ac/nir: use more types from ac_llvm_context
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_llvm_ps.c
1 /*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28
29 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
30 {
31 return si_unpack_param(ctx, ctx->args.ancillary, 8, 4);
32 }
33
34 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
35 {
36 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
37 return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
38 }
39
40 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
41 {
42 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
43 LLVMValueRef desc = ac_get_arg(&ctx->ac, ctx->rw_buffers);
44 LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
45 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
46
47 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
48 LLVMValueRef offset0 =
49 LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->ac.i32, 8, 0), "");
50 LLVMValueRef offset1 =
51 LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->ac.i32, 4, 0), "");
52
53 LLVMValueRef pos[4] = {si_buffer_load_const(ctx, resource, offset0),
54 si_buffer_load_const(ctx, resource, offset1),
55 LLVMConstReal(ctx->ac.f32, 0), LLVMConstReal(ctx->ac.f32, 0)};
56
57 return ac_build_gather_values(&ctx->ac, pos, 4);
58 }
59
60 static LLVMValueRef si_nir_emit_fbfetch(struct ac_shader_abi *abi)
61 {
62 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
63 struct ac_image_args args = {};
64 LLVMValueRef ptr, image, fmask;
65
66 /* Ignore src0, because KHR_blend_func_extended disallows multiple render
67 * targets.
68 */
69
70 /* Load the image descriptor. */
71 STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
72 ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
73 ptr =
74 LLVMBuildPointerCast(ctx->ac.builder, ptr, ac_array_in_const32_addr_space(ctx->ac.v8i32), "");
75 image =
76 ac_build_load_to_sgpr(&ctx->ac, ptr, LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
77
78 unsigned chan = 0;
79
80 args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 0, 16);
81
82 if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
83 args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 16, 16);
84
85 /* Get the current render target layer index. */
86 if (ctx->shader->key.mono.u.ps.fbfetch_layered)
87 args.coords[chan++] = si_unpack_param(ctx, ctx->args.ancillary, 16, 11);
88
89 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
90 args.coords[chan++] = si_get_sample_id(ctx);
91
92 if (ctx->shader->key.mono.u.ps.fbfetch_msaa && !(ctx->screen->debug_flags & DBG(NO_FMASK))) {
93 fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
94 LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
95
96 ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
97 ctx->shader->key.mono.u.ps.fbfetch_layered);
98 }
99
100 args.opcode = ac_image_load;
101 args.resource = image;
102 args.dmask = 0xf;
103 args.attributes = AC_FUNC_ATTR_READNONE;
104
105 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
106 args.dim =
107 ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darraymsaa : ac_image_2dmsaa;
108 else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
109 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_1darray : ac_image_1d;
110 else
111 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darray : ac_image_2d;
112
113 return ac_build_image_opcode(&ctx->ac, &args);
114 }
115
116 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx, unsigned attr_index,
117 unsigned chan, LLVMValueRef prim_mask, LLVMValueRef i,
118 LLVMValueRef j)
119 {
120 if (i || j) {
121 return ac_build_fs_interp(&ctx->ac, LLVMConstInt(ctx->ac.i32, chan, 0),
122 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask, i, j);
123 }
124 return ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->ac.i32, 2, 0), /* P0 */
125 LLVMConstInt(ctx->ac.i32, chan, 0),
126 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask);
127 }
128
129 /**
130 * Interpolate a fragment shader input.
131 *
132 * @param ctx context
133 * @param input_index index of the input in hardware
134 * @param semantic_name TGSI_SEMANTIC_*
135 * @param semantic_index semantic index
136 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
137 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
138 * @param interp_param interpolation weights (i,j)
139 * @param prim_mask SI_PARAM_PRIM_MASK
140 * @param face SI_PARAM_FRONT_FACE
141 * @param result the return value (4 components)
142 */
143 static void interp_fs_color(struct si_shader_context *ctx, unsigned input_index,
144 unsigned semantic_index, unsigned num_interp_inputs,
145 unsigned colors_read_mask, LLVMValueRef interp_param,
146 LLVMValueRef prim_mask, LLVMValueRef face, LLVMValueRef result[4])
147 {
148 LLVMValueRef i = NULL, j = NULL;
149 unsigned chan;
150
151 /* fs.constant returns the param from the middle vertex, so it's not
152 * really useful for flat shading. It's meant to be used for custom
153 * interpolation (but the intrinsic can't fetch from the other two
154 * vertices).
155 *
156 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
157 * to do the right thing. The only reason we use fs.constant is that
158 * fs.interp cannot be used on integers, because they can be equal
159 * to NaN.
160 *
161 * When interp is false we will use fs.constant or for newer llvm,
162 * amdgcn.interp.mov.
163 */
164 bool interp = interp_param != NULL;
165
166 if (interp) {
167 interp_param =
168 LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2f32, "");
169
170 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
171 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
172 }
173
174 if (ctx->shader->key.part.ps.prolog.color_two_side) {
175 LLVMValueRef is_face_positive;
176
177 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
178 * otherwise it's at offset "num_inputs".
179 */
180 unsigned back_attr_offset = num_interp_inputs;
181 if (semantic_index == 1 && colors_read_mask & 0xf)
182 back_attr_offset += 1;
183
184 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, face, ctx->ac.i32_0, "");
185
186 for (chan = 0; chan < 4; chan++) {
187 LLVMValueRef front, back;
188
189 front = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
190 back = si_build_fs_interp(ctx, back_attr_offset, chan, prim_mask, i, j);
191
192 result[chan] = LLVMBuildSelect(ctx->ac.builder, is_face_positive, front, back, "");
193 }
194 } else {
195 for (chan = 0; chan < 4; chan++) {
196 result[chan] = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
197 }
198 }
199 }
200
201 static void si_alpha_test(struct si_shader_context *ctx, LLVMValueRef alpha)
202 {
203 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
204 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
205 [PIPE_FUNC_LESS] = LLVMRealOLT, [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
206 [PIPE_FUNC_LEQUAL] = LLVMRealOLE, [PIPE_FUNC_GREATER] = LLVMRealOGT,
207 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE, [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
208 };
209 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
210 assert(cond);
211
212 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF);
213 LLVMValueRef alpha_pass = LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
214 ac_build_kill_if_false(&ctx->ac, alpha_pass);
215 } else {
216 ac_build_kill_if_false(&ctx->ac, ctx->ac.i1false);
217 }
218 }
219
220 static LLVMValueRef si_scale_alpha_by_sample_mask(struct si_shader_context *ctx, LLVMValueRef alpha,
221 unsigned samplemask_param)
222 {
223 LLVMValueRef coverage;
224
225 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
226 coverage = LLVMGetParam(ctx->main_fn, samplemask_param);
227 coverage = ac_to_integer(&ctx->ac, coverage);
228
229 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->ac.i32, &coverage, 1,
230 AC_FUNC_ATTR_READNONE);
231
232 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage, ctx->ac.f32, "");
233
234 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
235 LLVMConstReal(ctx->ac.f32, 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
236
237 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
238 }
239
240 struct si_ps_exports {
241 unsigned num;
242 struct ac_export_args args[10];
243 };
244
245 static void si_export_mrt_z(struct si_shader_context *ctx, LLVMValueRef depth, LLVMValueRef stencil,
246 LLVMValueRef samplemask, struct si_ps_exports *exp)
247 {
248 struct ac_export_args args;
249
250 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
251
252 memcpy(&exp->args[exp->num++], &args, sizeof(args));
253 }
254
255 /* Initialize arguments for the shader export intrinsic */
256 static void si_llvm_init_ps_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
257 unsigned target, struct ac_export_args *args)
258 {
259 const struct si_shader_key *key = &ctx->shader->key;
260 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
261 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
262 unsigned spi_shader_col_format;
263 unsigned chan;
264 bool is_int8, is_int10;
265 int cbuf = target - V_008DFC_SQ_EXP_MRT;
266
267 assert(cbuf >= 0 && cbuf < 8);
268
269 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
270 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
271 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
272
273 /* Default is 0xf. Adjusted below depending on the format. */
274 args->enabled_channels = 0xf; /* writemask */
275
276 /* Specify whether the EXEC mask represents the valid mask */
277 args->valid_mask = 0;
278
279 /* Specify whether this is the last export */
280 args->done = 0;
281
282 /* Specify the target we are exporting */
283 args->target = target;
284
285 args->compr = false;
286 args->out[0] = f32undef;
287 args->out[1] = f32undef;
288 args->out[2] = f32undef;
289 args->out[3] = f32undef;
290
291 LLVMValueRef (*packf)(struct ac_llvm_context * ctx, LLVMValueRef args[2]) = NULL;
292 LLVMValueRef (*packi)(struct ac_llvm_context * ctx, LLVMValueRef args[2], unsigned bits,
293 bool hi) = NULL;
294
295 switch (spi_shader_col_format) {
296 case V_028714_SPI_SHADER_ZERO:
297 args->enabled_channels = 0; /* writemask */
298 args->target = V_008DFC_SQ_EXP_NULL;
299 break;
300
301 case V_028714_SPI_SHADER_32_R:
302 args->enabled_channels = 1; /* writemask */
303 args->out[0] = values[0];
304 break;
305
306 case V_028714_SPI_SHADER_32_GR:
307 args->enabled_channels = 0x3; /* writemask */
308 args->out[0] = values[0];
309 args->out[1] = values[1];
310 break;
311
312 case V_028714_SPI_SHADER_32_AR:
313 if (ctx->screen->info.chip_class >= GFX10) {
314 args->enabled_channels = 0x3; /* writemask */
315 args->out[0] = values[0];
316 args->out[1] = values[3];
317 } else {
318 args->enabled_channels = 0x9; /* writemask */
319 args->out[0] = values[0];
320 args->out[3] = values[3];
321 }
322 break;
323
324 case V_028714_SPI_SHADER_FP16_ABGR:
325 packf = ac_build_cvt_pkrtz_f16;
326 break;
327
328 case V_028714_SPI_SHADER_UNORM16_ABGR:
329 packf = ac_build_cvt_pknorm_u16;
330 break;
331
332 case V_028714_SPI_SHADER_SNORM16_ABGR:
333 packf = ac_build_cvt_pknorm_i16;
334 break;
335
336 case V_028714_SPI_SHADER_UINT16_ABGR:
337 packi = ac_build_cvt_pk_u16;
338 break;
339
340 case V_028714_SPI_SHADER_SINT16_ABGR:
341 packi = ac_build_cvt_pk_i16;
342 break;
343
344 case V_028714_SPI_SHADER_32_ABGR:
345 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
346 break;
347 }
348
349 /* Pack f16 or norm_i16/u16. */
350 if (packf) {
351 for (chan = 0; chan < 2; chan++) {
352 LLVMValueRef pack_args[2] = {values[2 * chan], values[2 * chan + 1]};
353 LLVMValueRef packed;
354
355 packed = packf(&ctx->ac, pack_args);
356 args->out[chan] = ac_to_float(&ctx->ac, packed);
357 }
358 args->compr = 1; /* COMPR flag */
359 }
360 /* Pack i16/u16. */
361 if (packi) {
362 for (chan = 0; chan < 2; chan++) {
363 LLVMValueRef pack_args[2] = {ac_to_integer(&ctx->ac, values[2 * chan]),
364 ac_to_integer(&ctx->ac, values[2 * chan + 1])};
365 LLVMValueRef packed;
366
367 packed = packi(&ctx->ac, pack_args, is_int8 ? 8 : is_int10 ? 10 : 16, chan == 1);
368 args->out[chan] = ac_to_float(&ctx->ac, packed);
369 }
370 args->compr = 1; /* COMPR flag */
371 }
372 }
373
374 static void si_export_mrt_color(struct si_shader_context *ctx, LLVMValueRef *color, unsigned index,
375 unsigned samplemask_param, bool is_last, struct si_ps_exports *exp)
376 {
377 int i;
378
379 /* Clamp color */
380 if (ctx->shader->key.part.ps.epilog.clamp_color)
381 for (i = 0; i < 4; i++)
382 color[i] = ac_build_clamp(&ctx->ac, color[i]);
383
384 /* Alpha to one */
385 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
386 color[3] = ctx->ac.f32_1;
387
388 /* Alpha test */
389 if (index == 0 && ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
390 si_alpha_test(ctx, color[3]);
391
392 /* Line & polygon smoothing */
393 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
394 color[3] = si_scale_alpha_by_sample_mask(ctx, color[3], samplemask_param);
395
396 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
397 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
398 struct ac_export_args args[8];
399 int c, last = -1;
400
401 /* Get the export arguments, also find out what the last one is. */
402 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
403 si_llvm_init_ps_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + c, &args[c]);
404 if (args[c].enabled_channels)
405 last = c;
406 }
407
408 /* Emit all exports. */
409 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
410 if (is_last && last == c) {
411 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
412 args[c].done = 1; /* DONE bit */
413 } else if (!args[c].enabled_channels)
414 continue; /* unnecessary NULL export */
415
416 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
417 }
418 } else {
419 struct ac_export_args args;
420
421 /* Export */
422 si_llvm_init_ps_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index, &args);
423 if (is_last) {
424 args.valid_mask = 1; /* whether the EXEC mask is valid */
425 args.done = 1; /* DONE bit */
426 } else if (!args.enabled_channels)
427 return; /* unnecessary NULL export */
428
429 memcpy(&exp->args[exp->num++], &args, sizeof(args));
430 }
431 }
432
433 static void si_emit_ps_exports(struct si_shader_context *ctx, struct si_ps_exports *exp)
434 {
435 for (unsigned i = 0; i < exp->num; i++)
436 ac_build_export(&ctx->ac, &exp->args[i]);
437 }
438
439 /**
440 * Return PS outputs in this order:
441 *
442 * v[0:3] = color0.xyzw
443 * v[4:7] = color1.xyzw
444 * ...
445 * vN+0 = Depth
446 * vN+1 = Stencil
447 * vN+2 = SampleMask
448 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
449 *
450 * The alpha-ref SGPR is returned via its original location.
451 */
452 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi, unsigned max_outputs,
453 LLVMValueRef *addrs)
454 {
455 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
456 struct si_shader *shader = ctx->shader;
457 struct si_shader_info *info = &shader->selector->info;
458 LLVMBuilderRef builder = ctx->ac.builder;
459 unsigned i, j, first_vgpr, vgpr;
460
461 LLVMValueRef color[8][4] = {};
462 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
463 LLVMValueRef ret;
464
465 if (ctx->postponed_kill)
466 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
467
468 /* Read the output values. */
469 for (i = 0; i < info->num_outputs; i++) {
470 unsigned semantic_name = info->output_semantic_name[i];
471 unsigned semantic_index = info->output_semantic_index[i];
472
473 switch (semantic_name) {
474 case TGSI_SEMANTIC_COLOR:
475 assert(semantic_index < 8);
476 for (j = 0; j < 4; j++) {
477 LLVMValueRef ptr = addrs[4 * i + j];
478 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
479 color[semantic_index][j] = result;
480 }
481 break;
482 case TGSI_SEMANTIC_POSITION:
483 depth = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
484 break;
485 case TGSI_SEMANTIC_STENCIL:
486 stencil = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
487 break;
488 case TGSI_SEMANTIC_SAMPLEMASK:
489 samplemask = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
490 break;
491 default:
492 fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n", semantic_name);
493 }
494 }
495
496 /* Fill the return structure. */
497 ret = ctx->return_value;
498
499 /* Set SGPRs. */
500 ret = LLVMBuildInsertValue(
501 builder, ret, ac_to_integer(&ctx->ac, LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF)),
502 SI_SGPR_ALPHA_REF, "");
503
504 /* Set VGPRs */
505 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
506 for (i = 0; i < ARRAY_SIZE(color); i++) {
507 if (!color[i][0])
508 continue;
509
510 for (j = 0; j < 4; j++)
511 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
512 }
513 if (depth)
514 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
515 if (stencil)
516 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
517 if (samplemask)
518 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
519
520 /* Add the input sample mask for smoothing at the end. */
521 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
522 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
523 ret = LLVMBuildInsertValue(builder, ret, LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE),
524 vgpr++, "");
525
526 ctx->return_value = ret;
527 }
528
529 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
530 LLVMValueRef param_rw_buffers,
531 struct ac_arg param_pos_fixed_pt)
532 {
533 LLVMBuilderRef builder = ctx->ac.builder;
534 LLVMValueRef slot, desc, offset, row, bit, address[2];
535
536 /* Use the fixed-point gl_FragCoord input.
537 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
538 * per coordinate to get the repeating effect.
539 */
540 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
541 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
542
543 /* Load the buffer descriptor. */
544 slot = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_POLY_STIPPLE, 0);
545 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
546
547 /* The stipple pattern is 32x32, each row has 32 bits. */
548 offset = LLVMBuildMul(builder, address[1], LLVMConstInt(ctx->ac.i32, 4, 0), "");
549 row = si_buffer_load_const(ctx, desc, offset);
550 row = ac_to_integer(&ctx->ac, row);
551 bit = LLVMBuildLShr(builder, row, address[0], "");
552 bit = LLVMBuildTrunc(builder, bit, ctx->ac.i1, "");
553 ac_build_kill_if_false(&ctx->ac, bit);
554 }
555
556 /**
557 * Build the pixel shader prolog function. This handles:
558 * - two-side color selection and interpolation
559 * - overriding interpolation parameters for the API PS
560 * - polygon stippling
561 *
562 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
563 * overriden by other states. (e.g. per-sample interpolation)
564 * Interpolated colors are stored after the preloaded VGPRs.
565 */
566 void si_llvm_build_ps_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
567 {
568 LLVMValueRef ret, func;
569 int num_returns, i, num_color_channels;
570
571 memset(&ctx->args, 0, sizeof(ctx->args));
572
573 /* Declare inputs. */
574 LLVMTypeRef return_types[AC_MAX_ARGS];
575 num_returns = 0;
576 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
577 assert(key->ps_prolog.num_input_sgprs + key->ps_prolog.num_input_vgprs + num_color_channels <=
578 AC_MAX_ARGS);
579 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++) {
580 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
581 return_types[num_returns++] = ctx->ac.i32;
582 }
583
584 struct ac_arg pos_fixed_pt;
585 struct ac_arg ancillary;
586 struct ac_arg param_sample_mask;
587 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++) {
588 struct ac_arg *arg = NULL;
589 if (i == key->ps_prolog.ancillary_vgpr_index) {
590 arg = &ancillary;
591 } else if (i == key->ps_prolog.ancillary_vgpr_index + 1) {
592 arg = &param_sample_mask;
593 } else if (i == key->ps_prolog.num_input_vgprs - 1) {
594 /* POS_FIXED_PT is always last. */
595 arg = &pos_fixed_pt;
596 }
597 ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, arg);
598 return_types[num_returns++] = ctx->ac.f32;
599 }
600
601 /* Declare outputs (same as inputs + add colors if needed) */
602 for (i = 0; i < num_color_channels; i++)
603 return_types[num_returns++] = ctx->ac.f32;
604
605 /* Create the function. */
606 si_llvm_create_func(ctx, "ps_prolog", return_types, num_returns, 0);
607 func = ctx->main_fn;
608
609 /* Copy inputs to outputs. This should be no-op, as the registers match,
610 * but it will prevent the compiler from overwriting them unintentionally.
611 */
612 ret = ctx->return_value;
613 for (i = 0; i < ctx->args.arg_count; i++) {
614 LLVMValueRef p = LLVMGetParam(func, i);
615 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
616 }
617
618 /* Polygon stippling. */
619 if (key->ps_prolog.states.poly_stipple) {
620 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
621
622 si_llvm_emit_polygon_stipple(ctx, list, pos_fixed_pt);
623 }
624
625 if (key->ps_prolog.states.bc_optimize_for_persp ||
626 key->ps_prolog.states.bc_optimize_for_linear) {
627 unsigned i, base = key->ps_prolog.num_input_sgprs;
628 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
629
630 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
631 * The hw doesn't compute CENTROID if the whole wave only
632 * contains fully-covered quads.
633 *
634 * PRIM_MASK is after user SGPRs.
635 */
636 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
637 bc_optimize =
638 LLVMBuildLShr(ctx->ac.builder, bc_optimize, LLVMConstInt(ctx->ac.i32, 31, 0), "");
639 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize, ctx->ac.i1, "");
640
641 if (key->ps_prolog.states.bc_optimize_for_persp) {
642 /* Read PERSP_CENTER. */
643 for (i = 0; i < 2; i++)
644 center[i] = LLVMGetParam(func, base + 2 + i);
645 /* Read PERSP_CENTROID. */
646 for (i = 0; i < 2; i++)
647 centroid[i] = LLVMGetParam(func, base + 4 + i);
648 /* Select PERSP_CENTROID. */
649 for (i = 0; i < 2; i++) {
650 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
651 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 4 + i, "");
652 }
653 }
654 if (key->ps_prolog.states.bc_optimize_for_linear) {
655 /* Read LINEAR_CENTER. */
656 for (i = 0; i < 2; i++)
657 center[i] = LLVMGetParam(func, base + 8 + i);
658 /* Read LINEAR_CENTROID. */
659 for (i = 0; i < 2; i++)
660 centroid[i] = LLVMGetParam(func, base + 10 + i);
661 /* Select LINEAR_CENTROID. */
662 for (i = 0; i < 2; i++) {
663 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
664 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 10 + i, "");
665 }
666 }
667 }
668
669 /* Force per-sample interpolation. */
670 if (key->ps_prolog.states.force_persp_sample_interp) {
671 unsigned i, base = key->ps_prolog.num_input_sgprs;
672 LLVMValueRef persp_sample[2];
673
674 /* Read PERSP_SAMPLE. */
675 for (i = 0; i < 2; i++)
676 persp_sample[i] = LLVMGetParam(func, base + i);
677 /* Overwrite PERSP_CENTER. */
678 for (i = 0; i < 2; i++)
679 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 2 + i, "");
680 /* Overwrite PERSP_CENTROID. */
681 for (i = 0; i < 2; i++)
682 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 4 + i, "");
683 }
684 if (key->ps_prolog.states.force_linear_sample_interp) {
685 unsigned i, base = key->ps_prolog.num_input_sgprs;
686 LLVMValueRef linear_sample[2];
687
688 /* Read LINEAR_SAMPLE. */
689 for (i = 0; i < 2; i++)
690 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
691 /* Overwrite LINEAR_CENTER. */
692 for (i = 0; i < 2; i++)
693 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 8 + i, "");
694 /* Overwrite LINEAR_CENTROID. */
695 for (i = 0; i < 2; i++)
696 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 10 + i, "");
697 }
698
699 /* Force center interpolation. */
700 if (key->ps_prolog.states.force_persp_center_interp) {
701 unsigned i, base = key->ps_prolog.num_input_sgprs;
702 LLVMValueRef persp_center[2];
703
704 /* Read PERSP_CENTER. */
705 for (i = 0; i < 2; i++)
706 persp_center[i] = LLVMGetParam(func, base + 2 + i);
707 /* Overwrite PERSP_SAMPLE. */
708 for (i = 0; i < 2; i++)
709 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + i, "");
710 /* Overwrite PERSP_CENTROID. */
711 for (i = 0; i < 2; i++)
712 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + 4 + i, "");
713 }
714 if (key->ps_prolog.states.force_linear_center_interp) {
715 unsigned i, base = key->ps_prolog.num_input_sgprs;
716 LLVMValueRef linear_center[2];
717
718 /* Read LINEAR_CENTER. */
719 for (i = 0; i < 2; i++)
720 linear_center[i] = LLVMGetParam(func, base + 8 + i);
721 /* Overwrite LINEAR_SAMPLE. */
722 for (i = 0; i < 2; i++)
723 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 6 + i, "");
724 /* Overwrite LINEAR_CENTROID. */
725 for (i = 0; i < 2; i++)
726 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 10 + i, "");
727 }
728
729 /* Interpolate colors. */
730 unsigned color_out_idx = 0;
731 for (i = 0; i < 2; i++) {
732 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
733 unsigned face_vgpr = key->ps_prolog.num_input_sgprs + key->ps_prolog.face_vgpr_index;
734 LLVMValueRef interp[2], color[4];
735 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
736
737 if (!writemask)
738 continue;
739
740 /* If the interpolation qualifier is not CONSTANT (-1). */
741 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
742 unsigned interp_vgpr =
743 key->ps_prolog.num_input_sgprs + key->ps_prolog.color_interp_vgpr_index[i];
744
745 /* Get the (i,j) updated by bc_optimize handling. */
746 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr, "");
747 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr + 1, "");
748 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
749 }
750
751 /* Use the absolute location of the input. */
752 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
753
754 if (key->ps_prolog.states.color_two_side) {
755 face = LLVMGetParam(func, face_vgpr);
756 face = ac_to_integer(&ctx->ac, face);
757 }
758
759 interp_fs_color(ctx, key->ps_prolog.color_attr_index[i], i, key->ps_prolog.num_interp_inputs,
760 key->ps_prolog.colors_read, interp_ij, prim_mask, face, color);
761
762 while (writemask) {
763 unsigned chan = u_bit_scan(&writemask);
764 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
765 ctx->args.arg_count + color_out_idx++, "");
766 }
767 }
768
769 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
770 * says:
771 *
772 * "When per-sample shading is active due to the use of a fragment
773 * input qualified by sample or due to the use of the gl_SampleID
774 * or gl_SamplePosition variables, only the bit for the current
775 * sample is set in gl_SampleMaskIn. When state specifies multiple
776 * fragment shader invocations for a given fragment, the sample
777 * mask for any single fragment shader invocation may specify a
778 * subset of the covered samples for the fragment. In this case,
779 * the bit corresponding to each covered sample will be set in
780 * exactly one fragment shader invocation."
781 *
782 * The samplemask loaded by hardware is always the coverage of the
783 * entire pixel/fragment, so mask bits out based on the sample ID.
784 */
785 if (key->ps_prolog.states.samplemask_log_ps_iter) {
786 /* The bit pattern matches that used by fixed function fragment
787 * processing. */
788 static const uint16_t ps_iter_masks[] = {
789 0xffff, /* not used */
790 0x5555, 0x1111, 0x0101, 0x0001,
791 };
792 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
793
794 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
795 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary, 8, 4);
796 LLVMValueRef samplemask = ac_get_arg(&ctx->ac, param_sample_mask);
797
798 samplemask = ac_to_integer(&ctx->ac, samplemask);
799 samplemask =
800 LLVMBuildAnd(ctx->ac.builder, samplemask,
801 LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false),
802 sampleid, ""),
803 "");
804 samplemask = ac_to_float(&ctx->ac, samplemask);
805
806 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask, param_sample_mask.arg_index, "");
807 }
808
809 /* Tell LLVM to insert WQM instruction sequence when needed. */
810 if (key->ps_prolog.wqm) {
811 LLVMAddTargetDependentFunctionAttr(func, "amdgpu-ps-wqm-outputs", "");
812 }
813
814 si_llvm_build_ret(ctx, ret);
815 }
816
817 /**
818 * Build the pixel shader epilog function. This handles everything that must be
819 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
820 */
821 void si_llvm_build_ps_epilog(struct si_shader_context *ctx, union si_shader_part_key *key)
822 {
823 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
824 int i;
825 struct si_ps_exports exp = {};
826
827 memset(&ctx->args, 0, sizeof(ctx->args));
828
829 /* Declare input SGPRs. */
830 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->rw_buffers);
831 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->bindless_samplers_and_images);
832 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->const_and_shader_buffers);
833 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->samplers_and_images);
834 si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_ALPHA_REF);
835
836 /* Declare input VGPRs. */
837 unsigned required_num_params =
838 ctx->args.num_sgprs_used + util_bitcount(key->ps_epilog.colors_written) * 4 +
839 key->ps_epilog.writes_z + key->ps_epilog.writes_stencil + key->ps_epilog.writes_samplemask;
840
841 required_num_params =
842 MAX2(required_num_params, ctx->args.num_sgprs_used + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
843
844 while (ctx->args.arg_count < required_num_params)
845 ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
846
847 /* Create the function. */
848 si_llvm_create_func(ctx, "ps_epilog", NULL, 0, 0);
849 /* Disable elimination of unused inputs. */
850 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "InitialPSInputAddr", 0xffffff);
851
852 /* Process colors. */
853 unsigned vgpr = ctx->args.num_sgprs_used;
854 unsigned colors_written = key->ps_epilog.colors_written;
855 int last_color_export = -1;
856
857 /* Find the last color export. */
858 if (!key->ps_epilog.writes_z && !key->ps_epilog.writes_stencil &&
859 !key->ps_epilog.writes_samplemask) {
860 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
861
862 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
863 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
864 /* Just set this if any of the colorbuffers are enabled. */
865 if (spi_format & ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
866 last_color_export = 0;
867 } else {
868 for (i = 0; i < 8; i++)
869 if (colors_written & (1 << i) && (spi_format >> (i * 4)) & 0xf)
870 last_color_export = i;
871 }
872 }
873
874 while (colors_written) {
875 LLVMValueRef color[4];
876 int mrt = u_bit_scan(&colors_written);
877
878 for (i = 0; i < 4; i++)
879 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
880
881 si_export_mrt_color(ctx, color, mrt, ctx->args.arg_count - 1, mrt == last_color_export, &exp);
882 }
883
884 /* Process depth, stencil, samplemask. */
885 if (key->ps_epilog.writes_z)
886 depth = LLVMGetParam(ctx->main_fn, vgpr++);
887 if (key->ps_epilog.writes_stencil)
888 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
889 if (key->ps_epilog.writes_samplemask)
890 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
891
892 if (depth || stencil || samplemask)
893 si_export_mrt_z(ctx, depth, stencil, samplemask, &exp);
894 else if (last_color_export == -1)
895 ac_build_export_null(&ctx->ac);
896
897 if (exp.num)
898 si_emit_ps_exports(ctx, &exp);
899
900 /* Compile. */
901 LLVMBuildRetVoid(ctx->ac.builder);
902 }
903
904 void si_llvm_build_monolithic_ps(struct si_shader_context *ctx, struct si_shader *shader)
905 {
906 LLVMValueRef parts[3];
907 unsigned num_parts = 0, main_index;
908 LLVMValueRef main_fn = ctx->main_fn;
909
910 union si_shader_part_key prolog_key;
911 si_get_ps_prolog_key(shader, &prolog_key, false);
912
913 if (si_need_ps_prolog(&prolog_key)) {
914 si_llvm_build_ps_prolog(ctx, &prolog_key);
915 parts[num_parts++] = ctx->main_fn;
916 }
917
918 main_index = num_parts;
919 parts[num_parts++] = main_fn;
920
921 union si_shader_part_key epilog_key;
922 si_get_ps_epilog_key(shader, &epilog_key);
923 si_llvm_build_ps_epilog(ctx, &epilog_key);
924 parts[num_parts++] = ctx->main_fn;
925
926 si_build_wrapper_function(ctx, parts, num_parts, main_index, 0);
927 }
928
929 void si_llvm_init_ps_callbacks(struct si_shader_context *ctx)
930 {
931 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
932 ctx->abi.load_sample_position = load_sample_position;
933 ctx->abi.load_sample_mask_in = load_sample_mask_in;
934 ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
935 }