7248 * \param debug debug callback
7249 * \param build the callback responsible for building the main function
7250 * \return non-NULL on success
7251 */
7252 static struct si_shader_part *
7253 si_get_shader_part(struct si_screen *sscreen,
7254 struct si_shader_part **list,
7255 enum pipe_shader_type type,
7256 bool prolog,
7257 union si_shader_part_key *key,
7258 struct ac_llvm_compiler *compiler,
7259 struct pipe_debug_callback *debug,
7260 void (*build)(struct si_shader_context *,
7261 union si_shader_part_key *),
7262 const char *name)
7263 {
7264 struct si_shader_part *result;
7265
7266 mtx_lock(&sscreen->shader_parts_mutex);
7267
7268 /* Find existing. */
7269 for (result = *list; result; result = result->next) {
7270 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7271 mtx_unlock(&sscreen->shader_parts_mutex);
7272 return result;
7273 }
7274 }
7275
7276 /* Compile a new one. */
7277 result = CALLOC_STRUCT(si_shader_part);
7278 result->key = *key;
7279
7280 struct si_shader shader = {};
7281
7282 switch (type) {
7283 case PIPE_SHADER_VERTEX:
7284 shader.key.as_ls = key->vs_prolog.as_ls;
7285 shader.key.as_es = key->vs_prolog.as_es;
7286 shader.key.as_ngg = key->vs_prolog.as_ngg;
7287 break;
7288 case PIPE_SHADER_TESS_CTRL:
7289 assert(!prolog);
7290 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7291 break;
7292 case PIPE_SHADER_GEOMETRY:
7293 assert(prolog);
7294 shader.key.as_ngg = key->gs_prolog.as_ngg;
7295 break;
7296 case PIPE_SHADER_FRAGMENT:
7297 if (prolog)
7298 shader.key.part.ps.prolog = key->ps_prolog.states;
7299 else
7300 shader.key.part.ps.epilog = key->ps_epilog.states;
7301 break;
7302 default:
7303 unreachable("bad shader part");
7304 }
7305
7306 struct si_shader_context ctx;
7307 si_init_shader_ctx(&ctx, sscreen, compiler,
7308 si_get_wave_size(sscreen, type, shader.key.as_ngg,
7309 shader.key.as_es),
7310 false);
7311 ctx.shader = &shader;
7312 ctx.type = type;
7313
7314 build(&ctx, key);
7315
7316 /* Compile. */
7317 si_llvm_optimize_module(&ctx);
7318
7319 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7320 ctx.ac.module, debug, ctx.type, ctx.ac.wave_size,
7321 name, false)) {
7322 FREE(result);
7323 result = NULL;
7324 goto out;
7325 }
7326
7327 result->next = *list;
7328 *list = result;
7329
7330 out:
7331 si_llvm_dispose(&ctx);
7332 mtx_unlock(&sscreen->shader_parts_mutex);
7333 return result;
7334 }
7335
7336 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7337 {
7338 LLVMValueRef ptr[2], list;
7339 bool merged_shader = is_merged_shader(ctx);
7340
7341 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7342 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7343 ac_array_in_const32_addr_space(ctx->v4i32), "");
7344 return list;
7345 }
7346
7347 /**
7348 * Build the vertex shader prolog function.
7349 *
7350 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7351 * All inputs are returned unmodified. The vertex load indices are
7352 * stored after them, which will be used by the API VS for fetching inputs.
7353 *
7354 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7355 * input_v0,
7356 * input_v1,
7357 * input_v2,
7358 * input_v3,
7359 * (VertexID + BaseVertex),
7360 * (InstanceID + StartInstance),
7361 * (InstanceID / 2 + StartInstance)
7362 */
7363 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7364 union si_shader_part_key *key)
7365 {
7366 struct si_function_info fninfo;
7367 LLVMTypeRef *returns;
7368 LLVMValueRef ret, func;
7369 int num_returns, i;
7370 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7371 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7372 LLVMValueRef input_vgprs[9];
7373 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7374 num_input_vgprs;
7375 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7376
7377 si_init_function_info(&fninfo);
7378
7379 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7380 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7381 sizeof(LLVMTypeRef));
7382 num_returns = 0;
7383
7384 /* Declare input and output SGPRs. */
7385 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7386 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7387 returns[num_returns++] = ctx->i32;
7388 }
7389
7390 /* Preloaded VGPRs (outputs must be floats) */
7391 for (i = 0; i < num_input_vgprs; i++) {
7392 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7393 returns[num_returns++] = ctx->f32;
7394 }
7395
7396 /* Vertex load indices. */
7397 for (i = 0; i <= key->vs_prolog.last_input; i++)
7398 returns[num_returns++] = ctx->f32;
7399
7400 /* Create the function. */
7401 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7402 func = ctx->main_fn;
7403
7404 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7405 if (!key->vs_prolog.is_monolithic)
7406 si_init_exec_from_input(ctx, 3, 0);
7407
7408 if (key->vs_prolog.as_ls &&
7409 ctx->screen->info.has_ls_vgpr_init_bug) {
7410 /* If there are no HS threads, SPI loads the LS VGPRs
7411 * starting at VGPR 0. Shift them back to where they
7412 * belong.
7413 */
7414 LLVMValueRef has_hs_threads =
7415 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7416 si_unpack_param(ctx, 3, 8, 8),
7417 ctx->i32_0, "");
7418
7419 for (i = 4; i > 0; --i) {
7420 input_vgprs[i + 1] =
7421 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7422 input_vgprs[i + 1],
7423 input_vgprs[i - 1], "");
7424 }
7425 }
7426 }
7427
7428 unsigned vertex_id_vgpr = first_vs_vgpr;
7429 unsigned instance_id_vgpr =
7430 ctx->screen->info.chip_class >= GFX10 ?
7431 first_vs_vgpr + 3 :
7432 first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
7433
7434 ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
7435 ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
7436
7437 /* InstanceID = VertexID >> 16;
7438 * VertexID = VertexID & 0xffff;
7439 */
7440 if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
7441 ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
7442 LLVMConstInt(ctx->i32, 16, 0), "");
7443 ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
7444 LLVMConstInt(ctx->i32, 0xffff, 0), "");
7445 }
7446
7447 /* Copy inputs to outputs. This should be no-op, as the registers match,
7448 * but it will prevent the compiler from overwriting them unintentionally.
7449 */
7450 ret = ctx->return_value;
7451 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7452 LLVMValueRef p = LLVMGetParam(func, i);
7453 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7454 }
7455 for (i = 0; i < num_input_vgprs; i++) {
7456 LLVMValueRef p = input_vgprs[i];
7457
7458 if (i == vertex_id_vgpr)
7459 p = ctx->abi.vertex_id;
7460 else if (i == instance_id_vgpr)
7461 p = ctx->abi.instance_id;
7462
7463 p = ac_to_float(&ctx->ac, p);
7464 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7465 key->vs_prolog.num_input_sgprs + i, "");
7466 }
7467
7468 LLVMValueRef original_ret = ret;
7469 bool wrapped = false;
7470 LLVMBasicBlockRef if_entry_block = NULL;
7471
7472 if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
7473 LLVMValueRef num_threads;
7474 LLVMValueRef ena;
7475
7476 num_threads = si_unpack_param(ctx, 3, 0, 8);
7477 ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
7478 ac_get_thread_id(&ctx->ac), num_threads, "");
7479 if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
7480 ac_build_ifcc(&ctx->ac, ena, 11501);
7481 wrapped = true;
7482 }
7483
7484 /* Compute vertex load indices from instance divisors. */
7485 LLVMValueRef instance_divisor_constbuf = NULL;
7486
7487 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7488 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7489 LLVMValueRef buf_index =
7490 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7491 instance_divisor_constbuf =
7492 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7493 }
7494
7495 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7496 bool divisor_is_one =
7497 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7498 bool divisor_is_fetched =
7499 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7500 LLVMValueRef index = NULL;
7501
7502 if (divisor_is_one) {
7503 index = ctx->abi.instance_id;
7504 } else if (divisor_is_fetched) {
7505 LLVMValueRef udiv_factors[4];
7506
7507 for (unsigned j = 0; j < 4; j++) {
7508 udiv_factors[j] =
7509 buffer_load_const(ctx, instance_divisor_constbuf,
7510 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7511 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7512 }
7513 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7514 * Such InstanceID might not be achievable in a reasonable time though.
7515 */
7516 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7517 udiv_factors[0], udiv_factors[1],
7518 udiv_factors[2], udiv_factors[3]);
7519 }
7520
7521 if (divisor_is_one || divisor_is_fetched) {
7522 /* Add StartInstance. */
7523 index = LLVMBuildAdd(ctx->ac.builder, index,
7524 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7525 SI_SGPR_START_INSTANCE), "");
7526 } else {
7527 /* VertexID + BaseVertex */
7528 index = LLVMBuildAdd(ctx->ac.builder,
7529 ctx->abi.vertex_id,
7530 LLVMGetParam(func, user_sgpr_base +
7531 SI_SGPR_BASE_VERTEX), "");
7532 }
7533
7534 index = ac_to_float(&ctx->ac, index);
7535 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7536 fninfo.num_params + i, "");
7537 }
7538
7539 if (wrapped) {
7540 LLVMBasicBlockRef bbs[2] = {
7541 LLVMGetInsertBlock(ctx->ac.builder),
7542 if_entry_block,
7543 };
7544 ac_build_endif(&ctx->ac, 11501);
7545
7546 LLVMValueRef values[2] = {
7547 ret,
7548 original_ret
7549 };
7550 ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
7551 }
7552
7553 si_llvm_build_ret(ctx, ret);
7554 }
7555
7556 static bool si_get_vs_prolog(struct si_screen *sscreen,
7557 struct ac_llvm_compiler *compiler,
7558 struct si_shader *shader,
7559 struct pipe_debug_callback *debug,
7560 struct si_shader *main_part,
7561 const struct si_vs_prolog_bits *key)
7562 {
7563 struct si_shader_selector *vs = main_part->selector;
7564
7565 if (!si_vs_needs_prolog(vs, key))
7566 return true;
7567
7568 /* Get the prolog. */
7569 union si_shader_part_key prolog_key;
7570 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7571 key, shader, &prolog_key);
7572
7573 shader->prolog =
7574 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7575 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7576 debug, si_build_vs_prolog_function,
7577 "Vertex Shader Prolog");
7578 return shader->prolog != NULL;
7579 }
7580
7581 /**
7582 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7583 */
7584 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7585 struct ac_llvm_compiler *compiler,
7586 struct si_shader *shader,
7587 struct pipe_debug_callback *debug)
7588 {
7589 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7590 &shader->key.part.vs.prolog);
7591 }
7592
7593 /**
7594 * Compile the TCS epilog function. This writes tesselation factors to memory
7595 * based on the output primitive type of the tesselator (determined by TES).
7596 */
7597 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7598 union si_shader_part_key *key)
7599 {
7600 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7601 struct si_function_info fninfo;
7602 LLVMValueRef func;
7603
7604 si_init_function_info(&fninfo);
7605
7606 if (ctx->screen->info.chip_class >= GFX9) {
7607 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7608 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7609 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7610 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7611 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7612 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7613 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7614 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7615 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7616 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7617 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7618 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7619 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7620 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7621 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7622 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7623 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7624 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7625 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7626 } else {
7627 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7628 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7629 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7630 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7631 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7632 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7633 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7634 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7635 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7636 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7637 }
7638
7639 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7640 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7641 unsigned tess_factors_idx =
7642 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7643 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7644 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7645
7646 for (unsigned i = 0; i < 6; i++)
7647 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7648
7649 /* Create the function. */
7650 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7651 ctx->screen->info.chip_class >= GFX7 ? 128 : 0);
7652 ac_declare_lds_as_pointer(&ctx->ac);
7653 func = ctx->main_fn;
7654
7655 LLVMValueRef invoc0_tess_factors[6];
7656 for (unsigned i = 0; i < 6; i++)
7657 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7658
7659 si_write_tess_factors(bld_base,
7660 LLVMGetParam(func, tess_factors_idx),
7661 LLVMGetParam(func, tess_factors_idx + 1),
7662 LLVMGetParam(func, tess_factors_idx + 2),
7663 invoc0_tess_factors, invoc0_tess_factors + 4);
7664
7665 LLVMBuildRetVoid(ctx->ac.builder);
7666 }
7667
7668 /**
7669 * Select and compile (or reuse) TCS parts (epilog).
7670 */
7671 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7672 struct ac_llvm_compiler *compiler,
7673 struct si_shader *shader,
7674 struct pipe_debug_callback *debug)
7675 {
7676 if (sscreen->info.chip_class >= GFX9) {
7677 struct si_shader *ls_main_part =
7678 shader->key.part.tcs.ls->main_shader_part_ls;
7679
7680 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7681 &shader->key.part.tcs.ls_prolog))
7682 return false;
7683
7684 shader->previous_stage = ls_main_part;
7685 }
7686
7687 /* Get the epilog. */
7688 union si_shader_part_key epilog_key;
7689 memset(&epilog_key, 0, sizeof(epilog_key));
7690 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7691
7692 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7693 PIPE_SHADER_TESS_CTRL, false,
7694 &epilog_key, compiler, debug,
7695 si_build_tcs_epilog_function,
7696 "Tessellation Control Shader Epilog");
7697 return shader->epilog != NULL;
7698 }
7699
7700 /**
7701 * Select and compile (or reuse) GS parts (prolog).
7702 */
7703 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7704 struct ac_llvm_compiler *compiler,
7705 struct si_shader *shader,
7706 struct pipe_debug_callback *debug)
7707 {
7708 if (sscreen->info.chip_class >= GFX9) {
7709 struct si_shader *es_main_part;
7710 enum pipe_shader_type es_type = shader->key.part.gs.es->type;
7711
7712 if (shader->key.as_ngg)
7713 es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
7714 else
7715 es_main_part = shader->key.part.gs.es->main_shader_part_es;
7716
7717 if (es_type == PIPE_SHADER_VERTEX &&
7718 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7719 &shader->key.part.gs.vs_prolog))
7720 return false;
7721
7722 shader->previous_stage = es_main_part;
7723 }
7724
7725 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7726 return true;
7727
7728 union si_shader_part_key prolog_key;
7729 memset(&prolog_key, 0, sizeof(prolog_key));
7730 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7731 prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
7732
7733 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7734 PIPE_SHADER_GEOMETRY, true,
7735 &prolog_key, compiler, debug,
7736 si_build_gs_prolog_function,
7737 "Geometry Shader Prolog");
7738 return shader->prolog2 != NULL;
7739 }
7740
7741 /**
7742 * Build the pixel shader prolog function. This handles:
7743 * - two-side color selection and interpolation
7744 * - overriding interpolation parameters for the API PS
7745 * - polygon stippling
7746 *
7747 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7748 * overriden by other states. (e.g. per-sample interpolation)
7749 * Interpolated colors are stored after the preloaded VGPRs.
7750 */
7751 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7752 union si_shader_part_key *key)
7753 {
7754 struct si_function_info fninfo;
7755 LLVMValueRef ret, func;
7756 int num_returns, i, num_color_channels;
7757
7758 assert(si_need_ps_prolog(key));
7759
7760 si_init_function_info(&fninfo);
7761
7762 /* Declare inputs. */
7763 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7764 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7765
7766 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7767 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7768
7769 /* Declare outputs (same as inputs + add colors if needed) */
7770 num_returns = fninfo.num_params;
7771 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7772 for (i = 0; i < num_color_channels; i++)
7773 fninfo.types[num_returns++] = ctx->f32;
7774
7775 /* Create the function. */
7776 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7777 &fninfo, 0);
7778 func = ctx->main_fn;
7779
7780 /* Copy inputs to outputs. This should be no-op, as the registers match,
7781 * but it will prevent the compiler from overwriting them unintentionally.
7782 */
7783 ret = ctx->return_value;
7784 for (i = 0; i < fninfo.num_params; i++) {
7785 LLVMValueRef p = LLVMGetParam(func, i);
7786 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7787 }
7788
7789 /* Polygon stippling. */
7790 if (key->ps_prolog.states.poly_stipple) {
7791 /* POS_FIXED_PT is always last. */
7792 unsigned pos = key->ps_prolog.num_input_sgprs +
7793 key->ps_prolog.num_input_vgprs - 1;
7794 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7795
7796 si_llvm_emit_polygon_stipple(ctx, list, pos);
7797 }
7798
7799 if (key->ps_prolog.states.bc_optimize_for_persp ||
7800 key->ps_prolog.states.bc_optimize_for_linear) {
7801 unsigned i, base = key->ps_prolog.num_input_sgprs;
7802 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7803
7804 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7805 * The hw doesn't compute CENTROID if the whole wave only
7806 * contains fully-covered quads.
7807 *
7808 * PRIM_MASK is after user SGPRs.
7809 */
7810 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7811 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7812 LLVMConstInt(ctx->i32, 31, 0), "");
7813 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7814 ctx->i1, "");
7815
7816 if (key->ps_prolog.states.bc_optimize_for_persp) {
7817 /* Read PERSP_CENTER. */
7818 for (i = 0; i < 2; i++)
7819 center[i] = LLVMGetParam(func, base + 2 + i);
7820 /* Read PERSP_CENTROID. */
7821 for (i = 0; i < 2; i++)
7822 centroid[i] = LLVMGetParam(func, base + 4 + i);
7823 /* Select PERSP_CENTROID. */
7824 for (i = 0; i < 2; i++) {
7825 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7826 center[i], centroid[i], "");
7827 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7828 tmp, base + 4 + i, "");
7829 }
7830 }
7831 if (key->ps_prolog.states.bc_optimize_for_linear) {
7832 /* Read LINEAR_CENTER. */
7833 for (i = 0; i < 2; i++)
7834 center[i] = LLVMGetParam(func, base + 8 + i);
7835 /* Read LINEAR_CENTROID. */
7836 for (i = 0; i < 2; i++)
7837 centroid[i] = LLVMGetParam(func, base + 10 + i);
7838 /* Select LINEAR_CENTROID. */
7839 for (i = 0; i < 2; i++) {
7840 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7841 center[i], centroid[i], "");
7842 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7843 tmp, base + 10 + i, "");
7844 }
7845 }
7846 }
7847
7848 /* Force per-sample interpolation. */
7849 if (key->ps_prolog.states.force_persp_sample_interp) {
7850 unsigned i, base = key->ps_prolog.num_input_sgprs;
7851 LLVMValueRef persp_sample[2];
7852
7853 /* Read PERSP_SAMPLE. */
7854 for (i = 0; i < 2; i++)
7855 persp_sample[i] = LLVMGetParam(func, base + i);
7856 /* Overwrite PERSP_CENTER. */
7857 for (i = 0; i < 2; i++)
7858 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7859 persp_sample[i], base + 2 + i, "");
7860 /* Overwrite PERSP_CENTROID. */
7861 for (i = 0; i < 2; i++)
7862 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7863 persp_sample[i], base + 4 + i, "");
7864 }
7865 if (key->ps_prolog.states.force_linear_sample_interp) {
7866 unsigned i, base = key->ps_prolog.num_input_sgprs;
7867 LLVMValueRef linear_sample[2];
7868
7869 /* Read LINEAR_SAMPLE. */
7870 for (i = 0; i < 2; i++)
7871 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7872 /* Overwrite LINEAR_CENTER. */
7873 for (i = 0; i < 2; i++)
7874 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7875 linear_sample[i], base + 8 + i, "");
7876 /* Overwrite LINEAR_CENTROID. */
7877 for (i = 0; i < 2; i++)
7878 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7879 linear_sample[i], base + 10 + i, "");
7880 }
7881
7882 /* Force center interpolation. */
7883 if (key->ps_prolog.states.force_persp_center_interp) {
7884 unsigned i, base = key->ps_prolog.num_input_sgprs;
7885 LLVMValueRef persp_center[2];
7886
7887 /* Read PERSP_CENTER. */
7888 for (i = 0; i < 2; i++)
7889 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7890 /* Overwrite PERSP_SAMPLE. */
7891 for (i = 0; i < 2; i++)
7892 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7893 persp_center[i], base + i, "");
7894 /* Overwrite PERSP_CENTROID. */
7895 for (i = 0; i < 2; i++)
7896 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7897 persp_center[i], base + 4 + i, "");
7898 }
7899 if (key->ps_prolog.states.force_linear_center_interp) {
7900 unsigned i, base = key->ps_prolog.num_input_sgprs;
7901 LLVMValueRef linear_center[2];
7902
7903 /* Read LINEAR_CENTER. */
7904 for (i = 0; i < 2; i++)
7905 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7906 /* Overwrite LINEAR_SAMPLE. */
7907 for (i = 0; i < 2; i++)
7908 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7909 linear_center[i], base + 6 + i, "");
7910 /* Overwrite LINEAR_CENTROID. */
7911 for (i = 0; i < 2; i++)
7912 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7913 linear_center[i], base + 10 + i, "");
7914 }
7915
7916 /* Interpolate colors. */
7917 unsigned color_out_idx = 0;
7918 for (i = 0; i < 2; i++) {
7919 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7920 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7921 key->ps_prolog.face_vgpr_index;
7922 LLVMValueRef interp[2], color[4];
7923 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7924
7925 if (!writemask)
7926 continue;
7927
7928 /* If the interpolation qualifier is not CONSTANT (-1). */
7929 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7930 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7931 key->ps_prolog.color_interp_vgpr_index[i];
7932
7933 /* Get the (i,j) updated by bc_optimize handling. */
7934 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7935 interp_vgpr, "");
7936 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7937 interp_vgpr + 1, "");
7938 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7939 }
7940
7941 /* Use the absolute location of the input. */
7942 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7943
7944 if (key->ps_prolog.states.color_two_side) {
7945 face = LLVMGetParam(func, face_vgpr);
7946 face = ac_to_integer(&ctx->ac, face);
7947 }
7948
7949 interp_fs_input(ctx,
7950 key->ps_prolog.color_attr_index[i],
7951 TGSI_SEMANTIC_COLOR, i,
7952 key->ps_prolog.num_interp_inputs,
7953 key->ps_prolog.colors_read, interp_ij,
7954 prim_mask, face, color);
7955
7956 while (writemask) {
7957 unsigned chan = u_bit_scan(&writemask);
7958 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7959 fninfo.num_params + color_out_idx++, "");
7960 }
7961 }
7962
7963 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7964 * says:
7965 *
7966 * "When per-sample shading is active due to the use of a fragment
7967 * input qualified by sample or due to the use of the gl_SampleID
7968 * or gl_SamplePosition variables, only the bit for the current
7969 * sample is set in gl_SampleMaskIn. When state specifies multiple
7970 * fragment shader invocations for a given fragment, the sample
7971 * mask for any single fragment shader invocation may specify a
7972 * subset of the covered samples for the fragment. In this case,
7973 * the bit corresponding to each covered sample will be set in
7974 * exactly one fragment shader invocation."
7975 *
7976 * The samplemask loaded by hardware is always the coverage of the
7977 * entire pixel/fragment, so mask bits out based on the sample ID.
7978 */
7979 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7980 /* The bit pattern matches that used by fixed function fragment
7981 * processing. */
7982 static const uint16_t ps_iter_masks[] = {
7983 0xffff, /* not used */
7984 0x5555,
7985 0x1111,
7986 0x0101,
7987 0x0001,
7988 };
7989 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7990
7991 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7992 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7993 key->ps_prolog.ancillary_vgpr_index;
7994 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7995 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7996
7997 samplemask = ac_to_integer(&ctx->ac, samplemask);
7998 samplemask = LLVMBuildAnd(
7999 ctx->ac.builder,
8000 samplemask,
8001 LLVMBuildShl(ctx->ac.builder,
8002 LLVMConstInt(ctx->i32, ps_iter_mask, false),
8003 sampleid, ""),
8004 "");
8005 samplemask = ac_to_float(&ctx->ac, samplemask);
8006
8007 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
8008 ancillary_vgpr + 1, "");
8009 }
8010
8011 /* Tell LLVM to insert WQM instruction sequence when needed. */
8012 if (key->ps_prolog.wqm) {
8013 LLVMAddTargetDependentFunctionAttr(func,
8014 "amdgpu-ps-wqm-outputs", "");
8015 }
8016
8017 si_llvm_build_ret(ctx, ret);
8018 }
8019
8020 /**
8021 * Build the pixel shader epilog function. This handles everything that must be
8022 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
8023 */
8024 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8025 union si_shader_part_key *key)
8026 {
8027 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8028 struct si_function_info fninfo;
8029 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8030 int i;
8031 struct si_ps_exports exp = {};
8032
8033 si_init_function_info(&fninfo);
8034
8035 /* Declare input SGPRs. */
8036 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8037 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8038 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8039 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8040 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
8041
8042 /* Declare input VGPRs. */
8043 unsigned required_num_params =
8044 fninfo.num_sgpr_params +
8045 util_bitcount(key->ps_epilog.colors_written) * 4 +
8046 key->ps_epilog.writes_z +
8047 key->ps_epilog.writes_stencil +
8048 key->ps_epilog.writes_samplemask;
8049
8050 required_num_params = MAX2(required_num_params,
8051 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8052
8053 while (fninfo.num_params < required_num_params)
8054 add_arg(&fninfo, ARG_VGPR, ctx->f32);
8055
8056 /* Create the function. */
8057 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
8058 /* Disable elimination of unused inputs. */
8059 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
8060 "InitialPSInputAddr", 0xffffff);
8061
8062 /* Process colors. */
8063 unsigned vgpr = fninfo.num_sgpr_params;
8064 unsigned colors_written = key->ps_epilog.colors_written;
8065 int last_color_export = -1;
8066
8067 /* Find the last color export. */
8068 if (!key->ps_epilog.writes_z &&
8069 !key->ps_epilog.writes_stencil &&
8070 !key->ps_epilog.writes_samplemask) {
8071 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8072
8073 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8074 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8075 /* Just set this if any of the colorbuffers are enabled. */
8076 if (spi_format &
8077 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8078 last_color_export = 0;
8079 } else {
8080 for (i = 0; i < 8; i++)
8081 if (colors_written & (1 << i) &&
8082 (spi_format >> (i * 4)) & 0xf)
8083 last_color_export = i;
8084 }
8085 }
8086
8087 while (colors_written) {
8088 LLVMValueRef color[4];
8089 int mrt = u_bit_scan(&colors_written);
8090
8091 for (i = 0; i < 4; i++)
8092 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8093
8094 si_export_mrt_color(bld_base, color, mrt,
8095 fninfo.num_params - 1,
8096 mrt == last_color_export, &exp);
8097 }
8098
8099 /* Process depth, stencil, samplemask. */
8100 if (key->ps_epilog.writes_z)
8101 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8102 if (key->ps_epilog.writes_stencil)
8103 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8104 if (key->ps_epilog.writes_samplemask)
8105 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8106
8107 if (depth || stencil || samplemask)
8108 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8109 else if (last_color_export == -1)
8110 ac_build_export_null(&ctx->ac);
8111
8112 if (exp.num)
8113 si_emit_ps_exports(ctx, &exp);
8114
8115 /* Compile. */
8116 LLVMBuildRetVoid(ctx->ac.builder);
8117 }
8118
8119 /**
8120 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8121 */
8122 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8123 struct ac_llvm_compiler *compiler,
8124 struct si_shader *shader,
8125 struct pipe_debug_callback *debug)
8126 {
8127 union si_shader_part_key prolog_key;
8128 union si_shader_part_key epilog_key;
8129
8130 /* Get the prolog. */
8131 si_get_ps_prolog_key(shader, &prolog_key, true);
8132
8133 /* The prolog is a no-op if these aren't set. */
8134 if (si_need_ps_prolog(&prolog_key)) {
8135 shader->prolog =
8136 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8137 PIPE_SHADER_FRAGMENT, true,
8138 &prolog_key, compiler, debug,
8139 si_build_ps_prolog_function,
8140 "Fragment Shader Prolog");
8141 if (!shader->prolog)
8142 return false;
8143 }
8144
8145 /* Get the epilog. */
8146 si_get_ps_epilog_key(shader, &epilog_key);
8147
8148 shader->epilog =
8149 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8150 PIPE_SHADER_FRAGMENT, false,
8151 &epilog_key, compiler, debug,
8152 si_build_ps_epilog_function,
8153 "Fragment Shader Epilog");
8154 if (!shader->epilog)
8155 return false;
8156
8157 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8158 if (shader->key.part.ps.prolog.poly_stipple) {
8159 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8160 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8161 }
8162
8163 /* Set up the enable bits for per-sample shading if needed. */
8164 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8165 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8166 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8167 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8168 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8169 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8170 }
8171 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8172 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8173 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8174 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8175 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8176 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8177 }
8178 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8179 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8180 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8181 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8182 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8183 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8184 }
8185 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8186 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8187 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8188 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8189 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8190 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8191 }
8192
8193 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8194 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8195 !(shader->config.spi_ps_input_ena & 0xf)) {
8196 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8197 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8198 }
8199
8200 /* At least one pair of interpolation weights must be enabled. */
8201 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8202 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8203 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8204 }
8205
8206 /* Samplemask fixup requires the sample ID. */
8207 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8208 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8209 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8210 }
8211
8212 /* The sample mask input is always enabled, because the API shader always
8213 * passes it through to the epilog. Disable it here if it's unused.
8214 */
8215 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8216 !shader->selector->info.reads_samplemask)
8217 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8218
8219 return true;
8220 }
8221
8222 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8223 unsigned *lds_size)
8224 {
8225 /* If tessellation is all offchip and on-chip GS isn't used, this
8226 * workaround is not needed.
8227 */
8228 return;
8229
8230 /* SPI barrier management bug:
8231 * Make sure we have at least 4k of LDS in use to avoid the bug.
8232 * It applies to workgroup sizes of more than one wavefront.
8233 */
8234 if (sscreen->info.family == CHIP_BONAIRE ||
8235 sscreen->info.family == CHIP_KABINI)
8236 *lds_size = MAX2(*lds_size, 8);
8237 }
8238
8239 static void si_fix_resource_usage(struct si_screen *sscreen,
8240 struct si_shader *shader)
8241 {
8242 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8243
8244 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8245
8246 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8247 si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
8248 si_multiwave_lds_size_workaround(sscreen,
8249 &shader->config.lds_size);
8250 }
8251 }
8252
8253 bool si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8254 struct si_shader *shader,
8255 struct pipe_debug_callback *debug)
8256 {
8257 struct si_shader_selector *sel = shader->selector;
8258 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8259 int r;
8260
8261 /* LS, ES, VS are compiled on demand if the main part hasn't been
8262 * compiled for that stage.
8263 *
8264 * GS are compiled on demand if the main part hasn't been compiled
8265 * for the chosen NGG-ness.
8266 *
8267 * Vertex shaders are compiled on demand when a vertex fetch
8268 * workaround must be applied.
8269 */
8270 if (shader->is_monolithic) {
8271 /* Monolithic shader (compiled as a whole, has many variants,
8272 * may take a long time to compile).
8273 */
8274 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8275 if (r)
8276 return false;
8277 } else {
8278 /* The shader consists of several parts:
8279 *
8280 * - the middle part is the user shader, it has 1 variant only
8281 * and it was compiled during the creation of the shader
8282 * selector
8283 * - the prolog part is inserted at the beginning
8284 * - the epilog part is inserted at the end
8285 *
8286 * The prolog and epilog have many (but simple) variants.
8287 *
8288 * Starting with gfx9, geometry and tessellation control
8289 * shaders also contain the prolog and user shader parts of
8290 * the previous shader stage.
8291 */
8292
8293 if (!mainp)
8294 return false;
8295
8296 /* Copy the compiled TGSI shader data over. */
8297 shader->is_binary_shared = true;
8298 shader->binary = mainp->binary;
8299 shader->config = mainp->config;
8300 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8301 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8302 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8303 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8304 memcpy(shader->info.vs_output_param_offset,
8305 mainp->info.vs_output_param_offset,
8306 sizeof(mainp->info.vs_output_param_offset));
8307 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8308 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8309 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8310
8311 /* Select prologs and/or epilogs. */
8312 switch (sel->type) {
8313 case PIPE_SHADER_VERTEX:
8314 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8315 return false;
8316 break;
8317 case PIPE_SHADER_TESS_CTRL:
8318 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8319 return false;
8320 break;
8321 case PIPE_SHADER_TESS_EVAL:
8322 break;
8323 case PIPE_SHADER_GEOMETRY:
8324 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8325 return false;
8326 break;
8327 case PIPE_SHADER_FRAGMENT:
8328 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8329 return false;
8330
8331 /* Make sure we have at least as many VGPRs as there
8332 * are allocated inputs.
8333 */
8334 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8335 shader->info.num_input_vgprs);
8336 break;
8337 default:;
8338 }
8339
8340 /* Update SGPR and VGPR counts. */
8341 if (shader->prolog) {
8342 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8343 shader->prolog->config.num_sgprs);
8344 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8345 shader->prolog->config.num_vgprs);
8346 }
8347 if (shader->previous_stage) {
8348 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8349 shader->previous_stage->config.num_sgprs);
8350 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8351 shader->previous_stage->config.num_vgprs);
8352 shader->config.spilled_sgprs =
8353 MAX2(shader->config.spilled_sgprs,
8354 shader->previous_stage->config.spilled_sgprs);
8355 shader->config.spilled_vgprs =
8356 MAX2(shader->config.spilled_vgprs,
8357 shader->previous_stage->config.spilled_vgprs);
8358 shader->info.private_mem_vgprs =
8359 MAX2(shader->info.private_mem_vgprs,
8360 shader->previous_stage->info.private_mem_vgprs);
8361 shader->config.scratch_bytes_per_wave =
8362 MAX2(shader->config.scratch_bytes_per_wave,
8363 shader->previous_stage->config.scratch_bytes_per_wave);
8364 shader->info.uses_instanceid |=
8365 shader->previous_stage->info.uses_instanceid;
8366 }
8367 if (shader->prolog2) {
8368 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8369 shader->prolog2->config.num_sgprs);
8370 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8371 shader->prolog2->config.num_vgprs);
8372 }
8373 if (shader->epilog) {
8374 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8375 shader->epilog->config.num_sgprs);
8376 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8377 shader->epilog->config.num_vgprs);
8378 }
8379 si_calculate_max_simd_waves(shader);
8380 }
8381
8382 if (shader->key.as_ngg) {
8383 assert(!shader->key.as_es && !shader->key.as_ls);
8384 gfx10_ngg_calculate_subgroup_info(shader);
8385 } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
8386 gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
8387 }
8388
8389 si_fix_resource_usage(sscreen, shader);
8390 si_shader_dump(sscreen, shader, debug, stderr, true);
8391
8392 /* Upload. */
8393 if (!si_shader_binary_upload(sscreen, shader, 0)) {
8394 fprintf(stderr, "LLVM failed to upload shader\n");
8395 return false;
8396 }
8397
8398 return true;
8399 }
8400
8401 void si_shader_destroy(struct si_shader *shader)
8402 {
8403 if (shader->scratch_bo)
8404 si_resource_reference(&shader->scratch_bo, NULL);
8405
8406 si_resource_reference(&shader->bo, NULL);
8407
8408 if (!shader->is_binary_shared)
8409 si_shader_binary_clean(&shader->binary);
8410
8411 free(shader->shader_log);
8412 }