radeonsi/gfx10: cosmetic changes
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_strings.h"
29 #include "tgsi/tgsi_util.h"
30 #include "tgsi/tgsi_dump.h"
31 #include "tgsi/tgsi_from_mesa.h"
32
33 #include "ac_binary.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36 #include "ac_rtld.h"
37 #include "ac_llvm_util.h"
38 #include "si_shader_internal.h"
39 #include "si_pipe.h"
40 #include "sid.h"
41
42 #include "compiler/nir/nir.h"
43
44 static const char scratch_rsrc_dword0_symbol[] =
45 "SCRATCH_RSRC_DWORD0";
46
47 static const char scratch_rsrc_dword1_symbol[] =
48 "SCRATCH_RSRC_DWORD1";
49
50 static void si_init_shader_ctx(struct si_shader_context *ctx,
51 struct si_screen *sscreen,
52 struct ac_llvm_compiler *compiler);
53
54 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
55 struct lp_build_tgsi_context *bld_base,
56 struct lp_build_emit_data *emit_data);
57
58 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
59 FILE *f);
60
61 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
62 union si_shader_part_key *key);
63 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
64 union si_shader_part_key *key);
65 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
66 union si_shader_part_key *key);
67 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
68 union si_shader_part_key *key);
69 static void si_fix_resource_usage(struct si_screen *sscreen,
70 struct si_shader *shader);
71
72 /* Ideally pass the sample mask input to the PS epilog as v14, which
73 * is its usual location, so that the shader doesn't have to add v_mov.
74 */
75 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
76
77 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
78 LLVMTypeRef type)
79 {
80 if (type == ctx->ac.i64 || type == ctx->ac.f64)
81 return true;
82
83 return false;
84 }
85
86 /** Whether the shader runs as a combination of multiple API shaders */
87 static bool is_multi_part_shader(struct si_shader_context *ctx)
88 {
89 if (ctx->screen->info.chip_class <= GFX8)
90 return false;
91
92 return ctx->shader->key.as_ls ||
93 ctx->shader->key.as_es ||
94 ctx->type == PIPE_SHADER_TESS_CTRL ||
95 ctx->type == PIPE_SHADER_GEOMETRY;
96 }
97
98 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
99 static bool is_merged_shader(struct si_shader_context *ctx)
100 {
101 return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
102 }
103
104 void si_init_function_info(struct si_function_info *fninfo)
105 {
106 fninfo->num_params = 0;
107 fninfo->num_sgpr_params = 0;
108 }
109
110 unsigned add_arg_assign(struct si_function_info *fninfo,
111 enum si_arg_regfile regfile, LLVMTypeRef type,
112 LLVMValueRef *assign)
113 {
114 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
115
116 unsigned idx = fninfo->num_params++;
117 assert(idx < ARRAY_SIZE(fninfo->types));
118
119 if (regfile == ARG_SGPR)
120 fninfo->num_sgpr_params = fninfo->num_params;
121
122 fninfo->types[idx] = type;
123 fninfo->assign[idx] = assign;
124 return idx;
125 }
126
127 static unsigned add_arg(struct si_function_info *fninfo,
128 enum si_arg_regfile regfile, LLVMTypeRef type)
129 {
130 return add_arg_assign(fninfo, regfile, type, NULL);
131 }
132
133 static void add_arg_assign_checked(struct si_function_info *fninfo,
134 enum si_arg_regfile regfile, LLVMTypeRef type,
135 LLVMValueRef *assign, unsigned idx)
136 {
137 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
138 assert(actual == idx);
139 }
140
141 static void add_arg_checked(struct si_function_info *fninfo,
142 enum si_arg_regfile regfile, LLVMTypeRef type,
143 unsigned idx)
144 {
145 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
146 }
147
148 /**
149 * Returns a unique index for a per-patch semantic name and index. The index
150 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
151 * can be calculated.
152 */
153 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
154 {
155 switch (semantic_name) {
156 case TGSI_SEMANTIC_TESSOUTER:
157 return 0;
158 case TGSI_SEMANTIC_TESSINNER:
159 return 1;
160 case TGSI_SEMANTIC_PATCH:
161 assert(index < 30);
162 return 2 + index;
163
164 default:
165 assert(!"invalid semantic name");
166 return 0;
167 }
168 }
169
170 /**
171 * Returns a unique index for a semantic name and index. The index must be
172 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
173 * calculated.
174 */
175 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
176 unsigned is_varying)
177 {
178 switch (semantic_name) {
179 case TGSI_SEMANTIC_POSITION:
180 return 0;
181 case TGSI_SEMANTIC_GENERIC:
182 /* Since some shader stages use the the highest used IO index
183 * to determine the size to allocate for inputs/outputs
184 * (in LDS, tess and GS rings). GENERIC should be placed right
185 * after POSITION to make that size as small as possible.
186 */
187 if (index < SI_MAX_IO_GENERIC)
188 return 1 + index;
189
190 assert(!"invalid generic index");
191 return 0;
192 case TGSI_SEMANTIC_PSIZE:
193 return SI_MAX_IO_GENERIC + 1;
194 case TGSI_SEMANTIC_CLIPDIST:
195 assert(index <= 1);
196 return SI_MAX_IO_GENERIC + 2 + index;
197 case TGSI_SEMANTIC_FOG:
198 return SI_MAX_IO_GENERIC + 4;
199 case TGSI_SEMANTIC_LAYER:
200 return SI_MAX_IO_GENERIC + 5;
201 case TGSI_SEMANTIC_VIEWPORT_INDEX:
202 return SI_MAX_IO_GENERIC + 6;
203 case TGSI_SEMANTIC_PRIMID:
204 return SI_MAX_IO_GENERIC + 7;
205 case TGSI_SEMANTIC_COLOR:
206 assert(index < 2);
207 return SI_MAX_IO_GENERIC + 8 + index;
208 case TGSI_SEMANTIC_BCOLOR:
209 assert(index < 2);
210 /* If it's a varying, COLOR and BCOLOR alias. */
211 if (is_varying)
212 return SI_MAX_IO_GENERIC + 8 + index;
213 else
214 return SI_MAX_IO_GENERIC + 10 + index;
215 case TGSI_SEMANTIC_TEXCOORD:
216 assert(index < 8);
217 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
218 return SI_MAX_IO_GENERIC + 12 + index;
219 case TGSI_SEMANTIC_CLIPVERTEX:
220 return 63;
221 default:
222 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
223 assert(!"invalid semantic name");
224 return 0;
225 }
226 }
227
228 /**
229 * Get the value of a shader input parameter and extract a bitfield.
230 */
231 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
232 LLVMValueRef value, unsigned rshift,
233 unsigned bitwidth)
234 {
235 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
236 value = ac_to_integer(&ctx->ac, value);
237
238 if (rshift)
239 value = LLVMBuildLShr(ctx->ac.builder, value,
240 LLVMConstInt(ctx->i32, rshift, 0), "");
241
242 if (rshift + bitwidth < 32) {
243 unsigned mask = (1 << bitwidth) - 1;
244 value = LLVMBuildAnd(ctx->ac.builder, value,
245 LLVMConstInt(ctx->i32, mask, 0), "");
246 }
247
248 return value;
249 }
250
251 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
252 unsigned param, unsigned rshift,
253 unsigned bitwidth)
254 {
255 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
256
257 return unpack_llvm_param(ctx, value, rshift, bitwidth);
258 }
259
260 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
261 {
262 switch (ctx->type) {
263 case PIPE_SHADER_TESS_CTRL:
264 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
265
266 case PIPE_SHADER_TESS_EVAL:
267 return LLVMGetParam(ctx->main_fn,
268 ctx->param_tes_rel_patch_id);
269
270 default:
271 assert(0);
272 return NULL;
273 }
274 }
275
276 /* Tessellation shaders pass outputs to the next shader using LDS.
277 *
278 * LS outputs = TCS inputs
279 * TCS outputs = TES inputs
280 *
281 * The LDS layout is:
282 * - TCS inputs for patch 0
283 * - TCS inputs for patch 1
284 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
285 * - ...
286 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
287 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
288 * - TCS outputs for patch 1
289 * - Per-patch TCS outputs for patch 1
290 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
291 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
292 * - ...
293 *
294 * All three shaders VS(LS), TCS, TES share the same LDS space.
295 */
296
297 static LLVMValueRef
298 get_tcs_in_patch_stride(struct si_shader_context *ctx)
299 {
300 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
301 }
302
303 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
304 {
305 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
306
307 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
308 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
309
310 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
311 }
312
313 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
314 {
315 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
316
317 return LLVMConstInt(ctx->i32, stride, 0);
318 }
319
320 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
321 {
322 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
323 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
324
325 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
326 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
327 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
328 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
329 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
330 num_patch_outputs * 4;
331 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
332 }
333
334 static LLVMValueRef
335 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
336 {
337 return LLVMBuildMul(ctx->ac.builder,
338 si_unpack_param(ctx,
339 ctx->param_tcs_out_lds_offsets,
340 0, 16),
341 LLVMConstInt(ctx->i32, 4, 0), "");
342 }
343
344 static LLVMValueRef
345 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
346 {
347 return LLVMBuildMul(ctx->ac.builder,
348 si_unpack_param(ctx,
349 ctx->param_tcs_out_lds_offsets,
350 16, 16),
351 LLVMConstInt(ctx->i32, 4, 0), "");
352 }
353
354 static LLVMValueRef
355 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
356 {
357 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
358 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
359
360 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
361 }
362
363 static LLVMValueRef
364 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
365 {
366 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
367 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
368 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
369
370 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_offset);
371 }
372
373 static LLVMValueRef
374 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
375 {
376 LLVMValueRef patch0_patch_data_offset =
377 get_tcs_out_patch0_patch_data_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id, patch0_patch_data_offset);
382 }
383
384 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
385 {
386 unsigned tcs_out_vertices =
387 ctx->shader->selector ?
388 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
389
390 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
391 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
392 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
393
394 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
395 }
396
397 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
398 {
399 unsigned stride;
400
401 switch (ctx->type) {
402 case PIPE_SHADER_VERTEX:
403 stride = ctx->shader->selector->lshs_vertex_stride / 4;
404 return LLVMConstInt(ctx->i32, stride, 0);
405
406 case PIPE_SHADER_TESS_CTRL:
407 if (ctx->screen->info.chip_class >= GFX9 &&
408 ctx->shader->is_monolithic) {
409 stride = ctx->shader->key.part.tcs.ls->lshs_vertex_stride / 4;
410 return LLVMConstInt(ctx->i32, stride, 0);
411 }
412 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
413
414 default:
415 assert(0);
416 return NULL;
417 }
418 }
419
420 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
421 LLVMValueRef i32, unsigned index)
422 {
423 assert(index <= 1);
424
425 if (index == 1)
426 return LLVMBuildAShr(ctx->ac.builder, i32,
427 LLVMConstInt(ctx->i32, 16, 0), "");
428
429 return LLVMBuildSExt(ctx->ac.builder,
430 LLVMBuildTrunc(ctx->ac.builder, i32,
431 ctx->ac.i16, ""),
432 ctx->i32, "");
433 }
434
435 void si_llvm_load_input_vs(
436 struct si_shader_context *ctx,
437 unsigned input_index,
438 LLVMValueRef out[4])
439 {
440 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
441 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
442
443 if (vs_blit_property) {
444 LLVMValueRef vertex_id = ctx->abi.vertex_id;
445 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
446 LLVMIntULE, vertex_id,
447 ctx->i32_1, "");
448 /* Use LLVMIntNE, because we have 3 vertices and only
449 * the middle one should use y2.
450 */
451 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
452 LLVMIntNE, vertex_id,
453 ctx->i32_1, "");
454
455 if (input_index == 0) {
456 /* Position: */
457 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
458 ctx->param_vs_blit_inputs);
459 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
460 ctx->param_vs_blit_inputs + 1);
461
462 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
463 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
464 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
465 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
466
467 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
468 x1, x2, "");
469 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
470 y1, y2, "");
471
472 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
473 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
474 out[2] = LLVMGetParam(ctx->main_fn,
475 ctx->param_vs_blit_inputs + 2);
476 out[3] = ctx->ac.f32_1;
477 return;
478 }
479
480 /* Color or texture coordinates: */
481 assert(input_index == 1);
482
483 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
484 for (int i = 0; i < 4; i++) {
485 out[i] = LLVMGetParam(ctx->main_fn,
486 ctx->param_vs_blit_inputs + 3 + i);
487 }
488 } else {
489 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
490 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
491 ctx->param_vs_blit_inputs + 3);
492 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
493 ctx->param_vs_blit_inputs + 4);
494 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
495 ctx->param_vs_blit_inputs + 5);
496 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
497 ctx->param_vs_blit_inputs + 6);
498
499 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
500 x1, x2, "");
501 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
502 y1, y2, "");
503 out[2] = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs + 7);
505 out[3] = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 8);
507 }
508 return;
509 }
510
511 union si_vs_fix_fetch fix_fetch;
512 LLVMValueRef t_list_ptr;
513 LLVMValueRef t_offset;
514 LLVMValueRef t_list;
515 LLVMValueRef vertex_index;
516 LLVMValueRef tmp;
517
518 /* Load the T list */
519 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
520
521 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
522
523 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
524
525 vertex_index = LLVMGetParam(ctx->main_fn,
526 ctx->param_vertex_index0 +
527 input_index);
528
529 /* Use the open-coded implementation for all loads of doubles and
530 * of dword-sized data that needs fixups. We need to insert conversion
531 * code anyway, and the amd/common code does it for us.
532 *
533 * Note: On LLVM <= 8, we can only open-code formats with
534 * channel size >= 4 bytes.
535 */
536 bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
537 fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
538 if (opencode ||
539 (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
540 (fix_fetch.u.log_size == 2)) {
541 tmp = ac_build_opencoded_load_format(
542 &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
543 fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
544 t_list, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0,
545 false, false, true);
546 for (unsigned i = 0; i < 4; ++i)
547 out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
548 return;
549 }
550
551 /* Do multiple loads for special formats. */
552 unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
553 LLVMValueRef fetches[4];
554 unsigned num_fetches;
555 unsigned fetch_stride;
556 unsigned channels_per_fetch;
557
558 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
559 num_fetches = MIN2(required_channels, 3);
560 fetch_stride = 1 << fix_fetch.u.log_size;
561 channels_per_fetch = 1;
562 } else {
563 num_fetches = 1;
564 fetch_stride = 0;
565 channels_per_fetch = required_channels;
566 }
567
568 for (unsigned i = 0; i < num_fetches; ++i) {
569 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
570 fetches[i] = ac_build_buffer_load_format(&ctx->ac, t_list, vertex_index, voffset,
571 channels_per_fetch, false, true);
572 }
573
574 if (num_fetches == 1 && channels_per_fetch > 1) {
575 LLVMValueRef fetch = fetches[0];
576 for (unsigned i = 0; i < channels_per_fetch; ++i) {
577 tmp = LLVMConstInt(ctx->i32, i, false);
578 fetches[i] = LLVMBuildExtractElement(
579 ctx->ac.builder, fetch, tmp, "");
580 }
581 num_fetches = channels_per_fetch;
582 channels_per_fetch = 1;
583 }
584
585 for (unsigned i = num_fetches; i < 4; ++i)
586 fetches[i] = LLVMGetUndef(ctx->f32);
587
588 if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
589 required_channels == 4) {
590 if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
591 fetches[3] = ctx->ac.i32_1;
592 else
593 fetches[3] = ctx->ac.f32_1;
594 } else if (fix_fetch.u.log_size == 3 &&
595 (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
596 fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
597 fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
598 required_channels == 4) {
599 /* For 2_10_10_10, the hardware returns an unsigned value;
600 * convert it to a signed one.
601 */
602 LLVMValueRef tmp = fetches[3];
603 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
604
605 /* First, recover the sign-extended signed integer value. */
606 if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
607 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
608 else
609 tmp = ac_to_integer(&ctx->ac, tmp);
610
611 /* For the integer-like cases, do a natural sign extension.
612 *
613 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
614 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
615 * exponent.
616 */
617 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
618 fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
619 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
620 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
621
622 /* Convert back to the right type. */
623 if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
624 LLVMValueRef clamp;
625 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
626 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
627 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
628 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
629 } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
630 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
631 }
632
633 fetches[3] = tmp;
634 }
635
636 for (unsigned i = 0; i < 4; ++i)
637 out[i] = ac_to_float(&ctx->ac, fetches[i]);
638 }
639
640 static void declare_input_vs(
641 struct si_shader_context *ctx,
642 unsigned input_index,
643 const struct tgsi_full_declaration *decl,
644 LLVMValueRef out[4])
645 {
646 si_llvm_load_input_vs(ctx, input_index, out);
647 }
648
649 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
650 unsigned swizzle)
651 {
652 if (swizzle > 0)
653 return ctx->i32_0;
654
655 switch (ctx->type) {
656 case PIPE_SHADER_VERTEX:
657 return LLVMGetParam(ctx->main_fn,
658 ctx->param_vs_prim_id);
659 case PIPE_SHADER_TESS_CTRL:
660 return ctx->abi.tcs_patch_id;
661 case PIPE_SHADER_TESS_EVAL:
662 return ctx->abi.tes_patch_id;
663 case PIPE_SHADER_GEOMETRY:
664 return ctx->abi.gs_prim_id;
665 default:
666 assert(0);
667 return ctx->i32_0;
668 }
669 }
670
671 /**
672 * Return the value of tgsi_ind_register for indexing.
673 * This is the indirect index with the constant offset added to it.
674 */
675 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
676 const struct tgsi_ind_register *ind,
677 unsigned addr_mul,
678 int rel_index)
679 {
680 LLVMValueRef result;
681
682 if (ind->File == TGSI_FILE_ADDRESS) {
683 result = ctx->addrs[ind->Index][ind->Swizzle];
684 result = LLVMBuildLoad(ctx->ac.builder, result, "");
685 } else {
686 struct tgsi_full_src_register src = {};
687
688 src.Register.File = ind->File;
689 src.Register.Index = ind->Index;
690
691 /* Set the second index to 0 for constants. */
692 if (ind->File == TGSI_FILE_CONSTANT)
693 src.Register.Dimension = 1;
694
695 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
696 TGSI_TYPE_SIGNED,
697 ind->Swizzle);
698 result = ac_to_integer(&ctx->ac, result);
699 }
700
701 return ac_build_imad(&ctx->ac, result, LLVMConstInt(ctx->i32, addr_mul, 0),
702 LLVMConstInt(ctx->i32, rel_index, 0));
703 }
704
705 /**
706 * Like si_get_indirect_index, but restricts the return value to a (possibly
707 * undefined) value inside [0..num).
708 */
709 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
710 const struct tgsi_ind_register *ind,
711 int rel_index, unsigned num)
712 {
713 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
714
715 return si_llvm_bound_index(ctx, result, num);
716 }
717
718 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
719 LLVMValueRef vertex_dw_stride,
720 LLVMValueRef base_addr,
721 LLVMValueRef vertex_index,
722 LLVMValueRef param_index,
723 unsigned input_index,
724 ubyte *name,
725 ubyte *index,
726 bool is_patch)
727 {
728 if (vertex_dw_stride) {
729 base_addr = ac_build_imad(&ctx->ac, vertex_index,
730 vertex_dw_stride, base_addr);
731 }
732
733 if (param_index) {
734 base_addr = ac_build_imad(&ctx->ac, param_index,
735 LLVMConstInt(ctx->i32, 4, 0), base_addr);
736 }
737
738 int param = is_patch ?
739 si_shader_io_get_unique_index_patch(name[input_index],
740 index[input_index]) :
741 si_shader_io_get_unique_index(name[input_index],
742 index[input_index], false);
743
744 /* Add the base address of the element. */
745 return LLVMBuildAdd(ctx->ac.builder, base_addr,
746 LLVMConstInt(ctx->i32, param * 4, 0), "");
747 }
748
749 /**
750 * Calculate a dword address given an input or output register and a stride.
751 */
752 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
753 const struct tgsi_full_dst_register *dst,
754 const struct tgsi_full_src_register *src,
755 LLVMValueRef vertex_dw_stride,
756 LLVMValueRef base_addr)
757 {
758 struct tgsi_shader_info *info = &ctx->shader->selector->info;
759 ubyte *name, *index, *array_first;
760 int input_index;
761 struct tgsi_full_dst_register reg;
762 LLVMValueRef vertex_index = NULL;
763 LLVMValueRef ind_index = NULL;
764
765 /* Set the register description. The address computation is the same
766 * for sources and destinations. */
767 if (src) {
768 reg.Register.File = src->Register.File;
769 reg.Register.Index = src->Register.Index;
770 reg.Register.Indirect = src->Register.Indirect;
771 reg.Register.Dimension = src->Register.Dimension;
772 reg.Indirect = src->Indirect;
773 reg.Dimension = src->Dimension;
774 reg.DimIndirect = src->DimIndirect;
775 } else
776 reg = *dst;
777
778 /* If the register is 2-dimensional (e.g. an array of vertices
779 * in a primitive), calculate the base address of the vertex. */
780 if (reg.Register.Dimension) {
781 if (reg.Dimension.Indirect)
782 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
783 1, reg.Dimension.Index);
784 else
785 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
786 }
787
788 /* Get information about the register. */
789 if (reg.Register.File == TGSI_FILE_INPUT) {
790 name = info->input_semantic_name;
791 index = info->input_semantic_index;
792 array_first = info->input_array_first;
793 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
794 name = info->output_semantic_name;
795 index = info->output_semantic_index;
796 array_first = info->output_array_first;
797 } else {
798 assert(0);
799 return NULL;
800 }
801
802 if (reg.Register.Indirect) {
803 /* Add the relative address of the element. */
804 if (reg.Indirect.ArrayID)
805 input_index = array_first[reg.Indirect.ArrayID];
806 else
807 input_index = reg.Register.Index;
808
809 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
810 1, reg.Register.Index - input_index);
811 } else {
812 input_index = reg.Register.Index;
813 }
814
815 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
816 base_addr, vertex_index,
817 ind_index, input_index,
818 name, index,
819 !reg.Register.Dimension);
820 }
821
822 /* The offchip buffer layout for TCS->TES is
823 *
824 * - attribute 0 of patch 0 vertex 0
825 * - attribute 0 of patch 0 vertex 1
826 * - attribute 0 of patch 0 vertex 2
827 * ...
828 * - attribute 0 of patch 1 vertex 0
829 * - attribute 0 of patch 1 vertex 1
830 * ...
831 * - attribute 1 of patch 0 vertex 0
832 * - attribute 1 of patch 0 vertex 1
833 * ...
834 * - per patch attribute 0 of patch 0
835 * - per patch attribute 0 of patch 1
836 * ...
837 *
838 * Note that every attribute has 4 components.
839 */
840 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
841 LLVMValueRef rel_patch_id,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index)
844 {
845 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
846 LLVMValueRef param_stride, constant16;
847
848 vertices_per_patch = get_num_tcs_out_vertices(ctx);
849 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
850 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
851 num_patches, "");
852
853 constant16 = LLVMConstInt(ctx->i32, 16, 0);
854 if (vertex_index) {
855 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
856 vertices_per_patch, vertex_index);
857 param_stride = total_vertices;
858 } else {
859 base_addr = rel_patch_id;
860 param_stride = num_patches;
861 }
862
863 base_addr = ac_build_imad(&ctx->ac, param_index, param_stride, base_addr);
864 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
865
866 if (!vertex_index) {
867 LLVMValueRef patch_data_offset =
868 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
869
870 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
871 patch_data_offset, "");
872 }
873 return base_addr;
874 }
875
876 /* This is a generic helper that can be shared by the NIR and TGSI backends */
877 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
878 struct si_shader_context *ctx,
879 LLVMValueRef vertex_index,
880 LLVMValueRef param_index,
881 unsigned param_base,
882 ubyte *name,
883 ubyte *index,
884 bool is_patch)
885 {
886 unsigned param_index_base;
887
888 param_index_base = is_patch ?
889 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
890 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
891
892 if (param_index) {
893 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
894 LLVMConstInt(ctx->i32, param_index_base, 0),
895 "");
896 } else {
897 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
898 }
899
900 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
901 vertex_index, param_index);
902 }
903
904 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
905 struct si_shader_context *ctx,
906 const struct tgsi_full_dst_register *dst,
907 const struct tgsi_full_src_register *src)
908 {
909 struct tgsi_shader_info *info = &ctx->shader->selector->info;
910 ubyte *name, *index, *array_first;
911 struct tgsi_full_src_register reg;
912 LLVMValueRef vertex_index = NULL;
913 LLVMValueRef param_index = NULL;
914 unsigned param_base;
915
916 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
917
918 if (reg.Register.Dimension) {
919
920 if (reg.Dimension.Indirect)
921 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
922 1, reg.Dimension.Index);
923 else
924 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
925 }
926
927 /* Get information about the register. */
928 if (reg.Register.File == TGSI_FILE_INPUT) {
929 name = info->input_semantic_name;
930 index = info->input_semantic_index;
931 array_first = info->input_array_first;
932 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
933 name = info->output_semantic_name;
934 index = info->output_semantic_index;
935 array_first = info->output_array_first;
936 } else {
937 assert(0);
938 return NULL;
939 }
940
941 if (reg.Register.Indirect) {
942 if (reg.Indirect.ArrayID)
943 param_base = array_first[reg.Indirect.ArrayID];
944 else
945 param_base = reg.Register.Index;
946
947 param_index = si_get_indirect_index(ctx, &reg.Indirect,
948 1, reg.Register.Index - param_base);
949
950 } else {
951 param_base = reg.Register.Index;
952 }
953
954 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
955 param_index, param_base,
956 name, index, !reg.Register.Dimension);
957 }
958
959 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
960 LLVMTypeRef type, unsigned swizzle,
961 LLVMValueRef buffer, LLVMValueRef offset,
962 LLVMValueRef base, bool can_speculate)
963 {
964 struct si_shader_context *ctx = si_shader_context(bld_base);
965 LLVMValueRef value, value2;
966 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
967
968 if (swizzle == ~0) {
969 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
970 0, 1, 0, can_speculate, false);
971
972 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
973 }
974
975 if (!llvm_type_is_64bit(ctx, type)) {
976 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
977 0, 1, 0, can_speculate, false);
978
979 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
980 return LLVMBuildExtractElement(ctx->ac.builder, value,
981 LLVMConstInt(ctx->i32, swizzle, 0), "");
982 }
983
984 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
985 swizzle * 4, 1, 0, can_speculate, false);
986
987 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
988 swizzle * 4 + 4, 1, 0, can_speculate, false);
989
990 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
991 }
992
993 /**
994 * Load from LSHS LDS storage.
995 *
996 * \param type output value type
997 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
998 * \param dw_addr address in dwords
999 */
1000 static LLVMValueRef lshs_lds_load(struct lp_build_tgsi_context *bld_base,
1001 LLVMTypeRef type, unsigned swizzle,
1002 LLVMValueRef dw_addr)
1003 {
1004 struct si_shader_context *ctx = si_shader_context(bld_base);
1005 LLVMValueRef value;
1006
1007 if (swizzle == ~0) {
1008 LLVMValueRef values[TGSI_NUM_CHANNELS];
1009
1010 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1011 values[chan] = lshs_lds_load(bld_base, type, chan, dw_addr);
1012
1013 return ac_build_gather_values(&ctx->ac, values,
1014 TGSI_NUM_CHANNELS);
1015 }
1016
1017 /* Split 64-bit loads. */
1018 if (llvm_type_is_64bit(ctx, type)) {
1019 LLVMValueRef lo, hi;
1020
1021 lo = lshs_lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1022 hi = lshs_lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1023 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1024 }
1025
1026 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1027 LLVMConstInt(ctx->i32, swizzle, 0), "");
1028
1029 value = ac_lds_load(&ctx->ac, dw_addr);
1030
1031 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1032 }
1033
1034 /**
1035 * Store to LSHS LDS storage.
1036 *
1037 * \param swizzle offset (typically 0..3)
1038 * \param dw_addr address in dwords
1039 * \param value value to store
1040 */
1041 static void lshs_lds_store(struct si_shader_context *ctx,
1042 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1043 LLVMValueRef value)
1044 {
1045 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1046 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1047
1048 ac_lds_store(&ctx->ac, dw_addr, value);
1049 }
1050
1051 enum si_tess_ring {
1052 TCS_FACTOR_RING,
1053 TESS_OFFCHIP_RING_TCS,
1054 TESS_OFFCHIP_RING_TES,
1055 };
1056
1057 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1058 enum si_tess_ring ring)
1059 {
1060 LLVMBuilderRef builder = ctx->ac.builder;
1061 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1062 ctx->param_tcs_out_lds_layout;
1063 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1064
1065 /* TCS only receives high 13 bits of the address. */
1066 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1067 addr = LLVMBuildAnd(builder, addr,
1068 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1069 }
1070
1071 if (ring == TCS_FACTOR_RING) {
1072 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1073 addr = LLVMBuildAdd(builder, addr,
1074 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1075 }
1076
1077 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1078 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1079 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1080 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1081
1082 if (ctx->screen->info.chip_class >= GFX10)
1083 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1084 S_008F0C_OOB_SELECT(3) |
1085 S_008F0C_RESOURCE_LEVEL(1);
1086 else
1087 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1088 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1089
1090 LLVMValueRef desc[4];
1091 desc[0] = addr;
1092 desc[1] = LLVMConstInt(ctx->i32,
1093 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1094 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1095 desc[3] = LLVMConstInt(ctx->i32, rsrc3, false);
1096
1097 return ac_build_gather_values(&ctx->ac, desc, 4);
1098 }
1099
1100 static LLVMValueRef fetch_input_tcs(
1101 struct lp_build_tgsi_context *bld_base,
1102 const struct tgsi_full_src_register *reg,
1103 enum tgsi_opcode_type type, unsigned swizzle_in)
1104 {
1105 struct si_shader_context *ctx = si_shader_context(bld_base);
1106 LLVMValueRef dw_addr, stride;
1107 unsigned swizzle = swizzle_in & 0xffff;
1108 stride = get_tcs_in_vertex_dw_stride(ctx);
1109 dw_addr = get_tcs_in_current_patch_offset(ctx);
1110 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1111
1112 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1113 }
1114
1115 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1116 LLVMTypeRef type,
1117 LLVMValueRef vertex_index,
1118 LLVMValueRef param_index,
1119 unsigned const_index,
1120 unsigned location,
1121 unsigned driver_location,
1122 unsigned component,
1123 unsigned num_components,
1124 bool is_patch,
1125 bool is_compact,
1126 bool load_input)
1127 {
1128 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1129 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1130 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1131 LLVMValueRef dw_addr, stride;
1132
1133 driver_location = driver_location / 4;
1134
1135 if (load_input) {
1136 stride = get_tcs_in_vertex_dw_stride(ctx);
1137 dw_addr = get_tcs_in_current_patch_offset(ctx);
1138 } else {
1139 if (is_patch) {
1140 stride = NULL;
1141 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1142 } else {
1143 stride = get_tcs_out_vertex_dw_stride(ctx);
1144 dw_addr = get_tcs_out_current_patch_offset(ctx);
1145 }
1146 }
1147
1148 if (param_index) {
1149 /* Add the constant index to the indirect index */
1150 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1151 LLVMConstInt(ctx->i32, const_index, 0), "");
1152 } else {
1153 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1154 }
1155
1156 ubyte *names;
1157 ubyte *indices;
1158 if (load_input) {
1159 names = info->input_semantic_name;
1160 indices = info->input_semantic_index;
1161 } else {
1162 names = info->output_semantic_name;
1163 indices = info->output_semantic_index;
1164 }
1165
1166 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1167 vertex_index, param_index,
1168 driver_location,
1169 names, indices,
1170 is_patch);
1171
1172 LLVMValueRef value[4];
1173 for (unsigned i = 0; i < num_components; i++) {
1174 unsigned offset = i;
1175 if (llvm_type_is_64bit(ctx, type))
1176 offset *= 2;
1177
1178 offset += component;
1179 value[i + component] = lshs_lds_load(bld_base, type, offset, dw_addr);
1180 }
1181
1182 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1183 }
1184
1185 static LLVMValueRef fetch_output_tcs(
1186 struct lp_build_tgsi_context *bld_base,
1187 const struct tgsi_full_src_register *reg,
1188 enum tgsi_opcode_type type, unsigned swizzle_in)
1189 {
1190 struct si_shader_context *ctx = si_shader_context(bld_base);
1191 LLVMValueRef dw_addr, stride;
1192 unsigned swizzle = (swizzle_in & 0xffff);
1193
1194 if (reg->Register.Dimension) {
1195 stride = get_tcs_out_vertex_dw_stride(ctx);
1196 dw_addr = get_tcs_out_current_patch_offset(ctx);
1197 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1198 } else {
1199 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1200 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1201 }
1202
1203 return lshs_lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1204 }
1205
1206 static LLVMValueRef fetch_input_tes(
1207 struct lp_build_tgsi_context *bld_base,
1208 const struct tgsi_full_src_register *reg,
1209 enum tgsi_opcode_type type, unsigned swizzle_in)
1210 {
1211 struct si_shader_context *ctx = si_shader_context(bld_base);
1212 LLVMValueRef base, addr;
1213 unsigned swizzle = (swizzle_in & 0xffff);
1214
1215 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1216 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1217
1218 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1219 ctx->tess_offchip_ring, base, addr, true);
1220 }
1221
1222 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1223 LLVMTypeRef type,
1224 LLVMValueRef vertex_index,
1225 LLVMValueRef param_index,
1226 unsigned const_index,
1227 unsigned location,
1228 unsigned driver_location,
1229 unsigned component,
1230 unsigned num_components,
1231 bool is_patch,
1232 bool is_compact,
1233 bool load_input)
1234 {
1235 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1236 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1237 LLVMValueRef base, addr;
1238
1239 driver_location = driver_location / 4;
1240
1241 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1242
1243 if (param_index) {
1244 /* Add the constant index to the indirect index */
1245 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1246 LLVMConstInt(ctx->i32, const_index, 0), "");
1247 } else {
1248 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1249 }
1250
1251 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1252 param_index, driver_location,
1253 info->input_semantic_name,
1254 info->input_semantic_index,
1255 is_patch);
1256
1257 /* TODO: This will generate rather ordinary llvm code, although it
1258 * should be easy for the optimiser to fix up. In future we might want
1259 * to refactor buffer_load(), but for now this maximises code sharing
1260 * between the NIR and TGSI backends.
1261 */
1262 LLVMValueRef value[4];
1263 for (unsigned i = 0; i < num_components; i++) {
1264 unsigned offset = i;
1265 if (llvm_type_is_64bit(ctx, type)) {
1266 offset *= 2;
1267 if (offset == 4) {
1268 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1269 vertex_index,
1270 param_index,
1271 driver_location + 1,
1272 info->input_semantic_name,
1273 info->input_semantic_index,
1274 is_patch);
1275 }
1276
1277 offset = offset % 4;
1278 }
1279
1280 offset += component;
1281 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1282 ctx->tess_offchip_ring, base, addr, true);
1283 }
1284
1285 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1286 }
1287
1288 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1289 const struct tgsi_full_instruction *inst,
1290 const struct tgsi_opcode_info *info,
1291 unsigned index,
1292 LLVMValueRef dst[4])
1293 {
1294 struct si_shader_context *ctx = si_shader_context(bld_base);
1295 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1296 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1297 unsigned chan_index;
1298 LLVMValueRef dw_addr, stride;
1299 LLVMValueRef buffer, base, buf_addr;
1300 LLVMValueRef values[4];
1301 bool skip_lds_store;
1302 bool is_tess_factor = false, is_tess_inner = false;
1303
1304 /* Only handle per-patch and per-vertex outputs here.
1305 * Vectors will be lowered to scalars and this function will be called again.
1306 */
1307 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1308 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1309 si_llvm_emit_store(bld_base, inst, info, index, dst);
1310 return;
1311 }
1312
1313 if (reg->Register.Dimension) {
1314 stride = get_tcs_out_vertex_dw_stride(ctx);
1315 dw_addr = get_tcs_out_current_patch_offset(ctx);
1316 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1317 skip_lds_store = !sh_info->reads_pervertex_outputs;
1318 } else {
1319 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1320 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1321 skip_lds_store = !sh_info->reads_perpatch_outputs;
1322
1323 if (!reg->Register.Indirect) {
1324 int name = sh_info->output_semantic_name[reg->Register.Index];
1325
1326 /* Always write tess factors into LDS for the TCS epilog. */
1327 if (name == TGSI_SEMANTIC_TESSINNER ||
1328 name == TGSI_SEMANTIC_TESSOUTER) {
1329 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1330 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1331 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1332 is_tess_factor = true;
1333 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1334 }
1335 }
1336 }
1337
1338 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1339
1340 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1341 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1342
1343 uint32_t writemask = reg->Register.WriteMask;
1344 while (writemask) {
1345 chan_index = u_bit_scan(&writemask);
1346 LLVMValueRef value = dst[chan_index];
1347
1348 if (inst->Instruction.Saturate)
1349 value = ac_build_clamp(&ctx->ac, value);
1350
1351 /* Skip LDS stores if there is no LDS read of this output. */
1352 if (!skip_lds_store)
1353 lshs_lds_store(ctx, chan_index, dw_addr, value);
1354
1355 value = ac_to_integer(&ctx->ac, value);
1356 values[chan_index] = value;
1357
1358 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1359 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1360 buf_addr, base,
1361 4 * chan_index, 1, 0, false);
1362 }
1363
1364 /* Write tess factors into VGPRs for the epilog. */
1365 if (is_tess_factor &&
1366 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1367 if (!is_tess_inner) {
1368 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1369 ctx->invoc0_tess_factors[chan_index]);
1370 } else if (chan_index < 2) {
1371 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1372 ctx->invoc0_tess_factors[4 + chan_index]);
1373 }
1374 }
1375 }
1376
1377 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1378 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1379 values, 4);
1380 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1381 base, 0, 1, 0, false);
1382 }
1383 }
1384
1385 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1386 const struct nir_variable *var,
1387 LLVMValueRef vertex_index,
1388 LLVMValueRef param_index,
1389 unsigned const_index,
1390 LLVMValueRef src,
1391 unsigned writemask)
1392 {
1393 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1394 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1395 const unsigned component = var->data.location_frac;
1396 const bool is_patch = var->data.patch;
1397 unsigned driver_location = var->data.driver_location;
1398 LLVMValueRef dw_addr, stride;
1399 LLVMValueRef buffer, base, addr;
1400 LLVMValueRef values[8];
1401 bool skip_lds_store;
1402 bool is_tess_factor = false, is_tess_inner = false;
1403
1404 driver_location = driver_location / 4;
1405
1406 if (param_index) {
1407 /* Add the constant index to the indirect index */
1408 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1409 LLVMConstInt(ctx->i32, const_index, 0), "");
1410 } else {
1411 if (const_index != 0)
1412 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1413 }
1414
1415 if (!is_patch) {
1416 stride = get_tcs_out_vertex_dw_stride(ctx);
1417 dw_addr = get_tcs_out_current_patch_offset(ctx);
1418 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1419 vertex_index, param_index,
1420 driver_location,
1421 info->output_semantic_name,
1422 info->output_semantic_index,
1423 is_patch);
1424
1425 skip_lds_store = !info->reads_pervertex_outputs;
1426 } else {
1427 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1428 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1429 vertex_index, param_index,
1430 driver_location,
1431 info->output_semantic_name,
1432 info->output_semantic_index,
1433 is_patch);
1434
1435 skip_lds_store = !info->reads_perpatch_outputs;
1436
1437 if (!param_index) {
1438 int name = info->output_semantic_name[driver_location];
1439
1440 /* Always write tess factors into LDS for the TCS epilog. */
1441 if (name == TGSI_SEMANTIC_TESSINNER ||
1442 name == TGSI_SEMANTIC_TESSOUTER) {
1443 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1444 skip_lds_store = !info->reads_tessfactor_outputs &&
1445 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1446 is_tess_factor = true;
1447 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1448 }
1449 }
1450 }
1451
1452 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1453
1454 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1455
1456 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1457 param_index, driver_location,
1458 info->output_semantic_name,
1459 info->output_semantic_index,
1460 is_patch);
1461
1462 for (unsigned chan = 0; chan < 8; chan++) {
1463 if (!(writemask & (1 << chan)))
1464 continue;
1465 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1466
1467 unsigned buffer_store_offset = chan % 4;
1468 if (chan == 4) {
1469 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx,
1470 vertex_index,
1471 param_index,
1472 driver_location + 1,
1473 info->output_semantic_name,
1474 info->output_semantic_index,
1475 is_patch);
1476 }
1477
1478 /* Skip LDS stores if there is no LDS read of this output. */
1479 if (!skip_lds_store)
1480 lshs_lds_store(ctx, chan, dw_addr, value);
1481
1482 value = ac_to_integer(&ctx->ac, value);
1483 values[chan] = value;
1484
1485 if (writemask != 0xF && !is_tess_factor) {
1486 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1487 addr, base,
1488 4 * buffer_store_offset,
1489 1, 0, false);
1490 }
1491
1492 /* Write tess factors into VGPRs for the epilog. */
1493 if (is_tess_factor &&
1494 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1495 if (!is_tess_inner) {
1496 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1497 ctx->invoc0_tess_factors[chan]);
1498 } else if (chan < 2) {
1499 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1500 ctx->invoc0_tess_factors[4 + chan]);
1501 }
1502 }
1503 }
1504
1505 if (writemask == 0xF && !is_tess_factor) {
1506 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1507 values, 4);
1508 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1509 base, 0, 1, 0, false);
1510 }
1511 }
1512
1513 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1514 unsigned input_index,
1515 unsigned vtx_offset_param,
1516 LLVMTypeRef type,
1517 unsigned swizzle)
1518 {
1519 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1520 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1521 struct si_shader *shader = ctx->shader;
1522 LLVMValueRef vtx_offset, soffset;
1523 struct tgsi_shader_info *info = &shader->selector->info;
1524 unsigned semantic_name = info->input_semantic_name[input_index];
1525 unsigned semantic_index = info->input_semantic_index[input_index];
1526 unsigned param;
1527 LLVMValueRef value;
1528
1529 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1530
1531 /* GFX9 has the ESGS ring in LDS. */
1532 if (ctx->screen->info.chip_class >= GFX9) {
1533 unsigned index = vtx_offset_param;
1534
1535 switch (index / 2) {
1536 case 0:
1537 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1538 index % 2 ? 16 : 0, 16);
1539 break;
1540 case 1:
1541 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1542 index % 2 ? 16 : 0, 16);
1543 break;
1544 case 2:
1545 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1546 index % 2 ? 16 : 0, 16);
1547 break;
1548 default:
1549 assert(0);
1550 return NULL;
1551 }
1552
1553 unsigned offset = param * 4 + swizzle;
1554 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1555 LLVMConstInt(ctx->i32, offset, false), "");
1556
1557 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->esgs_ring, vtx_offset);
1558 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1559 if (llvm_type_is_64bit(ctx, type)) {
1560 ptr = LLVMBuildGEP(ctx->ac.builder, ptr,
1561 &ctx->ac.i32_1, 1, "");
1562 LLVMValueRef values[2] = {
1563 value,
1564 LLVMBuildLoad(ctx->ac.builder, ptr, "")
1565 };
1566 value = ac_build_gather_values(&ctx->ac, values, 2);
1567 }
1568 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1569 }
1570
1571 /* GFX6: input load from the ESGS ring in memory. */
1572 if (swizzle == ~0) {
1573 LLVMValueRef values[TGSI_NUM_CHANNELS];
1574 unsigned chan;
1575 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1576 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1577 type, chan);
1578 }
1579 return ac_build_gather_values(&ctx->ac, values,
1580 TGSI_NUM_CHANNELS);
1581 }
1582
1583 /* Get the vertex offset parameter on GFX6. */
1584 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1585
1586 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1587 LLVMConstInt(ctx->i32, 4, 0), "");
1588
1589 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1590
1591 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1592 vtx_offset, soffset, 0, 1, 0, true, false);
1593 if (llvm_type_is_64bit(ctx, type)) {
1594 LLVMValueRef value2;
1595 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1596
1597 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1598 ctx->i32_0, vtx_offset, soffset,
1599 0, 1, 0, true, false);
1600 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1601 }
1602 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1603 }
1604
1605 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1606 unsigned location,
1607 unsigned driver_location,
1608 unsigned component,
1609 unsigned num_components,
1610 unsigned vertex_index,
1611 unsigned const_index,
1612 LLVMTypeRef type)
1613 {
1614 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1615
1616 LLVMValueRef value[4];
1617 for (unsigned i = 0; i < num_components; i++) {
1618 unsigned offset = i;
1619 if (llvm_type_is_64bit(ctx, type))
1620 offset *= 2;
1621
1622 offset += component;
1623 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1624 vertex_index, type, offset);
1625 }
1626
1627 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1628 }
1629
1630 static LLVMValueRef fetch_input_gs(
1631 struct lp_build_tgsi_context *bld_base,
1632 const struct tgsi_full_src_register *reg,
1633 enum tgsi_opcode_type type,
1634 unsigned swizzle_in)
1635 {
1636 struct si_shader_context *ctx = si_shader_context(bld_base);
1637 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1638 unsigned swizzle = swizzle_in & 0xffff;
1639
1640 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1641 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1642 return si_get_primitive_id(ctx, swizzle);
1643
1644 if (!reg->Register.Dimension)
1645 return NULL;
1646
1647 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1648 reg->Dimension.Index,
1649 tgsi2llvmtype(bld_base, type),
1650 swizzle);
1651 }
1652
1653 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1654 {
1655 switch (interpolate) {
1656 case TGSI_INTERPOLATE_CONSTANT:
1657 return 0;
1658
1659 case TGSI_INTERPOLATE_LINEAR:
1660 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1661 return SI_PARAM_LINEAR_SAMPLE;
1662 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1663 return SI_PARAM_LINEAR_CENTROID;
1664 else
1665 return SI_PARAM_LINEAR_CENTER;
1666 break;
1667 case TGSI_INTERPOLATE_COLOR:
1668 case TGSI_INTERPOLATE_PERSPECTIVE:
1669 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1670 return SI_PARAM_PERSP_SAMPLE;
1671 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1672 return SI_PARAM_PERSP_CENTROID;
1673 else
1674 return SI_PARAM_PERSP_CENTER;
1675 break;
1676 default:
1677 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1678 return -1;
1679 }
1680 }
1681
1682 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1683 unsigned attr_index, unsigned chan,
1684 LLVMValueRef prim_mask,
1685 LLVMValueRef i, LLVMValueRef j)
1686 {
1687 if (i || j) {
1688 return ac_build_fs_interp(&ctx->ac,
1689 LLVMConstInt(ctx->i32, chan, 0),
1690 LLVMConstInt(ctx->i32, attr_index, 0),
1691 prim_mask, i, j);
1692 }
1693 return ac_build_fs_interp_mov(&ctx->ac,
1694 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1695 LLVMConstInt(ctx->i32, chan, 0),
1696 LLVMConstInt(ctx->i32, attr_index, 0),
1697 prim_mask);
1698 }
1699
1700 /**
1701 * Interpolate a fragment shader input.
1702 *
1703 * @param ctx context
1704 * @param input_index index of the input in hardware
1705 * @param semantic_name TGSI_SEMANTIC_*
1706 * @param semantic_index semantic index
1707 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1708 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1709 * @param interp_param interpolation weights (i,j)
1710 * @param prim_mask SI_PARAM_PRIM_MASK
1711 * @param face SI_PARAM_FRONT_FACE
1712 * @param result the return value (4 components)
1713 */
1714 static void interp_fs_input(struct si_shader_context *ctx,
1715 unsigned input_index,
1716 unsigned semantic_name,
1717 unsigned semantic_index,
1718 unsigned num_interp_inputs,
1719 unsigned colors_read_mask,
1720 LLVMValueRef interp_param,
1721 LLVMValueRef prim_mask,
1722 LLVMValueRef face,
1723 LLVMValueRef result[4])
1724 {
1725 LLVMValueRef i = NULL, j = NULL;
1726 unsigned chan;
1727
1728 /* fs.constant returns the param from the middle vertex, so it's not
1729 * really useful for flat shading. It's meant to be used for custom
1730 * interpolation (but the intrinsic can't fetch from the other two
1731 * vertices).
1732 *
1733 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1734 * to do the right thing. The only reason we use fs.constant is that
1735 * fs.interp cannot be used on integers, because they can be equal
1736 * to NaN.
1737 *
1738 * When interp is false we will use fs.constant or for newer llvm,
1739 * amdgcn.interp.mov.
1740 */
1741 bool interp = interp_param != NULL;
1742
1743 if (interp) {
1744 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1745 LLVMVectorType(ctx->f32, 2), "");
1746
1747 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1748 ctx->i32_0, "");
1749 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1750 ctx->i32_1, "");
1751 }
1752
1753 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1754 ctx->shader->key.part.ps.prolog.color_two_side) {
1755 LLVMValueRef is_face_positive;
1756
1757 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1758 * otherwise it's at offset "num_inputs".
1759 */
1760 unsigned back_attr_offset = num_interp_inputs;
1761 if (semantic_index == 1 && colors_read_mask & 0xf)
1762 back_attr_offset += 1;
1763
1764 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1765 face, ctx->i32_0, "");
1766
1767 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1768 LLVMValueRef front, back;
1769
1770 front = si_build_fs_interp(ctx,
1771 input_index, chan,
1772 prim_mask, i, j);
1773 back = si_build_fs_interp(ctx,
1774 back_attr_offset, chan,
1775 prim_mask, i, j);
1776
1777 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1778 is_face_positive,
1779 front,
1780 back,
1781 "");
1782 }
1783 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1784 result[0] = si_build_fs_interp(ctx, input_index,
1785 0, prim_mask, i, j);
1786 result[1] =
1787 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1788 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1789 } else {
1790 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1791 result[chan] = si_build_fs_interp(ctx,
1792 input_index, chan,
1793 prim_mask, i, j);
1794 }
1795 }
1796 }
1797
1798 void si_llvm_load_input_fs(
1799 struct si_shader_context *ctx,
1800 unsigned input_index,
1801 LLVMValueRef out[4])
1802 {
1803 struct si_shader *shader = ctx->shader;
1804 struct tgsi_shader_info *info = &shader->selector->info;
1805 LLVMValueRef main_fn = ctx->main_fn;
1806 LLVMValueRef interp_param = NULL;
1807 int interp_param_idx;
1808 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1809 unsigned semantic_index = info->input_semantic_index[input_index];
1810 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1811 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1812
1813 /* Get colors from input VGPRs (set by the prolog). */
1814 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1815 unsigned colors_read = shader->selector->info.colors_read;
1816 unsigned mask = colors_read >> (semantic_index * 4);
1817 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1818 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1819 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1820
1821 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1822 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1823 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1824 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1825 return;
1826 }
1827
1828 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1829 if (interp_param_idx == -1)
1830 return;
1831 else if (interp_param_idx) {
1832 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1833 }
1834
1835 interp_fs_input(ctx, input_index, semantic_name,
1836 semantic_index, 0, /* this param is unused */
1837 shader->selector->info.colors_read, interp_param,
1838 ctx->abi.prim_mask,
1839 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1840 &out[0]);
1841 }
1842
1843 static void declare_input_fs(
1844 struct si_shader_context *ctx,
1845 unsigned input_index,
1846 const struct tgsi_full_declaration *decl,
1847 LLVMValueRef out[4])
1848 {
1849 si_llvm_load_input_fs(ctx, input_index, out);
1850 }
1851
1852 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1853 {
1854 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1855 }
1856
1857 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1858 {
1859 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1860
1861 /* For non-indexed draws, the base vertex set by the driver
1862 * (for direct draws) or the CP (for indirect draws) is the
1863 * first vertex ID, but GLSL expects 0 to be returned.
1864 */
1865 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1866 ctx->param_vs_state_bits);
1867 LLVMValueRef indexed;
1868
1869 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1870 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1871
1872 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1873 ctx->i32_0, "");
1874 }
1875
1876 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1877 {
1878 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1879
1880 LLVMValueRef values[3];
1881 LLVMValueRef result;
1882 unsigned i;
1883 unsigned *properties = ctx->shader->selector->info.properties;
1884
1885 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1886 unsigned sizes[3] = {
1887 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1888 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1889 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1890 };
1891
1892 for (i = 0; i < 3; ++i)
1893 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1894
1895 result = ac_build_gather_values(&ctx->ac, values, 3);
1896 } else {
1897 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1898 }
1899
1900 return result;
1901 }
1902
1903 /**
1904 * Load a dword from a constant buffer.
1905 */
1906 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1907 LLVMValueRef resource,
1908 LLVMValueRef offset)
1909 {
1910 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1911 0, 0, 0, true, true);
1912 }
1913
1914 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1915 {
1916 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1917 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1918 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1919 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1920
1921 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1922 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
1923 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1924
1925 LLVMValueRef pos[4] = {
1926 buffer_load_const(ctx, resource, offset0),
1927 buffer_load_const(ctx, resource, offset1),
1928 LLVMConstReal(ctx->f32, 0),
1929 LLVMConstReal(ctx->f32, 0)
1930 };
1931
1932 return ac_build_gather_values(&ctx->ac, pos, 4);
1933 }
1934
1935 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1936 {
1937 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1938 return ac_to_integer(&ctx->ac, abi->sample_coverage);
1939 }
1940
1941 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
1942 {
1943 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1944 LLVMValueRef coord[4] = {
1945 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1946 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1947 ctx->ac.f32_0,
1948 ctx->ac.f32_0
1949 };
1950
1951 /* For triangles, the vector should be (u, v, 1-u-v). */
1952 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1953 PIPE_PRIM_TRIANGLES) {
1954 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1955 LLVMBuildFAdd(ctx->ac.builder,
1956 coord[0], coord[1], ""), "");
1957 }
1958 return ac_build_gather_values(&ctx->ac, coord, 4);
1959 }
1960
1961 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1962 unsigned semantic_name)
1963 {
1964 LLVMValueRef base, addr;
1965
1966 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1967
1968 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1969 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1970 LLVMConstInt(ctx->i32, param, 0));
1971
1972 return buffer_load(&ctx->bld_base, ctx->f32,
1973 ~0, ctx->tess_offchip_ring, base, addr, true);
1974
1975 }
1976
1977 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1978 unsigned varying_id)
1979 {
1980 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1981 unsigned semantic_name;
1982
1983 switch (varying_id) {
1984 case VARYING_SLOT_TESS_LEVEL_INNER:
1985 semantic_name = TGSI_SEMANTIC_TESSINNER;
1986 break;
1987 case VARYING_SLOT_TESS_LEVEL_OUTER:
1988 semantic_name = TGSI_SEMANTIC_TESSOUTER;
1989 break;
1990 default:
1991 unreachable("unknown tess level");
1992 }
1993
1994 return load_tess_level(ctx, semantic_name);
1995
1996 }
1997
1998 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
1999 {
2000 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2001 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2002 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2003 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2004 return get_num_tcs_out_vertices(ctx);
2005 else
2006 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2007 }
2008
2009 void si_load_system_value(struct si_shader_context *ctx,
2010 unsigned index,
2011 const struct tgsi_full_declaration *decl)
2012 {
2013 LLVMValueRef value = 0;
2014
2015 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2016
2017 switch (decl->Semantic.Name) {
2018 case TGSI_SEMANTIC_INSTANCEID:
2019 value = ctx->abi.instance_id;
2020 break;
2021
2022 case TGSI_SEMANTIC_VERTEXID:
2023 value = LLVMBuildAdd(ctx->ac.builder,
2024 ctx->abi.vertex_id,
2025 ctx->abi.base_vertex, "");
2026 break;
2027
2028 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2029 /* Unused. Clarify the meaning in indexed vs. non-indexed
2030 * draws if this is ever used again. */
2031 assert(false);
2032 break;
2033
2034 case TGSI_SEMANTIC_BASEVERTEX:
2035 value = get_base_vertex(&ctx->abi);
2036 break;
2037
2038 case TGSI_SEMANTIC_BASEINSTANCE:
2039 value = ctx->abi.start_instance;
2040 break;
2041
2042 case TGSI_SEMANTIC_DRAWID:
2043 value = ctx->abi.draw_id;
2044 break;
2045
2046 case TGSI_SEMANTIC_INVOCATIONID:
2047 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2048 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2049 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2050 value = ctx->abi.gs_invocation_id;
2051 else
2052 assert(!"INVOCATIONID not implemented");
2053 break;
2054
2055 case TGSI_SEMANTIC_POSITION:
2056 {
2057 LLVMValueRef pos[4] = {
2058 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2059 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2060 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2061 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2062 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2063 };
2064 value = ac_build_gather_values(&ctx->ac, pos, 4);
2065 break;
2066 }
2067
2068 case TGSI_SEMANTIC_FACE:
2069 value = ctx->abi.front_face;
2070 break;
2071
2072 case TGSI_SEMANTIC_SAMPLEID:
2073 value = si_get_sample_id(ctx);
2074 break;
2075
2076 case TGSI_SEMANTIC_SAMPLEPOS: {
2077 LLVMValueRef pos[4] = {
2078 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2079 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2080 LLVMConstReal(ctx->f32, 0),
2081 LLVMConstReal(ctx->f32, 0)
2082 };
2083 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2084 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2085 value = ac_build_gather_values(&ctx->ac, pos, 4);
2086 break;
2087 }
2088
2089 case TGSI_SEMANTIC_SAMPLEMASK:
2090 /* This can only occur with the OpenGL Core profile, which
2091 * doesn't support smoothing.
2092 */
2093 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2094 break;
2095
2096 case TGSI_SEMANTIC_TESSCOORD:
2097 value = si_load_tess_coord(&ctx->abi);
2098 break;
2099
2100 case TGSI_SEMANTIC_VERTICESIN:
2101 value = si_load_patch_vertices_in(&ctx->abi);
2102 break;
2103
2104 case TGSI_SEMANTIC_TESSINNER:
2105 case TGSI_SEMANTIC_TESSOUTER:
2106 value = load_tess_level(ctx, decl->Semantic.Name);
2107 break;
2108
2109 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2110 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2111 {
2112 LLVMValueRef buf, slot, val[4];
2113 int i, offset;
2114
2115 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2116 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2117 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2118 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2119
2120 for (i = 0; i < 4; i++)
2121 val[i] = buffer_load_const(ctx, buf,
2122 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2123 value = ac_build_gather_values(&ctx->ac, val, 4);
2124 break;
2125 }
2126
2127 case TGSI_SEMANTIC_PRIMID:
2128 value = si_get_primitive_id(ctx, 0);
2129 break;
2130
2131 case TGSI_SEMANTIC_GRID_SIZE:
2132 value = ctx->abi.num_work_groups;
2133 break;
2134
2135 case TGSI_SEMANTIC_BLOCK_SIZE:
2136 value = get_block_size(&ctx->abi);
2137 break;
2138
2139 case TGSI_SEMANTIC_BLOCK_ID:
2140 {
2141 LLVMValueRef values[3];
2142
2143 for (int i = 0; i < 3; i++) {
2144 values[i] = ctx->i32_0;
2145 if (ctx->abi.workgroup_ids[i]) {
2146 values[i] = ctx->abi.workgroup_ids[i];
2147 }
2148 }
2149 value = ac_build_gather_values(&ctx->ac, values, 3);
2150 break;
2151 }
2152
2153 case TGSI_SEMANTIC_THREAD_ID:
2154 value = ctx->abi.local_invocation_ids;
2155 break;
2156
2157 case TGSI_SEMANTIC_HELPER_INVOCATION:
2158 value = ac_build_load_helper_invocation(&ctx->ac);
2159 break;
2160
2161 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2162 value = LLVMConstInt(ctx->i32, 64, 0);
2163 break;
2164
2165 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2166 value = ac_get_thread_id(&ctx->ac);
2167 break;
2168
2169 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2170 {
2171 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2172 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2173 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2174 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2175 break;
2176 }
2177
2178 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2179 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2180 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2181 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2182 {
2183 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2184 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2185 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2186 /* All bits set except LSB */
2187 value = LLVMConstInt(ctx->i64, -2, 0);
2188 } else {
2189 /* All bits set */
2190 value = LLVMConstInt(ctx->i64, -1, 0);
2191 }
2192 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2193 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2194 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2195 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2196 value = LLVMBuildNot(ctx->ac.builder, value, "");
2197 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2198 break;
2199 }
2200
2201 case TGSI_SEMANTIC_CS_USER_DATA:
2202 value = LLVMGetParam(ctx->main_fn, ctx->param_cs_user_data);
2203 break;
2204
2205 default:
2206 assert(!"unknown system value");
2207 return;
2208 }
2209
2210 ctx->system_values[index] = value;
2211 }
2212
2213 void si_declare_compute_memory(struct si_shader_context *ctx)
2214 {
2215 struct si_shader_selector *sel = ctx->shader->selector;
2216 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2217
2218 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
2219 LLVMValueRef var;
2220
2221 assert(!ctx->ac.lds);
2222
2223 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2224 LLVMArrayType(ctx->i8, lds_size),
2225 "compute_lds",
2226 AC_ADDR_SPACE_LDS);
2227 LLVMSetAlignment(var, 64 * 1024);
2228
2229 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2230 }
2231
2232 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2233 const struct tgsi_full_declaration *decl)
2234 {
2235 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2236 assert(decl->Range.First == decl->Range.Last);
2237
2238 si_declare_compute_memory(ctx);
2239 }
2240
2241 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2242 {
2243 LLVMValueRef ptr =
2244 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2245 struct si_shader_selector *sel = ctx->shader->selector;
2246
2247 /* Do the bounds checking with a descriptor, because
2248 * doing computation and manual bounds checking of 64-bit
2249 * addresses generates horrible VALU code with very high
2250 * VGPR usage and very low SIMD occupancy.
2251 */
2252 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2253
2254 LLVMValueRef desc0, desc1;
2255 desc0 = ptr;
2256 desc1 = LLVMConstInt(ctx->i32,
2257 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2258
2259 uint32_t rsrc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2260 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2261 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2262 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2263
2264 if (ctx->screen->info.chip_class >= GFX10)
2265 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2266 S_008F0C_OOB_SELECT(3) |
2267 S_008F0C_RESOURCE_LEVEL(1);
2268 else
2269 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2270 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2271
2272 LLVMValueRef desc_elems[] = {
2273 desc0,
2274 desc1,
2275 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2276 LLVMConstInt(ctx->i32, rsrc3, false)
2277 };
2278
2279 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2280 }
2281
2282 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2283 {
2284 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2285 ctx->param_const_and_shader_buffers);
2286
2287 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2288 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2289 }
2290
2291 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2292 {
2293 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2294 struct si_shader_selector *sel = ctx->shader->selector;
2295
2296 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2297
2298 if (sel->info.const_buffers_declared == 1 &&
2299 sel->info.shader_buffers_declared == 0) {
2300 return load_const_buffer_desc_fast_path(ctx);
2301 }
2302
2303 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2304 index = LLVMBuildAdd(ctx->ac.builder, index,
2305 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2306
2307 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2308 }
2309
2310 static LLVMValueRef
2311 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2312 {
2313 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2314 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2315 ctx->param_const_and_shader_buffers);
2316
2317 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2318 index = LLVMBuildSub(ctx->ac.builder,
2319 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2320 index, "");
2321
2322 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2323 }
2324
2325 static LLVMValueRef fetch_constant(
2326 struct lp_build_tgsi_context *bld_base,
2327 const struct tgsi_full_src_register *reg,
2328 enum tgsi_opcode_type type,
2329 unsigned swizzle_in)
2330 {
2331 struct si_shader_context *ctx = si_shader_context(bld_base);
2332 struct si_shader_selector *sel = ctx->shader->selector;
2333 const struct tgsi_ind_register *ireg = &reg->Indirect;
2334 unsigned buf, idx;
2335 unsigned swizzle = swizzle_in & 0xffff;
2336
2337 LLVMValueRef addr, bufp;
2338
2339 if (swizzle_in == LP_CHAN_ALL) {
2340 unsigned chan;
2341 LLVMValueRef values[4];
2342 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2343 values[chan] = fetch_constant(bld_base, reg, type, chan);
2344
2345 return ac_build_gather_values(&ctx->ac, values, 4);
2346 }
2347
2348 /* Split 64-bit loads. */
2349 if (tgsi_type_is_64bit(type)) {
2350 LLVMValueRef lo, hi;
2351
2352 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2353 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, (swizzle_in >> 16));
2354 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2355 lo, hi);
2356 }
2357
2358 idx = reg->Register.Index * 4 + swizzle;
2359 if (reg->Register.Indirect) {
2360 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2361 } else {
2362 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2363 }
2364
2365 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2366 if (sel->info.const_buffers_declared == 1 &&
2367 sel->info.shader_buffers_declared == 0) {
2368 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2369 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2370 return bitcast(bld_base, type, result);
2371 }
2372
2373 assert(reg->Register.Dimension);
2374 buf = reg->Dimension.Index;
2375
2376 if (reg->Dimension.Indirect) {
2377 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2378 LLVMValueRef index;
2379 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2380 reg->Dimension.Index,
2381 ctx->num_const_buffers);
2382 index = LLVMBuildAdd(ctx->ac.builder, index,
2383 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2384 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2385 } else
2386 bufp = load_const_buffer_desc(ctx, buf);
2387
2388 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2389 }
2390
2391 /* Initialize arguments for the shader export intrinsic */
2392 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2393 LLVMValueRef *values,
2394 unsigned target,
2395 struct ac_export_args *args)
2396 {
2397 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2398 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2399 unsigned chan;
2400 bool is_int8, is_int10;
2401
2402 /* Default is 0xf. Adjusted below depending on the format. */
2403 args->enabled_channels = 0xf; /* writemask */
2404
2405 /* Specify whether the EXEC mask represents the valid mask */
2406 args->valid_mask = 0;
2407
2408 /* Specify whether this is the last export */
2409 args->done = 0;
2410
2411 /* Specify the target we are exporting */
2412 args->target = target;
2413
2414 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2415 const struct si_shader_key *key = &ctx->shader->key;
2416 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2417 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2418
2419 assert(cbuf >= 0 && cbuf < 8);
2420 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2421 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2422 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2423 }
2424
2425 args->compr = false;
2426 args->out[0] = f32undef;
2427 args->out[1] = f32undef;
2428 args->out[2] = f32undef;
2429 args->out[3] = f32undef;
2430
2431 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2432 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2433 unsigned bits, bool hi) = NULL;
2434
2435 switch (spi_shader_col_format) {
2436 case V_028714_SPI_SHADER_ZERO:
2437 args->enabled_channels = 0; /* writemask */
2438 args->target = V_008DFC_SQ_EXP_NULL;
2439 break;
2440
2441 case V_028714_SPI_SHADER_32_R:
2442 args->enabled_channels = 1; /* writemask */
2443 args->out[0] = values[0];
2444 break;
2445
2446 case V_028714_SPI_SHADER_32_GR:
2447 args->enabled_channels = 0x3; /* writemask */
2448 args->out[0] = values[0];
2449 args->out[1] = values[1];
2450 break;
2451
2452 case V_028714_SPI_SHADER_32_AR:
2453 if (ctx->screen->info.chip_class >= GFX10) {
2454 args->enabled_channels = 0x3; /* writemask */
2455 args->out[0] = values[0];
2456 args->out[1] = values[3];
2457 } else {
2458 args->enabled_channels = 0x9; /* writemask */
2459 args->out[0] = values[0];
2460 args->out[3] = values[3];
2461 }
2462 break;
2463
2464 case V_028714_SPI_SHADER_FP16_ABGR:
2465 packf = ac_build_cvt_pkrtz_f16;
2466 break;
2467
2468 case V_028714_SPI_SHADER_UNORM16_ABGR:
2469 packf = ac_build_cvt_pknorm_u16;
2470 break;
2471
2472 case V_028714_SPI_SHADER_SNORM16_ABGR:
2473 packf = ac_build_cvt_pknorm_i16;
2474 break;
2475
2476 case V_028714_SPI_SHADER_UINT16_ABGR:
2477 packi = ac_build_cvt_pk_u16;
2478 break;
2479
2480 case V_028714_SPI_SHADER_SINT16_ABGR:
2481 packi = ac_build_cvt_pk_i16;
2482 break;
2483
2484 case V_028714_SPI_SHADER_32_ABGR:
2485 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2486 break;
2487 }
2488
2489 /* Pack f16 or norm_i16/u16. */
2490 if (packf) {
2491 for (chan = 0; chan < 2; chan++) {
2492 LLVMValueRef pack_args[2] = {
2493 values[2 * chan],
2494 values[2 * chan + 1]
2495 };
2496 LLVMValueRef packed;
2497
2498 packed = packf(&ctx->ac, pack_args);
2499 args->out[chan] = ac_to_float(&ctx->ac, packed);
2500 }
2501 args->compr = 1; /* COMPR flag */
2502 }
2503 /* Pack i16/u16. */
2504 if (packi) {
2505 for (chan = 0; chan < 2; chan++) {
2506 LLVMValueRef pack_args[2] = {
2507 ac_to_integer(&ctx->ac, values[2 * chan]),
2508 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2509 };
2510 LLVMValueRef packed;
2511
2512 packed = packi(&ctx->ac, pack_args,
2513 is_int8 ? 8 : is_int10 ? 10 : 16,
2514 chan == 1);
2515 args->out[chan] = ac_to_float(&ctx->ac, packed);
2516 }
2517 args->compr = 1; /* COMPR flag */
2518 }
2519 }
2520
2521 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2522 LLVMValueRef alpha)
2523 {
2524 struct si_shader_context *ctx = si_shader_context(bld_base);
2525
2526 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2527 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2528 [PIPE_FUNC_LESS] = LLVMRealOLT,
2529 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2530 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2531 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2532 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2533 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2534 };
2535 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2536 assert(cond);
2537
2538 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2539 SI_PARAM_ALPHA_REF);
2540 LLVMValueRef alpha_pass =
2541 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2542 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2543 } else {
2544 ac_build_kill_if_false(&ctx->ac, ctx->i1false);
2545 }
2546 }
2547
2548 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2549 LLVMValueRef alpha,
2550 unsigned samplemask_param)
2551 {
2552 struct si_shader_context *ctx = si_shader_context(bld_base);
2553 LLVMValueRef coverage;
2554
2555 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2556 coverage = LLVMGetParam(ctx->main_fn,
2557 samplemask_param);
2558 coverage = ac_to_integer(&ctx->ac, coverage);
2559
2560 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2561 ctx->i32,
2562 &coverage, 1, AC_FUNC_ATTR_READNONE);
2563
2564 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2565 ctx->f32, "");
2566
2567 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2568 LLVMConstReal(ctx->f32,
2569 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2570
2571 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2572 }
2573
2574 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2575 struct ac_export_args *pos, LLVMValueRef *out_elts)
2576 {
2577 unsigned reg_index;
2578 unsigned chan;
2579 unsigned const_chan;
2580 LLVMValueRef base_elt;
2581 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2582 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2583 SI_VS_CONST_CLIP_PLANES, 0);
2584 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2585
2586 for (reg_index = 0; reg_index < 2; reg_index ++) {
2587 struct ac_export_args *args = &pos[2 + reg_index];
2588
2589 args->out[0] =
2590 args->out[1] =
2591 args->out[2] =
2592 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2593
2594 /* Compute dot products of position and user clip plane vectors */
2595 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2596 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2597 LLVMValueRef addr =
2598 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2599 const_chan) * 4, 0);
2600 base_elt = buffer_load_const(ctx, const_resource,
2601 addr);
2602 args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
2603 out_elts[const_chan], args->out[chan]);
2604 }
2605 }
2606
2607 args->enabled_channels = 0xf;
2608 args->valid_mask = 0;
2609 args->done = 0;
2610 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2611 args->compr = 0;
2612 }
2613 }
2614
2615 static void si_dump_streamout(struct pipe_stream_output_info *so)
2616 {
2617 unsigned i;
2618
2619 if (so->num_outputs)
2620 fprintf(stderr, "STREAMOUT\n");
2621
2622 for (i = 0; i < so->num_outputs; i++) {
2623 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2624 so->output[i].start_component;
2625 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2626 i, so->output[i].output_buffer,
2627 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2628 so->output[i].register_index,
2629 mask & 1 ? "x" : "",
2630 mask & 2 ? "y" : "",
2631 mask & 4 ? "z" : "",
2632 mask & 8 ? "w" : "");
2633 }
2634 }
2635
2636 void si_emit_streamout_output(struct si_shader_context *ctx,
2637 LLVMValueRef const *so_buffers,
2638 LLVMValueRef const *so_write_offsets,
2639 struct pipe_stream_output *stream_out,
2640 struct si_shader_output_values *shader_out)
2641 {
2642 unsigned buf_idx = stream_out->output_buffer;
2643 unsigned start = stream_out->start_component;
2644 unsigned num_comps = stream_out->num_components;
2645 LLVMValueRef out[4];
2646
2647 assert(num_comps && num_comps <= 4);
2648 if (!num_comps || num_comps > 4)
2649 return;
2650
2651 /* Load the output as int. */
2652 for (int j = 0; j < num_comps; j++) {
2653 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2654
2655 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2656 }
2657
2658 /* Pack the output. */
2659 LLVMValueRef vdata = NULL;
2660
2661 switch (num_comps) {
2662 case 1: /* as i32 */
2663 vdata = out[0];
2664 break;
2665 case 2: /* as v2i32 */
2666 case 3: /* as v3i32 */
2667 if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
2668 vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
2669 break;
2670 }
2671 /* as v4i32 (aligned to 4) */
2672 out[3] = LLVMGetUndef(ctx->i32);
2673 /* fall through */
2674 case 4: /* as v4i32 */
2675 vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
2676 break;
2677 }
2678
2679 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2680 vdata, num_comps,
2681 so_write_offsets[buf_idx],
2682 ctx->i32_0,
2683 stream_out->dst_offset * 4, 1, 1, false);
2684 }
2685
2686 /**
2687 * Write streamout data to buffers for vertex stream @p stream (different
2688 * vertex streams can occur for GS copy shaders).
2689 */
2690 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2691 struct si_shader_output_values *outputs,
2692 unsigned noutput, unsigned stream)
2693 {
2694 struct si_shader_selector *sel = ctx->shader->selector;
2695 struct pipe_stream_output_info *so = &sel->so;
2696 LLVMBuilderRef builder = ctx->ac.builder;
2697 int i;
2698 struct lp_build_if_state if_ctx;
2699
2700 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2701 LLVMValueRef so_vtx_count =
2702 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2703
2704 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2705
2706 /* can_emit = tid < so_vtx_count; */
2707 LLVMValueRef can_emit =
2708 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2709
2710 /* Emit the streamout code conditionally. This actually avoids
2711 * out-of-bounds buffer access. The hw tells us via the SGPR
2712 * (so_vtx_count) which threads are allowed to emit streamout data. */
2713 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2714 {
2715 /* The buffer offset is computed as follows:
2716 * ByteOffset = streamout_offset[buffer_id]*4 +
2717 * (streamout_write_index + thread_id)*stride[buffer_id] +
2718 * attrib_offset
2719 */
2720
2721 LLVMValueRef so_write_index =
2722 LLVMGetParam(ctx->main_fn,
2723 ctx->param_streamout_write_index);
2724
2725 /* Compute (streamout_write_index + thread_id). */
2726 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2727
2728 /* Load the descriptor and compute the write offset for each
2729 * enabled buffer. */
2730 LLVMValueRef so_write_offset[4] = {};
2731 LLVMValueRef so_buffers[4];
2732 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2733 ctx->param_rw_buffers);
2734
2735 for (i = 0; i < 4; i++) {
2736 if (!so->stride[i])
2737 continue;
2738
2739 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2740 SI_VS_STREAMOUT_BUF0 + i, 0);
2741
2742 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2743
2744 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2745 ctx->param_streamout_offset[i]);
2746 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2747
2748 so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
2749 LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
2750 so_offset);
2751 }
2752
2753 /* Write streamout data. */
2754 for (i = 0; i < so->num_outputs; i++) {
2755 unsigned reg = so->output[i].register_index;
2756
2757 if (reg >= noutput)
2758 continue;
2759
2760 if (stream != so->output[i].stream)
2761 continue;
2762
2763 si_emit_streamout_output(ctx, so_buffers, so_write_offset,
2764 &so->output[i], &outputs[reg]);
2765 }
2766 }
2767 lp_build_endif(&if_ctx);
2768 }
2769
2770 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2771 LLVMValueRef *values)
2772 {
2773 struct ac_export_args args;
2774
2775 si_llvm_init_export_args(ctx, values,
2776 V_008DFC_SQ_EXP_PARAM + index, &args);
2777 ac_build_export(&ctx->ac, &args);
2778 }
2779
2780 static void si_build_param_exports(struct si_shader_context *ctx,
2781 struct si_shader_output_values *outputs,
2782 unsigned noutput)
2783 {
2784 struct si_shader *shader = ctx->shader;
2785 unsigned param_count = 0;
2786
2787 for (unsigned i = 0; i < noutput; i++) {
2788 unsigned semantic_name = outputs[i].semantic_name;
2789 unsigned semantic_index = outputs[i].semantic_index;
2790
2791 if (outputs[i].vertex_stream[0] != 0 &&
2792 outputs[i].vertex_stream[1] != 0 &&
2793 outputs[i].vertex_stream[2] != 0 &&
2794 outputs[i].vertex_stream[3] != 0)
2795 continue;
2796
2797 switch (semantic_name) {
2798 case TGSI_SEMANTIC_LAYER:
2799 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2800 case TGSI_SEMANTIC_CLIPDIST:
2801 case TGSI_SEMANTIC_COLOR:
2802 case TGSI_SEMANTIC_BCOLOR:
2803 case TGSI_SEMANTIC_PRIMID:
2804 case TGSI_SEMANTIC_FOG:
2805 case TGSI_SEMANTIC_TEXCOORD:
2806 case TGSI_SEMANTIC_GENERIC:
2807 break;
2808 default:
2809 continue;
2810 }
2811
2812 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2813 semantic_index < SI_MAX_IO_GENERIC) &&
2814 shader->key.opt.kill_outputs &
2815 (1ull << si_shader_io_get_unique_index(semantic_name,
2816 semantic_index, true)))
2817 continue;
2818
2819 si_export_param(ctx, param_count, outputs[i].values);
2820
2821 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2822 shader->info.vs_output_param_offset[i] = param_count++;
2823 }
2824
2825 shader->info.nr_param_exports = param_count;
2826 }
2827
2828 /**
2829 * Vertex color clamping.
2830 *
2831 * This uses a state constant loaded in a user data SGPR and
2832 * an IF statement is added that clamps all colors if the constant
2833 * is true.
2834 */
2835 static void si_vertex_color_clamping(struct si_shader_context *ctx,
2836 struct si_shader_output_values *outputs,
2837 unsigned noutput)
2838 {
2839 LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
2840 bool has_colors = false;
2841
2842 /* Store original colors to alloca variables. */
2843 for (unsigned i = 0; i < noutput; i++) {
2844 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2845 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2846 continue;
2847
2848 for (unsigned j = 0; j < 4; j++) {
2849 addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
2850 LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
2851 }
2852 has_colors = true;
2853 }
2854
2855 if (!has_colors)
2856 return;
2857
2858 /* The state is in the first bit of the user SGPR. */
2859 LLVMValueRef cond = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2860 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");
2861
2862 struct lp_build_if_state if_ctx;
2863 lp_build_if(&if_ctx, &ctx->gallivm, cond);
2864
2865 /* Store clamped colors to alloca variables within the conditional block. */
2866 for (unsigned i = 0; i < noutput; i++) {
2867 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2868 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2869 continue;
2870
2871 for (unsigned j = 0; j < 4; j++) {
2872 LLVMBuildStore(ctx->ac.builder,
2873 ac_build_clamp(&ctx->ac, outputs[i].values[j]),
2874 addr[i][j]);
2875 }
2876 }
2877 lp_build_endif(&if_ctx);
2878
2879 /* Load clamped colors */
2880 for (unsigned i = 0; i < noutput; i++) {
2881 if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
2882 outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
2883 continue;
2884
2885 for (unsigned j = 0; j < 4; j++) {
2886 outputs[i].values[j] =
2887 LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
2888 }
2889 }
2890 }
2891
2892 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2893 * (position and parameter data only).
2894 */
2895 void si_llvm_export_vs(struct si_shader_context *ctx,
2896 struct si_shader_output_values *outputs,
2897 unsigned noutput)
2898 {
2899 struct si_shader *shader = ctx->shader;
2900 struct ac_export_args pos_args[4] = {};
2901 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2902 unsigned pos_idx;
2903 int i;
2904
2905 si_vertex_color_clamping(ctx, outputs, noutput);
2906
2907 /* Build position exports. */
2908 for (i = 0; i < noutput; i++) {
2909 switch (outputs[i].semantic_name) {
2910 case TGSI_SEMANTIC_POSITION:
2911 si_llvm_init_export_args(ctx, outputs[i].values,
2912 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2913 break;
2914 case TGSI_SEMANTIC_PSIZE:
2915 psize_value = outputs[i].values[0];
2916 break;
2917 case TGSI_SEMANTIC_LAYER:
2918 layer_value = outputs[i].values[0];
2919 break;
2920 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2921 viewport_index_value = outputs[i].values[0];
2922 break;
2923 case TGSI_SEMANTIC_EDGEFLAG:
2924 edgeflag_value = outputs[i].values[0];
2925 break;
2926 case TGSI_SEMANTIC_CLIPDIST:
2927 if (!shader->key.opt.clip_disable) {
2928 unsigned index = 2 + outputs[i].semantic_index;
2929 si_llvm_init_export_args(ctx, outputs[i].values,
2930 V_008DFC_SQ_EXP_POS + index,
2931 &pos_args[index]);
2932 }
2933 break;
2934 case TGSI_SEMANTIC_CLIPVERTEX:
2935 if (!shader->key.opt.clip_disable) {
2936 si_llvm_emit_clipvertex(ctx, pos_args,
2937 outputs[i].values);
2938 }
2939 break;
2940 }
2941 }
2942
2943 /* We need to add the position output manually if it's missing. */
2944 if (!pos_args[0].out[0]) {
2945 pos_args[0].enabled_channels = 0xf; /* writemask */
2946 pos_args[0].valid_mask = 0; /* EXEC mask */
2947 pos_args[0].done = 0; /* last export? */
2948 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2949 pos_args[0].compr = 0; /* COMPR flag */
2950 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2951 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2952 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2953 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2954 }
2955
2956 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2957 if (shader->selector->info.writes_psize ||
2958 shader->selector->info.writes_edgeflag ||
2959 shader->selector->info.writes_viewport_index ||
2960 shader->selector->info.writes_layer) {
2961 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2962 (shader->selector->info.writes_edgeflag << 1) |
2963 (shader->selector->info.writes_layer << 2);
2964
2965 pos_args[1].valid_mask = 0; /* EXEC mask */
2966 pos_args[1].done = 0; /* last export? */
2967 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2968 pos_args[1].compr = 0; /* COMPR flag */
2969 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2970 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2971 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2972 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2973
2974 if (shader->selector->info.writes_psize)
2975 pos_args[1].out[0] = psize_value;
2976
2977 if (shader->selector->info.writes_edgeflag) {
2978 /* The output is a float, but the hw expects an integer
2979 * with the first bit containing the edge flag. */
2980 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2981 edgeflag_value,
2982 ctx->i32, "");
2983 edgeflag_value = ac_build_umin(&ctx->ac,
2984 edgeflag_value,
2985 ctx->i32_1);
2986
2987 /* The LLVM intrinsic expects a float. */
2988 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2989 }
2990
2991 if (ctx->screen->info.chip_class >= GFX9) {
2992 /* GFX9 has the layer in out.z[10:0] and the viewport
2993 * index in out.z[19:16].
2994 */
2995 if (shader->selector->info.writes_layer)
2996 pos_args[1].out[2] = layer_value;
2997
2998 if (shader->selector->info.writes_viewport_index) {
2999 LLVMValueRef v = viewport_index_value;
3000
3001 v = ac_to_integer(&ctx->ac, v);
3002 v = LLVMBuildShl(ctx->ac.builder, v,
3003 LLVMConstInt(ctx->i32, 16, 0), "");
3004 v = LLVMBuildOr(ctx->ac.builder, v,
3005 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3006 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3007 pos_args[1].enabled_channels |= 1 << 2;
3008 }
3009 } else {
3010 if (shader->selector->info.writes_layer)
3011 pos_args[1].out[2] = layer_value;
3012
3013 if (shader->selector->info.writes_viewport_index) {
3014 pos_args[1].out[3] = viewport_index_value;
3015 pos_args[1].enabled_channels |= 1 << 3;
3016 }
3017 }
3018 }
3019
3020 for (i = 0; i < 4; i++)
3021 if (pos_args[i].out[0])
3022 shader->info.nr_pos_exports++;
3023
3024 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
3025 * Setting valid_mask=1 prevents it and has no other effect.
3026 */
3027 if (ctx->screen->info.family == CHIP_NAVI10 ||
3028 ctx->screen->info.family == CHIP_NAVI12 ||
3029 ctx->screen->info.family == CHIP_NAVI14)
3030 pos_args[0].valid_mask = 1;
3031
3032 pos_idx = 0;
3033 for (i = 0; i < 4; i++) {
3034 if (!pos_args[i].out[0])
3035 continue;
3036
3037 /* Specify the target we are exporting */
3038 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3039
3040 if (pos_idx == shader->info.nr_pos_exports)
3041 /* Specify that this is the last export */
3042 pos_args[i].done = 1;
3043
3044 ac_build_export(&ctx->ac, &pos_args[i]);
3045 }
3046
3047 /* Build parameter exports. */
3048 si_build_param_exports(ctx, outputs, noutput);
3049 }
3050
3051 /**
3052 * Forward all outputs from the vertex shader to the TES. This is only used
3053 * for the fixed function TCS.
3054 */
3055 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3056 {
3057 struct si_shader_context *ctx = si_shader_context(bld_base);
3058 LLVMValueRef invocation_id, buffer, buffer_offset;
3059 LLVMValueRef lds_vertex_stride, lds_base;
3060 uint64_t inputs;
3061
3062 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3063 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3064 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3065
3066 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3067 lds_base = get_tcs_in_current_patch_offset(ctx);
3068 lds_base = ac_build_imad(&ctx->ac, invocation_id, lds_vertex_stride,
3069 lds_base);
3070
3071 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3072 while (inputs) {
3073 unsigned i = u_bit_scan64(&inputs);
3074
3075 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3076 LLVMConstInt(ctx->i32, 4 * i, 0),
3077 "");
3078
3079 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3080 get_rel_patch_id(ctx),
3081 invocation_id,
3082 LLVMConstInt(ctx->i32, i, 0));
3083
3084 LLVMValueRef value = lshs_lds_load(bld_base, ctx->ac.i32, ~0, lds_ptr);
3085
3086 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3087 buffer_offset, 0, 1, 0, false);
3088 }
3089 }
3090
3091 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3092 LLVMValueRef rel_patch_id,
3093 LLVMValueRef invocation_id,
3094 LLVMValueRef tcs_out_current_patch_data_offset,
3095 LLVMValueRef invoc0_tf_outer[4],
3096 LLVMValueRef invoc0_tf_inner[2])
3097 {
3098 struct si_shader_context *ctx = si_shader_context(bld_base);
3099 struct si_shader *shader = ctx->shader;
3100 unsigned tess_inner_index, tess_outer_index;
3101 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3102 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3103 unsigned stride, outer_comps, inner_comps, i, offset;
3104 struct lp_build_if_state if_ctx, inner_if_ctx;
3105
3106 /* Add a barrier before loading tess factors from LDS. */
3107 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3108 si_llvm_emit_barrier(NULL, bld_base, NULL);
3109
3110 /* Do this only for invocation 0, because the tess levels are per-patch,
3111 * not per-vertex.
3112 *
3113 * This can't jump, because invocation 0 executes this. It should
3114 * at least mask out the loads and stores for other invocations.
3115 */
3116 lp_build_if(&if_ctx, &ctx->gallivm,
3117 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3118 invocation_id, ctx->i32_0, ""));
3119
3120 /* Determine the layout of one tess factor element in the buffer. */
3121 switch (shader->key.part.tcs.epilog.prim_mode) {
3122 case PIPE_PRIM_LINES:
3123 stride = 2; /* 2 dwords, 1 vec2 store */
3124 outer_comps = 2;
3125 inner_comps = 0;
3126 break;
3127 case PIPE_PRIM_TRIANGLES:
3128 stride = 4; /* 4 dwords, 1 vec4 store */
3129 outer_comps = 3;
3130 inner_comps = 1;
3131 break;
3132 case PIPE_PRIM_QUADS:
3133 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3134 outer_comps = 4;
3135 inner_comps = 2;
3136 break;
3137 default:
3138 assert(0);
3139 return;
3140 }
3141
3142 for (i = 0; i < 4; i++) {
3143 inner[i] = LLVMGetUndef(ctx->i32);
3144 outer[i] = LLVMGetUndef(ctx->i32);
3145 }
3146
3147 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3148 /* Tess factors are in VGPRs. */
3149 for (i = 0; i < outer_comps; i++)
3150 outer[i] = out[i] = invoc0_tf_outer[i];
3151 for (i = 0; i < inner_comps; i++)
3152 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3153 } else {
3154 /* Load tess_inner and tess_outer from LDS.
3155 * Any invocation can write them, so we can't get them from a temporary.
3156 */
3157 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3158 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3159
3160 lds_base = tcs_out_current_patch_data_offset;
3161 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3162 LLVMConstInt(ctx->i32,
3163 tess_inner_index * 4, 0), "");
3164 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3165 LLVMConstInt(ctx->i32,
3166 tess_outer_index * 4, 0), "");
3167
3168 for (i = 0; i < outer_comps; i++) {
3169 outer[i] = out[i] =
3170 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3171 }
3172 for (i = 0; i < inner_comps; i++) {
3173 inner[i] = out[outer_comps+i] =
3174 lshs_lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3175 }
3176 }
3177
3178 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3179 /* For isolines, the hardware expects tess factors in the
3180 * reverse order from what GLSL / TGSI specify.
3181 */
3182 LLVMValueRef tmp = out[0];
3183 out[0] = out[1];
3184 out[1] = tmp;
3185 }
3186
3187 /* Convert the outputs to vectors for stores. */
3188 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3189 vec1 = NULL;
3190
3191 if (stride > 4)
3192 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3193
3194 /* Get the buffer. */
3195 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3196
3197 /* Get the offset. */
3198 tf_base = LLVMGetParam(ctx->main_fn,
3199 ctx->param_tcs_factor_offset);
3200 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3201 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3202
3203 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3204 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3205 rel_patch_id, ctx->i32_0, ""));
3206
3207 /* Store the dynamic HS control word. */
3208 offset = 0;
3209 if (ctx->screen->info.chip_class <= GFX8) {
3210 ac_build_buffer_store_dword(&ctx->ac, buffer,
3211 LLVMConstInt(ctx->i32, 0x80000000, 0),
3212 1, ctx->i32_0, tf_base,
3213 offset, 1, 0, false);
3214 offset += 4;
3215 }
3216
3217 lp_build_endif(&inner_if_ctx);
3218
3219 /* Store the tessellation factors. */
3220 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3221 MIN2(stride, 4), byteoffset, tf_base,
3222 offset, 1, 0, false);
3223 offset += 16;
3224 if (vec1)
3225 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3226 stride - 4, byteoffset, tf_base,
3227 offset, 1, 0, false);
3228
3229 /* Store the tess factors into the offchip buffer if TES reads them. */
3230 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3231 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3232 LLVMValueRef tf_inner_offset;
3233 unsigned param_outer, param_inner;
3234
3235 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3236 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3237
3238 param_outer = si_shader_io_get_unique_index_patch(
3239 TGSI_SEMANTIC_TESSOUTER, 0);
3240 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3241 LLVMConstInt(ctx->i32, param_outer, 0));
3242
3243 unsigned outer_vec_size =
3244 ac_has_vec3_support(ctx->screen->info.chip_class, false) ?
3245 outer_comps : util_next_power_of_two(outer_comps);
3246 outer_vec = ac_build_gather_values(&ctx->ac, outer, outer_vec_size);
3247
3248 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3249 outer_comps, tf_outer_offset,
3250 base, 0, 1, 0, false);
3251 if (inner_comps) {
3252 param_inner = si_shader_io_get_unique_index_patch(
3253 TGSI_SEMANTIC_TESSINNER, 0);
3254 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3255 LLVMConstInt(ctx->i32, param_inner, 0));
3256
3257 inner_vec = inner_comps == 1 ? inner[0] :
3258 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3259 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3260 inner_comps, tf_inner_offset,
3261 base, 0, 1, 0, false);
3262 }
3263 }
3264
3265 lp_build_endif(&if_ctx);
3266 }
3267
3268 static LLVMValueRef
3269 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3270 unsigned param, unsigned return_index)
3271 {
3272 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3273 LLVMGetParam(ctx->main_fn, param),
3274 return_index, "");
3275 }
3276
3277 static LLVMValueRef
3278 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3279 unsigned param, unsigned return_index)
3280 {
3281 LLVMBuilderRef builder = ctx->ac.builder;
3282 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3283
3284 return LLVMBuildInsertValue(builder, ret,
3285 ac_to_float(&ctx->ac, p),
3286 return_index, "");
3287 }
3288
3289 static LLVMValueRef
3290 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3291 unsigned param, unsigned return_index)
3292 {
3293 LLVMBuilderRef builder = ctx->ac.builder;
3294 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, param);
3295 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3296 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3297 }
3298
3299 /* This only writes the tessellation factor levels. */
3300 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3301 unsigned max_outputs,
3302 LLVMValueRef *addrs)
3303 {
3304 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3305 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3306 LLVMBuilderRef builder = ctx->ac.builder;
3307 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3308
3309 si_copy_tcs_inputs(bld_base);
3310
3311 rel_patch_id = get_rel_patch_id(ctx);
3312 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3313 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3314
3315 if (ctx->screen->info.chip_class >= GFX9) {
3316 LLVMBasicBlockRef blocks[2] = {
3317 LLVMGetInsertBlock(builder),
3318 ctx->merged_wrap_if_state.entry_block
3319 };
3320 LLVMValueRef values[2];
3321
3322 lp_build_endif(&ctx->merged_wrap_if_state);
3323
3324 values[0] = rel_patch_id;
3325 values[1] = LLVMGetUndef(ctx->i32);
3326 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3327
3328 values[0] = tf_lds_offset;
3329 values[1] = LLVMGetUndef(ctx->i32);
3330 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3331
3332 values[0] = invocation_id;
3333 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3334 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3335 }
3336
3337 /* Return epilog parameters from this function. */
3338 LLVMValueRef ret = ctx->return_value;
3339 unsigned vgpr;
3340
3341 if (ctx->screen->info.chip_class >= GFX9) {
3342 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3343 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3344 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3345 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3346 /* Tess offchip and tess factor offsets are at the beginning. */
3347 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3348 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3349 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3350 } else {
3351 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3352 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3353 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3354 GFX6_SGPR_TCS_OUT_LAYOUT);
3355 /* Tess offchip and tess factor offsets are after user SGPRs. */
3356 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3357 GFX6_TCS_NUM_USER_SGPR);
3358 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3359 GFX6_TCS_NUM_USER_SGPR + 1);
3360 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3361 }
3362
3363 /* VGPRs */
3364 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3365 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3366 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3367
3368 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3369 * the invocation_id output does not alias the tcs_rel_ids input,
3370 * which saves a V_MOV on gfx9.
3371 */
3372 vgpr += 2;
3373
3374 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3375 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3376
3377 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3378 vgpr++; /* skip the tess factor LDS offset */
3379 for (unsigned i = 0; i < 6; i++) {
3380 LLVMValueRef value =
3381 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3382 value = ac_to_float(&ctx->ac, value);
3383 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3384 }
3385 } else {
3386 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3387 }
3388 ctx->return_value = ret;
3389 }
3390
3391 /* Pass TCS inputs from LS to TCS on GFX9. */
3392 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3393 {
3394 LLVMValueRef ret = ctx->return_value;
3395
3396 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3397 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3398 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3399 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3400 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3401 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3402
3403 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3404 8 + SI_SGPR_RW_BUFFERS);
3405 ret = si_insert_input_ptr(ctx, ret,
3406 ctx->param_bindless_samplers_and_images,
3407 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3408
3409 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3410 8 + SI_SGPR_VS_STATE_BITS);
3411
3412 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3413 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3414 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3415 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3416 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3417 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3418
3419 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3420 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3421 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3422 vgpr++, "");
3423 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3424 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3425 vgpr++, "");
3426 ctx->return_value = ret;
3427 }
3428
3429 /* Pass GS inputs from ES to GS on GFX9. */
3430 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3431 {
3432 LLVMBuilderRef builder = ctx->ac.builder;
3433 LLVMValueRef ret = ctx->return_value;
3434
3435 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3436 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3437 if (ctx->shader->key.as_ngg)
3438 ret = LLVMBuildInsertValue(builder, ret, ctx->gs_tg_info, 2, "");
3439 else
3440 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3441 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3442 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3443
3444 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3445 8 + SI_SGPR_RW_BUFFERS);
3446 ret = si_insert_input_ptr(ctx, ret,
3447 ctx->param_bindless_samplers_and_images,
3448 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3449 if (ctx->screen->info.chip_class >= GFX10) {
3450 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits,
3451 8 + SI_SGPR_VS_STATE_BITS);
3452 }
3453
3454 unsigned vgpr;
3455 if (ctx->type == PIPE_SHADER_VERTEX)
3456 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3457 else
3458 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3459
3460 for (unsigned i = 0; i < 5; i++) {
3461 unsigned param = ctx->param_gs_vtx01_offset + i;
3462 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3463 }
3464 ctx->return_value = ret;
3465 }
3466
3467 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3468 unsigned max_outputs,
3469 LLVMValueRef *addrs)
3470 {
3471 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3472 struct si_shader *shader = ctx->shader;
3473 struct tgsi_shader_info *info = &shader->selector->info;
3474 unsigned i, chan;
3475 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3476 ctx->param_rel_auto_id);
3477 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3478 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3479 vertex_dw_stride, "");
3480
3481 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3482 * its inputs from it. */
3483 for (i = 0; i < info->num_outputs; i++) {
3484 unsigned name = info->output_semantic_name[i];
3485 unsigned index = info->output_semantic_index[i];
3486
3487 /* The ARB_shader_viewport_layer_array spec contains the
3488 * following issue:
3489 *
3490 * 2) What happens if gl_ViewportIndex or gl_Layer is
3491 * written in the vertex shader and a geometry shader is
3492 * present?
3493 *
3494 * RESOLVED: The value written by the last vertex processing
3495 * stage is used. If the last vertex processing stage
3496 * (vertex, tessellation evaluation or geometry) does not
3497 * statically assign to gl_ViewportIndex or gl_Layer, index
3498 * or layer zero is assumed.
3499 *
3500 * So writes to those outputs in VS-as-LS are simply ignored.
3501 */
3502 if (name == TGSI_SEMANTIC_LAYER ||
3503 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3504 continue;
3505
3506 int param = si_shader_io_get_unique_index(name, index, false);
3507 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3508 LLVMConstInt(ctx->i32, param * 4, 0), "");
3509
3510 for (chan = 0; chan < 4; chan++) {
3511 if (!(info->output_usagemask[i] & (1 << chan)))
3512 continue;
3513
3514 lshs_lds_store(ctx, chan, dw_addr,
3515 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3516 }
3517 }
3518
3519 if (ctx->screen->info.chip_class >= GFX9)
3520 si_set_ls_return_value_for_tcs(ctx);
3521 }
3522
3523 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3524 unsigned max_outputs,
3525 LLVMValueRef *addrs)
3526 {
3527 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3528 struct si_shader *es = ctx->shader;
3529 struct tgsi_shader_info *info = &es->selector->info;
3530 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3531 ctx->param_es2gs_offset);
3532 LLVMValueRef lds_base = NULL;
3533 unsigned chan;
3534 int i;
3535
3536 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3537 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3538 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3539 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3540 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3541 LLVMBuildMul(ctx->ac.builder, wave_idx,
3542 LLVMConstInt(ctx->i32, 64, false), ""), "");
3543 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3544 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3545 }
3546
3547 for (i = 0; i < info->num_outputs; i++) {
3548 int param;
3549
3550 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3551 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3552 continue;
3553
3554 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3555 info->output_semantic_index[i], false);
3556
3557 for (chan = 0; chan < 4; chan++) {
3558 if (!(info->output_usagemask[i] & (1 << chan)))
3559 continue;
3560
3561 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3562 out_val = ac_to_integer(&ctx->ac, out_val);
3563
3564 /* GFX9 has the ESGS ring in LDS. */
3565 if (ctx->screen->info.chip_class >= GFX9) {
3566 LLVMValueRef idx = LLVMConstInt(ctx->i32, param * 4 + chan, false);
3567 idx = LLVMBuildAdd(ctx->ac.builder, lds_base, idx, "");
3568 ac_build_indexed_store(&ctx->ac, ctx->esgs_ring, idx, out_val);
3569 continue;
3570 }
3571
3572 ac_build_buffer_store_dword(&ctx->ac,
3573 ctx->esgs_ring,
3574 out_val, 1, NULL, soffset,
3575 (4 * param + chan) * 4,
3576 1, 1, true);
3577 }
3578 }
3579
3580 if (ctx->screen->info.chip_class >= GFX9)
3581 si_set_es_return_value_for_gs(ctx);
3582 }
3583
3584 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3585 {
3586 if (ctx->screen->info.chip_class >= GFX9)
3587 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3588 else
3589 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3590 }
3591
3592 static void emit_gs_epilogue(struct si_shader_context *ctx)
3593 {
3594 if (ctx->shader->key.as_ngg) {
3595 gfx10_ngg_gs_emit_epilogue(ctx);
3596 return;
3597 }
3598
3599 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3600 si_get_gs_wave_id(ctx));
3601
3602 if (ctx->screen->info.chip_class >= GFX9)
3603 lp_build_endif(&ctx->merged_wrap_if_state);
3604 }
3605
3606 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3607 unsigned max_outputs,
3608 LLVMValueRef *addrs)
3609 {
3610 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3611 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3612
3613 assert(info->num_outputs <= max_outputs);
3614
3615 emit_gs_epilogue(ctx);
3616 }
3617
3618 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3619 {
3620 struct si_shader_context *ctx = si_shader_context(bld_base);
3621 emit_gs_epilogue(ctx);
3622 }
3623
3624 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3625 unsigned max_outputs,
3626 LLVMValueRef *addrs)
3627 {
3628 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3629 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3630 struct si_shader_output_values *outputs = NULL;
3631 int i,j;
3632
3633 assert(!ctx->shader->is_gs_copy_shader);
3634 assert(info->num_outputs <= max_outputs);
3635
3636 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3637
3638 for (i = 0; i < info->num_outputs; i++) {
3639 outputs[i].semantic_name = info->output_semantic_name[i];
3640 outputs[i].semantic_index = info->output_semantic_index[i];
3641
3642 for (j = 0; j < 4; j++) {
3643 outputs[i].values[j] =
3644 LLVMBuildLoad(ctx->ac.builder,
3645 addrs[4 * i + j],
3646 "");
3647 outputs[i].vertex_stream[j] =
3648 (info->output_streams[i] >> (2 * j)) & 3;
3649 }
3650 }
3651
3652 if (ctx->shader->selector->so.num_outputs)
3653 si_llvm_emit_streamout(ctx, outputs, i, 0);
3654
3655 /* Export PrimitiveID. */
3656 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3657 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3658 outputs[i].semantic_index = 0;
3659 outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
3660 for (j = 1; j < 4; j++)
3661 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3662
3663 memset(outputs[i].vertex_stream, 0,
3664 sizeof(outputs[i].vertex_stream));
3665 i++;
3666 }
3667
3668 si_llvm_export_vs(ctx, outputs, i);
3669 FREE(outputs);
3670 }
3671
3672 static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
3673 unsigned max_outputs,
3674 LLVMValueRef *addrs)
3675 {
3676 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3677 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3678 LLVMValueRef pos[4] = {};
3679
3680 assert(info->num_outputs <= max_outputs);
3681
3682 for (unsigned i = 0; i < info->num_outputs; i++) {
3683 if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
3684 continue;
3685
3686 for (unsigned chan = 0; chan < 4; chan++)
3687 pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3688 break;
3689 }
3690 assert(pos[0] != NULL);
3691
3692 /* Return the position output. */
3693 LLVMValueRef ret = ctx->return_value;
3694 for (unsigned chan = 0; chan < 4; chan++)
3695 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
3696 ctx->return_value = ret;
3697 }
3698
3699 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3700 {
3701 struct si_shader_context *ctx = si_shader_context(bld_base);
3702
3703 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3704 &ctx->outputs[0][0]);
3705 }
3706
3707 struct si_ps_exports {
3708 unsigned num;
3709 struct ac_export_args args[10];
3710 };
3711
3712 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3713 LLVMValueRef depth, LLVMValueRef stencil,
3714 LLVMValueRef samplemask, struct si_ps_exports *exp)
3715 {
3716 struct si_shader_context *ctx = si_shader_context(bld_base);
3717 struct ac_export_args args;
3718
3719 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3720
3721 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3722 }
3723
3724 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3725 LLVMValueRef *color, unsigned index,
3726 unsigned samplemask_param,
3727 bool is_last, struct si_ps_exports *exp)
3728 {
3729 struct si_shader_context *ctx = si_shader_context(bld_base);
3730 int i;
3731
3732 /* Clamp color */
3733 if (ctx->shader->key.part.ps.epilog.clamp_color)
3734 for (i = 0; i < 4; i++)
3735 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3736
3737 /* Alpha to one */
3738 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3739 color[3] = ctx->ac.f32_1;
3740
3741 /* Alpha test */
3742 if (index == 0 &&
3743 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3744 si_alpha_test(bld_base, color[3]);
3745
3746 /* Line & polygon smoothing */
3747 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3748 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3749 samplemask_param);
3750
3751 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3752 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3753 struct ac_export_args args[8];
3754 int c, last = -1;
3755
3756 /* Get the export arguments, also find out what the last one is. */
3757 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3758 si_llvm_init_export_args(ctx, color,
3759 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3760 if (args[c].enabled_channels)
3761 last = c;
3762 }
3763
3764 /* Emit all exports. */
3765 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3766 if (is_last && last == c) {
3767 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3768 args[c].done = 1; /* DONE bit */
3769 } else if (!args[c].enabled_channels)
3770 continue; /* unnecessary NULL export */
3771
3772 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3773 }
3774 } else {
3775 struct ac_export_args args;
3776
3777 /* Export */
3778 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3779 &args);
3780 if (is_last) {
3781 args.valid_mask = 1; /* whether the EXEC mask is valid */
3782 args.done = 1; /* DONE bit */
3783 } else if (!args.enabled_channels)
3784 return; /* unnecessary NULL export */
3785
3786 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3787 }
3788 }
3789
3790 static void si_emit_ps_exports(struct si_shader_context *ctx,
3791 struct si_ps_exports *exp)
3792 {
3793 for (unsigned i = 0; i < exp->num; i++)
3794 ac_build_export(&ctx->ac, &exp->args[i]);
3795 }
3796
3797 /**
3798 * Return PS outputs in this order:
3799 *
3800 * v[0:3] = color0.xyzw
3801 * v[4:7] = color1.xyzw
3802 * ...
3803 * vN+0 = Depth
3804 * vN+1 = Stencil
3805 * vN+2 = SampleMask
3806 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3807 *
3808 * The alpha-ref SGPR is returned via its original location.
3809 */
3810 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3811 unsigned max_outputs,
3812 LLVMValueRef *addrs)
3813 {
3814 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3815 struct si_shader *shader = ctx->shader;
3816 struct tgsi_shader_info *info = &shader->selector->info;
3817 LLVMBuilderRef builder = ctx->ac.builder;
3818 unsigned i, j, first_vgpr, vgpr;
3819
3820 LLVMValueRef color[8][4] = {};
3821 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3822 LLVMValueRef ret;
3823
3824 if (ctx->postponed_kill)
3825 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3826
3827 /* Read the output values. */
3828 for (i = 0; i < info->num_outputs; i++) {
3829 unsigned semantic_name = info->output_semantic_name[i];
3830 unsigned semantic_index = info->output_semantic_index[i];
3831
3832 switch (semantic_name) {
3833 case TGSI_SEMANTIC_COLOR:
3834 assert(semantic_index < 8);
3835 for (j = 0; j < 4; j++) {
3836 LLVMValueRef ptr = addrs[4 * i + j];
3837 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3838 color[semantic_index][j] = result;
3839 }
3840 break;
3841 case TGSI_SEMANTIC_POSITION:
3842 depth = LLVMBuildLoad(builder,
3843 addrs[4 * i + 2], "");
3844 break;
3845 case TGSI_SEMANTIC_STENCIL:
3846 stencil = LLVMBuildLoad(builder,
3847 addrs[4 * i + 1], "");
3848 break;
3849 case TGSI_SEMANTIC_SAMPLEMASK:
3850 samplemask = LLVMBuildLoad(builder,
3851 addrs[4 * i + 0], "");
3852 break;
3853 default:
3854 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
3855 semantic_name);
3856 }
3857 }
3858
3859 /* Fill the return structure. */
3860 ret = ctx->return_value;
3861
3862 /* Set SGPRs. */
3863 ret = LLVMBuildInsertValue(builder, ret,
3864 ac_to_integer(&ctx->ac,
3865 LLVMGetParam(ctx->main_fn,
3866 SI_PARAM_ALPHA_REF)),
3867 SI_SGPR_ALPHA_REF, "");
3868
3869 /* Set VGPRs */
3870 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3871 for (i = 0; i < ARRAY_SIZE(color); i++) {
3872 if (!color[i][0])
3873 continue;
3874
3875 for (j = 0; j < 4; j++)
3876 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3877 }
3878 if (depth)
3879 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3880 if (stencil)
3881 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3882 if (samplemask)
3883 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3884
3885 /* Add the input sample mask for smoothing at the end. */
3886 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3887 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3888 ret = LLVMBuildInsertValue(builder, ret,
3889 LLVMGetParam(ctx->main_fn,
3890 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3891
3892 ctx->return_value = ret;
3893 }
3894
3895 static void membar_emit(
3896 const struct lp_build_tgsi_action *action,
3897 struct lp_build_tgsi_context *bld_base,
3898 struct lp_build_emit_data *emit_data)
3899 {
3900 struct si_shader_context *ctx = si_shader_context(bld_base);
3901 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3902 unsigned flags = LLVMConstIntGetZExtValue(src0);
3903 unsigned waitcnt = NOOP_WAITCNT;
3904
3905 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3906 waitcnt &= VM_CNT & LGKM_CNT;
3907
3908 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3909 TGSI_MEMBAR_SHADER_BUFFER |
3910 TGSI_MEMBAR_SHADER_IMAGE))
3911 waitcnt &= VM_CNT;
3912
3913 if (flags & TGSI_MEMBAR_SHARED)
3914 waitcnt &= LGKM_CNT;
3915
3916 if (waitcnt != NOOP_WAITCNT)
3917 ac_build_waitcnt(&ctx->ac, waitcnt);
3918 }
3919
3920 static void clock_emit(
3921 const struct lp_build_tgsi_action *action,
3922 struct lp_build_tgsi_context *bld_base,
3923 struct lp_build_emit_data *emit_data)
3924 {
3925 struct si_shader_context *ctx = si_shader_context(bld_base);
3926 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3927
3928 emit_data->output[0] =
3929 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3930 emit_data->output[1] =
3931 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3932 }
3933
3934 static void si_llvm_emit_ddxy(
3935 const struct lp_build_tgsi_action *action,
3936 struct lp_build_tgsi_context *bld_base,
3937 struct lp_build_emit_data *emit_data)
3938 {
3939 struct si_shader_context *ctx = si_shader_context(bld_base);
3940 unsigned opcode = emit_data->info->opcode;
3941 LLVMValueRef val;
3942 int idx;
3943 unsigned mask;
3944
3945 if (opcode == TGSI_OPCODE_DDX_FINE)
3946 mask = AC_TID_MASK_LEFT;
3947 else if (opcode == TGSI_OPCODE_DDY_FINE)
3948 mask = AC_TID_MASK_TOP;
3949 else
3950 mask = AC_TID_MASK_TOP_LEFT;
3951
3952 /* for DDX we want to next X pixel, DDY next Y pixel. */
3953 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3954
3955 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3956 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3957 emit_data->output[emit_data->chan] = val;
3958 }
3959
3960 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3961 struct lp_build_tgsi_context *bld_base,
3962 struct lp_build_emit_data *emit_data)
3963 {
3964 struct si_shader_context *ctx = si_shader_context(bld_base);
3965 struct si_shader *shader = ctx->shader;
3966 const struct tgsi_shader_info *info = &shader->selector->info;
3967 LLVMValueRef interp_param;
3968 const struct tgsi_full_instruction *inst = emit_data->inst;
3969 const struct tgsi_full_src_register *input = &inst->Src[0];
3970 int input_base, input_array_size;
3971 int chan;
3972 int i;
3973 LLVMValueRef prim_mask = ctx->abi.prim_mask;
3974 LLVMValueRef array_idx, offset_x = NULL, offset_y = NULL;
3975 int interp_param_idx;
3976 unsigned interp;
3977 unsigned location;
3978
3979 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
3980 /* offset is in second src, first two channels */
3981 offset_x = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3982 TGSI_CHAN_X);
3983 offset_y = lp_build_emit_fetch(bld_base, emit_data->inst, 1,
3984 TGSI_CHAN_Y);
3985 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3986 LLVMValueRef sample_position;
3987 LLVMValueRef sample_id;
3988 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
3989
3990 /* fetch sample ID, then fetch its sample position,
3991 * and place into first two channels.
3992 */
3993 sample_id = lp_build_emit_fetch(bld_base,
3994 emit_data->inst, 1, TGSI_CHAN_X);
3995 sample_id = ac_to_integer(&ctx->ac, sample_id);
3996
3997 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
3998 * Language 4.50 spec says about interpolateAtSample:
3999 *
4000 * "Returns the value of the input interpolant variable at
4001 * the location of sample number sample. If multisample
4002 * buffers are not available, the input variable will be
4003 * evaluated at the center of the pixel. If sample sample
4004 * does not exist, the position used to interpolate the
4005 * input variable is undefined."
4006 *
4007 * This means that sample_id values outside of the valid are
4008 * in fact valid input, and the usual mechanism for loading the
4009 * sample position doesn't work.
4010 */
4011 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4012 LLVMValueRef center[4] = {
4013 LLVMConstReal(ctx->f32, 0.5),
4014 LLVMConstReal(ctx->f32, 0.5),
4015 ctx->ac.f32_0,
4016 ctx->ac.f32_0,
4017 };
4018
4019 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4020 } else {
4021 sample_position = load_sample_position(&ctx->abi, sample_id);
4022 }
4023
4024 offset_x = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4025 ctx->i32_0, "");
4026
4027 offset_x = LLVMBuildFSub(ctx->ac.builder, offset_x, halfval, "");
4028 offset_y = LLVMBuildExtractElement(ctx->ac.builder, sample_position,
4029 ctx->i32_1, "");
4030 offset_y = LLVMBuildFSub(ctx->ac.builder, offset_y, halfval, "");
4031 }
4032
4033 assert(input->Register.File == TGSI_FILE_INPUT);
4034
4035 if (input->Register.Indirect) {
4036 unsigned array_id = input->Indirect.ArrayID;
4037
4038 if (array_id) {
4039 input_base = info->input_array_first[array_id];
4040 input_array_size = info->input_array_last[array_id] - input_base + 1;
4041 } else {
4042 input_base = inst->Src[0].Register.Index;
4043 input_array_size = info->num_inputs - input_base;
4044 }
4045
4046 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4047 1, input->Register.Index - input_base);
4048 } else {
4049 input_base = inst->Src[0].Register.Index;
4050 input_array_size = 1;
4051 array_idx = ctx->i32_0;
4052 }
4053
4054 interp = shader->selector->info.input_interpolate[input_base];
4055
4056 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4057 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4058 location = TGSI_INTERPOLATE_LOC_CENTER;
4059 else
4060 location = TGSI_INTERPOLATE_LOC_CENTROID;
4061
4062 interp_param_idx = lookup_interp_param_index(interp, location);
4063 if (interp_param_idx == -1)
4064 return;
4065 else if (interp_param_idx)
4066 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4067 else
4068 interp_param = NULL;
4069
4070 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4071 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4072 LLVMValueRef ij_out[2];
4073 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
4074
4075 /*
4076 * take the I then J parameters, and the DDX/Y for it, and
4077 * calculate the IJ inputs for the interpolator.
4078 * temp1 = ddx * offset/sample.x + I;
4079 * interp_param.I = ddy * offset/sample.y + temp1;
4080 * temp1 = ddx * offset/sample.x + J;
4081 * interp_param.J = ddy * offset/sample.y + temp1;
4082 */
4083 for (i = 0; i < 2; i++) {
4084 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4085 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4086 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4087 ddxy_out, ix_ll, "");
4088 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4089 ddxy_out, iy_ll, "");
4090 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4091 interp_param, ix_ll, "");
4092 LLVMValueRef temp;
4093
4094 interp_el = ac_to_float(&ctx->ac, interp_el);
4095
4096 temp = ac_build_fmad(&ctx->ac, ddx_el, offset_x, interp_el);
4097 ij_out[i] = ac_build_fmad(&ctx->ac, ddy_el, offset_y, temp);
4098 }
4099 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4100 }
4101
4102 if (interp_param)
4103 interp_param = ac_to_float(&ctx->ac, interp_param);
4104
4105 for (chan = 0; chan < 4; chan++) {
4106 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4107 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4108
4109 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4110 LLVMValueRef v, i = NULL, j = NULL;
4111
4112 if (interp_param) {
4113 i = LLVMBuildExtractElement(
4114 ctx->ac.builder, interp_param, ctx->i32_0, "");
4115 j = LLVMBuildExtractElement(
4116 ctx->ac.builder, interp_param, ctx->i32_1, "");
4117 }
4118 v = si_build_fs_interp(ctx, input_base + idx, schan,
4119 prim_mask, i, j);
4120
4121 gather = LLVMBuildInsertElement(ctx->ac.builder,
4122 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4123 }
4124
4125 emit_data->output[chan] = LLVMBuildExtractElement(
4126 ctx->ac.builder, gather, array_idx, "");
4127 }
4128 }
4129
4130 static void vote_all_emit(
4131 const struct lp_build_tgsi_action *action,
4132 struct lp_build_tgsi_context *bld_base,
4133 struct lp_build_emit_data *emit_data)
4134 {
4135 struct si_shader_context *ctx = si_shader_context(bld_base);
4136
4137 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4138 emit_data->output[emit_data->chan] =
4139 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4140 }
4141
4142 static void vote_any_emit(
4143 const struct lp_build_tgsi_action *action,
4144 struct lp_build_tgsi_context *bld_base,
4145 struct lp_build_emit_data *emit_data)
4146 {
4147 struct si_shader_context *ctx = si_shader_context(bld_base);
4148
4149 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4150 emit_data->output[emit_data->chan] =
4151 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4152 }
4153
4154 static void vote_eq_emit(
4155 const struct lp_build_tgsi_action *action,
4156 struct lp_build_tgsi_context *bld_base,
4157 struct lp_build_emit_data *emit_data)
4158 {
4159 struct si_shader_context *ctx = si_shader_context(bld_base);
4160
4161 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4162 emit_data->output[emit_data->chan] =
4163 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4164 }
4165
4166 static void ballot_emit(
4167 const struct lp_build_tgsi_action *action,
4168 struct lp_build_tgsi_context *bld_base,
4169 struct lp_build_emit_data *emit_data)
4170 {
4171 struct si_shader_context *ctx = si_shader_context(bld_base);
4172 LLVMBuilderRef builder = ctx->ac.builder;
4173 LLVMValueRef tmp;
4174
4175 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4176 tmp = ac_build_ballot(&ctx->ac, tmp);
4177 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4178
4179 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4180 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4181 }
4182
4183 static void read_lane_emit(
4184 const struct lp_build_tgsi_action *action,
4185 struct lp_build_tgsi_context *bld_base,
4186 struct lp_build_emit_data *emit_data)
4187 {
4188 struct si_shader_context *ctx = si_shader_context(bld_base);
4189
4190 if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_READ_INVOC) {
4191 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4192 0, emit_data->src_chan);
4193
4194 /* Always read the source invocation (= lane) from the X channel. */
4195 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4196 1, TGSI_CHAN_X);
4197 emit_data->arg_count = 2;
4198 }
4199
4200 /* We currently have no other way to prevent LLVM from lifting the icmp
4201 * calls to a dominating basic block.
4202 */
4203 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4204
4205 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4206 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4207
4208 emit_data->output[emit_data->chan] =
4209 ac_build_intrinsic(&ctx->ac, action->intr_name,
4210 ctx->i32, emit_data->args, emit_data->arg_count,
4211 AC_FUNC_ATTR_READNONE |
4212 AC_FUNC_ATTR_CONVERGENT);
4213 }
4214
4215 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4216 struct lp_build_emit_data *emit_data)
4217 {
4218 struct si_shader_context *ctx = si_shader_context(bld_base);
4219 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4220 LLVMValueRef imm;
4221 unsigned stream;
4222
4223 assert(src0.File == TGSI_FILE_IMMEDIATE);
4224
4225 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4226 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4227 return stream;
4228 }
4229
4230 /* Emit one vertex from the geometry shader */
4231 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4232 unsigned stream,
4233 LLVMValueRef *addrs)
4234 {
4235 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4236
4237 if (ctx->shader->key.as_ngg) {
4238 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
4239 return;
4240 }
4241
4242 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4243 struct si_shader *shader = ctx->shader;
4244 struct lp_build_if_state if_state;
4245 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4246 ctx->param_gs2vs_offset);
4247 LLVMValueRef gs_next_vertex;
4248 LLVMValueRef can_emit;
4249 unsigned chan, offset;
4250 int i;
4251
4252 /* Write vertex attribute values to GSVS ring */
4253 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4254 ctx->gs_next_vertex[stream],
4255 "");
4256
4257 /* If this thread has already emitted the declared maximum number of
4258 * vertices, skip the write: excessive vertex emissions are not
4259 * supposed to have any effect.
4260 *
4261 * If the shader has no writes to memory, kill it instead. This skips
4262 * further memory loads and may allow LLVM to skip to the end
4263 * altogether.
4264 */
4265 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4266 LLVMConstInt(ctx->i32,
4267 shader->selector->gs_max_out_vertices, 0), "");
4268
4269 bool use_kill = !info->writes_memory;
4270 if (use_kill) {
4271 ac_build_kill_if_false(&ctx->ac, can_emit);
4272 } else {
4273 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4274 }
4275
4276 offset = 0;
4277 for (i = 0; i < info->num_outputs; i++) {
4278 for (chan = 0; chan < 4; chan++) {
4279 if (!(info->output_usagemask[i] & (1 << chan)) ||
4280 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4281 continue;
4282
4283 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4284 LLVMValueRef voffset =
4285 LLVMConstInt(ctx->i32, offset *
4286 shader->selector->gs_max_out_vertices, 0);
4287 offset++;
4288
4289 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4290 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4291 LLVMConstInt(ctx->i32, 4, 0), "");
4292
4293 out_val = ac_to_integer(&ctx->ac, out_val);
4294
4295 ac_build_buffer_store_dword(&ctx->ac,
4296 ctx->gsvs_ring[stream],
4297 out_val, 1,
4298 voffset, soffset, 0,
4299 1, 1, true);
4300 }
4301 }
4302
4303 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4304 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4305
4306 /* Signal vertex emission if vertex data was written. */
4307 if (offset) {
4308 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4309 si_get_gs_wave_id(ctx));
4310 }
4311
4312 if (!use_kill)
4313 lp_build_endif(&if_state);
4314 }
4315
4316 /* Emit one vertex from the geometry shader */
4317 static void si_tgsi_emit_vertex(
4318 const struct lp_build_tgsi_action *action,
4319 struct lp_build_tgsi_context *bld_base,
4320 struct lp_build_emit_data *emit_data)
4321 {
4322 struct si_shader_context *ctx = si_shader_context(bld_base);
4323 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4324
4325 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4326 }
4327
4328 /* Cut one primitive from the geometry shader */
4329 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4330 unsigned stream)
4331 {
4332 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4333
4334 if (ctx->shader->key.as_ngg) {
4335 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
4336 return;
4337 }
4338
4339 /* Signal primitive cut */
4340 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4341 si_get_gs_wave_id(ctx));
4342 }
4343
4344 /* Cut one primitive from the geometry shader */
4345 static void si_tgsi_emit_primitive(
4346 const struct lp_build_tgsi_action *action,
4347 struct lp_build_tgsi_context *bld_base,
4348 struct lp_build_emit_data *emit_data)
4349 {
4350 struct si_shader_context *ctx = si_shader_context(bld_base);
4351
4352 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4353 }
4354
4355 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4356 struct lp_build_tgsi_context *bld_base,
4357 struct lp_build_emit_data *emit_data)
4358 {
4359 struct si_shader_context *ctx = si_shader_context(bld_base);
4360
4361 /* GFX6 only (thanks to a hw bug workaround):
4362 * The real barrier instruction isn’t needed, because an entire patch
4363 * always fits into a single wave.
4364 */
4365 if (ctx->screen->info.chip_class == GFX6 &&
4366 ctx->type == PIPE_SHADER_TESS_CTRL) {
4367 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4368 return;
4369 }
4370
4371 ac_build_s_barrier(&ctx->ac);
4372 }
4373
4374 void si_create_function(struct si_shader_context *ctx,
4375 const char *name,
4376 LLVMTypeRef *returns, unsigned num_returns,
4377 struct si_function_info *fninfo,
4378 unsigned max_workgroup_size)
4379 {
4380 int i;
4381
4382 si_llvm_create_func(ctx, name, returns, num_returns,
4383 fninfo->types, fninfo->num_params);
4384 ctx->return_value = LLVMGetUndef(ctx->return_type);
4385
4386 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4387 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4388
4389 /* The combination of:
4390 * - noalias
4391 * - dereferenceable
4392 * - invariant.load
4393 * allows the optimization passes to move loads and reduces
4394 * SGPR spilling significantly.
4395 */
4396 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4397 AC_FUNC_ATTR_INREG);
4398
4399 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4400 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4401 AC_FUNC_ATTR_NOALIAS);
4402 ac_add_attr_dereferenceable(P, UINT64_MAX);
4403 }
4404 }
4405
4406 for (i = 0; i < fninfo->num_params; ++i) {
4407 if (fninfo->assign[i])
4408 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4409 }
4410
4411 if (ctx->screen->info.address32_hi) {
4412 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4413 "amdgpu-32bit-address-high-bits",
4414 ctx->screen->info.address32_hi);
4415 }
4416
4417 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
4418
4419 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4420 "no-signed-zeros-fp-math",
4421 "true");
4422
4423 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4424 /* These were copied from some LLVM test. */
4425 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4426 "less-precise-fpmad",
4427 "true");
4428 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4429 "no-infs-fp-math",
4430 "true");
4431 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4432 "no-nans-fp-math",
4433 "true");
4434 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4435 "unsafe-fp-math",
4436 "true");
4437 }
4438 }
4439
4440 static void declare_streamout_params(struct si_shader_context *ctx,
4441 struct pipe_stream_output_info *so,
4442 struct si_function_info *fninfo)
4443 {
4444 int i;
4445
4446 /* Streamout SGPRs. */
4447 if (so->num_outputs) {
4448 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4449 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4450 else
4451 ctx->param_streamout_config = fninfo->num_params - 1;
4452
4453 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4454 }
4455 /* A streamout buffer offset is loaded if the stride is non-zero. */
4456 for (i = 0; i < 4; i++) {
4457 if (!so->stride[i])
4458 continue;
4459
4460 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4461 }
4462 }
4463
4464 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4465 {
4466 switch (shader->selector->type) {
4467 case PIPE_SHADER_VERTEX:
4468 case PIPE_SHADER_TESS_EVAL:
4469 return shader->key.as_ngg ? 128 : 0;
4470
4471 case PIPE_SHADER_TESS_CTRL:
4472 /* Return this so that LLVM doesn't remove s_barrier
4473 * instructions on chips where we use s_barrier. */
4474 return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 64;
4475
4476 case PIPE_SHADER_GEOMETRY:
4477 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4478
4479 case PIPE_SHADER_COMPUTE:
4480 break; /* see below */
4481
4482 default:
4483 return 0;
4484 }
4485
4486 const unsigned *properties = shader->selector->info.properties;
4487 unsigned max_work_group_size =
4488 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4489 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4490 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4491
4492 if (!max_work_group_size) {
4493 /* This is a variable group size compute shader,
4494 * compile it for the maximum possible group size.
4495 */
4496 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4497 }
4498 return max_work_group_size;
4499 }
4500
4501 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4502 struct si_function_info *fninfo,
4503 bool assign_params)
4504 {
4505 LLVMTypeRef const_shader_buf_type;
4506
4507 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4508 ctx->shader->selector->info.shader_buffers_declared == 0)
4509 const_shader_buf_type = ctx->f32;
4510 else
4511 const_shader_buf_type = ctx->v4i32;
4512
4513 unsigned const_and_shader_buffers =
4514 add_arg(fninfo, ARG_SGPR,
4515 ac_array_in_const32_addr_space(const_shader_buf_type));
4516
4517 if (assign_params)
4518 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4519 }
4520
4521 static void declare_samplers_and_images(struct si_shader_context *ctx,
4522 struct si_function_info *fninfo,
4523 bool assign_params)
4524 {
4525 unsigned samplers_and_images =
4526 add_arg(fninfo, ARG_SGPR,
4527 ac_array_in_const32_addr_space(ctx->v8i32));
4528
4529 if (assign_params)
4530 ctx->param_samplers_and_images = samplers_and_images;
4531 }
4532
4533 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4534 struct si_function_info *fninfo,
4535 bool assign_params)
4536 {
4537 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4538 declare_samplers_and_images(ctx, fninfo, assign_params);
4539 }
4540
4541 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4542 struct si_function_info *fninfo)
4543 {
4544 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4545 ac_array_in_const32_addr_space(ctx->v4i32));
4546 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4547 ac_array_in_const32_addr_space(ctx->v8i32));
4548 }
4549
4550 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4551 struct si_function_info *fninfo)
4552 {
4553 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4554 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4555 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4556 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4557 }
4558
4559 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4560 struct si_function_info *fninfo,
4561 unsigned *num_prolog_vgprs)
4562 {
4563 struct si_shader *shader = ctx->shader;
4564
4565 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4566 if (shader->key.as_ls) {
4567 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4568 if (ctx->screen->info.chip_class >= GFX10) {
4569 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user VGPR */
4570 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4571 } else {
4572 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4573 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4574 }
4575 } else if (ctx->screen->info.chip_class == GFX10 &&
4576 !shader->is_gs_copy_shader) {
4577 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4578 add_arg(fninfo, ARG_VGPR, ctx->i32); /* user vgpr */
4579 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4580 } else {
4581 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4582 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4583 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4584 }
4585
4586 if (!shader->is_gs_copy_shader) {
4587 /* Vertex load indices. */
4588 ctx->param_vertex_index0 = fninfo->num_params;
4589 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4590 add_arg(fninfo, ARG_VGPR, ctx->i32);
4591 *num_prolog_vgprs += shader->selector->info.num_inputs;
4592 }
4593 }
4594
4595 static void declare_vs_blit_inputs(struct si_shader_context *ctx,
4596 struct si_function_info *fninfo,
4597 unsigned vs_blit_property)
4598 {
4599 ctx->param_vs_blit_inputs = fninfo->num_params;
4600 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4601 add_arg(fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4602 add_arg(fninfo, ARG_SGPR, ctx->f32); /* depth */
4603
4604 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4605 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color0 */
4606 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color1 */
4607 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color2 */
4608 add_arg(fninfo, ARG_SGPR, ctx->f32); /* color3 */
4609 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4610 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4611 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4612 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4613 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4614 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4615 add_arg(fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4616 }
4617 }
4618
4619 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4620 struct si_function_info *fninfo)
4621 {
4622 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4623 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4624 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4625 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4626 }
4627
4628 enum {
4629 /* Convenient merged shader definitions. */
4630 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4631 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4632 };
4633
4634 static void create_function(struct si_shader_context *ctx)
4635 {
4636 struct si_shader *shader = ctx->shader;
4637 struct si_function_info fninfo;
4638 LLVMTypeRef returns[16+32*4];
4639 unsigned i, num_return_sgprs;
4640 unsigned num_returns = 0;
4641 unsigned num_prolog_vgprs = 0;
4642 unsigned type = ctx->type;
4643 unsigned vs_blit_property =
4644 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4645
4646 si_init_function_info(&fninfo);
4647
4648 /* Set MERGED shaders. */
4649 if (ctx->screen->info.chip_class >= GFX9) {
4650 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4651 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4652 else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
4653 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4654 }
4655
4656 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4657
4658 switch (type) {
4659 case PIPE_SHADER_VERTEX:
4660 declare_global_desc_pointers(ctx, &fninfo);
4661
4662 if (vs_blit_property) {
4663 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4664
4665 /* VGPRs */
4666 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4667 break;
4668 }
4669
4670 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4671 declare_vs_specific_input_sgprs(ctx, &fninfo);
4672 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4673 ac_array_in_const32_addr_space(ctx->v4i32));
4674
4675 if (shader->key.as_es) {
4676 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4677 } else if (shader->key.as_ls) {
4678 /* no extra parameters */
4679 } else {
4680 if (shader->is_gs_copy_shader) {
4681 fninfo.num_params = ctx->param_vs_state_bits + 1;
4682 fninfo.num_sgpr_params = fninfo.num_params;
4683 }
4684
4685 /* The locations of the other parameters are assigned dynamically. */
4686 declare_streamout_params(ctx, &shader->selector->so,
4687 &fninfo);
4688 }
4689
4690 /* VGPRs */
4691 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4692
4693 /* Return values */
4694 if (shader->key.opt.vs_as_prim_discard_cs) {
4695 for (i = 0; i < 4; i++)
4696 returns[num_returns++] = ctx->f32; /* VGPRs */
4697 }
4698 break;
4699
4700 case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
4701 declare_global_desc_pointers(ctx, &fninfo);
4702 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4703 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4704 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4705 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4706 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4707 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4708 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4709
4710 /* VGPRs */
4711 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4712 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4713
4714 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4715 * placed after the user SGPRs.
4716 */
4717 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4718 returns[num_returns++] = ctx->i32; /* SGPRs */
4719 for (i = 0; i < 11; i++)
4720 returns[num_returns++] = ctx->f32; /* VGPRs */
4721 break;
4722
4723 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4724 /* Merged stages have 8 system SGPRs at the beginning. */
4725 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4726 declare_per_stage_desc_pointers(ctx, &fninfo,
4727 ctx->type == PIPE_SHADER_TESS_CTRL);
4728 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4729 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4730 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4731 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4732 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4733 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4734
4735 declare_global_desc_pointers(ctx, &fninfo);
4736 declare_per_stage_desc_pointers(ctx, &fninfo,
4737 ctx->type == PIPE_SHADER_VERTEX);
4738 declare_vs_specific_input_sgprs(ctx, &fninfo);
4739
4740 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4741 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4742 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4743 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4744 ac_array_in_const32_addr_space(ctx->v4i32));
4745
4746 /* VGPRs (first TCS, then VS) */
4747 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4748 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4749
4750 if (ctx->type == PIPE_SHADER_VERTEX) {
4751 declare_vs_input_vgprs(ctx, &fninfo,
4752 &num_prolog_vgprs);
4753
4754 /* LS return values are inputs to the TCS main shader part. */
4755 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4756 returns[num_returns++] = ctx->i32; /* SGPRs */
4757 for (i = 0; i < 2; i++)
4758 returns[num_returns++] = ctx->f32; /* VGPRs */
4759 } else {
4760 /* TCS return values are inputs to the TCS epilog.
4761 *
4762 * param_tcs_offchip_offset, param_tcs_factor_offset,
4763 * param_tcs_offchip_layout, and param_rw_buffers
4764 * should be passed to the epilog.
4765 */
4766 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4767 returns[num_returns++] = ctx->i32; /* SGPRs */
4768 for (i = 0; i < 11; i++)
4769 returns[num_returns++] = ctx->f32; /* VGPRs */
4770 }
4771 break;
4772
4773 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4774 /* Merged stages have 8 system SGPRs at the beginning. */
4775 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4776 declare_per_stage_desc_pointers(ctx, &fninfo,
4777 ctx->type == PIPE_SHADER_GEOMETRY);
4778
4779 if (ctx->shader->key.as_ngg)
4780 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->gs_tg_info);
4781 else
4782 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4783
4784 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4785 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4786 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4787 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4788 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4789
4790 declare_global_desc_pointers(ctx, &fninfo);
4791 if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
4792 declare_per_stage_desc_pointers(ctx, &fninfo,
4793 (ctx->type == PIPE_SHADER_VERTEX ||
4794 ctx->type == PIPE_SHADER_TESS_EVAL));
4795 }
4796
4797 if (ctx->type == PIPE_SHADER_VERTEX) {
4798 if (vs_blit_property)
4799 declare_vs_blit_inputs(ctx, &fninfo, vs_blit_property);
4800 else
4801 declare_vs_specific_input_sgprs(ctx, &fninfo);
4802 } else {
4803 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4804 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4805 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4806 /* Declare as many input SGPRs as the VS has. */
4807 }
4808
4809 if (ctx->type == PIPE_SHADER_VERTEX) {
4810 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4811 ac_array_in_const32_addr_space(ctx->v4i32));
4812 }
4813
4814 /* VGPRs (first GS, then VS/TES) */
4815 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4816 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4817 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4818 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4819 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4820
4821 if (ctx->type == PIPE_SHADER_VERTEX) {
4822 declare_vs_input_vgprs(ctx, &fninfo,
4823 &num_prolog_vgprs);
4824 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4825 declare_tes_input_vgprs(ctx, &fninfo);
4826 }
4827
4828 if (ctx->shader->key.as_es &&
4829 (ctx->type == PIPE_SHADER_VERTEX ||
4830 ctx->type == PIPE_SHADER_TESS_EVAL)) {
4831 unsigned num_user_sgprs;
4832
4833 if (ctx->type == PIPE_SHADER_VERTEX)
4834 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4835 else
4836 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4837
4838 /* ES return values are inputs to GS. */
4839 for (i = 0; i < 8 + num_user_sgprs; i++)
4840 returns[num_returns++] = ctx->i32; /* SGPRs */
4841 for (i = 0; i < 5; i++)
4842 returns[num_returns++] = ctx->f32; /* VGPRs */
4843 }
4844 break;
4845
4846 case PIPE_SHADER_TESS_EVAL:
4847 declare_global_desc_pointers(ctx, &fninfo);
4848 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4849 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4850 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4851 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4852
4853 if (shader->key.as_es) {
4854 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4855 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4856 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4857 } else {
4858 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4859 declare_streamout_params(ctx, &shader->selector->so,
4860 &fninfo);
4861 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4862 }
4863
4864 /* VGPRs */
4865 declare_tes_input_vgprs(ctx, &fninfo);
4866 break;
4867
4868 case PIPE_SHADER_GEOMETRY:
4869 declare_global_desc_pointers(ctx, &fninfo);
4870 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4871 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4872 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4873
4874 /* VGPRs */
4875 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4876 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4877 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4878 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4879 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4880 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4881 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4882 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4883 break;
4884
4885 case PIPE_SHADER_FRAGMENT:
4886 declare_global_desc_pointers(ctx, &fninfo);
4887 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4888 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4889 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4890 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4891
4892 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4893 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4894 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4895 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4896 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4897 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4898 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4899 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4900 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4901 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4902 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4903 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4904 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4905 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4906 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4907 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4908 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4909 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4910 shader->info.face_vgpr_index = 20;
4911 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4912 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4913 shader->info.ancillary_vgpr_index = 21;
4914 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4915 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4916 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4917
4918 /* Color inputs from the prolog. */
4919 if (shader->selector->info.colors_read) {
4920 unsigned num_color_elements =
4921 util_bitcount(shader->selector->info.colors_read);
4922
4923 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4924 for (i = 0; i < num_color_elements; i++)
4925 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4926
4927 num_prolog_vgprs += num_color_elements;
4928 }
4929
4930 /* Outputs for the epilog. */
4931 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4932 num_returns =
4933 num_return_sgprs +
4934 util_bitcount(shader->selector->info.colors_written) * 4 +
4935 shader->selector->info.writes_z +
4936 shader->selector->info.writes_stencil +
4937 shader->selector->info.writes_samplemask +
4938 1 /* SampleMaskIn */;
4939
4940 num_returns = MAX2(num_returns,
4941 num_return_sgprs +
4942 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4943
4944 for (i = 0; i < num_return_sgprs; i++)
4945 returns[i] = ctx->i32;
4946 for (; i < num_returns; i++)
4947 returns[i] = ctx->f32;
4948 break;
4949
4950 case PIPE_SHADER_COMPUTE:
4951 declare_global_desc_pointers(ctx, &fninfo);
4952 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4953 if (shader->selector->info.uses_grid_size)
4954 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
4955 if (shader->selector->info.uses_block_size &&
4956 shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
4957 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4958
4959 unsigned cs_user_data_dwords =
4960 shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_DWORDS];
4961 if (cs_user_data_dwords) {
4962 ctx->param_cs_user_data = add_arg(&fninfo, ARG_SGPR,
4963 LLVMVectorType(ctx->i32, cs_user_data_dwords));
4964 }
4965
4966 for (i = 0; i < 3; i++) {
4967 ctx->abi.workgroup_ids[i] = NULL;
4968 if (shader->selector->info.uses_block_id[i])
4969 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
4970 }
4971
4972 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
4973 break;
4974 default:
4975 assert(0 && "unimplemented shader");
4976 return;
4977 }
4978
4979 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4980 si_get_max_workgroup_size(shader));
4981
4982 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4983 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
4984 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4985 "InitialPSInputAddr",
4986 S_0286D0_PERSP_SAMPLE_ENA(1) |
4987 S_0286D0_PERSP_CENTER_ENA(1) |
4988 S_0286D0_PERSP_CENTROID_ENA(1) |
4989 S_0286D0_LINEAR_SAMPLE_ENA(1) |
4990 S_0286D0_LINEAR_CENTER_ENA(1) |
4991 S_0286D0_LINEAR_CENTROID_ENA(1) |
4992 S_0286D0_FRONT_FACE_ENA(1) |
4993 S_0286D0_ANCILLARY_ENA(1) |
4994 S_0286D0_POS_FIXED_PT_ENA(1));
4995 }
4996
4997 shader->info.num_input_sgprs = 0;
4998 shader->info.num_input_vgprs = 0;
4999
5000 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5001 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5002
5003 for (; i < fninfo.num_params; ++i)
5004 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5005
5006 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5007 shader->info.num_input_vgprs -= num_prolog_vgprs;
5008
5009 if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
5010 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5011 /* The LSHS size is not known until draw time, so we append it
5012 * at the end of whatever LDS use there may be in the rest of
5013 * the shader (currently none, unless LLVM decides to do its
5014 * own LDS-based lowering).
5015 */
5016 ctx->ac.lds = LLVMAddGlobalInAddressSpace(
5017 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5018 "__lds_end", AC_ADDR_SPACE_LDS);
5019 LLVMSetAlignment(ctx->ac.lds, 256);
5020 } else {
5021 ac_declare_lds_as_pointer(&ctx->ac);
5022 }
5023 }
5024 }
5025
5026 /* Ensure that the esgs ring is declared.
5027 *
5028 * We declare it with 64KB alignment as a hint that the
5029 * pointer value will always be 0.
5030 */
5031 static void declare_esgs_ring(struct si_shader_context *ctx)
5032 {
5033 if (ctx->esgs_ring)
5034 return;
5035
5036 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
5037
5038 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
5039 ctx->ac.module, LLVMArrayType(ctx->i32, 0),
5040 "esgs_ring",
5041 AC_ADDR_SPACE_LDS);
5042 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
5043 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
5044 }
5045
5046 /**
5047 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5048 * for later use.
5049 */
5050 static void preload_ring_buffers(struct si_shader_context *ctx)
5051 {
5052 LLVMBuilderRef builder = ctx->ac.builder;
5053
5054 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5055 ctx->param_rw_buffers);
5056
5057 if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY) {
5058 if (ctx->screen->info.chip_class <= GFX8) {
5059 unsigned ring =
5060 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5061 : SI_ES_RING_ESGS;
5062 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5063
5064 ctx->esgs_ring =
5065 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5066 } else {
5067 if (USE_LDS_SYMBOLS && HAVE_LLVM >= 0x0900) {
5068 /* Declare the ESGS ring as an explicit LDS symbol. */
5069 declare_esgs_ring(ctx);
5070 } else {
5071 ac_declare_lds_as_pointer(&ctx->ac);
5072 ctx->esgs_ring = ctx->ac.lds;
5073 }
5074 }
5075 }
5076
5077 if (ctx->shader->is_gs_copy_shader) {
5078 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5079
5080 ctx->gsvs_ring[0] =
5081 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5082 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5083 const struct si_shader_selector *sel = ctx->shader->selector;
5084 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5085 LLVMValueRef base_ring;
5086
5087 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5088
5089 /* The conceptual layout of the GSVS ring is
5090 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5091 * but the real memory layout is swizzled across
5092 * threads:
5093 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5094 * t16v0c0 ..
5095 * Override the buffer descriptor accordingly.
5096 */
5097 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5098 uint64_t stream_offset = 0;
5099
5100 for (unsigned stream = 0; stream < 4; ++stream) {
5101 unsigned num_components;
5102 unsigned stride;
5103 unsigned num_records;
5104 LLVMValueRef ring, tmp;
5105
5106 num_components = sel->info.num_stream_output_components[stream];
5107 if (!num_components)
5108 continue;
5109
5110 stride = 4 * num_components * sel->gs_max_out_vertices;
5111
5112 /* Limit on the stride field for <= GFX7. */
5113 assert(stride < (1 << 14));
5114
5115 num_records = 64;
5116
5117 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5118 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5119 tmp = LLVMBuildAdd(builder, tmp,
5120 LLVMConstInt(ctx->i64,
5121 stream_offset, 0), "");
5122 stream_offset += stride * 64;
5123
5124 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5125 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5126 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5127 tmp = LLVMBuildOr(builder, tmp,
5128 LLVMConstInt(ctx->i32,
5129 S_008F04_STRIDE(stride) |
5130 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5131 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5132 ring = LLVMBuildInsertElement(builder, ring,
5133 LLVMConstInt(ctx->i32, num_records, 0),
5134 LLVMConstInt(ctx->i32, 2, 0), "");
5135
5136 uint32_t rsrc3 =
5137 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5138 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5139 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5140 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5141 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5142 S_008F0C_ADD_TID_ENABLE(1);
5143
5144 if (ctx->ac.chip_class >= GFX10) {
5145 rsrc3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5146 S_008F0C_OOB_SELECT(2) |
5147 S_008F0C_RESOURCE_LEVEL(1);
5148 } else {
5149 rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5150 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5151 S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
5152 }
5153
5154 ring = LLVMBuildInsertElement(builder, ring,
5155 LLVMConstInt(ctx->i32, rsrc3, false),
5156 LLVMConstInt(ctx->i32, 3, 0), "");
5157
5158 ctx->gsvs_ring[stream] = ring;
5159 }
5160 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5161 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5162 }
5163 }
5164
5165 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5166 LLVMValueRef param_rw_buffers,
5167 unsigned param_pos_fixed_pt)
5168 {
5169 LLVMBuilderRef builder = ctx->ac.builder;
5170 LLVMValueRef slot, desc, offset, row, bit, address[2];
5171
5172 /* Use the fixed-point gl_FragCoord input.
5173 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5174 * per coordinate to get the repeating effect.
5175 */
5176 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5177 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5178
5179 /* Load the buffer descriptor. */
5180 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5181 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5182
5183 /* The stipple pattern is 32x32, each row has 32 bits. */
5184 offset = LLVMBuildMul(builder, address[1],
5185 LLVMConstInt(ctx->i32, 4, 0), "");
5186 row = buffer_load_const(ctx, desc, offset);
5187 row = ac_to_integer(&ctx->ac, row);
5188 bit = LLVMBuildLShr(builder, row, address[0], "");
5189 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5190 ac_build_kill_if_false(&ctx->ac, bit);
5191 }
5192
5193 /* For the UMR disassembler. */
5194 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5195 #define DEBUGGER_NUM_MARKERS 5
5196
5197 static bool si_shader_binary_open(struct si_screen *screen,
5198 struct si_shader *shader,
5199 struct ac_rtld_binary *rtld)
5200 {
5201 const struct si_shader_selector *sel = shader->selector;
5202 enum pipe_shader_type shader_type = sel ? sel->type : PIPE_SHADER_COMPUTE;
5203 const char *part_elfs[5];
5204 size_t part_sizes[5];
5205 unsigned num_parts = 0;
5206
5207 #define add_part(shader_or_part) \
5208 if (shader_or_part) { \
5209 part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
5210 part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
5211 num_parts++; \
5212 }
5213
5214 add_part(shader->prolog);
5215 add_part(shader->previous_stage);
5216 add_part(shader->prolog2);
5217 add_part(shader);
5218 add_part(shader->epilog);
5219
5220 #undef add_part
5221
5222 struct ac_rtld_symbol lds_symbols[2];
5223 unsigned num_lds_symbols = 0;
5224 unsigned esgs_ring_size = 0;
5225
5226 if (sel && screen->info.chip_class >= GFX9 &&
5227 sel->type == PIPE_SHADER_GEOMETRY && !shader->is_gs_copy_shader) {
5228 esgs_ring_size = shader->gs_info.esgs_ring_size;
5229 }
5230
5231 if (sel && shader->key.as_ngg) {
5232 if (sel->so.num_outputs) {
5233 unsigned esgs_vertex_bytes = 4 * (4 * sel->info.num_outputs + 1);
5234 esgs_ring_size = MAX2(esgs_ring_size,
5235 shader->ngg.max_out_verts * esgs_vertex_bytes);
5236 }
5237
5238 /* GS stores Primitive IDs into LDS at the address corresponding
5239 * to the ES thread of the provoking vertex. All ES threads
5240 * load and export PrimitiveID for their thread.
5241 */
5242 if (sel->type == PIPE_SHADER_VERTEX &&
5243 shader->key.mono.u.vs_export_prim_id)
5244 esgs_ring_size = MAX2(esgs_ring_size, shader->ngg.max_out_verts * 4);
5245 }
5246
5247 if (esgs_ring_size) {
5248 /* We add this symbol even on LLVM <= 8 to ensure that
5249 * shader->config.lds_size is set correctly below.
5250 */
5251 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5252 sym->name = "esgs_ring";
5253 sym->size = esgs_ring_size;
5254 sym->align = 64 * 1024;
5255 }
5256
5257 if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
5258 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
5259 sym->name = "ngg_emit";
5260 sym->size = shader->ngg.ngg_emit_size * 4;
5261 sym->align = 4;
5262 }
5263
5264 bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
5265 .info = &screen->info,
5266 .options = {
5267 .halt_at_entry = screen->options.halt_shaders,
5268 },
5269 .shader_type = tgsi_processor_to_shader_stage(shader_type),
5270 .num_parts = num_parts,
5271 .elf_ptrs = part_elfs,
5272 .elf_sizes = part_sizes,
5273 .num_shared_lds_symbols = num_lds_symbols,
5274 .shared_lds_symbols = lds_symbols });
5275
5276 if (rtld->lds_size > 0) {
5277 unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
5278 shader->config.lds_size =
5279 align(rtld->lds_size, alloc_granularity) / alloc_granularity;
5280 }
5281
5282 return ok;
5283 }
5284
5285 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
5286 {
5287 struct ac_rtld_binary rtld;
5288 si_shader_binary_open(screen, shader, &rtld);
5289 return rtld.rx_size;
5290 }
5291
5292 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
5293 {
5294 uint64_t *scratch_va = data;
5295
5296 if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
5297 *value = (uint32_t)*scratch_va;
5298 return true;
5299 }
5300 if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
5301 /* Enable scratch coalescing. */
5302 *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
5303 S_008F04_SWIZZLE_ENABLE(1);
5304 if (HAVE_LLVM < 0x0800) {
5305 /* Old LLVM created an R_ABS32_HI relocation for
5306 * this symbol. */
5307 *value <<= 32;
5308 }
5309 return true;
5310 }
5311
5312 return false;
5313 }
5314
5315 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
5316 uint64_t scratch_va)
5317 {
5318 struct ac_rtld_binary binary;
5319 if (!si_shader_binary_open(sscreen, shader, &binary))
5320 return false;
5321
5322 si_resource_reference(&shader->bo, NULL);
5323 shader->bo = si_aligned_buffer_create(&sscreen->b,
5324 sscreen->cpdma_prefetch_writes_memory ?
5325 0 : SI_RESOURCE_FLAG_READ_ONLY,
5326 PIPE_USAGE_IMMUTABLE,
5327 align(binary.rx_size, SI_CPDMA_ALIGNMENT),
5328 256);
5329 if (!shader->bo)
5330 return false;
5331
5332 /* Upload. */
5333 struct ac_rtld_upload_info u = {};
5334 u.binary = &binary;
5335 u.get_external_symbol = si_get_external_symbol;
5336 u.cb_data = &scratch_va;
5337 u.rx_va = shader->bo->gpu_address;
5338 u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5339 PIPE_TRANSFER_READ_WRITE |
5340 PIPE_TRANSFER_UNSYNCHRONIZED |
5341 RADEON_TRANSFER_TEMPORARY);
5342 if (!u.rx_ptr)
5343 return false;
5344
5345 bool ok = ac_rtld_upload(&u);
5346
5347 sscreen->ws->buffer_unmap(shader->bo->buf);
5348 ac_rtld_close(&binary);
5349
5350 return ok;
5351 }
5352
5353 static void si_shader_dump_disassembly(struct si_screen *screen,
5354 const struct si_shader_binary *binary,
5355 struct pipe_debug_callback *debug,
5356 const char *name, FILE *file)
5357 {
5358 struct ac_rtld_binary rtld_binary;
5359
5360 if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
5361 .info = &screen->info,
5362 .num_parts = 1,
5363 .elf_ptrs = &binary->elf_buffer,
5364 .elf_sizes = &binary->elf_size }))
5365 return;
5366
5367 const char *disasm;
5368 size_t nbytes;
5369
5370 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
5371 goto out;
5372
5373 if (nbytes > INT_MAX)
5374 goto out;
5375
5376 if (debug && debug->debug_message) {
5377 /* Very long debug messages are cut off, so send the
5378 * disassembly one line at a time. This causes more
5379 * overhead, but on the plus side it simplifies
5380 * parsing of resulting logs.
5381 */
5382 pipe_debug_message(debug, SHADER_INFO,
5383 "Shader Disassembly Begin");
5384
5385 uint64_t line = 0;
5386 while (line < nbytes) {
5387 int count = nbytes - line;
5388 const char *nl = memchr(disasm + line, '\n', nbytes - line);
5389 if (nl)
5390 count = nl - (disasm + line);
5391
5392 if (count) {
5393 pipe_debug_message(debug, SHADER_INFO,
5394 "%.*s", count, disasm + line);
5395 }
5396
5397 line += count + 1;
5398 }
5399
5400 pipe_debug_message(debug, SHADER_INFO,
5401 "Shader Disassembly End");
5402 }
5403
5404 if (file) {
5405 fprintf(file, "Shader %s disassembly:\n", name);
5406 fprintf(file, "%*s", (int)nbytes, disasm);
5407 }
5408
5409 out:
5410 ac_rtld_close(&rtld_binary);
5411 }
5412
5413 static void si_calculate_max_simd_waves(struct si_shader *shader)
5414 {
5415 struct si_screen *sscreen = shader->selector->screen;
5416 struct ac_shader_config *conf = &shader->config;
5417 unsigned num_inputs = shader->selector->info.num_inputs;
5418 unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
5419 unsigned lds_per_wave = 0;
5420 unsigned max_simd_waves;
5421
5422 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5423
5424 /* Compute LDS usage for PS. */
5425 switch (shader->selector->type) {
5426 case PIPE_SHADER_FRAGMENT:
5427 /* The minimum usage per wave is (num_inputs * 48). The maximum
5428 * usage is (num_inputs * 48 * 16).
5429 * We can get anything in between and it varies between waves.
5430 *
5431 * The 48 bytes per input for a single primitive is equal to
5432 * 4 bytes/component * 4 components/input * 3 points.
5433 *
5434 * Other stages don't know the size at compile time or don't
5435 * allocate LDS per wave, but instead they do it per thread group.
5436 */
5437 lds_per_wave = conf->lds_size * lds_increment +
5438 align(num_inputs * 48, lds_increment);
5439 break;
5440 case PIPE_SHADER_COMPUTE:
5441 if (shader->selector) {
5442 unsigned max_workgroup_size =
5443 si_get_max_workgroup_size(shader);
5444 lds_per_wave = (conf->lds_size * lds_increment) /
5445 DIV_ROUND_UP(max_workgroup_size, 64);
5446 }
5447 break;
5448 }
5449
5450 /* Compute the per-SIMD wave counts. */
5451 if (conf->num_sgprs) {
5452 max_simd_waves =
5453 MIN2(max_simd_waves,
5454 ac_get_num_physical_sgprs(sscreen->info.chip_class) / conf->num_sgprs);
5455 }
5456
5457 if (conf->num_vgprs)
5458 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5459
5460 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5461 * 16KB makes some SIMDs unoccupied). */
5462 if (lds_per_wave)
5463 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5464
5465 shader->info.max_simd_waves = max_simd_waves;
5466 }
5467
5468 void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
5469 struct si_shader *shader,
5470 struct pipe_debug_callback *debug)
5471 {
5472 const struct ac_shader_config *conf = &shader->config;
5473
5474 if (screen->options.debug_disassembly)
5475 si_shader_dump_disassembly(screen, &shader->binary, debug, "main", NULL);
5476
5477 pipe_debug_message(debug, SHADER_INFO,
5478 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5479 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5480 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5481 conf->num_sgprs, conf->num_vgprs,
5482 si_get_shader_binary_size(screen, shader),
5483 conf->lds_size, conf->scratch_bytes_per_wave,
5484 shader->info.max_simd_waves, conf->spilled_sgprs,
5485 conf->spilled_vgprs, shader->info.private_mem_vgprs);
5486 }
5487
5488 static void si_shader_dump_stats(struct si_screen *sscreen,
5489 struct si_shader *shader,
5490 unsigned processor,
5491 FILE *file,
5492 bool check_debug_option)
5493 {
5494 const struct ac_shader_config *conf = &shader->config;
5495
5496 if (!check_debug_option ||
5497 si_can_dump_shader(sscreen, processor)) {
5498 if (processor == PIPE_SHADER_FRAGMENT) {
5499 fprintf(file, "*** SHADER CONFIG ***\n"
5500 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5501 "SPI_PS_INPUT_ENA = 0x%04x\n",
5502 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5503 }
5504
5505 fprintf(file, "*** SHADER STATS ***\n"
5506 "SGPRS: %d\n"
5507 "VGPRS: %d\n"
5508 "Spilled SGPRs: %d\n"
5509 "Spilled VGPRs: %d\n"
5510 "Private memory VGPRs: %d\n"
5511 "Code Size: %d bytes\n"
5512 "LDS: %d blocks\n"
5513 "Scratch: %d bytes per wave\n"
5514 "Max Waves: %d\n"
5515 "********************\n\n\n",
5516 conf->num_sgprs, conf->num_vgprs,
5517 conf->spilled_sgprs, conf->spilled_vgprs,
5518 shader->info.private_mem_vgprs,
5519 si_get_shader_binary_size(sscreen, shader),
5520 conf->lds_size, conf->scratch_bytes_per_wave,
5521 shader->info.max_simd_waves);
5522 }
5523 }
5524
5525 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5526 {
5527 switch (processor) {
5528 case PIPE_SHADER_VERTEX:
5529 if (shader->key.as_es)
5530 return "Vertex Shader as ES";
5531 else if (shader->key.as_ls)
5532 return "Vertex Shader as LS";
5533 else if (shader->key.opt.vs_as_prim_discard_cs)
5534 return "Vertex Shader as Primitive Discard CS";
5535 else if (shader->key.as_ngg)
5536 return "Vertex Shader as ESGS";
5537 else
5538 return "Vertex Shader as VS";
5539 case PIPE_SHADER_TESS_CTRL:
5540 return "Tessellation Control Shader";
5541 case PIPE_SHADER_TESS_EVAL:
5542 if (shader->key.as_es)
5543 return "Tessellation Evaluation Shader as ES";
5544 else if (shader->key.as_ngg)
5545 return "Tessellation Evaluation Shader as ESGS";
5546 else
5547 return "Tessellation Evaluation Shader as VS";
5548 case PIPE_SHADER_GEOMETRY:
5549 if (shader->is_gs_copy_shader)
5550 return "GS Copy Shader as VS";
5551 else
5552 return "Geometry Shader";
5553 case PIPE_SHADER_FRAGMENT:
5554 return "Pixel Shader";
5555 case PIPE_SHADER_COMPUTE:
5556 return "Compute Shader";
5557 default:
5558 return "Unknown Shader";
5559 }
5560 }
5561
5562 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
5563 struct pipe_debug_callback *debug, unsigned processor,
5564 FILE *file, bool check_debug_option)
5565 {
5566 if (!check_debug_option ||
5567 si_can_dump_shader(sscreen, processor))
5568 si_dump_shader_key(processor, shader, file);
5569
5570 if (!check_debug_option && shader->binary.llvm_ir_string) {
5571 if (shader->previous_stage &&
5572 shader->previous_stage->binary.llvm_ir_string) {
5573 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5574 si_get_shader_name(shader, processor));
5575 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5576 }
5577
5578 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5579 si_get_shader_name(shader, processor));
5580 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5581 }
5582
5583 if (!check_debug_option ||
5584 (si_can_dump_shader(sscreen, processor) &&
5585 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5586 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5587
5588 if (shader->prolog)
5589 si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
5590 debug, "prolog", file);
5591 if (shader->previous_stage)
5592 si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
5593 debug, "previous stage", file);
5594 if (shader->prolog2)
5595 si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
5596 debug, "prolog2", file);
5597
5598 si_shader_dump_disassembly(sscreen, &shader->binary, debug, "main", file);
5599
5600 if (shader->epilog)
5601 si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
5602 debug, "epilog", file);
5603 fprintf(file, "\n");
5604 }
5605
5606 si_shader_dump_stats(sscreen, shader, processor, file,
5607 check_debug_option);
5608 }
5609
5610 static int si_compile_llvm(struct si_screen *sscreen,
5611 struct si_shader_binary *binary,
5612 struct ac_shader_config *conf,
5613 struct ac_llvm_compiler *compiler,
5614 LLVMModuleRef mod,
5615 struct pipe_debug_callback *debug,
5616 unsigned processor,
5617 const char *name,
5618 bool less_optimized)
5619 {
5620 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5621
5622 if (si_can_dump_shader(sscreen, processor)) {
5623 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5624
5625 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5626 fprintf(stderr, "%s LLVM IR:\n\n", name);
5627 ac_dump_module(mod);
5628 fprintf(stderr, "\n");
5629 }
5630 }
5631
5632 if (sscreen->record_llvm_ir) {
5633 char *ir = LLVMPrintModuleToString(mod);
5634 binary->llvm_ir_string = strdup(ir);
5635 LLVMDisposeMessage(ir);
5636 }
5637
5638 if (!si_replace_shader(count, binary)) {
5639 unsigned r = si_llvm_compile(mod, binary, compiler, debug,
5640 less_optimized);
5641 if (r)
5642 return r;
5643 }
5644
5645 struct ac_rtld_binary rtld;
5646 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
5647 .info = &sscreen->info,
5648 .num_parts = 1,
5649 .elf_ptrs = &binary->elf_buffer,
5650 .elf_sizes = &binary->elf_size }))
5651 return -1;
5652
5653 bool ok = ac_rtld_read_config(&rtld, conf);
5654 ac_rtld_close(&rtld);
5655 if (!ok)
5656 return -1;
5657
5658 /* Enable 64-bit and 16-bit denormals, because there is no performance
5659 * cost.
5660 *
5661 * If denormals are enabled, all floating-point output modifiers are
5662 * ignored.
5663 *
5664 * Don't enable denormals for 32-bit floats, because:
5665 * - Floating-point output modifiers would be ignored by the hw.
5666 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5667 * have to stop using those.
5668 * - GFX6 & GFX7 would be very slow.
5669 */
5670 conf->float_mode |= V_00B028_FP_64_DENORMS;
5671
5672 return 0;
5673 }
5674
5675 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5676 {
5677 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5678 LLVMBuildRetVoid(ctx->ac.builder);
5679 else
5680 LLVMBuildRet(ctx->ac.builder, ret);
5681 }
5682
5683 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5684 struct si_shader *
5685 si_generate_gs_copy_shader(struct si_screen *sscreen,
5686 struct ac_llvm_compiler *compiler,
5687 struct si_shader_selector *gs_selector,
5688 struct pipe_debug_callback *debug)
5689 {
5690 struct si_shader_context ctx;
5691 struct si_shader *shader;
5692 LLVMBuilderRef builder;
5693 struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
5694 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5695 int i;
5696
5697
5698 shader = CALLOC_STRUCT(si_shader);
5699 if (!shader)
5700 return NULL;
5701
5702 /* We can leave the fence as permanently signaled because the GS copy
5703 * shader only becomes visible globally after it has been compiled. */
5704 util_queue_fence_init(&shader->ready);
5705
5706 shader->selector = gs_selector;
5707 shader->is_gs_copy_shader = true;
5708
5709 si_init_shader_ctx(&ctx, sscreen, compiler);
5710 ctx.shader = shader;
5711 ctx.type = PIPE_SHADER_VERTEX;
5712
5713 builder = ctx.ac.builder;
5714
5715 create_function(&ctx);
5716 preload_ring_buffers(&ctx);
5717
5718 LLVMValueRef voffset =
5719 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5720 LLVMConstInt(ctx.i32, 4, 0), "");
5721
5722 /* Fetch the vertex stream ID.*/
5723 LLVMValueRef stream_id;
5724
5725 if (gs_selector->so.num_outputs)
5726 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5727 else
5728 stream_id = ctx.i32_0;
5729
5730 /* Fill in output information. */
5731 for (i = 0; i < gsinfo->num_outputs; ++i) {
5732 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5733 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5734
5735 for (int chan = 0; chan < 4; chan++) {
5736 outputs[i].vertex_stream[chan] =
5737 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5738 }
5739 }
5740
5741 LLVMBasicBlockRef end_bb;
5742 LLVMValueRef switch_inst;
5743
5744 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5745 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5746
5747 for (int stream = 0; stream < 4; stream++) {
5748 LLVMBasicBlockRef bb;
5749 unsigned offset;
5750
5751 if (!gsinfo->num_stream_output_components[stream])
5752 continue;
5753
5754 if (stream > 0 && !gs_selector->so.num_outputs)
5755 continue;
5756
5757 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5758 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5759 LLVMPositionBuilderAtEnd(builder, bb);
5760
5761 /* Fetch vertex data from GSVS ring */
5762 offset = 0;
5763 for (i = 0; i < gsinfo->num_outputs; ++i) {
5764 for (unsigned chan = 0; chan < 4; chan++) {
5765 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5766 outputs[i].vertex_stream[chan] != stream) {
5767 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5768 continue;
5769 }
5770
5771 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5772 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5773 offset++;
5774
5775 outputs[i].values[chan] =
5776 ac_build_buffer_load(&ctx.ac,
5777 ctx.gsvs_ring[0], 1,
5778 ctx.i32_0, voffset,
5779 soffset, 0, 1, 1,
5780 true, false);
5781 }
5782 }
5783
5784 /* Streamout and exports. */
5785 if (gs_selector->so.num_outputs) {
5786 si_llvm_emit_streamout(&ctx, outputs,
5787 gsinfo->num_outputs,
5788 stream);
5789 }
5790
5791 if (stream == 0)
5792 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5793
5794 LLVMBuildBr(builder, end_bb);
5795 }
5796
5797 LLVMPositionBuilderAtEnd(builder, end_bb);
5798
5799 LLVMBuildRetVoid(ctx.ac.builder);
5800
5801 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5802 si_llvm_optimize_module(&ctx);
5803
5804 bool ok = false;
5805 if (si_compile_llvm(sscreen, &ctx.shader->binary,
5806 &ctx.shader->config, ctx.compiler,
5807 ctx.ac.module,
5808 debug, PIPE_SHADER_GEOMETRY,
5809 "GS Copy Shader", false) == 0) {
5810 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5811 fprintf(stderr, "GS Copy Shader:\n");
5812 si_shader_dump(sscreen, ctx.shader, debug,
5813 PIPE_SHADER_GEOMETRY, stderr, true);
5814
5815 if (!ctx.shader->config.scratch_bytes_per_wave)
5816 ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
5817 else
5818 ok = true;
5819 }
5820
5821 si_llvm_dispose(&ctx);
5822
5823 if (!ok) {
5824 FREE(shader);
5825 shader = NULL;
5826 } else {
5827 si_fix_resource_usage(sscreen, shader);
5828 }
5829 return shader;
5830 }
5831
5832 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5833 const struct si_vs_prolog_bits *prolog,
5834 const char *prefix, FILE *f)
5835 {
5836 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5837 prefix, prolog->instance_divisor_is_one);
5838 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5839 prefix, prolog->instance_divisor_is_fetched);
5840 fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n",
5841 prefix, prolog->unpack_instance_id_from_vertex_id);
5842 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5843 prefix, prolog->ls_vgpr_fix);
5844
5845 fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
5846 fprintf(f, " mono.vs.fix_fetch = {");
5847 for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
5848 union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
5849 if (i)
5850 fprintf(f, ", ");
5851 if (!fix.bits)
5852 fprintf(f, "0");
5853 else
5854 fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
5855 fix.u.num_channels_m1, fix.u.format);
5856 }
5857 fprintf(f, "}\n");
5858 }
5859
5860 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5861 FILE *f)
5862 {
5863 const struct si_shader_key *key = &shader->key;
5864
5865 fprintf(f, "SHADER KEY\n");
5866
5867 switch (processor) {
5868 case PIPE_SHADER_VERTEX:
5869 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5870 "part.vs.prolog", f);
5871 fprintf(f, " as_es = %u\n", key->as_es);
5872 fprintf(f, " as_ls = %u\n", key->as_ls);
5873 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5874 key->mono.u.vs_export_prim_id);
5875 fprintf(f, " opt.vs_as_prim_discard_cs = %u\n",
5876 key->opt.vs_as_prim_discard_cs);
5877 fprintf(f, " opt.cs_prim_type = %s\n",
5878 tgsi_primitive_names[key->opt.cs_prim_type]);
5879 fprintf(f, " opt.cs_indexed = %u\n",
5880 key->opt.cs_indexed);
5881 fprintf(f, " opt.cs_instancing = %u\n",
5882 key->opt.cs_instancing);
5883 fprintf(f, " opt.cs_primitive_restart = %u\n",
5884 key->opt.cs_primitive_restart);
5885 fprintf(f, " opt.cs_provoking_vertex_first = %u\n",
5886 key->opt.cs_provoking_vertex_first);
5887 fprintf(f, " opt.cs_need_correct_orientation = %u\n",
5888 key->opt.cs_need_correct_orientation);
5889 fprintf(f, " opt.cs_cull_front = %u\n",
5890 key->opt.cs_cull_front);
5891 fprintf(f, " opt.cs_cull_back = %u\n",
5892 key->opt.cs_cull_back);
5893 fprintf(f, " opt.cs_cull_z = %u\n",
5894 key->opt.cs_cull_z);
5895 fprintf(f, " opt.cs_halfz_clip_space = %u\n",
5896 key->opt.cs_halfz_clip_space);
5897 break;
5898
5899 case PIPE_SHADER_TESS_CTRL:
5900 if (shader->selector->screen->info.chip_class >= GFX9) {
5901 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5902 "part.tcs.ls_prolog", f);
5903 }
5904 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5905 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5906 break;
5907
5908 case PIPE_SHADER_TESS_EVAL:
5909 fprintf(f, " as_es = %u\n", key->as_es);
5910 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5911 key->mono.u.vs_export_prim_id);
5912 break;
5913
5914 case PIPE_SHADER_GEOMETRY:
5915 if (shader->is_gs_copy_shader)
5916 break;
5917
5918 if (shader->selector->screen->info.chip_class >= GFX9 &&
5919 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5920 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5921 "part.gs.vs_prolog", f);
5922 }
5923 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5924 break;
5925
5926 case PIPE_SHADER_COMPUTE:
5927 break;
5928
5929 case PIPE_SHADER_FRAGMENT:
5930 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5931 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5932 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5933 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5934 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5935 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5936 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5937 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5938 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5939 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5940 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5941 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5942 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5943 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5944 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5945 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5946 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5947 break;
5948
5949 default:
5950 assert(0);
5951 }
5952
5953 if ((processor == PIPE_SHADER_GEOMETRY ||
5954 processor == PIPE_SHADER_TESS_EVAL ||
5955 processor == PIPE_SHADER_VERTEX) &&
5956 !key->as_es && !key->as_ls) {
5957 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5958 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5959 }
5960 }
5961
5962 static void si_init_shader_ctx(struct si_shader_context *ctx,
5963 struct si_screen *sscreen,
5964 struct ac_llvm_compiler *compiler)
5965 {
5966 struct lp_build_tgsi_context *bld_base;
5967
5968 si_llvm_context_init(ctx, sscreen, compiler);
5969
5970 bld_base = &ctx->bld_base;
5971 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5972
5973 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID].emit = build_interp_intrinsic;
5974 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE].emit = build_interp_intrinsic;
5975 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET].emit = build_interp_intrinsic;
5976
5977 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5978
5979 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5980
5981 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5982 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5983 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5984 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5985
5986 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5987 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5988 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5989 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5990 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5991 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5992 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5993 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5994
5995 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5996 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5997 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5998 }
5999
6000 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6001 {
6002 struct si_shader *shader = ctx->shader;
6003 struct tgsi_shader_info *info = &shader->selector->info;
6004
6005 if ((ctx->type != PIPE_SHADER_VERTEX &&
6006 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6007 shader->key.as_ls ||
6008 shader->key.as_es)
6009 return;
6010
6011 ac_optimize_vs_outputs(&ctx->ac,
6012 ctx->main_fn,
6013 shader->info.vs_output_param_offset,
6014 info->num_outputs,
6015 &shader->info.nr_param_exports);
6016 }
6017
6018 static void si_init_exec_from_input(struct si_shader_context *ctx,
6019 unsigned param, unsigned bitoffset)
6020 {
6021 LLVMValueRef args[] = {
6022 LLVMGetParam(ctx->main_fn, param),
6023 LLVMConstInt(ctx->i32, bitoffset, 0),
6024 };
6025 ac_build_intrinsic(&ctx->ac,
6026 "llvm.amdgcn.init.exec.from.input",
6027 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6028 }
6029
6030 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6031 const struct si_vs_prolog_bits *key)
6032 {
6033 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6034 * VS prolog. */
6035 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6036 }
6037
6038 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6039 {
6040 struct si_shader *shader = ctx->shader;
6041 struct si_shader_selector *sel = shader->selector;
6042 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6043
6044 // TODO clean all this up!
6045 switch (ctx->type) {
6046 case PIPE_SHADER_VERTEX:
6047 ctx->load_input = declare_input_vs;
6048 if (shader->key.as_ls)
6049 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6050 else if (shader->key.as_es)
6051 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6052 else if (shader->key.opt.vs_as_prim_discard_cs)
6053 ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
6054 else if (shader->key.as_ngg)
6055 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6056 else
6057 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6058 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6059 ctx->abi.load_base_vertex = get_base_vertex;
6060 break;
6061 case PIPE_SHADER_TESS_CTRL:
6062 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6063 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6064 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6065 bld_base->emit_store = store_output_tcs;
6066 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6067 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6068 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6069 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6070 break;
6071 case PIPE_SHADER_TESS_EVAL:
6072 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6073 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6074 ctx->abi.load_tess_coord = si_load_tess_coord;
6075 ctx->abi.load_tess_level = si_load_tess_level;
6076 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6077 if (shader->key.as_es)
6078 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6079 else if (shader->key.as_ngg)
6080 ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
6081 else
6082 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6083 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6084 break;
6085 case PIPE_SHADER_GEOMETRY:
6086 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6087 ctx->abi.load_inputs = si_nir_load_input_gs;
6088 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6089 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6090 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6091 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6092 break;
6093 case PIPE_SHADER_FRAGMENT:
6094 ctx->load_input = declare_input_fs;
6095 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6096 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6097 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6098 ctx->abi.load_sample_position = load_sample_position;
6099 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6100 ctx->abi.emit_kill = si_llvm_emit_kill;
6101 break;
6102 case PIPE_SHADER_COMPUTE:
6103 ctx->abi.load_local_group_size = get_block_size;
6104 break;
6105 default:
6106 assert(!"Unsupported shader type");
6107 return false;
6108 }
6109
6110 ctx->abi.load_ubo = load_ubo;
6111 ctx->abi.load_ssbo = load_ssbo;
6112
6113 create_function(ctx);
6114 preload_ring_buffers(ctx);
6115
6116 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6117 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6118 for (unsigned i = 0; i < 6; i++) {
6119 ctx->invoc0_tess_factors[i] =
6120 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6121 }
6122 }
6123
6124 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6125 for (unsigned i = 0; i < 4; i++) {
6126 ctx->gs_next_vertex[i] =
6127 ac_build_alloca(&ctx->ac, ctx->i32, "");
6128 }
6129 if (shader->key.as_ngg) {
6130 for (unsigned i = 0; i < 4; ++i) {
6131 ctx->gs_curprim_verts[i] =
6132 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6133 ctx->gs_generated_prims[i] =
6134 lp_build_alloca(&ctx->gallivm, ctx->ac.i32, "");
6135 }
6136
6137 unsigned scratch_size = 8;
6138 if (sel->so.num_outputs)
6139 scratch_size = 44;
6140
6141 LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
6142 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6143 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6144 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
6145 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6146
6147 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6148 LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
6149 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
6150 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
6151 }
6152 }
6153
6154 if (shader->key.as_ngg && ctx->type != PIPE_SHADER_GEOMETRY) {
6155 /* Unconditionally declare scratch space base for streamout and
6156 * vertex compaction. Whether space is actually allocated is
6157 * determined during linking / PM4 creation.
6158 *
6159 * Add an extra dword per vertex to ensure an odd stride, which
6160 * avoids bank conflicts for SoA accesses.
6161 */
6162 declare_esgs_ring(ctx);
6163
6164 /* This is really only needed when streamout and / or vertex
6165 * compaction is enabled.
6166 */
6167 LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
6168 ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
6169 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
6170 LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
6171 LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
6172 }
6173
6174 /* For GFX9 merged shaders:
6175 * - Set EXEC for the first shader. If the prolog is present, set
6176 * EXEC there instead.
6177 * - Add a barrier before the second shader.
6178 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6179 * an if-statement. This is required for correctness in geometry
6180 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6181 * GS_CUT messages.
6182 *
6183 * For monolithic merged shaders, the first shader is wrapped in an
6184 * if-block together with its prolog in si_build_wrapper_function.
6185 *
6186 * NGG vertex and tess eval shaders running as the last
6187 * vertex/geometry stage handle execution explicitly using
6188 * if-statements.
6189 */
6190 if (ctx->screen->info.chip_class >= GFX9) {
6191 if (!shader->is_monolithic &&
6192 sel->info.num_instructions > 1 && /* not empty shader */
6193 (shader->key.as_es || shader->key.as_ls) &&
6194 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6195 (ctx->type == PIPE_SHADER_VERTEX &&
6196 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6197 si_init_exec_from_input(ctx,
6198 ctx->param_merged_wave_info, 0);
6199 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6200 ctx->type == PIPE_SHADER_GEOMETRY ||
6201 shader->key.as_ngg) {
6202 LLVMValueRef num_threads;
6203 bool nested_barrier;
6204
6205 if (!shader->is_monolithic ||
6206 (ctx->type == PIPE_SHADER_TESS_EVAL &&
6207 shader->key.as_ngg))
6208 ac_init_exec_full_mask(&ctx->ac);
6209
6210 if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6211 ctx->type == PIPE_SHADER_GEOMETRY) {
6212 if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
6213 gfx10_ngg_gs_emit_prologue(ctx);
6214 nested_barrier = false;
6215 } else {
6216 nested_barrier = true;
6217 }
6218
6219 /* Number of patches / primitives */
6220 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6221 } else {
6222 /* Number of vertices */
6223 num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
6224 nested_barrier = false;
6225 }
6226
6227 LLVMValueRef ena =
6228 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6229 ac_get_thread_id(&ctx->ac), num_threads, "");
6230 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6231
6232 if (nested_barrier) {
6233 /* Execute a barrier before the second shader in
6234 * a merged shader.
6235 *
6236 * Execute the barrier inside the conditional block,
6237 * so that empty waves can jump directly to s_endpgm,
6238 * which will also signal the barrier.
6239 *
6240 * This is possible in gfx9, because an empty wave
6241 * for the second shader does not participate in
6242 * the epilogue. With NGG, empty waves may still
6243 * be required to export data (e.g. GS output vertices),
6244 * so we cannot let them exit early.
6245 *
6246 * If the shader is TCS and the TCS epilog is present
6247 * and contains a barrier, it will wait there and then
6248 * reach s_endpgm.
6249 */
6250 si_llvm_emit_barrier(NULL, bld_base, NULL);
6251 }
6252 }
6253 }
6254
6255 if (sel->force_correct_derivs_after_kill) {
6256 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6257 /* true = don't kill. */
6258 LLVMBuildStore(ctx->ac.builder, ctx->i1true,
6259 ctx->postponed_kill);
6260 }
6261
6262 if (sel->tokens) {
6263 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6264 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6265 return false;
6266 }
6267 } else {
6268 if (!si_nir_build_llvm(ctx, sel->nir)) {
6269 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6270 return false;
6271 }
6272 }
6273
6274 si_llvm_build_ret(ctx, ctx->return_value);
6275 return true;
6276 }
6277
6278 /**
6279 * Compute the VS prolog key, which contains all the information needed to
6280 * build the VS prolog function, and set shader->info bits where needed.
6281 *
6282 * \param info Shader info of the vertex shader.
6283 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6284 * \param prolog_key Key of the VS prolog
6285 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6286 * \param key Output shader part key.
6287 */
6288 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6289 unsigned num_input_sgprs,
6290 const struct si_vs_prolog_bits *prolog_key,
6291 struct si_shader *shader_out,
6292 union si_shader_part_key *key)
6293 {
6294 memset(key, 0, sizeof(*key));
6295 key->vs_prolog.states = *prolog_key;
6296 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6297 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6298 key->vs_prolog.as_ls = shader_out->key.as_ls;
6299 key->vs_prolog.as_es = shader_out->key.as_es;
6300 key->vs_prolog.as_ngg = shader_out->key.as_ngg;
6301
6302 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6303 key->vs_prolog.as_ls = 1;
6304 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6305 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6306 key->vs_prolog.as_es = 1;
6307 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6308 } else if (shader_out->key.as_ngg) {
6309 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6310 }
6311
6312 /* Enable loading the InstanceID VGPR. */
6313 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6314
6315 if ((key->vs_prolog.states.instance_divisor_is_one |
6316 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6317 shader_out->info.uses_instanceid = true;
6318 }
6319
6320 /**
6321 * Compute the PS prolog key, which contains all the information needed to
6322 * build the PS prolog function, and set related bits in shader->config.
6323 */
6324 static void si_get_ps_prolog_key(struct si_shader *shader,
6325 union si_shader_part_key *key,
6326 bool separate_prolog)
6327 {
6328 struct tgsi_shader_info *info = &shader->selector->info;
6329
6330 memset(key, 0, sizeof(*key));
6331 key->ps_prolog.states = shader->key.part.ps.prolog;
6332 key->ps_prolog.colors_read = info->colors_read;
6333 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6334 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6335 key->ps_prolog.wqm = info->uses_derivatives &&
6336 (key->ps_prolog.colors_read ||
6337 key->ps_prolog.states.force_persp_sample_interp ||
6338 key->ps_prolog.states.force_linear_sample_interp ||
6339 key->ps_prolog.states.force_persp_center_interp ||
6340 key->ps_prolog.states.force_linear_center_interp ||
6341 key->ps_prolog.states.bc_optimize_for_persp ||
6342 key->ps_prolog.states.bc_optimize_for_linear);
6343 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6344
6345 if (info->colors_read) {
6346 unsigned *color = shader->selector->color_attr_index;
6347
6348 if (shader->key.part.ps.prolog.color_two_side) {
6349 /* BCOLORs are stored after the last input. */
6350 key->ps_prolog.num_interp_inputs = info->num_inputs;
6351 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6352 if (separate_prolog)
6353 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6354 }
6355
6356 for (unsigned i = 0; i < 2; i++) {
6357 unsigned interp = info->input_interpolate[color[i]];
6358 unsigned location = info->input_interpolate_loc[color[i]];
6359
6360 if (!(info->colors_read & (0xf << i*4)))
6361 continue;
6362
6363 key->ps_prolog.color_attr_index[i] = color[i];
6364
6365 if (shader->key.part.ps.prolog.flatshade_colors &&
6366 interp == TGSI_INTERPOLATE_COLOR)
6367 interp = TGSI_INTERPOLATE_CONSTANT;
6368
6369 switch (interp) {
6370 case TGSI_INTERPOLATE_CONSTANT:
6371 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6372 break;
6373 case TGSI_INTERPOLATE_PERSPECTIVE:
6374 case TGSI_INTERPOLATE_COLOR:
6375 /* Force the interpolation location for colors here. */
6376 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6377 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6378 if (shader->key.part.ps.prolog.force_persp_center_interp)
6379 location = TGSI_INTERPOLATE_LOC_CENTER;
6380
6381 switch (location) {
6382 case TGSI_INTERPOLATE_LOC_SAMPLE:
6383 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6384 if (separate_prolog) {
6385 shader->config.spi_ps_input_ena |=
6386 S_0286CC_PERSP_SAMPLE_ENA(1);
6387 }
6388 break;
6389 case TGSI_INTERPOLATE_LOC_CENTER:
6390 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6391 if (separate_prolog) {
6392 shader->config.spi_ps_input_ena |=
6393 S_0286CC_PERSP_CENTER_ENA(1);
6394 }
6395 break;
6396 case TGSI_INTERPOLATE_LOC_CENTROID:
6397 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6398 if (separate_prolog) {
6399 shader->config.spi_ps_input_ena |=
6400 S_0286CC_PERSP_CENTROID_ENA(1);
6401 }
6402 break;
6403 default:
6404 assert(0);
6405 }
6406 break;
6407 case TGSI_INTERPOLATE_LINEAR:
6408 /* Force the interpolation location for colors here. */
6409 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6410 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6411 if (shader->key.part.ps.prolog.force_linear_center_interp)
6412 location = TGSI_INTERPOLATE_LOC_CENTER;
6413
6414 /* The VGPR assignment for non-monolithic shaders
6415 * works because InitialPSInputAddr is set on the
6416 * main shader and PERSP_PULL_MODEL is never used.
6417 */
6418 switch (location) {
6419 case TGSI_INTERPOLATE_LOC_SAMPLE:
6420 key->ps_prolog.color_interp_vgpr_index[i] =
6421 separate_prolog ? 6 : 9;
6422 if (separate_prolog) {
6423 shader->config.spi_ps_input_ena |=
6424 S_0286CC_LINEAR_SAMPLE_ENA(1);
6425 }
6426 break;
6427 case TGSI_INTERPOLATE_LOC_CENTER:
6428 key->ps_prolog.color_interp_vgpr_index[i] =
6429 separate_prolog ? 8 : 11;
6430 if (separate_prolog) {
6431 shader->config.spi_ps_input_ena |=
6432 S_0286CC_LINEAR_CENTER_ENA(1);
6433 }
6434 break;
6435 case TGSI_INTERPOLATE_LOC_CENTROID:
6436 key->ps_prolog.color_interp_vgpr_index[i] =
6437 separate_prolog ? 10 : 13;
6438 if (separate_prolog) {
6439 shader->config.spi_ps_input_ena |=
6440 S_0286CC_LINEAR_CENTROID_ENA(1);
6441 }
6442 break;
6443 default:
6444 assert(0);
6445 }
6446 break;
6447 default:
6448 assert(0);
6449 }
6450 }
6451 }
6452 }
6453
6454 /**
6455 * Check whether a PS prolog is required based on the key.
6456 */
6457 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6458 {
6459 return key->ps_prolog.colors_read ||
6460 key->ps_prolog.states.force_persp_sample_interp ||
6461 key->ps_prolog.states.force_linear_sample_interp ||
6462 key->ps_prolog.states.force_persp_center_interp ||
6463 key->ps_prolog.states.force_linear_center_interp ||
6464 key->ps_prolog.states.bc_optimize_for_persp ||
6465 key->ps_prolog.states.bc_optimize_for_linear ||
6466 key->ps_prolog.states.poly_stipple ||
6467 key->ps_prolog.states.samplemask_log_ps_iter;
6468 }
6469
6470 /**
6471 * Compute the PS epilog key, which contains all the information needed to
6472 * build the PS epilog function.
6473 */
6474 static void si_get_ps_epilog_key(struct si_shader *shader,
6475 union si_shader_part_key *key)
6476 {
6477 struct tgsi_shader_info *info = &shader->selector->info;
6478 memset(key, 0, sizeof(*key));
6479 key->ps_epilog.colors_written = info->colors_written;
6480 key->ps_epilog.writes_z = info->writes_z;
6481 key->ps_epilog.writes_stencil = info->writes_stencil;
6482 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6483 key->ps_epilog.states = shader->key.part.ps.epilog;
6484 }
6485
6486 /**
6487 * Build the GS prolog function. Rotate the input vertices for triangle strips
6488 * with adjacency.
6489 */
6490 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6491 union si_shader_part_key *key)
6492 {
6493 unsigned num_sgprs, num_vgprs;
6494 struct si_function_info fninfo;
6495 LLVMBuilderRef builder = ctx->ac.builder;
6496 LLVMTypeRef returns[48];
6497 LLVMValueRef func, ret;
6498
6499 si_init_function_info(&fninfo);
6500
6501 if (ctx->screen->info.chip_class >= GFX9) {
6502 if (key->gs_prolog.states.gfx9_prev_is_vs)
6503 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6504 else
6505 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6506 num_vgprs = 5; /* ES inputs are not needed by GS */
6507 } else {
6508 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6509 num_vgprs = 8;
6510 }
6511
6512 for (unsigned i = 0; i < num_sgprs; ++i) {
6513 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6514 returns[i] = ctx->i32;
6515 }
6516
6517 for (unsigned i = 0; i < num_vgprs; ++i) {
6518 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6519 returns[num_sgprs + i] = ctx->f32;
6520 }
6521
6522 /* Create the function. */
6523 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6524 &fninfo, 0);
6525 func = ctx->main_fn;
6526
6527 /* Set the full EXEC mask for the prolog, because we are only fiddling
6528 * with registers here. The main shader part will set the correct EXEC
6529 * mask.
6530 */
6531 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6532 ac_init_exec_full_mask(&ctx->ac);
6533
6534 /* Copy inputs to outputs. This should be no-op, as the registers match,
6535 * but it will prevent the compiler from overwriting them unintentionally.
6536 */
6537 ret = ctx->return_value;
6538 for (unsigned i = 0; i < num_sgprs; i++) {
6539 LLVMValueRef p = LLVMGetParam(func, i);
6540 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6541 }
6542 for (unsigned i = 0; i < num_vgprs; i++) {
6543 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6544 p = ac_to_float(&ctx->ac, p);
6545 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6546 }
6547
6548 if (key->gs_prolog.states.tri_strip_adj_fix) {
6549 /* Remap the input vertices for every other primitive. */
6550 const unsigned gfx6_vtx_params[6] = {
6551 num_sgprs,
6552 num_sgprs + 1,
6553 num_sgprs + 3,
6554 num_sgprs + 4,
6555 num_sgprs + 5,
6556 num_sgprs + 6
6557 };
6558 const unsigned gfx9_vtx_params[3] = {
6559 num_sgprs,
6560 num_sgprs + 1,
6561 num_sgprs + 4,
6562 };
6563 LLVMValueRef vtx_in[6], vtx_out[6];
6564 LLVMValueRef prim_id, rotate;
6565
6566 if (ctx->screen->info.chip_class >= GFX9) {
6567 for (unsigned i = 0; i < 3; i++) {
6568 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6569 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6570 }
6571 } else {
6572 for (unsigned i = 0; i < 6; i++)
6573 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6574 }
6575
6576 prim_id = LLVMGetParam(func, num_sgprs + 2);
6577 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6578
6579 for (unsigned i = 0; i < 6; ++i) {
6580 LLVMValueRef base, rotated;
6581 base = vtx_in[i];
6582 rotated = vtx_in[(i + 4) % 6];
6583 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6584 }
6585
6586 if (ctx->screen->info.chip_class >= GFX9) {
6587 for (unsigned i = 0; i < 3; i++) {
6588 LLVMValueRef hi, out;
6589
6590 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6591 LLVMConstInt(ctx->i32, 16, 0), "");
6592 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6593 out = ac_to_float(&ctx->ac, out);
6594 ret = LLVMBuildInsertValue(builder, ret, out,
6595 gfx9_vtx_params[i], "");
6596 }
6597 } else {
6598 for (unsigned i = 0; i < 6; i++) {
6599 LLVMValueRef out;
6600
6601 out = ac_to_float(&ctx->ac, vtx_out[i]);
6602 ret = LLVMBuildInsertValue(builder, ret, out,
6603 gfx6_vtx_params[i], "");
6604 }
6605 }
6606 }
6607
6608 LLVMBuildRet(builder, ret);
6609 }
6610
6611 /**
6612 * Given a list of shader part functions, build a wrapper function that
6613 * runs them in sequence to form a monolithic shader.
6614 */
6615 static void si_build_wrapper_function(struct si_shader_context *ctx,
6616 LLVMValueRef *parts,
6617 unsigned num_parts,
6618 unsigned main_part,
6619 unsigned next_shader_first_part)
6620 {
6621 LLVMBuilderRef builder = ctx->ac.builder;
6622 /* PS epilog has one arg per color component; gfx9 merged shader
6623 * prologs need to forward 32 user SGPRs.
6624 */
6625 struct si_function_info fninfo;
6626 LLVMValueRef initial[64], out[64];
6627 LLVMTypeRef function_type;
6628 unsigned num_first_params;
6629 unsigned num_out, initial_num_out;
6630 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6631 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6632 unsigned num_sgprs, num_vgprs;
6633 unsigned gprs;
6634 struct lp_build_if_state if_state;
6635
6636 si_init_function_info(&fninfo);
6637
6638 for (unsigned i = 0; i < num_parts; ++i) {
6639 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6640 AC_FUNC_ATTR_ALWAYSINLINE);
6641 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6642 }
6643
6644 /* The parameters of the wrapper function correspond to those of the
6645 * first part in terms of SGPRs and VGPRs, but we use the types of the
6646 * main part to get the right types. This is relevant for the
6647 * dereferenceable attribute on descriptor table pointers.
6648 */
6649 num_sgprs = 0;
6650 num_vgprs = 0;
6651
6652 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6653 num_first_params = LLVMCountParamTypes(function_type);
6654
6655 for (unsigned i = 0; i < num_first_params; ++i) {
6656 LLVMValueRef param = LLVMGetParam(parts[0], i);
6657
6658 if (ac_is_sgpr_param(param)) {
6659 assert(num_vgprs == 0);
6660 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6661 } else {
6662 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6663 }
6664 }
6665
6666 gprs = 0;
6667 while (gprs < num_sgprs + num_vgprs) {
6668 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6669 LLVMTypeRef type = LLVMTypeOf(param);
6670 unsigned size = ac_get_type_size(type) / 4;
6671
6672 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6673
6674 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6675 assert(gprs + size <= num_sgprs + num_vgprs &&
6676 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6677
6678 gprs += size;
6679 }
6680
6681 /* Prepare the return type. */
6682 unsigned num_returns = 0;
6683 LLVMTypeRef returns[32], last_func_type, return_type;
6684
6685 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
6686 return_type = LLVMGetReturnType(last_func_type);
6687
6688 switch (LLVMGetTypeKind(return_type)) {
6689 case LLVMStructTypeKind:
6690 num_returns = LLVMCountStructElementTypes(return_type);
6691 assert(num_returns <= ARRAY_SIZE(returns));
6692 LLVMGetStructElementTypes(return_type, returns);
6693 break;
6694 case LLVMVoidTypeKind:
6695 break;
6696 default:
6697 unreachable("unexpected type");
6698 }
6699
6700 si_create_function(ctx, "wrapper", returns, num_returns, &fninfo,
6701 si_get_max_workgroup_size(ctx->shader));
6702
6703 if (is_merged_shader(ctx))
6704 ac_init_exec_full_mask(&ctx->ac);
6705
6706 /* Record the arguments of the function as if they were an output of
6707 * a previous part.
6708 */
6709 num_out = 0;
6710 num_out_sgpr = 0;
6711
6712 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6713 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6714 LLVMTypeRef param_type = LLVMTypeOf(param);
6715 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6716 unsigned size = ac_get_type_size(param_type) / 4;
6717
6718 if (size == 1) {
6719 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6720 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6721 param_type = ctx->i32;
6722 }
6723
6724 if (param_type != out_type)
6725 param = LLVMBuildBitCast(builder, param, out_type, "");
6726 out[num_out++] = param;
6727 } else {
6728 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6729
6730 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6731 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6732 param_type = ctx->i64;
6733 }
6734
6735 if (param_type != vector_type)
6736 param = LLVMBuildBitCast(builder, param, vector_type, "");
6737
6738 for (unsigned j = 0; j < size; ++j)
6739 out[num_out++] = LLVMBuildExtractElement(
6740 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6741 }
6742
6743 if (i < fninfo.num_sgpr_params)
6744 num_out_sgpr = num_out;
6745 }
6746
6747 memcpy(initial, out, sizeof(out));
6748 initial_num_out = num_out;
6749 initial_num_out_sgpr = num_out_sgpr;
6750
6751 /* Now chain the parts. */
6752 LLVMValueRef ret;
6753 for (unsigned part = 0; part < num_parts; ++part) {
6754 LLVMValueRef in[48];
6755 LLVMTypeRef ret_type;
6756 unsigned out_idx = 0;
6757 unsigned num_params = LLVMCountParams(parts[part]);
6758
6759 /* Merged shaders are executed conditionally depending
6760 * on the number of enabled threads passed in the input SGPRs. */
6761 if (is_multi_part_shader(ctx) && part == 0) {
6762 LLVMValueRef ena, count = initial[3];
6763
6764 count = LLVMBuildAnd(builder, count,
6765 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6766 ena = LLVMBuildICmp(builder, LLVMIntULT,
6767 ac_get_thread_id(&ctx->ac), count, "");
6768 lp_build_if(&if_state, &ctx->gallivm, ena);
6769 }
6770
6771 /* Derive arguments for the next part from outputs of the
6772 * previous one.
6773 */
6774 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6775 LLVMValueRef param;
6776 LLVMTypeRef param_type;
6777 bool is_sgpr;
6778 unsigned param_size;
6779 LLVMValueRef arg = NULL;
6780
6781 param = LLVMGetParam(parts[part], param_idx);
6782 param_type = LLVMTypeOf(param);
6783 param_size = ac_get_type_size(param_type) / 4;
6784 is_sgpr = ac_is_sgpr_param(param);
6785
6786 if (is_sgpr) {
6787 ac_add_function_attr(ctx->ac.context, parts[part],
6788 param_idx + 1, AC_FUNC_ATTR_INREG);
6789 } else if (out_idx < num_out_sgpr) {
6790 /* Skip returned SGPRs the current part doesn't
6791 * declare on the input. */
6792 out_idx = num_out_sgpr;
6793 }
6794
6795 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6796
6797 if (param_size == 1)
6798 arg = out[out_idx];
6799 else
6800 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6801
6802 if (LLVMTypeOf(arg) != param_type) {
6803 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6804 if (LLVMGetPointerAddressSpace(param_type) ==
6805 AC_ADDR_SPACE_CONST_32BIT) {
6806 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6807 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6808 } else {
6809 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6810 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6811 }
6812 } else {
6813 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6814 }
6815 }
6816
6817 in[param_idx] = arg;
6818 out_idx += param_size;
6819 }
6820
6821 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
6822
6823 if (is_multi_part_shader(ctx) &&
6824 part + 1 == next_shader_first_part) {
6825 lp_build_endif(&if_state);
6826
6827 /* The second half of the merged shader should use
6828 * the inputs from the toplevel (wrapper) function,
6829 * not the return value from the last call.
6830 *
6831 * That's because the last call was executed condi-
6832 * tionally, so we can't consume it in the main
6833 * block.
6834 */
6835 memcpy(out, initial, sizeof(initial));
6836 num_out = initial_num_out;
6837 num_out_sgpr = initial_num_out_sgpr;
6838 continue;
6839 }
6840
6841 /* Extract the returned GPRs. */
6842 ret_type = LLVMTypeOf(ret);
6843 num_out = 0;
6844 num_out_sgpr = 0;
6845
6846 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6847 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6848
6849 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6850
6851 for (unsigned i = 0; i < ret_size; ++i) {
6852 LLVMValueRef val =
6853 LLVMBuildExtractValue(builder, ret, i, "");
6854
6855 assert(num_out < ARRAY_SIZE(out));
6856 out[num_out++] = val;
6857
6858 if (LLVMTypeOf(val) == ctx->i32) {
6859 assert(num_out_sgpr + 1 == num_out);
6860 num_out_sgpr = num_out;
6861 }
6862 }
6863 }
6864 }
6865
6866 /* Return the value from the last part. */
6867 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6868 LLVMBuildRetVoid(builder);
6869 else
6870 LLVMBuildRet(builder, ret);
6871 }
6872
6873 static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
6874 struct si_shader_selector *sel)
6875 {
6876 if (!compiler->low_opt_passes)
6877 return false;
6878
6879 /* Assume a slow CPU. */
6880 assert(!sel->screen->info.has_dedicated_vram &&
6881 sel->screen->info.chip_class <= GFX8);
6882
6883 /* For a crazy dEQP test containing 2597 memory opcodes, mostly
6884 * buffer stores. */
6885 return sel->type == PIPE_SHADER_COMPUTE &&
6886 sel->info.num_memory_instructions > 1000;
6887 }
6888
6889 int si_compile_tgsi_shader(struct si_screen *sscreen,
6890 struct ac_llvm_compiler *compiler,
6891 struct si_shader *shader,
6892 struct pipe_debug_callback *debug)
6893 {
6894 struct si_shader_selector *sel = shader->selector;
6895 struct si_shader_context ctx;
6896 int r = -1;
6897
6898 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6899 * conversion fails. */
6900 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6901 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6902 if (sel->tokens)
6903 tgsi_dump(sel->tokens, 0);
6904 else
6905 nir_print_shader(sel->nir, stderr);
6906 si_dump_streamout(&sel->so);
6907 }
6908
6909 si_init_shader_ctx(&ctx, sscreen, compiler);
6910 si_llvm_context_set_tgsi(&ctx, shader);
6911
6912 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6913 sizeof(shader->info.vs_output_param_offset));
6914
6915 shader->info.uses_instanceid = sel->info.uses_instanceid;
6916
6917 if (!si_compile_tgsi_main(&ctx)) {
6918 si_llvm_dispose(&ctx);
6919 return -1;
6920 }
6921
6922 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6923 LLVMValueRef parts[2];
6924 bool need_prolog = sel->vs_needs_prolog;
6925
6926 parts[1] = ctx.main_fn;
6927
6928 if (need_prolog) {
6929 union si_shader_part_key prolog_key;
6930 si_get_vs_prolog_key(&sel->info,
6931 shader->info.num_input_sgprs,
6932 &shader->key.part.vs.prolog,
6933 shader, &prolog_key);
6934 si_build_vs_prolog_function(&ctx, &prolog_key);
6935 parts[0] = ctx.main_fn;
6936 }
6937
6938 si_build_wrapper_function(&ctx, parts + !need_prolog,
6939 1 + need_prolog, need_prolog, 0);
6940
6941 if (ctx.shader->key.opt.vs_as_prim_discard_cs)
6942 si_build_prim_discard_compute_shader(&ctx);
6943 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6944 if (sscreen->info.chip_class >= GFX9) {
6945 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6946 LLVMValueRef parts[4];
6947 bool vs_needs_prolog =
6948 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6949
6950 /* TCS main part */
6951 parts[2] = ctx.main_fn;
6952
6953 /* TCS epilog */
6954 union si_shader_part_key tcs_epilog_key;
6955 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6956 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6957 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6958 parts[3] = ctx.main_fn;
6959
6960 /* VS as LS main part */
6961 struct si_shader shader_ls = {};
6962 shader_ls.selector = ls;
6963 shader_ls.key.as_ls = 1;
6964 shader_ls.key.mono = shader->key.mono;
6965 shader_ls.key.opt = shader->key.opt;
6966 shader_ls.is_monolithic = true;
6967 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6968
6969 if (!si_compile_tgsi_main(&ctx)) {
6970 si_llvm_dispose(&ctx);
6971 return -1;
6972 }
6973 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6974 parts[1] = ctx.main_fn;
6975
6976 /* LS prolog */
6977 if (vs_needs_prolog) {
6978 union si_shader_part_key vs_prolog_key;
6979 si_get_vs_prolog_key(&ls->info,
6980 shader_ls.info.num_input_sgprs,
6981 &shader->key.part.tcs.ls_prolog,
6982 shader, &vs_prolog_key);
6983 vs_prolog_key.vs_prolog.is_monolithic = true;
6984 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6985 parts[0] = ctx.main_fn;
6986 }
6987
6988 /* Reset the shader context. */
6989 ctx.shader = shader;
6990 ctx.type = PIPE_SHADER_TESS_CTRL;
6991
6992 si_build_wrapper_function(&ctx,
6993 parts + !vs_needs_prolog,
6994 4 - !vs_needs_prolog, vs_needs_prolog,
6995 vs_needs_prolog ? 2 : 1);
6996 } else {
6997 LLVMValueRef parts[2];
6998 union si_shader_part_key epilog_key;
6999
7000 parts[0] = ctx.main_fn;
7001
7002 memset(&epilog_key, 0, sizeof(epilog_key));
7003 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7004 si_build_tcs_epilog_function(&ctx, &epilog_key);
7005 parts[1] = ctx.main_fn;
7006
7007 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
7008 }
7009 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7010 if (ctx.screen->info.chip_class >= GFX9) {
7011 struct si_shader_selector *es = shader->key.part.gs.es;
7012 LLVMValueRef es_prolog = NULL;
7013 LLVMValueRef es_main = NULL;
7014 LLVMValueRef gs_prolog = NULL;
7015 LLVMValueRef gs_main = ctx.main_fn;
7016
7017 /* GS prolog */
7018 union si_shader_part_key gs_prolog_key;
7019 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
7020 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7021 gs_prolog_key.gs_prolog.is_monolithic = true;
7022 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
7023 gs_prolog = ctx.main_fn;
7024
7025 /* ES main part */
7026 struct si_shader shader_es = {};
7027 shader_es.selector = es;
7028 shader_es.key.as_es = 1;
7029 shader_es.key.mono = shader->key.mono;
7030 shader_es.key.opt = shader->key.opt;
7031 shader_es.is_monolithic = true;
7032 si_llvm_context_set_tgsi(&ctx, &shader_es);
7033
7034 if (!si_compile_tgsi_main(&ctx)) {
7035 si_llvm_dispose(&ctx);
7036 return -1;
7037 }
7038 shader->info.uses_instanceid |= es->info.uses_instanceid;
7039 es_main = ctx.main_fn;
7040
7041 /* ES prolog */
7042 if (es->vs_needs_prolog) {
7043 union si_shader_part_key vs_prolog_key;
7044 si_get_vs_prolog_key(&es->info,
7045 shader_es.info.num_input_sgprs,
7046 &shader->key.part.gs.vs_prolog,
7047 shader, &vs_prolog_key);
7048 vs_prolog_key.vs_prolog.is_monolithic = true;
7049 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
7050 es_prolog = ctx.main_fn;
7051 }
7052
7053 /* Reset the shader context. */
7054 ctx.shader = shader;
7055 ctx.type = PIPE_SHADER_GEOMETRY;
7056
7057 /* Prepare the array of shader parts. */
7058 LLVMValueRef parts[4];
7059 unsigned num_parts = 0, main_part, next_first_part;
7060
7061 if (es_prolog)
7062 parts[num_parts++] = es_prolog;
7063
7064 parts[main_part = num_parts++] = es_main;
7065 parts[next_first_part = num_parts++] = gs_prolog;
7066 parts[num_parts++] = gs_main;
7067
7068 si_build_wrapper_function(&ctx, parts, num_parts,
7069 main_part, next_first_part);
7070 } else {
7071 LLVMValueRef parts[2];
7072 union si_shader_part_key prolog_key;
7073
7074 parts[1] = ctx.main_fn;
7075
7076 memset(&prolog_key, 0, sizeof(prolog_key));
7077 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7078 si_build_gs_prolog_function(&ctx, &prolog_key);
7079 parts[0] = ctx.main_fn;
7080
7081 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
7082 }
7083 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7084 LLVMValueRef parts[3];
7085 union si_shader_part_key prolog_key;
7086 union si_shader_part_key epilog_key;
7087 bool need_prolog;
7088
7089 si_get_ps_prolog_key(shader, &prolog_key, false);
7090 need_prolog = si_need_ps_prolog(&prolog_key);
7091
7092 parts[need_prolog ? 1 : 0] = ctx.main_fn;
7093
7094 if (need_prolog) {
7095 si_build_ps_prolog_function(&ctx, &prolog_key);
7096 parts[0] = ctx.main_fn;
7097 }
7098
7099 si_get_ps_epilog_key(shader, &epilog_key);
7100 si_build_ps_epilog_function(&ctx, &epilog_key);
7101 parts[need_prolog ? 2 : 1] = ctx.main_fn;
7102
7103 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
7104 need_prolog ? 1 : 0, 0);
7105 }
7106
7107 si_llvm_optimize_module(&ctx);
7108
7109 /* Post-optimization transformations and analysis. */
7110 si_optimize_vs_outputs(&ctx);
7111
7112 if ((debug && debug->debug_message) ||
7113 si_can_dump_shader(sscreen, ctx.type)) {
7114 ctx.shader->info.private_mem_vgprs =
7115 ac_count_scratch_private_memory(ctx.main_fn);
7116 }
7117
7118 /* Make sure the input is a pointer and not integer followed by inttoptr. */
7119 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
7120 LLVMPointerTypeKind);
7121
7122 /* Compile to bytecode. */
7123 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
7124 ctx.ac.module, debug, ctx.type,
7125 si_get_shader_name(shader, ctx.type),
7126 si_should_optimize_less(compiler, shader->selector));
7127 si_llvm_dispose(&ctx);
7128 if (r) {
7129 fprintf(stderr, "LLVM failed to compile shader\n");
7130 return r;
7131 }
7132
7133 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7134 * LLVM 3.9svn has this bug.
7135 */
7136 if (sel->type == PIPE_SHADER_COMPUTE) {
7137 unsigned wave_size = 64;
7138 unsigned max_vgprs = 256;
7139 unsigned max_sgprs = sscreen->info.chip_class >= GFX8 ? 800 : 512;
7140 unsigned max_sgprs_per_wave = 128;
7141 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7142 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7143 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7144
7145 max_vgprs = max_vgprs / min_waves_per_simd;
7146 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7147
7148 if (shader->config.num_sgprs > max_sgprs ||
7149 shader->config.num_vgprs > max_vgprs) {
7150 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7151 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7152 shader->config.num_sgprs, shader->config.num_vgprs,
7153 max_sgprs, max_vgprs);
7154
7155 /* Just terminate the process, because dependent
7156 * shaders can hang due to bad input data, but use
7157 * the env var to allow shader-db to work.
7158 */
7159 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7160 abort();
7161 }
7162 }
7163
7164 /* Add the scratch offset to input SGPRs. */
7165 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(&ctx))
7166 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7167
7168 /* Calculate the number of fragment input VGPRs. */
7169 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7170 shader->info.num_input_vgprs = 0;
7171 shader->info.face_vgpr_index = -1;
7172 shader->info.ancillary_vgpr_index = -1;
7173
7174 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7175 shader->info.num_input_vgprs += 2;
7176 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7177 shader->info.num_input_vgprs += 2;
7178 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7179 shader->info.num_input_vgprs += 2;
7180 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7181 shader->info.num_input_vgprs += 3;
7182 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7183 shader->info.num_input_vgprs += 2;
7184 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7185 shader->info.num_input_vgprs += 2;
7186 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7187 shader->info.num_input_vgprs += 2;
7188 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7189 shader->info.num_input_vgprs += 1;
7190 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7191 shader->info.num_input_vgprs += 1;
7192 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7193 shader->info.num_input_vgprs += 1;
7194 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7195 shader->info.num_input_vgprs += 1;
7196 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7197 shader->info.num_input_vgprs += 1;
7198 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7199 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7200 shader->info.num_input_vgprs += 1;
7201 }
7202 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7203 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7204 shader->info.num_input_vgprs += 1;
7205 }
7206 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7207 shader->info.num_input_vgprs += 1;
7208 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7209 shader->info.num_input_vgprs += 1;
7210 }
7211
7212 si_calculate_max_simd_waves(shader);
7213 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
7214 return 0;
7215 }
7216
7217 /**
7218 * Create, compile and return a shader part (prolog or epilog).
7219 *
7220 * \param sscreen screen
7221 * \param list list of shader parts of the same category
7222 * \param type shader type
7223 * \param key shader part key
7224 * \param prolog whether the part being requested is a prolog
7225 * \param tm LLVM target machine
7226 * \param debug debug callback
7227 * \param build the callback responsible for building the main function
7228 * \return non-NULL on success
7229 */
7230 static struct si_shader_part *
7231 si_get_shader_part(struct si_screen *sscreen,
7232 struct si_shader_part **list,
7233 enum pipe_shader_type type,
7234 bool prolog,
7235 union si_shader_part_key *key,
7236 struct ac_llvm_compiler *compiler,
7237 struct pipe_debug_callback *debug,
7238 void (*build)(struct si_shader_context *,
7239 union si_shader_part_key *),
7240 const char *name)
7241 {
7242 struct si_shader_part *result;
7243
7244 mtx_lock(&sscreen->shader_parts_mutex);
7245
7246 /* Find existing. */
7247 for (result = *list; result; result = result->next) {
7248 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7249 mtx_unlock(&sscreen->shader_parts_mutex);
7250 return result;
7251 }
7252 }
7253
7254 /* Compile a new one. */
7255 result = CALLOC_STRUCT(si_shader_part);
7256 result->key = *key;
7257
7258 struct si_shader shader = {};
7259 struct si_shader_context ctx;
7260
7261 si_init_shader_ctx(&ctx, sscreen, compiler);
7262 ctx.shader = &shader;
7263 ctx.type = type;
7264
7265 switch (type) {
7266 case PIPE_SHADER_VERTEX:
7267 shader.key.as_ls = key->vs_prolog.as_ls;
7268 shader.key.as_es = key->vs_prolog.as_es;
7269 shader.key.as_ngg = key->vs_prolog.as_ngg;
7270 break;
7271 case PIPE_SHADER_TESS_CTRL:
7272 assert(!prolog);
7273 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7274 break;
7275 case PIPE_SHADER_GEOMETRY:
7276 assert(prolog);
7277 break;
7278 case PIPE_SHADER_FRAGMENT:
7279 if (prolog)
7280 shader.key.part.ps.prolog = key->ps_prolog.states;
7281 else
7282 shader.key.part.ps.epilog = key->ps_epilog.states;
7283 break;
7284 default:
7285 unreachable("bad shader part");
7286 }
7287
7288 build(&ctx, key);
7289
7290 /* Compile. */
7291 si_llvm_optimize_module(&ctx);
7292
7293 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7294 ctx.ac.module, debug, ctx.type, name, false)) {
7295 FREE(result);
7296 result = NULL;
7297 goto out;
7298 }
7299
7300 result->next = *list;
7301 *list = result;
7302
7303 out:
7304 si_llvm_dispose(&ctx);
7305 mtx_unlock(&sscreen->shader_parts_mutex);
7306 return result;
7307 }
7308
7309 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7310 {
7311 LLVMValueRef ptr[2], list;
7312 bool merged_shader = is_merged_shader(ctx);
7313
7314 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7315 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7316 ac_array_in_const32_addr_space(ctx->v4i32), "");
7317 return list;
7318 }
7319
7320 /**
7321 * Build the vertex shader prolog function.
7322 *
7323 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7324 * All inputs are returned unmodified. The vertex load indices are
7325 * stored after them, which will be used by the API VS for fetching inputs.
7326 *
7327 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7328 * input_v0,
7329 * input_v1,
7330 * input_v2,
7331 * input_v3,
7332 * (VertexID + BaseVertex),
7333 * (InstanceID + StartInstance),
7334 * (InstanceID / 2 + StartInstance)
7335 */
7336 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7337 union si_shader_part_key *key)
7338 {
7339 struct si_function_info fninfo;
7340 LLVMTypeRef *returns;
7341 LLVMValueRef ret, func;
7342 int num_returns, i;
7343 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7344 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7345 LLVMValueRef input_vgprs[9];
7346 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7347 num_input_vgprs;
7348 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7349
7350 si_init_function_info(&fninfo);
7351
7352 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7353 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7354 sizeof(LLVMTypeRef));
7355 num_returns = 0;
7356
7357 /* Declare input and output SGPRs. */
7358 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7359 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7360 returns[num_returns++] = ctx->i32;
7361 }
7362
7363 /* Preloaded VGPRs (outputs must be floats) */
7364 for (i = 0; i < num_input_vgprs; i++) {
7365 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7366 returns[num_returns++] = ctx->f32;
7367 }
7368
7369 /* Vertex load indices. */
7370 for (i = 0; i <= key->vs_prolog.last_input; i++)
7371 returns[num_returns++] = ctx->f32;
7372
7373 /* Create the function. */
7374 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7375 func = ctx->main_fn;
7376
7377 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7378 if (!key->vs_prolog.is_monolithic)
7379 si_init_exec_from_input(ctx, 3, 0);
7380
7381 if (key->vs_prolog.as_ls &&
7382 ctx->screen->has_ls_vgpr_init_bug) {
7383 /* If there are no HS threads, SPI loads the LS VGPRs
7384 * starting at VGPR 0. Shift them back to where they
7385 * belong.
7386 */
7387 LLVMValueRef has_hs_threads =
7388 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7389 si_unpack_param(ctx, 3, 8, 8),
7390 ctx->i32_0, "");
7391
7392 for (i = 4; i > 0; --i) {
7393 input_vgprs[i + 1] =
7394 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7395 input_vgprs[i + 1],
7396 input_vgprs[i - 1], "");
7397 }
7398 }
7399 }
7400
7401 unsigned vertex_id_vgpr = first_vs_vgpr;
7402 unsigned instance_id_vgpr =
7403 ctx->screen->info.chip_class >= GFX10 ?
7404 first_vs_vgpr + 3 :
7405 first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
7406
7407 ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
7408 ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
7409
7410 /* InstanceID = VertexID >> 16;
7411 * VertexID = VertexID & 0xffff;
7412 */
7413 if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
7414 ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
7415 LLVMConstInt(ctx->i32, 16, 0), "");
7416 ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
7417 LLVMConstInt(ctx->i32, 0xffff, 0), "");
7418 }
7419
7420 /* Copy inputs to outputs. This should be no-op, as the registers match,
7421 * but it will prevent the compiler from overwriting them unintentionally.
7422 */
7423 ret = ctx->return_value;
7424 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7425 LLVMValueRef p = LLVMGetParam(func, i);
7426 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7427 }
7428 for (i = 0; i < num_input_vgprs; i++) {
7429 LLVMValueRef p = input_vgprs[i];
7430
7431 if (i == vertex_id_vgpr)
7432 p = ctx->abi.vertex_id;
7433 else if (i == instance_id_vgpr)
7434 p = ctx->abi.instance_id;
7435
7436 p = ac_to_float(&ctx->ac, p);
7437 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7438 key->vs_prolog.num_input_sgprs + i, "");
7439 }
7440
7441 struct lp_build_if_state wrap_if_state;
7442 LLVMValueRef original_ret = ret;
7443 bool wrapped = false;
7444
7445 if (key->vs_prolog.is_monolithic && key->vs_prolog.as_ngg) {
7446 LLVMValueRef num_threads;
7447 LLVMValueRef ena;
7448
7449 num_threads = si_unpack_param(ctx, 3, 0, 8);
7450 ena = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
7451 ac_get_thread_id(&ctx->ac), num_threads, "");
7452 lp_build_if(&wrap_if_state, &ctx->gallivm, ena);
7453 wrapped = true;
7454 }
7455
7456 /* Compute vertex load indices from instance divisors. */
7457 LLVMValueRef instance_divisor_constbuf = NULL;
7458
7459 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7460 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7461 LLVMValueRef buf_index =
7462 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7463 instance_divisor_constbuf =
7464 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7465 }
7466
7467 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7468 bool divisor_is_one =
7469 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7470 bool divisor_is_fetched =
7471 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7472 LLVMValueRef index = NULL;
7473
7474 if (divisor_is_one) {
7475 index = ctx->abi.instance_id;
7476 } else if (divisor_is_fetched) {
7477 LLVMValueRef udiv_factors[4];
7478
7479 for (unsigned j = 0; j < 4; j++) {
7480 udiv_factors[j] =
7481 buffer_load_const(ctx, instance_divisor_constbuf,
7482 LLVMConstInt(ctx->i32, i*16 + j*4, 0));
7483 udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
7484 }
7485 /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
7486 * Such InstanceID might not be achievable in a reasonable time though.
7487 */
7488 index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
7489 udiv_factors[0], udiv_factors[1],
7490 udiv_factors[2], udiv_factors[3]);
7491 }
7492
7493 if (divisor_is_one || divisor_is_fetched) {
7494 /* Add StartInstance. */
7495 index = LLVMBuildAdd(ctx->ac.builder, index,
7496 LLVMGetParam(ctx->main_fn, user_sgpr_base +
7497 SI_SGPR_START_INSTANCE), "");
7498 } else {
7499 /* VertexID + BaseVertex */
7500 index = LLVMBuildAdd(ctx->ac.builder,
7501 ctx->abi.vertex_id,
7502 LLVMGetParam(func, user_sgpr_base +
7503 SI_SGPR_BASE_VERTEX), "");
7504 }
7505
7506 index = ac_to_float(&ctx->ac, index);
7507 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7508 fninfo.num_params + i, "");
7509 }
7510
7511 if (wrapped) {
7512 lp_build_endif(&wrap_if_state);
7513
7514 LLVMValueRef values[2] = {
7515 ret,
7516 original_ret
7517 };
7518 LLVMBasicBlockRef bbs[2] = {
7519 wrap_if_state.true_block,
7520 wrap_if_state.entry_block
7521 };
7522 ret = ac_build_phi(&ctx->ac, LLVMTypeOf(ret), 2, values, bbs);
7523 }
7524
7525 si_llvm_build_ret(ctx, ret);
7526 }
7527
7528 static bool si_get_vs_prolog(struct si_screen *sscreen,
7529 struct ac_llvm_compiler *compiler,
7530 struct si_shader *shader,
7531 struct pipe_debug_callback *debug,
7532 struct si_shader *main_part,
7533 const struct si_vs_prolog_bits *key)
7534 {
7535 struct si_shader_selector *vs = main_part->selector;
7536
7537 if (!si_vs_needs_prolog(vs, key))
7538 return true;
7539
7540 /* Get the prolog. */
7541 union si_shader_part_key prolog_key;
7542 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7543 key, shader, &prolog_key);
7544
7545 shader->prolog =
7546 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7547 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7548 debug, si_build_vs_prolog_function,
7549 "Vertex Shader Prolog");
7550 return shader->prolog != NULL;
7551 }
7552
7553 /**
7554 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7555 */
7556 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7557 struct ac_llvm_compiler *compiler,
7558 struct si_shader *shader,
7559 struct pipe_debug_callback *debug)
7560 {
7561 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7562 &shader->key.part.vs.prolog);
7563 }
7564
7565 /**
7566 * Compile the TCS epilog function. This writes tesselation factors to memory
7567 * based on the output primitive type of the tesselator (determined by TES).
7568 */
7569 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7570 union si_shader_part_key *key)
7571 {
7572 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7573 struct si_function_info fninfo;
7574 LLVMValueRef func;
7575
7576 si_init_function_info(&fninfo);
7577
7578 if (ctx->screen->info.chip_class >= GFX9) {
7579 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7580 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7581 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7582 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7583 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7584 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7585 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7586 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7587 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7588 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7589 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7590 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7591 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7592 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7593 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7594 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7595 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7596 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7597 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7598 } else {
7599 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7600 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7601 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7602 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7603 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7604 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7605 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7606 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7607 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7608 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7609 }
7610
7611 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7612 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7613 unsigned tess_factors_idx =
7614 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7615 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7616 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7617
7618 for (unsigned i = 0; i < 6; i++)
7619 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7620
7621 /* Create the function. */
7622 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7623 ctx->screen->info.chip_class >= GFX7 ? 128 : 64);
7624 ac_declare_lds_as_pointer(&ctx->ac);
7625 func = ctx->main_fn;
7626
7627 LLVMValueRef invoc0_tess_factors[6];
7628 for (unsigned i = 0; i < 6; i++)
7629 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7630
7631 si_write_tess_factors(bld_base,
7632 LLVMGetParam(func, tess_factors_idx),
7633 LLVMGetParam(func, tess_factors_idx + 1),
7634 LLVMGetParam(func, tess_factors_idx + 2),
7635 invoc0_tess_factors, invoc0_tess_factors + 4);
7636
7637 LLVMBuildRetVoid(ctx->ac.builder);
7638 }
7639
7640 /**
7641 * Select and compile (or reuse) TCS parts (epilog).
7642 */
7643 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7644 struct ac_llvm_compiler *compiler,
7645 struct si_shader *shader,
7646 struct pipe_debug_callback *debug)
7647 {
7648 if (sscreen->info.chip_class >= GFX9) {
7649 struct si_shader *ls_main_part =
7650 shader->key.part.tcs.ls->main_shader_part_ls;
7651
7652 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7653 &shader->key.part.tcs.ls_prolog))
7654 return false;
7655
7656 shader->previous_stage = ls_main_part;
7657 }
7658
7659 /* Get the epilog. */
7660 union si_shader_part_key epilog_key;
7661 memset(&epilog_key, 0, sizeof(epilog_key));
7662 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7663
7664 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7665 PIPE_SHADER_TESS_CTRL, false,
7666 &epilog_key, compiler, debug,
7667 si_build_tcs_epilog_function,
7668 "Tessellation Control Shader Epilog");
7669 return shader->epilog != NULL;
7670 }
7671
7672 /**
7673 * Select and compile (or reuse) GS parts (prolog).
7674 */
7675 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7676 struct ac_llvm_compiler *compiler,
7677 struct si_shader *shader,
7678 struct pipe_debug_callback *debug)
7679 {
7680 if (sscreen->info.chip_class >= GFX9) {
7681 struct si_shader *es_main_part =
7682 shader->key.part.gs.es->main_shader_part_es;
7683
7684 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7685 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7686 &shader->key.part.gs.vs_prolog))
7687 return false;
7688
7689 shader->previous_stage = es_main_part;
7690 }
7691
7692 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7693 return true;
7694
7695 union si_shader_part_key prolog_key;
7696 memset(&prolog_key, 0, sizeof(prolog_key));
7697 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7698
7699 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7700 PIPE_SHADER_GEOMETRY, true,
7701 &prolog_key, compiler, debug,
7702 si_build_gs_prolog_function,
7703 "Geometry Shader Prolog");
7704 return shader->prolog2 != NULL;
7705 }
7706
7707 /**
7708 * Build the pixel shader prolog function. This handles:
7709 * - two-side color selection and interpolation
7710 * - overriding interpolation parameters for the API PS
7711 * - polygon stippling
7712 *
7713 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7714 * overriden by other states. (e.g. per-sample interpolation)
7715 * Interpolated colors are stored after the preloaded VGPRs.
7716 */
7717 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7718 union si_shader_part_key *key)
7719 {
7720 struct si_function_info fninfo;
7721 LLVMValueRef ret, func;
7722 int num_returns, i, num_color_channels;
7723
7724 assert(si_need_ps_prolog(key));
7725
7726 si_init_function_info(&fninfo);
7727
7728 /* Declare inputs. */
7729 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7730 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7731
7732 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7733 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7734
7735 /* Declare outputs (same as inputs + add colors if needed) */
7736 num_returns = fninfo.num_params;
7737 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7738 for (i = 0; i < num_color_channels; i++)
7739 fninfo.types[num_returns++] = ctx->f32;
7740
7741 /* Create the function. */
7742 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7743 &fninfo, 0);
7744 func = ctx->main_fn;
7745
7746 /* Copy inputs to outputs. This should be no-op, as the registers match,
7747 * but it will prevent the compiler from overwriting them unintentionally.
7748 */
7749 ret = ctx->return_value;
7750 for (i = 0; i < fninfo.num_params; i++) {
7751 LLVMValueRef p = LLVMGetParam(func, i);
7752 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7753 }
7754
7755 /* Polygon stippling. */
7756 if (key->ps_prolog.states.poly_stipple) {
7757 /* POS_FIXED_PT is always last. */
7758 unsigned pos = key->ps_prolog.num_input_sgprs +
7759 key->ps_prolog.num_input_vgprs - 1;
7760 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7761
7762 si_llvm_emit_polygon_stipple(ctx, list, pos);
7763 }
7764
7765 if (key->ps_prolog.states.bc_optimize_for_persp ||
7766 key->ps_prolog.states.bc_optimize_for_linear) {
7767 unsigned i, base = key->ps_prolog.num_input_sgprs;
7768 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7769
7770 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7771 * The hw doesn't compute CENTROID if the whole wave only
7772 * contains fully-covered quads.
7773 *
7774 * PRIM_MASK is after user SGPRs.
7775 */
7776 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7777 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7778 LLVMConstInt(ctx->i32, 31, 0), "");
7779 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7780 ctx->i1, "");
7781
7782 if (key->ps_prolog.states.bc_optimize_for_persp) {
7783 /* Read PERSP_CENTER. */
7784 for (i = 0; i < 2; i++)
7785 center[i] = LLVMGetParam(func, base + 2 + i);
7786 /* Read PERSP_CENTROID. */
7787 for (i = 0; i < 2; i++)
7788 centroid[i] = LLVMGetParam(func, base + 4 + i);
7789 /* Select PERSP_CENTROID. */
7790 for (i = 0; i < 2; i++) {
7791 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7792 center[i], centroid[i], "");
7793 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7794 tmp, base + 4 + i, "");
7795 }
7796 }
7797 if (key->ps_prolog.states.bc_optimize_for_linear) {
7798 /* Read LINEAR_CENTER. */
7799 for (i = 0; i < 2; i++)
7800 center[i] = LLVMGetParam(func, base + 8 + i);
7801 /* Read LINEAR_CENTROID. */
7802 for (i = 0; i < 2; i++)
7803 centroid[i] = LLVMGetParam(func, base + 10 + i);
7804 /* Select LINEAR_CENTROID. */
7805 for (i = 0; i < 2; i++) {
7806 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7807 center[i], centroid[i], "");
7808 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7809 tmp, base + 10 + i, "");
7810 }
7811 }
7812 }
7813
7814 /* Force per-sample interpolation. */
7815 if (key->ps_prolog.states.force_persp_sample_interp) {
7816 unsigned i, base = key->ps_prolog.num_input_sgprs;
7817 LLVMValueRef persp_sample[2];
7818
7819 /* Read PERSP_SAMPLE. */
7820 for (i = 0; i < 2; i++)
7821 persp_sample[i] = LLVMGetParam(func, base + i);
7822 /* Overwrite PERSP_CENTER. */
7823 for (i = 0; i < 2; i++)
7824 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7825 persp_sample[i], base + 2 + i, "");
7826 /* Overwrite PERSP_CENTROID. */
7827 for (i = 0; i < 2; i++)
7828 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7829 persp_sample[i], base + 4 + i, "");
7830 }
7831 if (key->ps_prolog.states.force_linear_sample_interp) {
7832 unsigned i, base = key->ps_prolog.num_input_sgprs;
7833 LLVMValueRef linear_sample[2];
7834
7835 /* Read LINEAR_SAMPLE. */
7836 for (i = 0; i < 2; i++)
7837 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7838 /* Overwrite LINEAR_CENTER. */
7839 for (i = 0; i < 2; i++)
7840 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7841 linear_sample[i], base + 8 + i, "");
7842 /* Overwrite LINEAR_CENTROID. */
7843 for (i = 0; i < 2; i++)
7844 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7845 linear_sample[i], base + 10 + i, "");
7846 }
7847
7848 /* Force center interpolation. */
7849 if (key->ps_prolog.states.force_persp_center_interp) {
7850 unsigned i, base = key->ps_prolog.num_input_sgprs;
7851 LLVMValueRef persp_center[2];
7852
7853 /* Read PERSP_CENTER. */
7854 for (i = 0; i < 2; i++)
7855 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7856 /* Overwrite PERSP_SAMPLE. */
7857 for (i = 0; i < 2; i++)
7858 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7859 persp_center[i], base + i, "");
7860 /* Overwrite PERSP_CENTROID. */
7861 for (i = 0; i < 2; i++)
7862 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7863 persp_center[i], base + 4 + i, "");
7864 }
7865 if (key->ps_prolog.states.force_linear_center_interp) {
7866 unsigned i, base = key->ps_prolog.num_input_sgprs;
7867 LLVMValueRef linear_center[2];
7868
7869 /* Read LINEAR_CENTER. */
7870 for (i = 0; i < 2; i++)
7871 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7872 /* Overwrite LINEAR_SAMPLE. */
7873 for (i = 0; i < 2; i++)
7874 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7875 linear_center[i], base + 6 + i, "");
7876 /* Overwrite LINEAR_CENTROID. */
7877 for (i = 0; i < 2; i++)
7878 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7879 linear_center[i], base + 10 + i, "");
7880 }
7881
7882 /* Interpolate colors. */
7883 unsigned color_out_idx = 0;
7884 for (i = 0; i < 2; i++) {
7885 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7886 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7887 key->ps_prolog.face_vgpr_index;
7888 LLVMValueRef interp[2], color[4];
7889 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7890
7891 if (!writemask)
7892 continue;
7893
7894 /* If the interpolation qualifier is not CONSTANT (-1). */
7895 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7896 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7897 key->ps_prolog.color_interp_vgpr_index[i];
7898
7899 /* Get the (i,j) updated by bc_optimize handling. */
7900 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7901 interp_vgpr, "");
7902 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7903 interp_vgpr + 1, "");
7904 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7905 }
7906
7907 /* Use the absolute location of the input. */
7908 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7909
7910 if (key->ps_prolog.states.color_two_side) {
7911 face = LLVMGetParam(func, face_vgpr);
7912 face = ac_to_integer(&ctx->ac, face);
7913 }
7914
7915 interp_fs_input(ctx,
7916 key->ps_prolog.color_attr_index[i],
7917 TGSI_SEMANTIC_COLOR, i,
7918 key->ps_prolog.num_interp_inputs,
7919 key->ps_prolog.colors_read, interp_ij,
7920 prim_mask, face, color);
7921
7922 while (writemask) {
7923 unsigned chan = u_bit_scan(&writemask);
7924 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7925 fninfo.num_params + color_out_idx++, "");
7926 }
7927 }
7928
7929 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7930 * says:
7931 *
7932 * "When per-sample shading is active due to the use of a fragment
7933 * input qualified by sample or due to the use of the gl_SampleID
7934 * or gl_SamplePosition variables, only the bit for the current
7935 * sample is set in gl_SampleMaskIn. When state specifies multiple
7936 * fragment shader invocations for a given fragment, the sample
7937 * mask for any single fragment shader invocation may specify a
7938 * subset of the covered samples for the fragment. In this case,
7939 * the bit corresponding to each covered sample will be set in
7940 * exactly one fragment shader invocation."
7941 *
7942 * The samplemask loaded by hardware is always the coverage of the
7943 * entire pixel/fragment, so mask bits out based on the sample ID.
7944 */
7945 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7946 /* The bit pattern matches that used by fixed function fragment
7947 * processing. */
7948 static const uint16_t ps_iter_masks[] = {
7949 0xffff, /* not used */
7950 0x5555,
7951 0x1111,
7952 0x0101,
7953 0x0001,
7954 };
7955 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7956
7957 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7958 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7959 key->ps_prolog.ancillary_vgpr_index;
7960 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7961 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7962
7963 samplemask = ac_to_integer(&ctx->ac, samplemask);
7964 samplemask = LLVMBuildAnd(
7965 ctx->ac.builder,
7966 samplemask,
7967 LLVMBuildShl(ctx->ac.builder,
7968 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7969 sampleid, ""),
7970 "");
7971 samplemask = ac_to_float(&ctx->ac, samplemask);
7972
7973 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7974 ancillary_vgpr + 1, "");
7975 }
7976
7977 /* Tell LLVM to insert WQM instruction sequence when needed. */
7978 if (key->ps_prolog.wqm) {
7979 LLVMAddTargetDependentFunctionAttr(func,
7980 "amdgpu-ps-wqm-outputs", "");
7981 }
7982
7983 si_llvm_build_ret(ctx, ret);
7984 }
7985
7986 /**
7987 * Build the pixel shader epilog function. This handles everything that must be
7988 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7989 */
7990 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7991 union si_shader_part_key *key)
7992 {
7993 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7994 struct si_function_info fninfo;
7995 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7996 int i;
7997 struct si_ps_exports exp = {};
7998
7999 si_init_function_info(&fninfo);
8000
8001 /* Declare input SGPRs. */
8002 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8003 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8004 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8005 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
8006 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
8007
8008 /* Declare input VGPRs. */
8009 unsigned required_num_params =
8010 fninfo.num_sgpr_params +
8011 util_bitcount(key->ps_epilog.colors_written) * 4 +
8012 key->ps_epilog.writes_z +
8013 key->ps_epilog.writes_stencil +
8014 key->ps_epilog.writes_samplemask;
8015
8016 required_num_params = MAX2(required_num_params,
8017 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8018
8019 while (fninfo.num_params < required_num_params)
8020 add_arg(&fninfo, ARG_VGPR, ctx->f32);
8021
8022 /* Create the function. */
8023 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
8024 /* Disable elimination of unused inputs. */
8025 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
8026 "InitialPSInputAddr", 0xffffff);
8027
8028 /* Process colors. */
8029 unsigned vgpr = fninfo.num_sgpr_params;
8030 unsigned colors_written = key->ps_epilog.colors_written;
8031 int last_color_export = -1;
8032
8033 /* Find the last color export. */
8034 if (!key->ps_epilog.writes_z &&
8035 !key->ps_epilog.writes_stencil &&
8036 !key->ps_epilog.writes_samplemask) {
8037 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8038
8039 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8040 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8041 /* Just set this if any of the colorbuffers are enabled. */
8042 if (spi_format &
8043 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8044 last_color_export = 0;
8045 } else {
8046 for (i = 0; i < 8; i++)
8047 if (colors_written & (1 << i) &&
8048 (spi_format >> (i * 4)) & 0xf)
8049 last_color_export = i;
8050 }
8051 }
8052
8053 while (colors_written) {
8054 LLVMValueRef color[4];
8055 int mrt = u_bit_scan(&colors_written);
8056
8057 for (i = 0; i < 4; i++)
8058 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8059
8060 si_export_mrt_color(bld_base, color, mrt,
8061 fninfo.num_params - 1,
8062 mrt == last_color_export, &exp);
8063 }
8064
8065 /* Process depth, stencil, samplemask. */
8066 if (key->ps_epilog.writes_z)
8067 depth = LLVMGetParam(ctx->main_fn, vgpr++);
8068 if (key->ps_epilog.writes_stencil)
8069 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8070 if (key->ps_epilog.writes_samplemask)
8071 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8072
8073 if (depth || stencil || samplemask)
8074 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8075 else if (last_color_export == -1)
8076 ac_build_export_null(&ctx->ac);
8077
8078 if (exp.num)
8079 si_emit_ps_exports(ctx, &exp);
8080
8081 /* Compile. */
8082 LLVMBuildRetVoid(ctx->ac.builder);
8083 }
8084
8085 /**
8086 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8087 */
8088 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8089 struct ac_llvm_compiler *compiler,
8090 struct si_shader *shader,
8091 struct pipe_debug_callback *debug)
8092 {
8093 union si_shader_part_key prolog_key;
8094 union si_shader_part_key epilog_key;
8095
8096 /* Get the prolog. */
8097 si_get_ps_prolog_key(shader, &prolog_key, true);
8098
8099 /* The prolog is a no-op if these aren't set. */
8100 if (si_need_ps_prolog(&prolog_key)) {
8101 shader->prolog =
8102 si_get_shader_part(sscreen, &sscreen->ps_prologs,
8103 PIPE_SHADER_FRAGMENT, true,
8104 &prolog_key, compiler, debug,
8105 si_build_ps_prolog_function,
8106 "Fragment Shader Prolog");
8107 if (!shader->prolog)
8108 return false;
8109 }
8110
8111 /* Get the epilog. */
8112 si_get_ps_epilog_key(shader, &epilog_key);
8113
8114 shader->epilog =
8115 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8116 PIPE_SHADER_FRAGMENT, false,
8117 &epilog_key, compiler, debug,
8118 si_build_ps_epilog_function,
8119 "Fragment Shader Epilog");
8120 if (!shader->epilog)
8121 return false;
8122
8123 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
8124 if (shader->key.part.ps.prolog.poly_stipple) {
8125 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8126 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8127 }
8128
8129 /* Set up the enable bits for per-sample shading if needed. */
8130 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8131 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8132 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8133 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8134 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8135 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8136 }
8137 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8138 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8139 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8140 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8141 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8142 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8143 }
8144 if (shader->key.part.ps.prolog.force_persp_center_interp &&
8145 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8146 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8147 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8148 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8149 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8150 }
8151 if (shader->key.part.ps.prolog.force_linear_center_interp &&
8152 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8153 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8154 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8155 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8156 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8157 }
8158
8159 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8160 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8161 !(shader->config.spi_ps_input_ena & 0xf)) {
8162 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8163 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8164 }
8165
8166 /* At least one pair of interpolation weights must be enabled. */
8167 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8168 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8169 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8170 }
8171
8172 /* Samplemask fixup requires the sample ID. */
8173 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
8174 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
8175 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
8176 }
8177
8178 /* The sample mask input is always enabled, because the API shader always
8179 * passes it through to the epilog. Disable it here if it's unused.
8180 */
8181 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8182 !shader->selector->info.reads_samplemask)
8183 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8184
8185 return true;
8186 }
8187
8188 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8189 unsigned *lds_size)
8190 {
8191 /* If tessellation is all offchip and on-chip GS isn't used, this
8192 * workaround is not needed.
8193 */
8194 return;
8195
8196 /* SPI barrier management bug:
8197 * Make sure we have at least 4k of LDS in use to avoid the bug.
8198 * It applies to workgroup sizes of more than one wavefront.
8199 */
8200 if (sscreen->info.family == CHIP_BONAIRE ||
8201 sscreen->info.family == CHIP_KABINI)
8202 *lds_size = MAX2(*lds_size, 8);
8203 }
8204
8205 static void si_fix_resource_usage(struct si_screen *sscreen,
8206 struct si_shader *shader)
8207 {
8208 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8209
8210 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8211
8212 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8213 si_get_max_workgroup_size(shader) > 64) {
8214 si_multiwave_lds_size_workaround(sscreen,
8215 &shader->config.lds_size);
8216 }
8217 }
8218
8219 bool si_shader_create(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
8220 struct si_shader *shader,
8221 struct pipe_debug_callback *debug)
8222 {
8223 struct si_shader_selector *sel = shader->selector;
8224 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8225 int r;
8226
8227 /* LS, ES, VS are compiled on demand if the main part hasn't been
8228 * compiled for that stage.
8229 *
8230 * GS are compiled on demand if the main part hasn't been compiled
8231 * for the chosen NGG-ness.
8232 *
8233 * Vertex shaders are compiled on demand when a vertex fetch
8234 * workaround must be applied.
8235 */
8236 if (shader->is_monolithic) {
8237 /* Monolithic shader (compiled as a whole, has many variants,
8238 * may take a long time to compile).
8239 */
8240 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8241 if (r)
8242 return false;
8243 } else {
8244 /* The shader consists of several parts:
8245 *
8246 * - the middle part is the user shader, it has 1 variant only
8247 * and it was compiled during the creation of the shader
8248 * selector
8249 * - the prolog part is inserted at the beginning
8250 * - the epilog part is inserted at the end
8251 *
8252 * The prolog and epilog have many (but simple) variants.
8253 *
8254 * Starting with gfx9, geometry and tessellation control
8255 * shaders also contain the prolog and user shader parts of
8256 * the previous shader stage.
8257 */
8258
8259 if (!mainp)
8260 return false;
8261
8262 /* Copy the compiled TGSI shader data over. */
8263 shader->is_binary_shared = true;
8264 shader->binary = mainp->binary;
8265 shader->config = mainp->config;
8266 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8267 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8268 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8269 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8270 memcpy(shader->info.vs_output_param_offset,
8271 mainp->info.vs_output_param_offset,
8272 sizeof(mainp->info.vs_output_param_offset));
8273 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8274 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8275 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8276
8277 /* Select prologs and/or epilogs. */
8278 switch (sel->type) {
8279 case PIPE_SHADER_VERTEX:
8280 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8281 return false;
8282 break;
8283 case PIPE_SHADER_TESS_CTRL:
8284 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8285 return false;
8286 break;
8287 case PIPE_SHADER_TESS_EVAL:
8288 break;
8289 case PIPE_SHADER_GEOMETRY:
8290 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8291 return false;
8292 break;
8293 case PIPE_SHADER_FRAGMENT:
8294 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8295 return false;
8296
8297 /* Make sure we have at least as many VGPRs as there
8298 * are allocated inputs.
8299 */
8300 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8301 shader->info.num_input_vgprs);
8302 break;
8303 }
8304
8305 /* Update SGPR and VGPR counts. */
8306 if (shader->prolog) {
8307 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8308 shader->prolog->config.num_sgprs);
8309 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8310 shader->prolog->config.num_vgprs);
8311 }
8312 if (shader->previous_stage) {
8313 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8314 shader->previous_stage->config.num_sgprs);
8315 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8316 shader->previous_stage->config.num_vgprs);
8317 shader->config.spilled_sgprs =
8318 MAX2(shader->config.spilled_sgprs,
8319 shader->previous_stage->config.spilled_sgprs);
8320 shader->config.spilled_vgprs =
8321 MAX2(shader->config.spilled_vgprs,
8322 shader->previous_stage->config.spilled_vgprs);
8323 shader->info.private_mem_vgprs =
8324 MAX2(shader->info.private_mem_vgprs,
8325 shader->previous_stage->info.private_mem_vgprs);
8326 shader->config.scratch_bytes_per_wave =
8327 MAX2(shader->config.scratch_bytes_per_wave,
8328 shader->previous_stage->config.scratch_bytes_per_wave);
8329 shader->info.uses_instanceid |=
8330 shader->previous_stage->info.uses_instanceid;
8331 }
8332 if (shader->prolog2) {
8333 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8334 shader->prolog2->config.num_sgprs);
8335 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8336 shader->prolog2->config.num_vgprs);
8337 }
8338 if (shader->epilog) {
8339 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8340 shader->epilog->config.num_sgprs);
8341 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8342 shader->epilog->config.num_vgprs);
8343 }
8344 si_calculate_max_simd_waves(shader);
8345 }
8346
8347 if (shader->key.as_ngg) {
8348 assert(!shader->key.as_es && !shader->key.as_ls);
8349 gfx10_ngg_calculate_subgroup_info(shader);
8350 } else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
8351 gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
8352 }
8353
8354 si_fix_resource_usage(sscreen, shader);
8355 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8356 stderr, true);
8357
8358 /* Upload. */
8359 if (!si_shader_binary_upload(sscreen, shader, 0)) {
8360 fprintf(stderr, "LLVM failed to upload shader\n");
8361 return false;
8362 }
8363
8364 return true;
8365 }
8366
8367 void si_shader_destroy(struct si_shader *shader)
8368 {
8369 if (shader->scratch_bo)
8370 si_resource_reference(&shader->scratch_bo, NULL);
8371
8372 si_resource_reference(&shader->bo, NULL);
8373
8374 if (!shader->is_binary_shared)
8375 si_shader_binary_clean(&shader->binary);
8376
8377 free(shader->shader_log);
8378 }