radeonsi: remove redundant si_shader_selector::max_gs_stream
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_llvm.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "ac_nir_to_llvm.h"
26 #include "ac_rtld.h"
27 #include "si_pipe.h"
28 #include "si_shader_internal.h"
29 #include "sid.h"
30 #include "tgsi/tgsi_from_mesa.h"
31 #include "util/u_memory.h"
32
33 struct si_llvm_diagnostics {
34 struct pipe_debug_callback *debug;
35 unsigned retval;
36 };
37
38 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
39 {
40 struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
41 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
42 const char *severity_str = NULL;
43
44 switch (severity) {
45 case LLVMDSError:
46 severity_str = "error";
47 break;
48 case LLVMDSWarning:
49 severity_str = "warning";
50 break;
51 case LLVMDSRemark:
52 case LLVMDSNote:
53 default:
54 return;
55 }
56
57 char *description = LLVMGetDiagInfoDescription(di);
58
59 pipe_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
60 description);
61
62 if (severity == LLVMDSError) {
63 diag->retval = 1;
64 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
65 }
66
67 LLVMDisposeMessage(description);
68 }
69
70 bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
71 struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
72 struct ac_llvm_context *ac, struct pipe_debug_callback *debug,
73 gl_shader_stage stage, const char *name, bool less_optimized)
74 {
75 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
76
77 if (si_can_dump_shader(sscreen, stage)) {
78 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
79
80 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
81 fprintf(stderr, "%s LLVM IR:\n\n", name);
82 ac_dump_module(ac->module);
83 fprintf(stderr, "\n");
84 }
85 }
86
87 if (sscreen->record_llvm_ir) {
88 char *ir = LLVMPrintModuleToString(ac->module);
89 binary->llvm_ir_string = strdup(ir);
90 LLVMDisposeMessage(ir);
91 }
92
93 if (!si_replace_shader(count, binary)) {
94 struct ac_compiler_passes *passes = compiler->passes;
95
96 if (ac->wave_size == 32)
97 passes = compiler->passes_wave32;
98 else if (less_optimized && compiler->low_opt_passes)
99 passes = compiler->low_opt_passes;
100
101 struct si_llvm_diagnostics diag = {debug};
102 LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
103
104 if (!ac_compile_module_to_elf(passes, ac->module, (char **)&binary->elf_buffer,
105 &binary->elf_size))
106 diag.retval = 1;
107
108 if (diag.retval != 0) {
109 pipe_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
110 return false;
111 }
112 }
113
114 struct ac_rtld_binary rtld;
115 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
116 .info = &sscreen->info,
117 .shader_type = stage,
118 .wave_size = ac->wave_size,
119 .num_parts = 1,
120 .elf_ptrs = &binary->elf_buffer,
121 .elf_sizes = &binary->elf_size}))
122 return false;
123
124 bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
125 ac_rtld_close(&rtld);
126 return ok;
127 }
128
129 void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
130 struct ac_llvm_compiler *compiler, unsigned wave_size)
131 {
132 memset(ctx, 0, sizeof(*ctx));
133 ctx->screen = sscreen;
134 ctx->compiler = compiler;
135
136 ac_llvm_context_init(&ctx->ac, compiler, sscreen->info.chip_class, sscreen->info.family,
137 AC_FLOAT_MODE_DEFAULT_OPENGL, wave_size, 64);
138 }
139
140 void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
141 unsigned num_return_elems, unsigned max_workgroup_size)
142 {
143 LLVMTypeRef ret_type;
144 enum ac_llvm_calling_convention call_conv;
145
146 if (num_return_elems)
147 ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
148 else
149 ret_type = ctx->ac.voidt;
150
151 gl_shader_stage real_stage = ctx->stage;
152
153 /* LS is merged into HS (TCS), and ES is merged into GS. */
154 if (ctx->screen->info.chip_class >= GFX9) {
155 if (ctx->shader->key.as_ls)
156 real_stage = MESA_SHADER_TESS_CTRL;
157 else if (ctx->shader->key.as_es || ctx->shader->key.as_ngg)
158 real_stage = MESA_SHADER_GEOMETRY;
159 }
160
161 switch (real_stage) {
162 case MESA_SHADER_VERTEX:
163 case MESA_SHADER_TESS_EVAL:
164 call_conv = AC_LLVM_AMDGPU_VS;
165 break;
166 case MESA_SHADER_TESS_CTRL:
167 call_conv = AC_LLVM_AMDGPU_HS;
168 break;
169 case MESA_SHADER_GEOMETRY:
170 call_conv = AC_LLVM_AMDGPU_GS;
171 break;
172 case MESA_SHADER_FRAGMENT:
173 call_conv = AC_LLVM_AMDGPU_PS;
174 break;
175 case MESA_SHADER_COMPUTE:
176 call_conv = AC_LLVM_AMDGPU_CS;
177 break;
178 default:
179 unreachable("Unhandle shader type");
180 }
181
182 /* Setup the function */
183 ctx->return_type = ret_type;
184 ctx->main_fn = ac_build_main(&ctx->args, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
185 ctx->return_value = LLVMGetUndef(ctx->return_type);
186
187 if (ctx->screen->info.address32_hi) {
188 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-32bit-address-high-bits",
189 ctx->screen->info.address32_hi);
190 }
191
192 ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
193 }
194
195 void si_llvm_optimize_module(struct si_shader_context *ctx)
196 {
197 /* Dump LLVM IR before any optimization passes */
198 if (ctx->screen->debug_flags & DBG(PREOPT_IR) && si_can_dump_shader(ctx->screen, ctx->stage))
199 LLVMDumpModule(ctx->ac.module);
200
201 /* Run the pass */
202 LLVMRunPassManager(ctx->compiler->passmgr, ctx->ac.module);
203 LLVMDisposeBuilder(ctx->ac.builder);
204 }
205
206 void si_llvm_dispose(struct si_shader_context *ctx)
207 {
208 LLVMDisposeModule(ctx->ac.module);
209 LLVMContextDispose(ctx->ac.context);
210 ac_llvm_context_dispose(&ctx->ac);
211 }
212
213 /**
214 * Load a dword from a constant buffer.
215 */
216 LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
217 LLVMValueRef offset)
218 {
219 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, 0, 0, true, true);
220 }
221
222 void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
223 {
224 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
225 LLVMBuildRetVoid(ctx->ac.builder);
226 else
227 LLVMBuildRet(ctx->ac.builder, ret);
228 }
229
230 LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
231 struct ac_arg param, unsigned return_index)
232 {
233 return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
234 }
235
236 LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
237 struct ac_arg param, unsigned return_index)
238 {
239 LLVMBuilderRef builder = ctx->ac.builder;
240 LLVMValueRef p = ac_get_arg(&ctx->ac, param);
241
242 return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
243 }
244
245 LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
246 struct ac_arg param, unsigned return_index)
247 {
248 LLVMBuilderRef builder = ctx->ac.builder;
249 LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
250 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
251 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
252 }
253
254 LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
255 {
256 LLVMValueRef ptr[2], list;
257 bool merged_shader = si_is_merged_shader(ctx->shader);
258
259 ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
260 list =
261 LLVMBuildIntToPtr(ctx->ac.builder, ptr[0], ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
262 return list;
263 }
264
265 LLVMValueRef si_build_gather_64bit(struct si_shader_context *ctx, LLVMTypeRef type,
266 LLVMValueRef val1, LLVMValueRef val2)
267 {
268 LLVMValueRef values[2] = {
269 ac_to_integer(&ctx->ac, val1),
270 ac_to_integer(&ctx->ac, val2),
271 };
272 LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, 2);
273 return LLVMBuildBitCast(ctx->ac.builder, result, type, "");
274 }
275
276 void si_llvm_emit_barrier(struct si_shader_context *ctx)
277 {
278 /* GFX6 only (thanks to a hw bug workaround):
279 * The real barrier instruction isn’t needed, because an entire patch
280 * always fits into a single wave.
281 */
282 if (ctx->screen->info.chip_class == GFX6 && ctx->stage == MESA_SHADER_TESS_CTRL) {
283 ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
284 return;
285 }
286
287 ac_build_s_barrier(&ctx->ac);
288 }
289
290 /* Ensure that the esgs ring is declared.
291 *
292 * We declare it with 64KB alignment as a hint that the
293 * pointer value will always be 0.
294 */
295 void si_llvm_declare_esgs_ring(struct si_shader_context *ctx)
296 {
297 if (ctx->esgs_ring)
298 return;
299
300 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
301
302 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
303 "esgs_ring", AC_ADDR_SPACE_LDS);
304 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
305 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
306 }
307
308 void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param, unsigned bitoffset)
309 {
310 LLVMValueRef args[] = {
311 ac_get_arg(&ctx->ac, param),
312 LLVMConstInt(ctx->ac.i32, bitoffset, 0),
313 };
314 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2,
315 AC_FUNC_ATTR_CONVERGENT);
316 }
317
318 /**
319 * Get the value of a shader input parameter and extract a bitfield.
320 */
321 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
322 unsigned rshift, unsigned bitwidth)
323 {
324 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
325 value = ac_to_integer(&ctx->ac, value);
326
327 if (rshift)
328 value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
329
330 if (rshift + bitwidth < 32) {
331 unsigned mask = (1 << bitwidth) - 1;
332 value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
333 }
334
335 return value;
336 }
337
338 LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
339 unsigned bitwidth)
340 {
341 LLVMValueRef value = ac_get_arg(&ctx->ac, param);
342
343 return unpack_llvm_param(ctx, value, rshift, bitwidth);
344 }
345
346 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx, unsigned swizzle)
347 {
348 if (swizzle > 0)
349 return ctx->ac.i32_0;
350
351 switch (ctx->stage) {
352 case MESA_SHADER_VERTEX:
353 return ac_get_arg(&ctx->ac, ctx->vs_prim_id);
354 case MESA_SHADER_TESS_CTRL:
355 return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id);
356 case MESA_SHADER_TESS_EVAL:
357 return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id);
358 case MESA_SHADER_GEOMETRY:
359 return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id);
360 default:
361 assert(0);
362 return ctx->ac.i32_0;
363 }
364 }
365
366 LLVMValueRef si_llvm_get_block_size(struct ac_shader_abi *abi)
367 {
368 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
369
370 LLVMValueRef values[3];
371 LLVMValueRef result;
372 unsigned i;
373 uint16_t *local_size = ctx->shader->selector->info.base.cs.local_size;
374
375 if (local_size[0] != 0) {
376 for (i = 0; i < 3; ++i)
377 values[i] = LLVMConstInt(ctx->ac.i32, local_size[i], 0);
378
379 result = ac_build_gather_values(&ctx->ac, values, 3);
380 } else {
381 result = ac_get_arg(&ctx->ac, ctx->block_size);
382 }
383
384 return result;
385 }
386
387 void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
388 {
389 struct si_shader_selector *sel = ctx->shader->selector;
390 unsigned lds_size = sel->info.base.cs.shared_size;
391
392 LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
393 LLVMValueRef var;
394
395 assert(!ctx->ac.lds);
396
397 var = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i8, lds_size),
398 "compute_lds", AC_ADDR_SPACE_LDS);
399 LLVMSetAlignment(var, 64 * 1024);
400
401 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
402 }
403
404 bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir)
405 {
406 if (nir->info.stage == MESA_SHADER_VERTEX) {
407 si_llvm_load_vs_inputs(ctx, nir);
408 } else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
409 unsigned colors_read = ctx->shader->selector->info.colors_read;
410 LLVMValueRef main_fn = ctx->main_fn;
411
412 LLVMValueRef undef = LLVMGetUndef(ctx->ac.f32);
413
414 unsigned offset = SI_PARAM_POS_FIXED_PT + 1;
415
416 if (colors_read & 0x0f) {
417 unsigned mask = colors_read & 0x0f;
418 LLVMValueRef values[4];
419 values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
420 values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
421 values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
422 values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
423 ctx->abi.color0 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
424 }
425 if (colors_read & 0xf0) {
426 unsigned mask = (colors_read & 0xf0) >> 4;
427 LLVMValueRef values[4];
428 values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
429 values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
430 values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
431 values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
432 ctx->abi.color1 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
433 }
434
435 ctx->abi.interp_at_sample_force_center =
436 ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center;
437
438 ctx->abi.kill_ps_if_inf_interp =
439 (ctx->screen->debug_flags & DBG(KILL_PS_INF_INTERP)) &&
440 (ctx->shader->selector->info.uses_persp_center ||
441 ctx->shader->selector->info.uses_persp_centroid ||
442 ctx->shader->selector->info.uses_persp_sample);
443
444 } else if (nir->info.stage == MESA_SHADER_COMPUTE) {
445 if (nir->info.cs.user_data_components_amd) {
446 ctx->abi.user_data = ac_get_arg(&ctx->ac, ctx->cs_user_data);
447 ctx->abi.user_data = ac_build_expand_to_vec4(&ctx->ac, ctx->abi.user_data,
448 nir->info.cs.user_data_components_amd);
449 }
450
451 if (ctx->shader->selector->info.base.cs.shared_size)
452 si_llvm_declare_compute_memory(ctx);
453 }
454
455 ctx->abi.inputs = &ctx->inputs[0];
456 ctx->abi.clamp_shadow_reference = true;
457 ctx->abi.robust_buffer_access = true;
458 ctx->abi.convert_undef_to_zero = true;
459 ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero;
460
461 const struct si_shader_info *info = &ctx->shader->selector->info;
462 for (unsigned i = 0; i < info->num_outputs; i++) {
463 for (unsigned j = 0; j < 4; j++)
464 ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
465 }
466
467 ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args, nir);
468
469 return true;
470 }
471
472 /**
473 * Given a list of shader part functions, build a wrapper function that
474 * runs them in sequence to form a monolithic shader.
475 */
476 void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts,
477 unsigned num_parts, unsigned main_part,
478 unsigned next_shader_first_part)
479 {
480 LLVMBuilderRef builder = ctx->ac.builder;
481 /* PS epilog has one arg per color component; gfx9 merged shader
482 * prologs need to forward 40 SGPRs.
483 */
484 LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS];
485 LLVMTypeRef function_type;
486 unsigned num_first_params;
487 unsigned num_out, initial_num_out;
488 ASSERTED unsigned num_out_sgpr; /* used in debug checks */
489 ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
490 unsigned num_sgprs, num_vgprs;
491 unsigned gprs;
492
493 memset(&ctx->args, 0, sizeof(ctx->args));
494
495 for (unsigned i = 0; i < num_parts; ++i) {
496 ac_add_function_attr(ctx->ac.context, parts[i], -1, AC_FUNC_ATTR_ALWAYSINLINE);
497 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
498 }
499
500 /* The parameters of the wrapper function correspond to those of the
501 * first part in terms of SGPRs and VGPRs, but we use the types of the
502 * main part to get the right types. This is relevant for the
503 * dereferenceable attribute on descriptor table pointers.
504 */
505 num_sgprs = 0;
506 num_vgprs = 0;
507
508 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
509 num_first_params = LLVMCountParamTypes(function_type);
510
511 for (unsigned i = 0; i < num_first_params; ++i) {
512 LLVMValueRef param = LLVMGetParam(parts[0], i);
513
514 if (ac_is_sgpr_param(param)) {
515 assert(num_vgprs == 0);
516 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
517 } else {
518 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
519 }
520 }
521
522 gprs = 0;
523 while (gprs < num_sgprs + num_vgprs) {
524 LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count);
525 LLVMTypeRef type = LLVMTypeOf(param);
526 unsigned size = ac_get_type_size(type) / 4;
527
528 /* This is going to get casted anyways, so we don't have to
529 * have the exact same type. But we do have to preserve the
530 * pointer-ness so that LLVM knows about it.
531 */
532 enum ac_arg_type arg_type = AC_ARG_INT;
533 if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
534 type = LLVMGetElementType(type);
535
536 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
537 if (LLVMGetVectorSize(type) == 4)
538 arg_type = AC_ARG_CONST_DESC_PTR;
539 else if (LLVMGetVectorSize(type) == 8)
540 arg_type = AC_ARG_CONST_IMAGE_PTR;
541 else
542 assert(0);
543 } else if (type == ctx->ac.f32) {
544 arg_type = AC_ARG_CONST_FLOAT_PTR;
545 } else {
546 assert(0);
547 }
548 }
549
550 ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR, size, arg_type, NULL);
551
552 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
553 assert(gprs + size <= num_sgprs + num_vgprs &&
554 (gprs >= num_sgprs || gprs + size <= num_sgprs));
555
556 gprs += size;
557 }
558
559 /* Prepare the return type. */
560 unsigned num_returns = 0;
561 LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type;
562
563 last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
564 return_type = LLVMGetReturnType(last_func_type);
565
566 switch (LLVMGetTypeKind(return_type)) {
567 case LLVMStructTypeKind:
568 num_returns = LLVMCountStructElementTypes(return_type);
569 assert(num_returns <= ARRAY_SIZE(returns));
570 LLVMGetStructElementTypes(return_type, returns);
571 break;
572 case LLVMVoidTypeKind:
573 break;
574 default:
575 unreachable("unexpected type");
576 }
577
578 si_llvm_create_func(ctx, "wrapper", returns, num_returns,
579 si_get_max_workgroup_size(ctx->shader));
580
581 if (si_is_merged_shader(ctx->shader))
582 ac_init_exec_full_mask(&ctx->ac);
583
584 /* Record the arguments of the function as if they were an output of
585 * a previous part.
586 */
587 num_out = 0;
588 num_out_sgpr = 0;
589
590 for (unsigned i = 0; i < ctx->args.arg_count; ++i) {
591 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
592 LLVMTypeRef param_type = LLVMTypeOf(param);
593 LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->ac.i32 : ctx->ac.f32;
594 unsigned size = ac_get_type_size(param_type) / 4;
595
596 if (size == 1) {
597 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
598 param = LLVMBuildPtrToInt(builder, param, ctx->ac.i32, "");
599 param_type = ctx->ac.i32;
600 }
601
602 if (param_type != out_type)
603 param = LLVMBuildBitCast(builder, param, out_type, "");
604 out[num_out++] = param;
605 } else {
606 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
607
608 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
609 param = LLVMBuildPtrToInt(builder, param, ctx->ac.i64, "");
610 param_type = ctx->ac.i64;
611 }
612
613 if (param_type != vector_type)
614 param = LLVMBuildBitCast(builder, param, vector_type, "");
615
616 for (unsigned j = 0; j < size; ++j)
617 out[num_out++] =
618 LLVMBuildExtractElement(builder, param, LLVMConstInt(ctx->ac.i32, j, 0), "");
619 }
620
621 if (ctx->args.args[i].file == AC_ARG_SGPR)
622 num_out_sgpr = num_out;
623 }
624
625 memcpy(initial, out, sizeof(out));
626 initial_num_out = num_out;
627 initial_num_out_sgpr = num_out_sgpr;
628
629 /* Now chain the parts. */
630 LLVMValueRef ret = NULL;
631 for (unsigned part = 0; part < num_parts; ++part) {
632 LLVMValueRef in[AC_MAX_ARGS];
633 LLVMTypeRef ret_type;
634 unsigned out_idx = 0;
635 unsigned num_params = LLVMCountParams(parts[part]);
636
637 /* Merged shaders are executed conditionally depending
638 * on the number of enabled threads passed in the input SGPRs. */
639 if (si_is_multi_part_shader(ctx->shader) && part == 0) {
640 LLVMValueRef ena, count = initial[3];
641
642 count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
643 ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
644 ac_build_ifcc(&ctx->ac, ena, 6506);
645 }
646
647 /* Derive arguments for the next part from outputs of the
648 * previous one.
649 */
650 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
651 LLVMValueRef param;
652 LLVMTypeRef param_type;
653 bool is_sgpr;
654 unsigned param_size;
655 LLVMValueRef arg = NULL;
656
657 param = LLVMGetParam(parts[part], param_idx);
658 param_type = LLVMTypeOf(param);
659 param_size = ac_get_type_size(param_type) / 4;
660 is_sgpr = ac_is_sgpr_param(param);
661
662 if (is_sgpr) {
663 ac_add_function_attr(ctx->ac.context, parts[part], param_idx + 1, AC_FUNC_ATTR_INREG);
664 } else if (out_idx < num_out_sgpr) {
665 /* Skip returned SGPRs the current part doesn't
666 * declare on the input. */
667 out_idx = num_out_sgpr;
668 }
669
670 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
671
672 if (param_size == 1)
673 arg = out[out_idx];
674 else
675 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
676
677 if (LLVMTypeOf(arg) != param_type) {
678 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
679 if (LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT) {
680 arg = LLVMBuildBitCast(builder, arg, ctx->ac.i32, "");
681 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
682 } else {
683 arg = LLVMBuildBitCast(builder, arg, ctx->ac.i64, "");
684 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
685 }
686 } else {
687 arg = LLVMBuildBitCast(builder, arg, param_type, "");
688 }
689 }
690
691 in[param_idx] = arg;
692 out_idx += param_size;
693 }
694
695 ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
696
697 if (si_is_multi_part_shader(ctx->shader) && part + 1 == next_shader_first_part) {
698 ac_build_endif(&ctx->ac, 6506);
699
700 /* The second half of the merged shader should use
701 * the inputs from the toplevel (wrapper) function,
702 * not the return value from the last call.
703 *
704 * That's because the last call was executed condi-
705 * tionally, so we can't consume it in the main
706 * block.
707 */
708 memcpy(out, initial, sizeof(initial));
709 num_out = initial_num_out;
710 num_out_sgpr = initial_num_out_sgpr;
711 continue;
712 }
713
714 /* Extract the returned GPRs. */
715 ret_type = LLVMTypeOf(ret);
716 num_out = 0;
717 num_out_sgpr = 0;
718
719 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
720 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
721
722 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
723
724 for (unsigned i = 0; i < ret_size; ++i) {
725 LLVMValueRef val = LLVMBuildExtractValue(builder, ret, i, "");
726
727 assert(num_out < ARRAY_SIZE(out));
728 out[num_out++] = val;
729
730 if (LLVMTypeOf(val) == ctx->ac.i32) {
731 assert(num_out_sgpr + 1 == num_out);
732 num_out_sgpr = num_out;
733 }
734 }
735 }
736 }
737
738 /* Return the value from the last part. */
739 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
740 LLVMBuildRetVoid(builder);
741 else
742 LLVMBuildRet(builder, ret);
743 }