ac,radeonsi: start adding support for gfx10.3
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "ac_exp_param.h"
26 #include "ac_shader_util.h"
27 #include "compiler/nir/nir_serialize.h"
28 #include "nir/tgsi_to_nir.h"
29 #include "si_build_pm4.h"
30 #include "sid.h"
31 #include "util/crc32.h"
32 #include "util/disk_cache.h"
33 #include "util/hash_table.h"
34 #include "util/mesa-sha1.h"
35 #include "util/u_async_debug.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38
39 /* SHADER_CACHE */
40
41 /**
42 * Return the IR key for the shader cache.
43 */
44 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
45 unsigned char ir_sha1_cache_key[20])
46 {
47 struct blob blob = {};
48 unsigned ir_size;
49 void *ir_binary;
50
51 if (sel->nir_binary) {
52 ir_binary = sel->nir_binary;
53 ir_size = sel->nir_size;
54 } else {
55 assert(sel->nir);
56
57 blob_init(&blob);
58 nir_serialize(&blob, sel->nir, true);
59 ir_binary = blob.data;
60 ir_size = blob.size;
61 }
62
63 /* These settings affect the compilation, but they are not derived
64 * from the input shader IR.
65 */
66 unsigned shader_variant_flags = 0;
67
68 if (ngg)
69 shader_variant_flags |= 1 << 0;
70 if (sel->nir)
71 shader_variant_flags |= 1 << 1;
72 if (si_get_wave_size(sel->screen, sel->type, ngg, es, false) == 32)
73 shader_variant_flags |= 1 << 2;
74 if (sel->type == PIPE_SHADER_FRAGMENT && sel->info.uses_derivatives && sel->info.uses_kill &&
75 sel->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL))
76 shader_variant_flags |= 1 << 3;
77
78 /* This varies depending on whether compute-based culling is enabled. */
79 shader_variant_flags |= sel->screen->num_vbos_in_user_sgprs << 4;
80
81 struct mesa_sha1 ctx;
82 _mesa_sha1_init(&ctx);
83 _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
84 _mesa_sha1_update(&ctx, ir_binary, ir_size);
85 if (sel->type == PIPE_SHADER_VERTEX || sel->type == PIPE_SHADER_TESS_EVAL ||
86 sel->type == PIPE_SHADER_GEOMETRY)
87 _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so));
88 _mesa_sha1_final(&ctx, ir_sha1_cache_key);
89
90 if (ir_binary == blob.data)
91 blob_finish(&blob);
92 }
93
94 /** Copy "data" to "ptr" and return the next dword following copied data. */
95 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
96 {
97 /* data may be NULL if size == 0 */
98 if (size)
99 memcpy(ptr, data, size);
100 ptr += DIV_ROUND_UP(size, 4);
101 return ptr;
102 }
103
104 /** Read data from "ptr". Return the next dword following the data. */
105 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
106 {
107 memcpy(data, ptr, size);
108 ptr += DIV_ROUND_UP(size, 4);
109 return ptr;
110 }
111
112 /**
113 * Write the size as uint followed by the data. Return the next dword
114 * following the copied data.
115 */
116 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
117 {
118 *ptr++ = size;
119 return write_data(ptr, data, size);
120 }
121
122 /**
123 * Read the size as uint followed by the data. Return both via parameters.
124 * Return the next dword following the data.
125 */
126 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
127 {
128 *size = *ptr++;
129 assert(*data == NULL);
130 if (!*size)
131 return ptr;
132 *data = malloc(*size);
133 return read_data(ptr, *data, *size);
134 }
135
136 /**
137 * Return the shader binary in a buffer. The first 4 bytes contain its size
138 * as integer.
139 */
140 static void *si_get_shader_binary(struct si_shader *shader)
141 {
142 /* There is always a size of data followed by the data itself. */
143 unsigned llvm_ir_size =
144 shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
145
146 /* Refuse to allocate overly large buffers and guard against integer
147 * overflow. */
148 if (shader->binary.elf_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4)
149 return NULL;
150
151 unsigned size = 4 + /* total size */
152 4 + /* CRC32 of the data below */
153 align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 +
154 align(shader->binary.elf_size, 4) + 4 + align(llvm_ir_size, 4);
155 void *buffer = CALLOC(1, size);
156 uint32_t *ptr = (uint32_t *)buffer;
157
158 if (!buffer)
159 return NULL;
160
161 *ptr++ = size;
162 ptr++; /* CRC32 is calculated at the end. */
163
164 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
165 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
166 ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size);
167 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
168 assert((char *)ptr - (char *)buffer == size);
169
170 /* Compute CRC32. */
171 ptr = (uint32_t *)buffer;
172 ptr++;
173 *ptr = util_hash_crc32(ptr + 1, size - 8);
174
175 return buffer;
176 }
177
178 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
179 {
180 uint32_t *ptr = (uint32_t *)binary;
181 uint32_t size = *ptr++;
182 uint32_t crc32 = *ptr++;
183 unsigned chunk_size;
184 unsigned elf_size;
185
186 if (util_hash_crc32(ptr, size - 8) != crc32) {
187 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
188 return false;
189 }
190
191 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
192 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
193 ptr = read_chunk(ptr, (void **)&shader->binary.elf_buffer, &elf_size);
194 shader->binary.elf_size = elf_size;
195 ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
196
197 return true;
198 }
199
200 /**
201 * Insert a shader into the cache. It's assumed the shader is not in the cache.
202 * Use si_shader_cache_load_shader before calling this.
203 */
204 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
205 struct si_shader *shader, bool insert_into_disk_cache)
206 {
207 void *hw_binary;
208 struct hash_entry *entry;
209 uint8_t key[CACHE_KEY_SIZE];
210
211 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
212 if (entry)
213 return; /* already added */
214
215 hw_binary = si_get_shader_binary(shader);
216 if (!hw_binary)
217 return;
218
219 if (_mesa_hash_table_insert(sscreen->shader_cache, mem_dup(ir_sha1_cache_key, 20), hw_binary) ==
220 NULL) {
221 FREE(hw_binary);
222 return;
223 }
224
225 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
226 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
227 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, *((uint32_t *)hw_binary), NULL);
228 }
229 }
230
231 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
232 struct si_shader *shader)
233 {
234 struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
235
236 if (entry) {
237 if (si_load_shader_binary(shader, entry->data)) {
238 p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
239 return true;
240 }
241 }
242 p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
243
244 if (!sscreen->disk_shader_cache)
245 return false;
246
247 unsigned char sha1[CACHE_KEY_SIZE];
248 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
249
250 size_t binary_size;
251 uint8_t *buffer = disk_cache_get(sscreen->disk_shader_cache, sha1, &binary_size);
252 if (buffer) {
253 if (binary_size >= sizeof(uint32_t) && *((uint32_t *)buffer) == binary_size) {
254 if (si_load_shader_binary(shader, buffer)) {
255 free(buffer);
256 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
257 p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
258 return true;
259 }
260 } else {
261 /* Something has gone wrong discard the item from the cache and
262 * rebuild/link from source.
263 */
264 assert(!"Invalid radeonsi shader disk cache item!");
265 disk_cache_remove(sscreen->disk_shader_cache, sha1);
266 }
267 }
268
269 free(buffer);
270 p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
271 return false;
272 }
273
274 static uint32_t si_shader_cache_key_hash(const void *key)
275 {
276 /* Take the first dword of SHA1. */
277 return *(uint32_t *)key;
278 }
279
280 static bool si_shader_cache_key_equals(const void *a, const void *b)
281 {
282 /* Compare SHA1s. */
283 return memcmp(a, b, 20) == 0;
284 }
285
286 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
287 {
288 FREE((void *)entry->key);
289 FREE(entry->data);
290 }
291
292 bool si_init_shader_cache(struct si_screen *sscreen)
293 {
294 (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
295 sscreen->shader_cache =
296 _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
297
298 return sscreen->shader_cache != NULL;
299 }
300
301 void si_destroy_shader_cache(struct si_screen *sscreen)
302 {
303 if (sscreen->shader_cache)
304 _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
305 simple_mtx_destroy(&sscreen->shader_cache_mutex);
306 }
307
308 /* SHADER STATES */
309
310 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
311 struct si_pm4_state *pm4)
312 {
313 const struct si_shader_info *info = &tes->info;
314 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
315 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
316 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
317 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
318 unsigned type, partitioning, topology, distribution_mode;
319
320 switch (tes_prim_mode) {
321 case PIPE_PRIM_LINES:
322 type = V_028B6C_TESS_ISOLINE;
323 break;
324 case PIPE_PRIM_TRIANGLES:
325 type = V_028B6C_TESS_TRIANGLE;
326 break;
327 case PIPE_PRIM_QUADS:
328 type = V_028B6C_TESS_QUAD;
329 break;
330 default:
331 assert(0);
332 return;
333 }
334
335 switch (tes_spacing) {
336 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
337 partitioning = V_028B6C_PART_FRAC_ODD;
338 break;
339 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
340 partitioning = V_028B6C_PART_FRAC_EVEN;
341 break;
342 case PIPE_TESS_SPACING_EQUAL:
343 partitioning = V_028B6C_PART_INTEGER;
344 break;
345 default:
346 assert(0);
347 return;
348 }
349
350 if (tes_point_mode)
351 topology = V_028B6C_OUTPUT_POINT;
352 else if (tes_prim_mode == PIPE_PRIM_LINES)
353 topology = V_028B6C_OUTPUT_LINE;
354 else if (tes_vertex_order_cw)
355 /* for some reason, this must be the other way around */
356 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
357 else
358 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
359
360 if (sscreen->info.has_distributed_tess) {
361 if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
362 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
363 else
364 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
365 } else
366 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
367
368 assert(pm4->shader);
369 pm4->shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
370 S_028B6C_TOPOLOGY(topology) |
371 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
372 }
373
374 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
375 * whether the "fractional odd" tessellation spacing is used.
376 *
377 * Possible VGT configurations and which state should set the register:
378 *
379 * Reg set in | VGT shader configuration | Value
380 * ------------------------------------------------------
381 * VS as VS | VS | 30
382 * VS as ES | ES -> GS -> VS | 30
383 * TES as VS | LS -> HS -> VS | 14 or 30
384 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
385 *
386 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
387 */
388 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
389 struct si_shader *shader, struct si_pm4_state *pm4)
390 {
391 unsigned type = sel->type;
392
393 if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.chip_class >= GFX10)
394 return;
395
396 /* VS as VS, or VS as ES: */
397 if ((type == PIPE_SHADER_VERTEX &&
398 (!shader || (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
399 /* TES as VS, or TES as ES: */
400 type == PIPE_SHADER_TESS_EVAL) {
401 unsigned vtx_reuse_depth = 30;
402
403 if (type == PIPE_SHADER_TESS_EVAL &&
404 sel->info.properties[TGSI_PROPERTY_TES_SPACING] == PIPE_TESS_SPACING_FRACTIONAL_ODD)
405 vtx_reuse_depth = 14;
406
407 assert(pm4->shader);
408 pm4->shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
409 }
410 }
411
412 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
413 {
414 if (shader->pm4)
415 si_pm4_clear_state(shader->pm4);
416 else
417 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
418
419 if (shader->pm4) {
420 shader->pm4->shader = shader;
421 return shader->pm4;
422 } else {
423 fprintf(stderr, "radeonsi: Failed to create pm4 state.\n");
424 return NULL;
425 }
426 }
427
428 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
429 unsigned num_always_on_user_sgprs)
430 {
431 struct si_shader_selector *vs =
432 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
433 unsigned num_vbos_in_user_sgprs = vs->num_vbos_in_user_sgprs;
434
435 /* 1 SGPR is reserved for the vertex buffer pointer. */
436 assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
437
438 if (num_vbos_in_user_sgprs)
439 return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
440
441 /* Add the pointer to VBO descriptors. */
442 return num_always_on_user_sgprs + 1;
443 }
444
445 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
446 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
447 bool legacy_vs_prim_id)
448 {
449 assert(shader->selector->type == PIPE_SHADER_VERTEX ||
450 (shader->previous_stage_sel && shader->previous_stage_sel->type == PIPE_SHADER_VERTEX));
451
452 /* GFX6-9 LS (VertexID, RelAutoindex, InstanceID / StepRate0(==1), ...).
453 * GFX6-9 ES,VS (VertexID, InstanceID / StepRate0(==1), VSPrimID, ...)
454 * GFX10 LS (VertexID, RelAutoindex, UserVGPR1, InstanceID).
455 * GFX10 ES,VS (VertexID, UserVGPR0, UserVGPR1 or VSPrimID, UserVGPR2 or
456 * InstanceID)
457 */
458 bool is_ls = shader->selector->type == PIPE_SHADER_TESS_CTRL || shader->key.as_ls;
459
460 if (sscreen->info.chip_class >= GFX10 && shader->info.uses_instanceid)
461 return 3;
462 else if ((is_ls && shader->info.uses_instanceid) || legacy_vs_prim_id)
463 return 2;
464 else if (is_ls || shader->info.uses_instanceid)
465 return 1;
466 else
467 return 0;
468 }
469
470 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
471 {
472 struct si_pm4_state *pm4;
473 uint64_t va;
474
475 assert(sscreen->info.chip_class <= GFX8);
476
477 pm4 = si_get_shader_pm4_state(shader);
478 if (!pm4)
479 return;
480
481 va = shader->bo->gpu_address;
482 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
483
484 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
485 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
486
487 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
488 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
489 S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
490 S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode);
491 shader->config.rsrc2 =
492 S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
493 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
494 }
495
496 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
497 {
498 struct si_pm4_state *pm4;
499 uint64_t va;
500
501 pm4 = si_get_shader_pm4_state(shader);
502 if (!pm4)
503 return;
504
505 va = shader->bo->gpu_address;
506 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
507
508 if (sscreen->info.chip_class >= GFX9) {
509 if (sscreen->info.chip_class >= GFX10) {
510 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
511 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
512 } else {
513 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
514 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
515 }
516
517 unsigned num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR);
518
519 shader->config.rsrc2 = S_00B42C_USER_SGPR(num_user_sgprs) |
520 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
521
522 if (sscreen->info.chip_class >= GFX10)
523 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
524 else
525 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
526 } else {
527 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
528 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
529
530 shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) |
531 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
532 }
533
534 si_pm4_set_reg(
535 pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
536 S_00B428_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
537 (sscreen->info.chip_class <= GFX9 ? S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8)
538 : 0) |
539 S_00B428_DX10_CLAMP(1) | S_00B428_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
540 S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) |
541 S_00B428_FLOAT_MODE(shader->config.float_mode) |
542 S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9
543 ? si_get_vs_vgpr_comp_cnt(sscreen, shader, false)
544 : 0));
545
546 if (sscreen->info.chip_class <= GFX8) {
547 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
548 }
549 }
550
551 static void si_emit_shader_es(struct si_context *sctx)
552 {
553 struct si_shader *shader = sctx->queued.named.es->shader;
554 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
555
556 if (!shader)
557 return;
558
559 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
560 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
561 shader->selector->esgs_itemsize / 4);
562
563 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
564 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
565 shader->vgt_tf_param);
566
567 if (shader->vgt_vertex_reuse_block_cntl)
568 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
569 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
570 shader->vgt_vertex_reuse_block_cntl);
571
572 if (initial_cdw != sctx->gfx_cs->current.cdw)
573 sctx->context_roll = true;
574 }
575
576 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
577 {
578 struct si_pm4_state *pm4;
579 unsigned num_user_sgprs;
580 unsigned vgpr_comp_cnt;
581 uint64_t va;
582 unsigned oc_lds_en;
583
584 assert(sscreen->info.chip_class <= GFX8);
585
586 pm4 = si_get_shader_pm4_state(shader);
587 if (!pm4)
588 return;
589
590 pm4->atom.emit = si_emit_shader_es;
591 va = shader->bo->gpu_address;
592 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
593
594 if (shader->selector->type == PIPE_SHADER_VERTEX) {
595 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
596 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
597 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
598 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
599 num_user_sgprs = SI_TES_NUM_USER_SGPR;
600 } else
601 unreachable("invalid shader selector type");
602
603 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
604
605 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
606 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
607 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
608 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
609 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
610 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) |
611 S_00B328_FLOAT_MODE(shader->config.float_mode));
612 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
613 S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
614 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
615
616 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
617 si_set_tesseval_regs(sscreen, shader->selector, pm4);
618
619 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
620 }
621
622 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
623 struct gfx9_gs_info *out)
624 {
625 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
626 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
627 bool uses_adjacency =
628 input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
629
630 /* All these are in dwords: */
631 /* We can't allow using the whole LDS, because GS waves compete with
632 * other shader stages for LDS space. */
633 const unsigned max_lds_size = 8 * 1024;
634 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
635 unsigned esgs_lds_size;
636
637 /* All these are per subgroup: */
638 const unsigned max_out_prims = 32 * 1024;
639 const unsigned max_es_verts = 255;
640 const unsigned ideal_gs_prims = 64;
641 unsigned max_gs_prims, gs_prims;
642 unsigned min_es_verts, es_verts, worst_case_es_verts;
643
644 if (uses_adjacency || gs_num_invocations > 1)
645 max_gs_prims = 127 / gs_num_invocations;
646 else
647 max_gs_prims = 255;
648
649 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
650 * Make sure we don't go over the maximum value.
651 */
652 if (gs->gs_max_out_vertices > 0) {
653 max_gs_prims =
654 MIN2(max_gs_prims, max_out_prims / (gs->gs_max_out_vertices * gs_num_invocations));
655 }
656 assert(max_gs_prims > 0);
657
658 /* If the primitive has adjacency, halve the number of vertices
659 * that will be reused in multiple primitives.
660 */
661 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
662
663 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
664 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
665
666 /* Compute ESGS LDS size based on the worst case number of ES vertices
667 * needed to create the target number of GS prims per subgroup.
668 */
669 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
670
671 /* If total LDS usage is too big, refactor partitions based on ratio
672 * of ESGS item sizes.
673 */
674 if (esgs_lds_size > max_lds_size) {
675 /* Our target GS Prims Per Subgroup was too large. Calculate
676 * the maximum number of GS Prims Per Subgroup that will fit
677 * into LDS, capped by the maximum that the hardware can support.
678 */
679 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
680 assert(gs_prims > 0);
681 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
682
683 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
684 assert(esgs_lds_size <= max_lds_size);
685 }
686
687 /* Now calculate remaining ESGS information. */
688 if (esgs_lds_size)
689 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
690 else
691 es_verts = max_es_verts;
692
693 /* Vertices for adjacency primitives are not always reused, so restore
694 * it for ES_VERTS_PER_SUBGRP.
695 */
696 min_es_verts = gs->gs_input_verts_per_prim;
697
698 /* For normal primitives, the VGT only checks if they are past the ES
699 * verts per subgroup after allocating a full GS primitive and if they
700 * are, kick off a new subgroup. But if those additional ES verts are
701 * unique (e.g. not reused) we need to make sure there is enough LDS
702 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
703 */
704 es_verts -= min_es_verts - 1;
705
706 out->es_verts_per_subgroup = es_verts;
707 out->gs_prims_per_subgroup = gs_prims;
708 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
709 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->gs_max_out_vertices;
710 out->esgs_ring_size = 4 * esgs_lds_size;
711
712 assert(out->max_prims_per_subgroup <= max_out_prims);
713 }
714
715 static void si_emit_shader_gs(struct si_context *sctx)
716 {
717 struct si_shader *shader = sctx->queued.named.gs->shader;
718 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
719
720 if (!shader)
721 return;
722
723 /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
724 * R_028A68_VGT_GSVS_RING_OFFSET_3 */
725 radeon_opt_set_context_reg3(
726 sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
727 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
728 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3);
729
730 /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
731 radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
732 SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
733 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
734
735 /* R_028B38_VGT_GS_MAX_VERT_OUT */
736 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
737 shader->ctx_reg.gs.vgt_gs_max_vert_out);
738
739 /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
740 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
741 radeon_opt_set_context_reg4(
742 sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
743 shader->ctx_reg.gs.vgt_gs_vert_itemsize, shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
744 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2, shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
745
746 /* R_028B90_VGT_GS_INSTANCE_CNT */
747 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
748 shader->ctx_reg.gs.vgt_gs_instance_cnt);
749
750 if (sctx->chip_class >= GFX9) {
751 /* R_028A44_VGT_GS_ONCHIP_CNTL */
752 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
753 shader->ctx_reg.gs.vgt_gs_onchip_cntl);
754 /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
755 radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
756 SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
757 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
758 /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
759 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
760 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
761 shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
762
763 if (shader->key.part.gs.es->type == PIPE_SHADER_TESS_EVAL)
764 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
765 shader->vgt_tf_param);
766 if (shader->vgt_vertex_reuse_block_cntl)
767 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
768 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
769 shader->vgt_vertex_reuse_block_cntl);
770 }
771
772 if (initial_cdw != sctx->gfx_cs->current.cdw)
773 sctx->context_roll = true;
774 }
775
776 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
777 {
778 struct si_shader_selector *sel = shader->selector;
779 const ubyte *num_components = sel->info.num_stream_output_components;
780 unsigned gs_num_invocations = sel->gs_num_invocations;
781 struct si_pm4_state *pm4;
782 uint64_t va;
783 unsigned max_stream = sel->max_gs_stream;
784 unsigned offset;
785
786 pm4 = si_get_shader_pm4_state(shader);
787 if (!pm4)
788 return;
789
790 pm4->atom.emit = si_emit_shader_gs;
791
792 offset = num_components[0] * sel->gs_max_out_vertices;
793 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
794
795 if (max_stream >= 1)
796 offset += num_components[1] * sel->gs_max_out_vertices;
797 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
798
799 if (max_stream >= 2)
800 offset += num_components[2] * sel->gs_max_out_vertices;
801 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
802
803 if (max_stream >= 3)
804 offset += num_components[3] * sel->gs_max_out_vertices;
805 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
806
807 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
808 assert(offset < (1 << 15));
809
810 shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->gs_max_out_vertices;
811
812 shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
813 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 1) ? num_components[1] : 0;
814 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 2) ? num_components[2] : 0;
815 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 3) ? num_components[3] : 0;
816
817 shader->ctx_reg.gs.vgt_gs_instance_cnt =
818 S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
819
820 va = shader->bo->gpu_address;
821 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
822
823 if (sscreen->info.chip_class >= GFX9) {
824 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
825 unsigned es_type = shader->key.part.gs.es->type;
826 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
827
828 if (es_type == PIPE_SHADER_VERTEX) {
829 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
830 } else if (es_type == PIPE_SHADER_TESS_EVAL)
831 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
832 else
833 unreachable("invalid shader selector type");
834
835 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
836 * VGPR[0:4] are always loaded.
837 */
838 if (sel->info.uses_invocationid)
839 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
840 else if (sel->info.uses_primid)
841 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
842 else if (input_prim >= PIPE_PRIM_TRIANGLES)
843 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
844 else
845 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
846
847 unsigned num_user_sgprs;
848 if (es_type == PIPE_SHADER_VERTEX)
849 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
850 else
851 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
852
853 if (sscreen->info.chip_class >= GFX10) {
854 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
855 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
856 } else {
857 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
858 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
859 }
860
861 uint32_t rsrc1 = S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_DX10_CLAMP(1) |
862 S_00B228_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
863 S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) |
864 S_00B228_FLOAT_MODE(shader->config.float_mode) |
865 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
866 uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
867 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
868 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
869 S_00B22C_LDS_SIZE(shader->config.lds_size) |
870 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
871
872 if (sscreen->info.chip_class >= GFX10) {
873 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
874 } else {
875 rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8);
876 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
877 }
878
879 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
880 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
881
882 if (sscreen->info.chip_class >= GFX10) {
883 si_pm4_set_reg(pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
884 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0));
885 }
886
887 shader->ctx_reg.gs.vgt_gs_onchip_cntl =
888 S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
889 S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
890 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
891 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
892 S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
893 shader->ctx_reg.gs.vgt_esgs_ring_itemsize = shader->key.part.gs.es->esgs_itemsize / 4;
894
895 if (es_type == PIPE_SHADER_TESS_EVAL)
896 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
897
898 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es, NULL, pm4);
899 } else {
900 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
901 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
902
903 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
904 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
905 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
906 S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode));
907 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
908 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
909 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
910 }
911 }
912
913 static void gfx10_emit_ge_pc_alloc(struct si_context *sctx, unsigned value)
914 {
915 enum si_tracked_reg reg = SI_TRACKED_GE_PC_ALLOC;
916
917 if (((sctx->tracked_regs.reg_saved >> reg) & 0x1) != 0x1 ||
918 sctx->tracked_regs.reg_value[reg] != value) {
919 struct radeon_cmdbuf *cs = sctx->gfx_cs;
920
921 if (sctx->chip_class == GFX10) {
922 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
923 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
924 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
925 }
926
927 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC, value);
928
929 sctx->tracked_regs.reg_saved |= 0x1ull << reg;
930 sctx->tracked_regs.reg_value[reg] = value;
931 }
932 }
933
934 /* Common tail code for NGG primitive shaders. */
935 static void gfx10_emit_shader_ngg_tail(struct si_context *sctx, struct si_shader *shader,
936 unsigned initial_cdw)
937 {
938 radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
939 SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
940 shader->ctx_reg.ngg.ge_max_output_per_subgroup);
941 radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
942 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl);
943 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
944 shader->ctx_reg.ngg.vgt_primitiveid_en);
945 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
946 shader->ctx_reg.ngg.vgt_gs_onchip_cntl);
947 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
948 shader->ctx_reg.ngg.vgt_gs_instance_cnt);
949 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
950 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
951 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize);
952 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
953 shader->ctx_reg.ngg.spi_vs_out_config);
954 radeon_opt_set_context_reg2(
955 sctx, R_028708_SPI_SHADER_IDX_FORMAT, SI_TRACKED_SPI_SHADER_IDX_FORMAT,
956 shader->ctx_reg.ngg.spi_shader_idx_format, shader->ctx_reg.ngg.spi_shader_pos_format);
957 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
958 shader->ctx_reg.ngg.pa_cl_vte_cntl);
959 radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL, SI_TRACKED_PA_CL_NGG_CNTL,
960 shader->ctx_reg.ngg.pa_cl_ngg_cntl);
961
962 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
963 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
964 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
965
966 if (initial_cdw != sctx->gfx_cs->current.cdw)
967 sctx->context_roll = true;
968
969 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
970 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.ngg.ge_pc_alloc);
971 }
972
973 static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx)
974 {
975 struct si_shader *shader = sctx->queued.named.gs->shader;
976 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
977
978 if (!shader)
979 return;
980
981 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
982 }
983
984 static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx)
985 {
986 struct si_shader *shader = sctx->queued.named.gs->shader;
987 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
988
989 if (!shader)
990 return;
991
992 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
993 shader->vgt_tf_param);
994
995 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
996 }
997
998 static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx)
999 {
1000 struct si_shader *shader = sctx->queued.named.gs->shader;
1001 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1002
1003 if (!shader)
1004 return;
1005
1006 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1007 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1008
1009 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1010 }
1011
1012 static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx)
1013 {
1014 struct si_shader *shader = sctx->queued.named.gs->shader;
1015 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1016
1017 if (!shader)
1018 return;
1019
1020 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1021 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1022 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1023 shader->vgt_tf_param);
1024
1025 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1026 }
1027
1028 unsigned si_get_input_prim(const struct si_shader_selector *gs)
1029 {
1030 if (gs->type == PIPE_SHADER_GEOMETRY)
1031 return gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
1032
1033 if (gs->type == PIPE_SHADER_TESS_EVAL) {
1034 if (gs->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1035 return PIPE_PRIM_POINTS;
1036 if (gs->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
1037 return PIPE_PRIM_LINES;
1038 return PIPE_PRIM_TRIANGLES;
1039 }
1040
1041 /* TODO: Set this correctly if the primitive type is set in the shader key. */
1042 return PIPE_PRIM_TRIANGLES; /* worst case for all callers */
1043 }
1044
1045 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel, bool ngg)
1046 {
1047 bool misc_vec_ena = sel->info.writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1048 sel->info.writes_layer || sel->info.writes_viewport_index;
1049 return S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
1050 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1051 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
1052 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1053 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1054 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
1055 }
1056
1057 /**
1058 * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1059 * in NGG mode.
1060 */
1061 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1062 {
1063 const struct si_shader_selector *gs_sel = shader->selector;
1064 const struct si_shader_info *gs_info = &gs_sel->info;
1065 enum pipe_shader_type gs_type = shader->selector->type;
1066 const struct si_shader_selector *es_sel =
1067 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1068 const struct si_shader_info *es_info = &es_sel->info;
1069 enum pipe_shader_type es_type = es_sel->type;
1070 unsigned num_user_sgprs;
1071 unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1072 uint64_t va;
1073 unsigned window_space = gs_info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1074 bool es_enable_prim_id = shader->key.mono.u.vs_export_prim_id || es_info->uses_primid;
1075 unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1076 unsigned input_prim = si_get_input_prim(gs_sel);
1077 bool break_wave_at_eoi = false;
1078 struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader);
1079 if (!pm4)
1080 return;
1081
1082 if (es_type == PIPE_SHADER_TESS_EVAL) {
1083 pm4->atom.emit = gs_type == PIPE_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs
1084 : gfx10_emit_shader_ngg_tess_nogs;
1085 } else {
1086 pm4->atom.emit = gs_type == PIPE_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs
1087 : gfx10_emit_shader_ngg_notess_nogs;
1088 }
1089
1090 va = shader->bo->gpu_address;
1091 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1092
1093 if (es_type == PIPE_SHADER_VERTEX) {
1094 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1095
1096 if (es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1097 num_user_sgprs =
1098 SI_SGPR_VS_BLIT_DATA + es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1099 } else {
1100 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
1101 }
1102 } else {
1103 assert(es_type == PIPE_SHADER_TESS_EVAL);
1104 es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1105 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
1106
1107 if (es_enable_prim_id || gs_info->uses_primid)
1108 break_wave_at_eoi = true;
1109 }
1110
1111 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1112 * VGPR[0:4] are always loaded.
1113 *
1114 * Vertex shaders always need to load VGPR3, because they need to
1115 * pass edge flags for decomposed primitives (such as quads) to the PA
1116 * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1117 */
1118 if (gs_info->uses_invocationid ||
1119 (gs_type == PIPE_SHADER_VERTEX && !gfx10_is_ngg_passthrough(shader)))
1120 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1121 else if ((gs_type == PIPE_SHADER_GEOMETRY && gs_info->uses_primid) ||
1122 (gs_type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1123 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1124 else if (input_prim >= PIPE_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1125 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1126 else
1127 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1128
1129 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1130 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
1131 si_pm4_set_reg(
1132 pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1133 S_00B228_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1134 S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_DX10_CLAMP(1) |
1135 S_00B228_MEM_ORDERED(1) | S_00B228_WGP_MODE(1) |
1136 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1137 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1138 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1139 S_00B22C_USER_SGPR(num_user_sgprs) |
1140 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1141 S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1142 S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
1143 S_00B22C_LDS_SIZE(shader->config.lds_size));
1144
1145 /* Determine LATE_ALLOC_GS. */
1146 unsigned num_cu_per_sh = sscreen->info.min_good_cu_per_sa;
1147 unsigned late_alloc_wave64; /* The limit is per SA. */
1148
1149 /* For Wave32, the hw will launch twice the number of late
1150 * alloc waves, so 1 == 2x wave32.
1151 *
1152 * Don't use late alloc for NGG on Navi14 due to a hw bug.
1153 */
1154 if (sscreen->info.family == CHIP_NAVI14 || !sscreen->info.use_late_alloc)
1155 late_alloc_wave64 = 0;
1156 else if (num_cu_per_sh <= 6)
1157 late_alloc_wave64 = num_cu_per_sh - 2; /* All CUs enabled */
1158 else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL)
1159 late_alloc_wave64 = (num_cu_per_sh - 2) * 6;
1160 else
1161 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
1162
1163 /* Limit LATE_ALLOC_GS for prevent a hang (hw bug). */
1164 if (sscreen->info.chip_class == GFX10)
1165 late_alloc_wave64 = MIN2(late_alloc_wave64, 64);
1166
1167 si_pm4_set_reg(
1168 pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1169 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
1170
1171 nparams = MAX2(shader->info.nr_param_exports, 1);
1172 shader->ctx_reg.ngg.spi_vs_out_config =
1173 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
1174 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1175
1176 shader->ctx_reg.ngg.spi_shader_idx_format =
1177 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP);
1178 shader->ctx_reg.ngg.spi_shader_pos_format =
1179 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1180 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1181 : V_02870C_SPI_SHADER_NONE) |
1182 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1183 : V_02870C_SPI_SHADER_NONE) |
1184 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1185 : V_02870C_SPI_SHADER_NONE);
1186
1187 shader->ctx_reg.ngg.vgt_primitiveid_en =
1188 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
1189 S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.mono.u.vs_export_prim_id ||
1190 gs_sel->info.writes_primid);
1191
1192 if (gs_type == PIPE_SHADER_GEOMETRY) {
1193 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4;
1194 shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->gs_max_out_vertices;
1195 } else {
1196 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1;
1197 }
1198
1199 if (es_type == PIPE_SHADER_TESS_EVAL)
1200 si_set_tesseval_regs(sscreen, es_sel, pm4);
1201
1202 shader->ctx_reg.ngg.vgt_gs_onchip_cntl =
1203 S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1204 S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1205 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1206 shader->ctx_reg.ngg.ge_max_output_per_subgroup =
1207 S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1208 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) |
1209 S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1210 shader->ctx_reg.ngg.vgt_gs_instance_cnt =
1211 S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1212 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1213
1214 /* Always output hw-generated edge flags and pass them via the prim
1215 * export to prevent drawing lines on internal edges of decomposed
1216 * primitives (such as quads) with polygon mode = lines. Only VS needs
1217 * this.
1218 */
1219 shader->ctx_reg.ngg.pa_cl_ngg_cntl =
1220 S_028838_INDEX_BUF_EDGE_FLAG_ENA(gs_type == PIPE_SHADER_VERTEX) |
1221 /* Reuse for NGG. */
1222 S_028838_VERTEX_REUSE_DEPTH_GFX103(sscreen->info.chip_class >= GFX10_3 ? 30 : 0);
1223 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(gs_sel, true);
1224
1225 /* Oversubscribe PC. This improves performance when there are too many varyings. */
1226 float oversub_pc_factor = 0.25;
1227
1228 if (shader->key.opt.ngg_culling) {
1229 /* Be more aggressive with NGG culling. */
1230 if (shader->info.nr_param_exports > 4)
1231 oversub_pc_factor = 1;
1232 else if (shader->info.nr_param_exports > 2)
1233 oversub_pc_factor = 0.75;
1234 else
1235 oversub_pc_factor = 0.5;
1236 }
1237
1238 unsigned oversub_pc_lines = sscreen->info.pc_lines * oversub_pc_factor;
1239 shader->ctx_reg.ngg.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1240 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1241
1242 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
1243 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1244 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims * 3);
1245 } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
1246 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1247 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims + 2);
1248 } else {
1249 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1250 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
1251 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1252
1253 /* Bug workaround for a possible hang with non-tessellation cases.
1254 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
1255 *
1256 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
1257 */
1258 if ((sscreen->info.chip_class == GFX10) &&
1259 (es_type == PIPE_SHADER_VERTEX || gs_type == PIPE_SHADER_VERTEX) && /* = no tess */
1260 shader->ngg.hw_max_esverts != 256) {
1261 shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1262
1263 if (shader->ngg.hw_max_esverts > 5) {
1264 shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1265 }
1266 }
1267 }
1268
1269 if (window_space) {
1270 shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1271 } else {
1272 shader->ctx_reg.ngg.pa_cl_vte_cntl =
1273 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1274 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1275 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1276 }
1277 }
1278
1279 static void si_emit_shader_vs(struct si_context *sctx)
1280 {
1281 struct si_shader *shader = sctx->queued.named.vs->shader;
1282 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1283
1284 if (!shader)
1285 return;
1286
1287 radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1288 shader->ctx_reg.vs.vgt_gs_mode);
1289 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1290 shader->ctx_reg.vs.vgt_primitiveid_en);
1291
1292 if (sctx->chip_class <= GFX8) {
1293 radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1294 shader->ctx_reg.vs.vgt_reuse_off);
1295 }
1296
1297 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1298 shader->ctx_reg.vs.spi_vs_out_config);
1299
1300 radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1301 SI_TRACKED_SPI_SHADER_POS_FORMAT,
1302 shader->ctx_reg.vs.spi_shader_pos_format);
1303
1304 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1305 shader->ctx_reg.vs.pa_cl_vte_cntl);
1306
1307 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
1308 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1309 shader->vgt_tf_param);
1310
1311 if (shader->vgt_vertex_reuse_block_cntl)
1312 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1313 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1314 shader->vgt_vertex_reuse_block_cntl);
1315
1316 /* Required programming for tessellation. (legacy pipeline only) */
1317 if (sctx->chip_class >= GFX10 && shader->selector->type == PIPE_SHADER_TESS_EVAL) {
1318 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1319 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1320 S_028A44_ES_VERTS_PER_SUBGRP(250) |
1321 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1322 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1323 }
1324
1325 if (sctx->chip_class >= GFX10) {
1326 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
1327 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
1328 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
1329 }
1330
1331 if (initial_cdw != sctx->gfx_cs->current.cdw)
1332 sctx->context_roll = true;
1333
1334 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1335 if (sctx->chip_class >= GFX10)
1336 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.vs.ge_pc_alloc);
1337 }
1338
1339 /**
1340 * Compute the state for \p shader, which will run as a vertex shader on the
1341 * hardware.
1342 *
1343 * If \p gs is non-NULL, it points to the geometry shader for which this shader
1344 * is the copy shader.
1345 */
1346 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1347 struct si_shader_selector *gs)
1348 {
1349 const struct si_shader_info *info = &shader->selector->info;
1350 struct si_pm4_state *pm4;
1351 unsigned num_user_sgprs, vgpr_comp_cnt;
1352 uint64_t va;
1353 unsigned nparams, oc_lds_en;
1354 unsigned window_space = info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1355 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1356
1357 pm4 = si_get_shader_pm4_state(shader);
1358 if (!pm4)
1359 return;
1360
1361 pm4->atom.emit = si_emit_shader_vs;
1362
1363 /* We always write VGT_GS_MODE in the VS state, because every switch
1364 * between different shader pipelines involving a different GS or no
1365 * GS at all involves a switch of the VS (different GS use different
1366 * copy shaders). On the other hand, when the API switches from a GS to
1367 * no GS and then back to the same GS used originally, the GS state is
1368 * not sent again.
1369 */
1370 if (!gs) {
1371 unsigned mode = V_028A40_GS_OFF;
1372
1373 /* PrimID needs GS scenario A. */
1374 if (enable_prim_id)
1375 mode = V_028A40_GS_SCENARIO_A;
1376
1377 shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1378 shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1379 } else {
1380 shader->ctx_reg.vs.vgt_gs_mode =
1381 ac_vgt_gs_mode(gs->gs_max_out_vertices, sscreen->info.chip_class);
1382 shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1383 }
1384
1385 if (sscreen->info.chip_class <= GFX8) {
1386 /* Reuse needs to be set off if we write oViewport. */
1387 shader->ctx_reg.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1388 }
1389
1390 va = shader->bo->gpu_address;
1391 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1392
1393 if (gs) {
1394 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1395 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1396 } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
1397 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1398
1399 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1400 num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1401 } else {
1402 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1403 }
1404 } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
1405 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1406 num_user_sgprs = SI_TES_NUM_USER_SGPR;
1407 } else
1408 unreachable("invalid shader selector type");
1409
1410 /* VS is required to export at least one param. */
1411 nparams = MAX2(shader->info.nr_param_exports, 1);
1412 shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1413
1414 if (sscreen->info.chip_class >= GFX10) {
1415 shader->ctx_reg.vs.spi_vs_out_config |=
1416 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1417 }
1418
1419 shader->ctx_reg.vs.spi_shader_pos_format =
1420 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1421 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1422 : V_02870C_SPI_SHADER_NONE) |
1423 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1424 : V_02870C_SPI_SHADER_NONE) |
1425 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1426 : V_02870C_SPI_SHADER_NONE);
1427 shader->ctx_reg.vs.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1428 S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1429 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, false);
1430
1431 oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
1432
1433 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1434 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
1435
1436 uint32_t rsrc1 =
1437 S_00B128_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1438 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) |
1439 S_00B128_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1440 S_00B128_FLOAT_MODE(shader->config.float_mode);
1441 uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1442 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1443
1444 if (sscreen->info.chip_class >= GFX10)
1445 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1446 else if (sscreen->info.chip_class == GFX9)
1447 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1448
1449 if (sscreen->info.chip_class <= GFX9)
1450 rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8);
1451
1452 if (!sscreen->use_ngg_streamout) {
1453 rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1454 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1455 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1456 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1457 S_00B12C_SO_EN(!!shader->selector->so.num_outputs);
1458 }
1459
1460 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1461 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1462
1463 if (window_space)
1464 shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1465 else
1466 shader->ctx_reg.vs.pa_cl_vte_cntl =
1467 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1468 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1469 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1470
1471 if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
1472 si_set_tesseval_regs(sscreen, shader->selector, pm4);
1473
1474 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
1475 }
1476
1477 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1478 {
1479 struct si_shader_info *info = &ps->selector->info;
1480 unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0);
1481 unsigned num_interp =
1482 ps->selector->info.num_inputs + (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1483
1484 assert(num_interp <= 32);
1485 return MIN2(num_interp, 32);
1486 }
1487
1488 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1489 {
1490 unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1491 unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1492
1493 /* If the i-th target format is set, all previous target formats must
1494 * be non-zero to avoid hangs.
1495 */
1496 for (i = 0; i < num_targets; i++)
1497 if (!(value & (0xf << (i * 4))))
1498 value |= V_028714_SPI_SHADER_32_R << (i * 4);
1499
1500 return value;
1501 }
1502
1503 static void si_emit_shader_ps(struct si_context *sctx)
1504 {
1505 struct si_shader *shader = sctx->queued.named.ps->shader;
1506 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1507
1508 if (!shader)
1509 return;
1510
1511 /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1512 radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1513 shader->ctx_reg.ps.spi_ps_input_ena,
1514 shader->ctx_reg.ps.spi_ps_input_addr);
1515
1516 radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1517 shader->ctx_reg.ps.spi_baryc_cntl);
1518 radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1519 shader->ctx_reg.ps.spi_ps_in_control);
1520
1521 /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1522 radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1523 shader->ctx_reg.ps.spi_shader_z_format,
1524 shader->ctx_reg.ps.spi_shader_col_format);
1525
1526 radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1527 shader->ctx_reg.ps.cb_shader_mask);
1528
1529 if (initial_cdw != sctx->gfx_cs->current.cdw)
1530 sctx->context_roll = true;
1531 }
1532
1533 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1534 {
1535 struct si_shader_info *info = &shader->selector->info;
1536 struct si_pm4_state *pm4;
1537 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1538 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1539 uint64_t va;
1540 unsigned input_ena = shader->config.spi_ps_input_ena;
1541
1542 /* we need to enable at least one of them, otherwise we hang the GPU */
1543 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1544 G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1545 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1546 G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1547 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1548 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1549 G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1550 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1551
1552 /* Validate interpolation optimization flags (read as implications). */
1553 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1554 (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1555 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1556 (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1557 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1558 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1559 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1560 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1561 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1562 (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1563 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1564 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1565
1566 /* Validate cases when the optimizations are off (read as implications). */
1567 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1568 !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1569 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1570 !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1571
1572 pm4 = si_get_shader_pm4_state(shader);
1573 if (!pm4)
1574 return;
1575
1576 pm4->atom.emit = si_emit_shader_ps;
1577
1578 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1579 * Possible vaules:
1580 * 0 -> Position = pixel center
1581 * 1 -> Position = pixel centroid
1582 * 2 -> Position = at sample position
1583 *
1584 * From GLSL 4.5 specification, section 7.1:
1585 * "The variable gl_FragCoord is available as an input variable from
1586 * within fragment shaders and it holds the window relative coordinates
1587 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1588 * value can be for any location within the pixel, or one of the
1589 * fragment samples. The use of centroid does not further restrict
1590 * this value to be inside the current primitive."
1591 *
1592 * Meaning that centroid has no effect and we can return anything within
1593 * the pixel. Thus, return the value at sample position, because that's
1594 * the most accurate one shaders can get.
1595 */
1596 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1597
1598 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] == TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1599 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1600
1601 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1602 cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1603
1604 /* Ensure that some export memory is always allocated, for two reasons:
1605 *
1606 * 1) Correctness: The hardware ignores the EXEC mask if no export
1607 * memory is allocated, so KILL and alpha test do not work correctly
1608 * without this.
1609 * 2) Performance: Every shader needs at least a NULL export, even when
1610 * it writes no color/depth output. The NULL export instruction
1611 * stalls without this setting.
1612 *
1613 * Don't add this to CB_SHADER_MASK.
1614 *
1615 * GFX10 supports pixel shaders without exports by setting both
1616 * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1617 * instructions if any are present.
1618 */
1619 if ((sscreen->info.chip_class <= GFX9 || info->uses_kill ||
1620 shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS) &&
1621 !spi_shader_col_format && !info->writes_z && !info->writes_stencil &&
1622 !info->writes_samplemask)
1623 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1624
1625 shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1626 shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1627
1628 /* Set interpolation controls. */
1629 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
1630 S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32);
1631
1632 shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1633 shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1634 shader->ctx_reg.ps.spi_shader_z_format =
1635 ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask);
1636 shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1637 shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1638
1639 va = shader->bo->gpu_address;
1640 si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1641 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1642 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1643
1644 uint32_t rsrc1 =
1645 S_00B028_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ps_wave_size == 32 ? 8 : 4)) |
1646 S_00B028_DX10_CLAMP(1) | S_00B028_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1647 S_00B028_FLOAT_MODE(shader->config.float_mode);
1648
1649 if (sscreen->info.chip_class < GFX10) {
1650 rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8);
1651 }
1652
1653 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1);
1654 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1655 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1656 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1657 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1658 }
1659
1660 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
1661 {
1662 switch (shader->selector->type) {
1663 case PIPE_SHADER_VERTEX:
1664 if (shader->key.as_ls)
1665 si_shader_ls(sscreen, shader);
1666 else if (shader->key.as_es)
1667 si_shader_es(sscreen, shader);
1668 else if (shader->key.as_ngg)
1669 gfx10_shader_ngg(sscreen, shader);
1670 else
1671 si_shader_vs(sscreen, shader, NULL);
1672 break;
1673 case PIPE_SHADER_TESS_CTRL:
1674 si_shader_hs(sscreen, shader);
1675 break;
1676 case PIPE_SHADER_TESS_EVAL:
1677 if (shader->key.as_es)
1678 si_shader_es(sscreen, shader);
1679 else if (shader->key.as_ngg)
1680 gfx10_shader_ngg(sscreen, shader);
1681 else
1682 si_shader_vs(sscreen, shader, NULL);
1683 break;
1684 case PIPE_SHADER_GEOMETRY:
1685 if (shader->key.as_ngg)
1686 gfx10_shader_ngg(sscreen, shader);
1687 else
1688 si_shader_gs(sscreen, shader);
1689 break;
1690 case PIPE_SHADER_FRAGMENT:
1691 si_shader_ps(sscreen, shader);
1692 break;
1693 default:
1694 assert(0);
1695 }
1696 }
1697
1698 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1699 {
1700 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1701 return sctx->queued.named.dsa->alpha_func;
1702 }
1703
1704 void si_shader_selector_key_vs(struct si_context *sctx, struct si_shader_selector *vs,
1705 struct si_shader_key *key, struct si_vs_prolog_bits *prolog_key)
1706 {
1707 if (!sctx->vertex_elements || vs->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD])
1708 return;
1709
1710 struct si_vertex_elements *elts = sctx->vertex_elements;
1711
1712 prolog_key->instance_divisor_is_one = elts->instance_divisor_is_one;
1713 prolog_key->instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
1714 prolog_key->unpack_instance_id_from_vertex_id = sctx->prim_discard_cs_instancing;
1715
1716 /* Prefer a monolithic shader to allow scheduling divisions around
1717 * VBO loads. */
1718 if (prolog_key->instance_divisor_is_fetched)
1719 key->opt.prefer_mono = 1;
1720
1721 unsigned count = MIN2(vs->info.num_inputs, elts->count);
1722 unsigned count_mask = (1 << count) - 1;
1723 unsigned fix = elts->fix_fetch_always & count_mask;
1724 unsigned opencode = elts->fix_fetch_opencode & count_mask;
1725
1726 if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
1727 uint32_t mask = elts->fix_fetch_unaligned & count_mask;
1728 while (mask) {
1729 unsigned i = u_bit_scan(&mask);
1730 unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
1731 unsigned vbidx = elts->vertex_buffer_index[i];
1732 struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
1733 unsigned align_mask = (1 << log_hw_load_size) - 1;
1734 if (vb->buffer_offset & align_mask || vb->stride & align_mask) {
1735 fix |= 1 << i;
1736 opencode |= 1 << i;
1737 }
1738 }
1739 }
1740
1741 while (fix) {
1742 unsigned i = u_bit_scan(&fix);
1743 key->mono.vs_fix_fetch[i].bits = elts->fix_fetch[i];
1744 }
1745 key->mono.vs_fetch_opencode = opencode;
1746 }
1747
1748 static void si_shader_selector_key_hw_vs(struct si_context *sctx, struct si_shader_selector *vs,
1749 struct si_shader_key *key)
1750 {
1751 struct si_shader_selector *ps = sctx->ps_shader.cso;
1752
1753 key->opt.clip_disable = sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1754 (vs->info.clipdist_writemask || vs->info.writes_clipvertex) &&
1755 !vs->info.culldist_writemask;
1756
1757 /* Find out if PS is disabled. */
1758 bool ps_disabled = true;
1759 if (ps) {
1760 bool ps_modifies_zs = ps->info.uses_kill || ps->info.writes_z || ps->info.writes_stencil ||
1761 ps->info.writes_samplemask ||
1762 sctx->queued.named.blend->alpha_to_coverage ||
1763 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1764 unsigned ps_colormask = si_get_total_colormask(sctx);
1765
1766 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1767 (!ps_colormask && !ps_modifies_zs && !ps->info.writes_memory);
1768 }
1769
1770 /* Find out which VS outputs aren't used by the PS. */
1771 uint64_t outputs_written = vs->outputs_written_before_ps;
1772 uint64_t inputs_read = 0;
1773
1774 /* Ignore outputs that are not passed from VS to PS. */
1775 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1776 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1777 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1778
1779 if (!ps_disabled) {
1780 inputs_read = ps->inputs_read;
1781 }
1782
1783 uint64_t linked = outputs_written & inputs_read;
1784
1785 key->opt.kill_outputs = ~linked & outputs_written;
1786 key->opt.ngg_culling = sctx->ngg_culling;
1787 }
1788
1789 /* Compute the key for the hw shader variant */
1790 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
1791 union si_vgt_stages_key stages_key,
1792 struct si_shader_key *key)
1793 {
1794 struct si_context *sctx = (struct si_context *)ctx;
1795
1796 memset(key, 0, sizeof(*key));
1797
1798 switch (sel->type) {
1799 case PIPE_SHADER_VERTEX:
1800 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1801
1802 if (sctx->tes_shader.cso)
1803 key->as_ls = 1;
1804 else if (sctx->gs_shader.cso) {
1805 key->as_es = 1;
1806 key->as_ngg = stages_key.u.ngg;
1807 } else {
1808 key->as_ngg = stages_key.u.ngg;
1809 si_shader_selector_key_hw_vs(sctx, sel, key);
1810
1811 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1812 key->mono.u.vs_export_prim_id = 1;
1813 }
1814 break;
1815 case PIPE_SHADER_TESS_CTRL:
1816 if (sctx->chip_class >= GFX9) {
1817 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.tcs.ls_prolog);
1818 key->part.tcs.ls = sctx->vs_shader.cso;
1819
1820 /* When the LS VGPR fix is needed, monolithic shaders
1821 * can:
1822 * - avoid initializing EXEC in both the LS prolog
1823 * and the LS main part when !vs_needs_prolog
1824 * - remove the fixup for unused input VGPRs
1825 */
1826 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1827
1828 /* The LS output / HS input layout can be communicated
1829 * directly instead of via user SGPRs for merged LS-HS.
1830 * The LS VGPR fix prefers this too.
1831 */
1832 key->opt.prefer_mono = 1;
1833 }
1834
1835 key->part.tcs.epilog.prim_mode =
1836 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1837 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1838 sel->info.tessfactors_are_def_in_all_invocs;
1839 key->part.tcs.epilog.tes_reads_tess_factors = sctx->tes_shader.cso->info.reads_tess_factors;
1840
1841 if (sel == sctx->fixed_func_tcs_shader.cso)
1842 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1843 break;
1844 case PIPE_SHADER_TESS_EVAL:
1845 key->as_ngg = stages_key.u.ngg;
1846
1847 if (sctx->gs_shader.cso)
1848 key->as_es = 1;
1849 else {
1850 si_shader_selector_key_hw_vs(sctx, sel, key);
1851
1852 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1853 key->mono.u.vs_export_prim_id = 1;
1854 }
1855 break;
1856 case PIPE_SHADER_GEOMETRY:
1857 if (sctx->chip_class >= GFX9) {
1858 if (sctx->tes_shader.cso) {
1859 key->part.gs.es = sctx->tes_shader.cso;
1860 } else {
1861 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.gs.vs_prolog);
1862 key->part.gs.es = sctx->vs_shader.cso;
1863 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1864 }
1865
1866 key->as_ngg = stages_key.u.ngg;
1867
1868 /* Merged ES-GS can have unbalanced wave usage.
1869 *
1870 * ES threads are per-vertex, while GS threads are
1871 * per-primitive. So without any amplification, there
1872 * are fewer GS threads than ES threads, which can result
1873 * in empty (no-op) GS waves. With too much amplification,
1874 * there are more GS threads than ES threads, which
1875 * can result in empty (no-op) ES waves.
1876 *
1877 * Non-monolithic shaders are implemented by setting EXEC
1878 * at the beginning of shader parts, and don't jump to
1879 * the end if EXEC is 0.
1880 *
1881 * Monolithic shaders use conditional blocks, so they can
1882 * jump and skip empty waves of ES or GS. So set this to
1883 * always use optimized variants, which are monolithic.
1884 */
1885 key->opt.prefer_mono = 1;
1886 }
1887 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1888 break;
1889 case PIPE_SHADER_FRAGMENT: {
1890 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1891 struct si_state_blend *blend = sctx->queued.named.blend;
1892
1893 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1894 sel->info.colors_written == 0x1)
1895 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1896
1897 /* Select the shader color format based on whether
1898 * blending or alpha are needed.
1899 */
1900 key->part.ps.epilog.spi_shader_col_format =
1901 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1902 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1903 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1904 sctx->framebuffer.spi_shader_col_format_blend) |
1905 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1906 sctx->framebuffer.spi_shader_col_format_alpha) |
1907 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1908 sctx->framebuffer.spi_shader_col_format);
1909 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1910
1911 /* The output for dual source blending should have
1912 * the same format as the first output.
1913 */
1914 if (blend->dual_src_blend) {
1915 key->part.ps.epilog.spi_shader_col_format |=
1916 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1917 }
1918
1919 /* If alpha-to-coverage is enabled, we have to export alpha
1920 * even if there is no color buffer.
1921 */
1922 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) && blend->alpha_to_coverage)
1923 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1924
1925 /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
1926 * to the range supported by the type if a channel has less
1927 * than 16 bits and the export format is 16_ABGR.
1928 */
1929 if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) {
1930 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1931 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1932 }
1933
1934 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1935 if (!key->part.ps.epilog.last_cbuf) {
1936 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1937 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1938 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1939 }
1940
1941 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1942 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1943
1944 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1945 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1946
1947 key->part.ps.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
1948
1949 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1950 key->part.ps.epilog.poly_line_smoothing =
1951 ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) &&
1952 sctx->framebuffer.nr_samples <= 1;
1953 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1954
1955 if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask) {
1956 key->part.ps.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
1957 }
1958
1959 if (rs->force_persample_interp && rs->multisample_enable &&
1960 sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
1961 key->part.ps.prolog.force_persp_sample_interp =
1962 sel->info.uses_persp_center || sel->info.uses_persp_centroid;
1963
1964 key->part.ps.prolog.force_linear_sample_interp =
1965 sel->info.uses_linear_center || sel->info.uses_linear_centroid;
1966 } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
1967 key->part.ps.prolog.bc_optimize_for_persp =
1968 sel->info.uses_persp_center && sel->info.uses_persp_centroid;
1969 key->part.ps.prolog.bc_optimize_for_linear =
1970 sel->info.uses_linear_center && sel->info.uses_linear_centroid;
1971 } else {
1972 /* Make sure SPI doesn't compute more than 1 pair
1973 * of (i,j), which is the optimization here. */
1974 key->part.ps.prolog.force_persp_center_interp = sel->info.uses_persp_center +
1975 sel->info.uses_persp_centroid +
1976 sel->info.uses_persp_sample >
1977 1;
1978
1979 key->part.ps.prolog.force_linear_center_interp = sel->info.uses_linear_center +
1980 sel->info.uses_linear_centroid +
1981 sel->info.uses_linear_sample >
1982 1;
1983
1984 if (sel->info.uses_persp_opcode_interp_sample ||
1985 sel->info.uses_linear_opcode_interp_sample)
1986 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1987 }
1988
1989 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1990
1991 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1992 if (sctx->ps_uses_fbfetch && !sctx->blitter->running) {
1993 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1994 struct pipe_resource *tex = cb0->texture;
1995
1996 /* 1D textures are allocated and used as 2D on GFX9. */
1997 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1998 key->mono.u.ps.fbfetch_is_1D =
1999 sctx->chip_class != GFX9 &&
2000 (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
2001 key->mono.u.ps.fbfetch_layered =
2002 tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2003 tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2004 tex->target == PIPE_TEXTURE_3D;
2005 }
2006 break;
2007 }
2008 default:
2009 assert(0);
2010 }
2011
2012 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
2013 memset(&key->opt, 0, sizeof(key->opt));
2014 }
2015
2016 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2017 {
2018 struct si_shader_selector *sel = shader->selector;
2019 struct si_screen *sscreen = sel->screen;
2020 struct ac_llvm_compiler *compiler;
2021 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
2022
2023 if (thread_index >= 0) {
2024 if (low_priority) {
2025 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
2026 compiler = &sscreen->compiler_lowp[thread_index];
2027 } else {
2028 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2029 compiler = &sscreen->compiler[thread_index];
2030 }
2031 if (!debug->async)
2032 debug = NULL;
2033 } else {
2034 assert(!low_priority);
2035 compiler = shader->compiler_ctx_state.compiler;
2036 }
2037
2038 if (!compiler->passes)
2039 si_init_compiler(sscreen, compiler);
2040
2041 if (unlikely(!si_create_shader_variant(sscreen, compiler, shader, debug))) {
2042 PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->type);
2043 shader->compilation_failed = true;
2044 return;
2045 }
2046
2047 if (shader->compiler_ctx_state.is_debug_context) {
2048 FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2049 if (f) {
2050 si_shader_dump(sscreen, shader, NULL, f, false);
2051 fclose(f);
2052 }
2053 }
2054
2055 si_shader_init_pm4_state(sscreen, shader);
2056 }
2057
2058 static void si_build_shader_variant_low_priority(void *job, int thread_index)
2059 {
2060 struct si_shader *shader = (struct si_shader *)job;
2061
2062 assert(thread_index >= 0);
2063
2064 si_build_shader_variant(shader, thread_index, true);
2065 }
2066
2067 static const struct si_shader_key zeroed;
2068
2069 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2070 struct si_compiler_ctx_state *compiler_state,
2071 struct si_shader_key *key)
2072 {
2073 struct si_shader **mainp = si_get_main_shader_part(sel, key);
2074
2075 if (!*mainp) {
2076 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2077
2078 if (!main_part)
2079 return false;
2080
2081 /* We can leave the fence as permanently signaled because the
2082 * main part becomes visible globally only after it has been
2083 * compiled. */
2084 util_queue_fence_init(&main_part->ready);
2085
2086 main_part->selector = sel;
2087 main_part->key.as_es = key->as_es;
2088 main_part->key.as_ls = key->as_ls;
2089 main_part->key.as_ngg = key->as_ngg;
2090 main_part->is_monolithic = false;
2091
2092 if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2093 &compiler_state->debug)) {
2094 FREE(main_part);
2095 return false;
2096 }
2097 *mainp = main_part;
2098 }
2099 return true;
2100 }
2101
2102 /**
2103 * Select a shader variant according to the shader key.
2104 *
2105 * \param optimized_or_none If the key describes an optimized shader variant and
2106 * the compilation isn't finished, don't select any
2107 * shader and return an error.
2108 */
2109 int si_shader_select_with_key(struct si_screen *sscreen, struct si_shader_ctx_state *state,
2110 struct si_compiler_ctx_state *compiler_state,
2111 struct si_shader_key *key, int thread_index, bool optimized_or_none)
2112 {
2113 struct si_shader_selector *sel = state->cso;
2114 struct si_shader_selector *previous_stage_sel = NULL;
2115 struct si_shader *current = state->current;
2116 struct si_shader *iter, *shader = NULL;
2117
2118 again:
2119 /* Check if we don't need to change anything.
2120 * This path is also used for most shaders that don't need multiple
2121 * variants, it will cost just a computation of the key and this
2122 * test. */
2123 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0)) {
2124 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2125 if (current->is_optimized) {
2126 if (optimized_or_none)
2127 return -1;
2128
2129 memset(&key->opt, 0, sizeof(key->opt));
2130 goto current_not_ready;
2131 }
2132
2133 util_queue_fence_wait(&current->ready);
2134 }
2135
2136 return current->compilation_failed ? -1 : 0;
2137 }
2138 current_not_ready:
2139
2140 /* This must be done before the mutex is locked, because async GS
2141 * compilation calls this function too, and therefore must enter
2142 * the mutex first.
2143 *
2144 * Only wait if we are in a draw call. Don't wait if we are
2145 * in a compiler thread.
2146 */
2147 if (thread_index < 0)
2148 util_queue_fence_wait(&sel->ready);
2149
2150 simple_mtx_lock(&sel->mutex);
2151
2152 /* Find the shader variant. */
2153 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
2154 /* Don't check the "current" shader. We checked it above. */
2155 if (current != iter && memcmp(&iter->key, key, sizeof(*key)) == 0) {
2156 simple_mtx_unlock(&sel->mutex);
2157
2158 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2159 /* If it's an optimized shader and its compilation has
2160 * been started but isn't done, use the unoptimized
2161 * shader so as not to cause a stall due to compilation.
2162 */
2163 if (iter->is_optimized) {
2164 if (optimized_or_none)
2165 return -1;
2166 memset(&key->opt, 0, sizeof(key->opt));
2167 goto again;
2168 }
2169
2170 util_queue_fence_wait(&iter->ready);
2171 }
2172
2173 if (iter->compilation_failed) {
2174 return -1; /* skip the draw call */
2175 }
2176
2177 state->current = iter;
2178 return 0;
2179 }
2180 }
2181
2182 /* Build a new shader. */
2183 shader = CALLOC_STRUCT(si_shader);
2184 if (!shader) {
2185 simple_mtx_unlock(&sel->mutex);
2186 return -ENOMEM;
2187 }
2188
2189 util_queue_fence_init(&shader->ready);
2190
2191 shader->selector = sel;
2192 shader->key = *key;
2193 shader->compiler_ctx_state = *compiler_state;
2194
2195 /* If this is a merged shader, get the first shader's selector. */
2196 if (sscreen->info.chip_class >= GFX9) {
2197 if (sel->type == PIPE_SHADER_TESS_CTRL)
2198 previous_stage_sel = key->part.tcs.ls;
2199 else if (sel->type == PIPE_SHADER_GEOMETRY)
2200 previous_stage_sel = key->part.gs.es;
2201
2202 /* We need to wait for the previous shader. */
2203 if (previous_stage_sel && thread_index < 0)
2204 util_queue_fence_wait(&previous_stage_sel->ready);
2205 }
2206
2207 bool is_pure_monolithic =
2208 sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
2209
2210 /* Compile the main shader part if it doesn't exist. This can happen
2211 * if the initial guess was wrong.
2212 *
2213 * The prim discard CS doesn't need the main shader part.
2214 */
2215 if (!is_pure_monolithic && !key->opt.vs_as_prim_discard_cs) {
2216 bool ok = true;
2217
2218 /* Make sure the main shader part is present. This is needed
2219 * for shaders that can be compiled as VS, LS, or ES, and only
2220 * one of them is compiled at creation.
2221 *
2222 * It is also needed for GS, which can be compiled as non-NGG
2223 * and NGG.
2224 *
2225 * For merged shaders, check that the starting shader's main
2226 * part is present.
2227 */
2228 if (previous_stage_sel) {
2229 struct si_shader_key shader1_key = zeroed;
2230
2231 if (sel->type == PIPE_SHADER_TESS_CTRL) {
2232 shader1_key.as_ls = 1;
2233 } else if (sel->type == PIPE_SHADER_GEOMETRY) {
2234 shader1_key.as_es = 1;
2235 shader1_key.as_ngg = key->as_ngg; /* for Wave32 vs Wave64 */
2236 } else {
2237 assert(0);
2238 }
2239
2240 simple_mtx_lock(&previous_stage_sel->mutex);
2241 ok = si_check_missing_main_part(sscreen, previous_stage_sel, compiler_state, &shader1_key);
2242 simple_mtx_unlock(&previous_stage_sel->mutex);
2243 }
2244
2245 if (ok) {
2246 ok = si_check_missing_main_part(sscreen, sel, compiler_state, key);
2247 }
2248
2249 if (!ok) {
2250 FREE(shader);
2251 simple_mtx_unlock(&sel->mutex);
2252 return -ENOMEM; /* skip the draw call */
2253 }
2254 }
2255
2256 /* Keep the reference to the 1st shader of merged shaders, so that
2257 * Gallium can't destroy it before we destroy the 2nd shader.
2258 *
2259 * Set sctx = NULL, because it's unused if we're not releasing
2260 * the shader, and we don't have any sctx here.
2261 */
2262 si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
2263
2264 /* Monolithic-only shaders don't make a distinction between optimized
2265 * and unoptimized. */
2266 shader->is_monolithic =
2267 is_pure_monolithic || memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2268
2269 /* The prim discard CS is always optimized. */
2270 shader->is_optimized = (!is_pure_monolithic || key->opt.vs_as_prim_discard_cs) &&
2271 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2272
2273 /* If it's an optimized shader, compile it asynchronously. */
2274 if (shader->is_optimized && thread_index < 0) {
2275 /* Compile it asynchronously. */
2276 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->ready,
2277 si_build_shader_variant_low_priority, NULL, 0);
2278
2279 /* Add only after the ready fence was reset, to guard against a
2280 * race with si_bind_XX_shader. */
2281 if (!sel->last_variant) {
2282 sel->first_variant = shader;
2283 sel->last_variant = shader;
2284 } else {
2285 sel->last_variant->next_variant = shader;
2286 sel->last_variant = shader;
2287 }
2288
2289 /* Use the default (unoptimized) shader for now. */
2290 memset(&key->opt, 0, sizeof(key->opt));
2291 simple_mtx_unlock(&sel->mutex);
2292
2293 if (sscreen->options.sync_compile)
2294 util_queue_fence_wait(&shader->ready);
2295
2296 if (optimized_or_none)
2297 return -1;
2298 goto again;
2299 }
2300
2301 /* Reset the fence before adding to the variant list. */
2302 util_queue_fence_reset(&shader->ready);
2303
2304 if (!sel->last_variant) {
2305 sel->first_variant = shader;
2306 sel->last_variant = shader;
2307 } else {
2308 sel->last_variant->next_variant = shader;
2309 sel->last_variant = shader;
2310 }
2311
2312 simple_mtx_unlock(&sel->mutex);
2313
2314 assert(!shader->is_optimized);
2315 si_build_shader_variant(shader, thread_index, false);
2316
2317 util_queue_fence_signal(&shader->ready);
2318
2319 if (!shader->compilation_failed)
2320 state->current = shader;
2321
2322 return shader->compilation_failed ? -1 : 0;
2323 }
2324
2325 static int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state,
2326 union si_vgt_stages_key stages_key,
2327 struct si_compiler_ctx_state *compiler_state)
2328 {
2329 struct si_context *sctx = (struct si_context *)ctx;
2330 struct si_shader_key key;
2331
2332 si_shader_selector_key(ctx, state->cso, stages_key, &key);
2333 return si_shader_select_with_key(sctx->screen, state, compiler_state, &key, -1, false);
2334 }
2335
2336 static void si_parse_next_shader_property(const struct si_shader_info *info, bool streamout,
2337 struct si_shader_key *key)
2338 {
2339 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
2340
2341 switch (info->processor) {
2342 case PIPE_SHADER_VERTEX:
2343 switch (next_shader) {
2344 case PIPE_SHADER_GEOMETRY:
2345 key->as_es = 1;
2346 break;
2347 case PIPE_SHADER_TESS_CTRL:
2348 case PIPE_SHADER_TESS_EVAL:
2349 key->as_ls = 1;
2350 break;
2351 default:
2352 /* If POSITION isn't written, it can only be a HW VS
2353 * if streamout is used. If streamout isn't used,
2354 * assume that it's a HW LS. (the next shader is TCS)
2355 * This heuristic is needed for separate shader objects.
2356 */
2357 if (!info->writes_position && !streamout)
2358 key->as_ls = 1;
2359 }
2360 break;
2361
2362 case PIPE_SHADER_TESS_EVAL:
2363 if (next_shader == PIPE_SHADER_GEOMETRY || !info->writes_position)
2364 key->as_es = 1;
2365 break;
2366 }
2367 }
2368
2369 /**
2370 * Compile the main shader part or the monolithic shader as part of
2371 * si_shader_selector initialization. Since it can be done asynchronously,
2372 * there is no way to report compile failures to applications.
2373 */
2374 static void si_init_shader_selector_async(void *job, int thread_index)
2375 {
2376 struct si_shader_selector *sel = (struct si_shader_selector *)job;
2377 struct si_screen *sscreen = sel->screen;
2378 struct ac_llvm_compiler *compiler;
2379 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2380
2381 assert(!debug->debug_message || debug->async);
2382 assert(thread_index >= 0);
2383 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2384 compiler = &sscreen->compiler[thread_index];
2385
2386 if (!compiler->passes)
2387 si_init_compiler(sscreen, compiler);
2388
2389 /* Serialize NIR to save memory. Monolithic shader variants
2390 * have to deserialize NIR before compilation.
2391 */
2392 if (sel->nir) {
2393 struct blob blob;
2394 size_t size;
2395
2396 blob_init(&blob);
2397 /* true = remove optional debugging data to increase
2398 * the likehood of getting more shader cache hits.
2399 * It also drops variable names, so we'll save more memory.
2400 */
2401 nir_serialize(&blob, sel->nir, true);
2402 blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
2403 sel->nir_size = size;
2404 }
2405
2406 /* Compile the main shader part for use with a prolog and/or epilog.
2407 * If this fails, the driver will try to compile a monolithic shader
2408 * on demand.
2409 */
2410 if (!sscreen->use_monolithic_shaders) {
2411 struct si_shader *shader = CALLOC_STRUCT(si_shader);
2412 unsigned char ir_sha1_cache_key[20];
2413
2414 if (!shader) {
2415 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2416 return;
2417 }
2418
2419 /* We can leave the fence signaled because use of the default
2420 * main part is guarded by the selector's ready fence. */
2421 util_queue_fence_init(&shader->ready);
2422
2423 shader->selector = sel;
2424 shader->is_monolithic = false;
2425 si_parse_next_shader_property(&sel->info, sel->so.num_outputs != 0, &shader->key);
2426
2427 if (sscreen->use_ngg && (!sel->so.num_outputs || sscreen->use_ngg_streamout) &&
2428 ((sel->type == PIPE_SHADER_VERTEX && !shader->key.as_ls) ||
2429 sel->type == PIPE_SHADER_TESS_EVAL || sel->type == PIPE_SHADER_GEOMETRY))
2430 shader->key.as_ngg = 1;
2431
2432 if (sel->nir) {
2433 si_get_ir_cache_key(sel, shader->key.as_ngg, shader->key.as_es, ir_sha1_cache_key);
2434 }
2435
2436 /* Try to load the shader from the shader cache. */
2437 simple_mtx_lock(&sscreen->shader_cache_mutex);
2438
2439 if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
2440 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2441 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
2442 } else {
2443 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2444
2445 /* Compile the shader if it hasn't been loaded from the cache. */
2446 if (!si_compile_shader(sscreen, compiler, shader, debug)) {
2447 FREE(shader);
2448 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2449 return;
2450 }
2451
2452 simple_mtx_lock(&sscreen->shader_cache_mutex);
2453 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
2454 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2455 }
2456
2457 *si_get_main_shader_part(sel, &shader->key) = shader;
2458
2459 /* Unset "outputs_written" flags for outputs converted to
2460 * DEFAULT_VAL, so that later inter-shader optimizations don't
2461 * try to eliminate outputs that don't exist in the final
2462 * shader.
2463 *
2464 * This is only done if non-monolithic shaders are enabled.
2465 */
2466 if ((sel->type == PIPE_SHADER_VERTEX || sel->type == PIPE_SHADER_TESS_EVAL) &&
2467 !shader->key.as_ls && !shader->key.as_es) {
2468 unsigned i;
2469
2470 for (i = 0; i < sel->info.num_outputs; i++) {
2471 unsigned offset = shader->info.vs_output_param_offset[i];
2472
2473 if (offset <= AC_EXP_PARAM_OFFSET_31)
2474 continue;
2475
2476 unsigned name = sel->info.output_semantic_name[i];
2477 unsigned index = sel->info.output_semantic_index[i];
2478 unsigned id;
2479
2480 switch (name) {
2481 case TGSI_SEMANTIC_GENERIC:
2482 /* don't process indices the function can't handle */
2483 if (index >= SI_MAX_IO_GENERIC)
2484 break;
2485 /* fall through */
2486 default:
2487 id = si_shader_io_get_unique_index(name, index, true);
2488 sel->outputs_written_before_ps &= ~(1ull << id);
2489 break;
2490 case TGSI_SEMANTIC_POSITION: /* ignore these */
2491 case TGSI_SEMANTIC_PSIZE:
2492 case TGSI_SEMANTIC_CLIPVERTEX:
2493 case TGSI_SEMANTIC_EDGEFLAG:
2494 break;
2495 }
2496 }
2497 }
2498 }
2499
2500 /* The GS copy shader is always pre-compiled. */
2501 if (sel->type == PIPE_SHADER_GEOMETRY &&
2502 (!sscreen->use_ngg || !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */
2503 sel->tess_turns_off_ngg)) {
2504 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2505 if (!sel->gs_copy_shader) {
2506 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2507 return;
2508 }
2509
2510 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2511 }
2512
2513 /* Free NIR. We only keep serialized NIR after this point. */
2514 if (sel->nir) {
2515 ralloc_free(sel->nir);
2516 sel->nir = NULL;
2517 }
2518 }
2519
2520 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
2521 struct util_queue_fence *ready_fence,
2522 struct si_compiler_ctx_state *compiler_ctx_state, void *job,
2523 util_queue_execute_func execute)
2524 {
2525 util_queue_fence_init(ready_fence);
2526
2527 struct util_async_debug_callback async_debug;
2528 bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
2529 si_can_dump_shader(sctx->screen, processor);
2530
2531 if (debug) {
2532 u_async_debug_init(&async_debug);
2533 compiler_ctx_state->debug = async_debug.base;
2534 }
2535
2536 util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
2537
2538 if (debug) {
2539 util_queue_fence_wait(ready_fence);
2540 u_async_debug_drain(&async_debug, &sctx->debug);
2541 u_async_debug_cleanup(&async_debug);
2542 }
2543
2544 if (sctx->screen->options.sync_compile)
2545 util_queue_fence_wait(ready_fence);
2546 }
2547
2548 /* Return descriptor slot usage masks from the given shader info. */
2549 void si_get_active_slot_masks(const struct si_shader_info *info, uint32_t *const_and_shader_buffers,
2550 uint64_t *samplers_and_images)
2551 {
2552 unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
2553
2554 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2555 num_constbufs = util_last_bit(info->const_buffers_declared);
2556 /* two 8-byte images share one 16-byte slot */
2557 num_images = align(util_last_bit(info->images_declared), 2);
2558 num_msaa_images = align(util_last_bit(info->msaa_images_declared), 2);
2559 num_samplers = util_last_bit(info->samplers_declared);
2560
2561 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2562 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2563 *const_and_shader_buffers = u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2564
2565 /* The layout is:
2566 * - fmask[last] ... fmask[0] go to [15-last .. 15]
2567 * - image[last] ... image[0] go to [31-last .. 31]
2568 * - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
2569 *
2570 * FMASKs for images are placed separately, because MSAA images are rare,
2571 * and so we can benefit from a better cache hit rate if we keep image
2572 * descriptors together.
2573 */
2574 if (num_msaa_images)
2575 num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
2576
2577 start = si_get_image_slot(num_images - 1) / 2;
2578 *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
2579 }
2580
2581 static void *si_create_shader_selector(struct pipe_context *ctx,
2582 const struct pipe_shader_state *state)
2583 {
2584 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2585 struct si_context *sctx = (struct si_context *)ctx;
2586 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2587 int i;
2588
2589 if (!sel)
2590 return NULL;
2591
2592 sel->screen = sscreen;
2593 sel->compiler_ctx_state.debug = sctx->debug;
2594 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2595
2596 sel->so = state->stream_output;
2597
2598 if (state->type == PIPE_SHADER_IR_TGSI) {
2599 sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
2600 } else {
2601 assert(state->type == PIPE_SHADER_IR_NIR);
2602 sel->nir = state->ir.nir;
2603 }
2604
2605 si_nir_scan_shader(sel->nir, &sel->info);
2606 si_nir_adjust_driver_locations(sel->nir);
2607
2608 sel->type = sel->info.processor;
2609 p_atomic_inc(&sscreen->num_shaders_created);
2610 si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers,
2611 &sel->active_samplers_and_images);
2612
2613 /* Record which streamout buffers are enabled. */
2614 for (i = 0; i < sel->so.num_outputs; i++) {
2615 sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer)
2616 << (sel->so.output[i].stream * 4);
2617 }
2618
2619 sel->num_vs_inputs =
2620 sel->type == PIPE_SHADER_VERTEX && !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]
2621 ? sel->info.num_inputs
2622 : 0;
2623 sel->num_vbos_in_user_sgprs = MIN2(sel->num_vs_inputs, sscreen->num_vbos_in_user_sgprs);
2624
2625 /* The prolog is a no-op if there are no inputs. */
2626 sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX && sel->info.num_inputs &&
2627 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
2628
2629 sel->prim_discard_cs_allowed =
2630 sel->type == PIPE_SHADER_VERTEX && !sel->info.uses_bindless_images &&
2631 !sel->info.uses_bindless_samplers && !sel->info.writes_memory &&
2632 !sel->info.writes_viewport_index &&
2633 !sel->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] && !sel->so.num_outputs;
2634
2635 switch (sel->type) {
2636 case PIPE_SHADER_GEOMETRY:
2637 sel->gs_output_prim = sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2638
2639 /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
2640 sel->rast_prim = sel->gs_output_prim;
2641 if (util_rast_prim_is_triangles(sel->rast_prim))
2642 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2643
2644 sel->gs_max_out_vertices = sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2645 sel->gs_num_invocations = sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2646 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2647 sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->gs_max_out_vertices;
2648
2649 sel->max_gs_stream = 0;
2650 for (i = 0; i < sel->so.num_outputs; i++)
2651 sel->max_gs_stream = MAX2(sel->max_gs_stream, sel->so.output[i].stream);
2652
2653 sel->gs_input_verts_per_prim =
2654 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2655
2656 /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation. */
2657 sel->tess_turns_off_ngg = sscreen->info.chip_class >= GFX10 &&
2658 sel->gs_num_invocations * sel->gs_max_out_vertices > 256;
2659 break;
2660
2661 case PIPE_SHADER_TESS_CTRL:
2662 /* Always reserve space for these. */
2663 sel->patch_outputs_written |=
2664 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2665 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2666 /* fall through */
2667 case PIPE_SHADER_VERTEX:
2668 case PIPE_SHADER_TESS_EVAL:
2669 for (i = 0; i < sel->info.num_outputs; i++) {
2670 unsigned name = sel->info.output_semantic_name[i];
2671 unsigned index = sel->info.output_semantic_index[i];
2672
2673 switch (name) {
2674 case TGSI_SEMANTIC_TESSINNER:
2675 case TGSI_SEMANTIC_TESSOUTER:
2676 case TGSI_SEMANTIC_PATCH:
2677 sel->patch_outputs_written |= 1ull << si_shader_io_get_unique_index_patch(name, index);
2678 break;
2679
2680 case TGSI_SEMANTIC_GENERIC:
2681 /* don't process indices the function can't handle */
2682 if (index >= SI_MAX_IO_GENERIC)
2683 break;
2684 /* fall through */
2685 default:
2686 sel->outputs_written |= 1ull << si_shader_io_get_unique_index(name, index, false);
2687 sel->outputs_written_before_ps |= 1ull
2688 << si_shader_io_get_unique_index(name, index, true);
2689 break;
2690 case TGSI_SEMANTIC_EDGEFLAG:
2691 break;
2692 }
2693 }
2694 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2695 sel->lshs_vertex_stride = sel->esgs_itemsize;
2696
2697 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2698 * will start on a different bank. (except for the maximum 32*16).
2699 */
2700 if (sel->lshs_vertex_stride < 32 * 16)
2701 sel->lshs_vertex_stride += 4;
2702
2703 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2704 * conflicts, i.e. each vertex will start at a different bank.
2705 */
2706 if (sctx->chip_class >= GFX9)
2707 sel->esgs_itemsize += 4;
2708
2709 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2710
2711 /* Only for TES: */
2712 if (sel->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
2713 sel->rast_prim = PIPE_PRIM_POINTS;
2714 else if (sel->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
2715 sel->rast_prim = PIPE_PRIM_LINE_STRIP;
2716 else
2717 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2718 break;
2719
2720 case PIPE_SHADER_FRAGMENT:
2721 for (i = 0; i < sel->info.num_inputs; i++) {
2722 unsigned name = sel->info.input_semantic_name[i];
2723 unsigned index = sel->info.input_semantic_index[i];
2724
2725 switch (name) {
2726 case TGSI_SEMANTIC_GENERIC:
2727 /* don't process indices the function can't handle */
2728 if (index >= SI_MAX_IO_GENERIC)
2729 break;
2730 /* fall through */
2731 default:
2732 sel->inputs_read |= 1ull << si_shader_io_get_unique_index(name, index, true);
2733 break;
2734 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2735 break;
2736 }
2737 }
2738
2739 for (i = 0; i < 8; i++)
2740 if (sel->info.colors_written & (1 << i))
2741 sel->colors_written_4bit |= 0xf << (4 * i);
2742
2743 for (i = 0; i < sel->info.num_inputs; i++) {
2744 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2745 int index = sel->info.input_semantic_index[i];
2746 sel->color_attr_index[index] = i;
2747 }
2748 }
2749 break;
2750 default:;
2751 }
2752
2753 sel->ngg_culling_allowed =
2754 sscreen->info.chip_class >= GFX10 &&
2755 sscreen->info.has_dedicated_vram &&
2756 sscreen->use_ngg_culling &&
2757 /* Disallow TES by default, because TessMark results are mixed. */
2758 (sel->type == PIPE_SHADER_VERTEX ||
2759 (sscreen->always_use_ngg_culling && sel->type == PIPE_SHADER_TESS_EVAL)) &&
2760 sel->info.writes_position &&
2761 !sel->info.writes_viewport_index && /* cull only against viewport 0 */
2762 !sel->info.writes_memory && !sel->so.num_outputs &&
2763 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] &&
2764 !sel->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
2765
2766 /* PA_CL_VS_OUT_CNTL */
2767 if (sctx->chip_class <= GFX9)
2768 sel->pa_cl_vs_out_cntl = si_get_vs_out_cntl(sel, false);
2769
2770 sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS : sel->info.clipdist_writemask;
2771 sel->culldist_mask = sel->info.culldist_writemask << sel->info.num_written_clipdistance;
2772
2773 /* DB_SHADER_CONTROL */
2774 sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2775 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2776 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2777 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2778
2779 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2780 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2781 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2782 break;
2783 case TGSI_FS_DEPTH_LAYOUT_LESS:
2784 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2785 break;
2786 }
2787
2788 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2789 *
2790 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2791 * --|-----------|------------|------------|--------------------|-------------------|-------------
2792 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2793 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2794 * 2 | false | true | n/a | LateZ | 1 | 0
2795 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2796 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2797 *
2798 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2799 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2800 *
2801 * Don't use ReZ without profiling !!!
2802 *
2803 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2804 * shaders.
2805 */
2806 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2807 /* Cases 3, 4. */
2808 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2809 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2810 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2811 } else if (sel->info.writes_memory) {
2812 /* Case 2. */
2813 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1);
2814 } else {
2815 /* Case 1. */
2816 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2817 }
2818
2819 if (sel->info.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE])
2820 sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2821
2822 (void)simple_mtx_init(&sel->mutex, mtx_plain);
2823
2824 si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready, &sel->compiler_ctx_state,
2825 sel, si_init_shader_selector_async);
2826 return sel;
2827 }
2828
2829 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
2830 {
2831 struct si_context *sctx = (struct si_context *)ctx;
2832 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2833 bool cache_hit;
2834 struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
2835 ctx, &sscreen->live_shader_cache, state, &cache_hit);
2836
2837 if (sel && cache_hit && sctx->debug.debug_message) {
2838 if (sel->main_shader_part)
2839 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug);
2840 if (sel->main_shader_part_ls)
2841 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug);
2842 if (sel->main_shader_part_es)
2843 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
2844 if (sel->main_shader_part_ngg)
2845 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug);
2846 if (sel->main_shader_part_ngg_es)
2847 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug);
2848 }
2849 return sel;
2850 }
2851
2852 static void si_update_streamout_state(struct si_context *sctx)
2853 {
2854 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2855
2856 if (!shader_with_so)
2857 return;
2858
2859 sctx->streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask;
2860 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2861 }
2862
2863 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
2864 struct si_shader *old_hw_vs_variant,
2865 struct si_shader_selector *next_hw_vs,
2866 struct si_shader *next_hw_vs_variant)
2867 {
2868 if (next_hw_vs &&
2869 (!old_hw_vs ||
2870 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2871 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2872 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2873 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2874 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant ||
2875 !next_hw_vs_variant ||
2876 old_hw_vs_variant->key.opt.clip_disable != next_hw_vs_variant->key.opt.clip_disable))
2877 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2878 }
2879
2880 static void si_update_common_shader_state(struct si_context *sctx)
2881 {
2882 sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2883 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2884 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2885 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2886 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2887 sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2888 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2889 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2890 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2891 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2892 sctx->do_update_shaders = true;
2893 }
2894
2895 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2896 {
2897 struct si_context *sctx = (struct si_context *)ctx;
2898 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2899 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2900 struct si_shader_selector *sel = state;
2901
2902 if (sctx->vs_shader.cso == sel)
2903 return;
2904
2905 sctx->vs_shader.cso = sel;
2906 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2907 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] : 0;
2908
2909 if (si_update_ngg(sctx))
2910 si_shader_change_notify(sctx);
2911
2912 si_update_common_shader_state(sctx);
2913 si_update_vs_viewport_state(sctx);
2914 si_set_active_descriptors_for_shader(sctx, sel);
2915 si_update_streamout_state(sctx);
2916 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2917 si_get_vs_state(sctx));
2918 }
2919
2920 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2921 {
2922 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2923 (sctx->tes_shader.cso && sctx->tes_shader.cso->info.uses_primid) ||
2924 (sctx->tcs_shader.cso && sctx->tcs_shader.cso->info.uses_primid) ||
2925 (sctx->gs_shader.cso && sctx->gs_shader.cso->info.uses_primid) ||
2926 (sctx->ps_shader.cso && !sctx->gs_shader.cso && sctx->ps_shader.cso->info.uses_primid);
2927 }
2928
2929 bool si_update_ngg(struct si_context *sctx)
2930 {
2931 if (!sctx->screen->use_ngg) {
2932 assert(!sctx->ngg);
2933 return false;
2934 }
2935
2936 bool new_ngg = true;
2937
2938 if (sctx->gs_shader.cso && sctx->tes_shader.cso && sctx->gs_shader.cso->tess_turns_off_ngg) {
2939 new_ngg = false;
2940 } else if (!sctx->screen->use_ngg_streamout) {
2941 struct si_shader_selector *last = si_get_vs(sctx)->cso;
2942
2943 if ((last && last->so.num_outputs) || sctx->streamout.prims_gen_query_enabled)
2944 new_ngg = false;
2945 }
2946
2947 if (new_ngg != sctx->ngg) {
2948 /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
2949 * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
2950 * pointers are set.
2951 */
2952 if (sctx->chip_class == GFX10 && !new_ngg)
2953 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
2954
2955 sctx->ngg = new_ngg;
2956 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2957 return true;
2958 }
2959 return false;
2960 }
2961
2962 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2963 {
2964 struct si_context *sctx = (struct si_context *)ctx;
2965 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2966 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2967 struct si_shader_selector *sel = state;
2968 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2969 bool ngg_changed;
2970
2971 if (sctx->gs_shader.cso == sel)
2972 return;
2973
2974 sctx->gs_shader.cso = sel;
2975 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2976 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2977
2978 si_update_common_shader_state(sctx);
2979 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2980
2981 ngg_changed = si_update_ngg(sctx);
2982 if (ngg_changed || enable_changed)
2983 si_shader_change_notify(sctx);
2984 if (enable_changed) {
2985 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2986 si_update_tess_uses_prim_id(sctx);
2987 }
2988 si_update_vs_viewport_state(sctx);
2989 si_set_active_descriptors_for_shader(sctx, sel);
2990 si_update_streamout_state(sctx);
2991 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2992 si_get_vs_state(sctx));
2993 }
2994
2995 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2996 {
2997 struct si_context *sctx = (struct si_context *)ctx;
2998 struct si_shader_selector *sel = state;
2999 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
3000
3001 if (sctx->tcs_shader.cso == sel)
3002 return;
3003
3004 sctx->tcs_shader.cso = sel;
3005 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
3006 si_update_tess_uses_prim_id(sctx);
3007
3008 si_update_common_shader_state(sctx);
3009
3010 if (enable_changed)
3011 sctx->last_tcs = NULL; /* invalidate derived tess state */
3012
3013 si_set_active_descriptors_for_shader(sctx, sel);
3014 }
3015
3016 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3017 {
3018 struct si_context *sctx = (struct si_context *)ctx;
3019 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3020 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3021 struct si_shader_selector *sel = state;
3022 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
3023
3024 if (sctx->tes_shader.cso == sel)
3025 return;
3026
3027 sctx->tes_shader.cso = sel;
3028 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
3029 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3030 si_update_tess_uses_prim_id(sctx);
3031
3032 si_update_common_shader_state(sctx);
3033 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3034
3035 bool ngg_changed = si_update_ngg(sctx);
3036 if (ngg_changed || enable_changed)
3037 si_shader_change_notify(sctx);
3038 if (enable_changed)
3039 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3040 si_update_vs_viewport_state(sctx);
3041 si_set_active_descriptors_for_shader(sctx, sel);
3042 si_update_streamout_state(sctx);
3043 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3044 si_get_vs_state(sctx));
3045 }
3046
3047 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3048 {
3049 struct si_context *sctx = (struct si_context *)ctx;
3050 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
3051 struct si_shader_selector *sel = state;
3052
3053 /* skip if supplied shader is one already in use */
3054 if (old_sel == sel)
3055 return;
3056
3057 sctx->ps_shader.cso = sel;
3058 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
3059
3060 si_update_common_shader_state(sctx);
3061 if (sel) {
3062 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3063 si_update_tess_uses_prim_id(sctx);
3064
3065 if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3066 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3067
3068 if (sctx->screen->has_out_of_order_rast &&
3069 (!old_sel || old_sel->info.writes_memory != sel->info.writes_memory ||
3070 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
3071 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
3072 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3073 }
3074 si_set_active_descriptors_for_shader(sctx, sel);
3075 si_update_ps_colorbuf0_slot(sctx);
3076 }
3077
3078 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3079 {
3080 if (shader->is_optimized) {
3081 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->ready);
3082 }
3083
3084 util_queue_fence_destroy(&shader->ready);
3085
3086 if (shader->pm4) {
3087 /* If destroyed shaders were not unbound, the next compiled
3088 * shader variant could get the same pointer address and so
3089 * binding it to the same shader stage would be considered
3090 * a no-op, causing random behavior.
3091 */
3092 switch (shader->selector->type) {
3093 case PIPE_SHADER_VERTEX:
3094 if (shader->key.as_ls) {
3095 assert(sctx->chip_class <= GFX8);
3096 si_pm4_delete_state(sctx, ls, shader->pm4);
3097 } else if (shader->key.as_es) {
3098 assert(sctx->chip_class <= GFX8);
3099 si_pm4_delete_state(sctx, es, shader->pm4);
3100 } else if (shader->key.as_ngg) {
3101 si_pm4_delete_state(sctx, gs, shader->pm4);
3102 } else {
3103 si_pm4_delete_state(sctx, vs, shader->pm4);
3104 }
3105 break;
3106 case PIPE_SHADER_TESS_CTRL:
3107 si_pm4_delete_state(sctx, hs, shader->pm4);
3108 break;
3109 case PIPE_SHADER_TESS_EVAL:
3110 if (shader->key.as_es) {
3111 assert(sctx->chip_class <= GFX8);
3112 si_pm4_delete_state(sctx, es, shader->pm4);
3113 } else if (shader->key.as_ngg) {
3114 si_pm4_delete_state(sctx, gs, shader->pm4);
3115 } else {
3116 si_pm4_delete_state(sctx, vs, shader->pm4);
3117 }
3118 break;
3119 case PIPE_SHADER_GEOMETRY:
3120 if (shader->is_gs_copy_shader)
3121 si_pm4_delete_state(sctx, vs, shader->pm4);
3122 else
3123 si_pm4_delete_state(sctx, gs, shader->pm4);
3124 break;
3125 case PIPE_SHADER_FRAGMENT:
3126 si_pm4_delete_state(sctx, ps, shader->pm4);
3127 break;
3128 default:;
3129 }
3130 }
3131
3132 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3133 si_shader_destroy(shader);
3134 free(shader);
3135 }
3136
3137 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
3138 {
3139 struct si_context *sctx = (struct si_context *)ctx;
3140 struct si_shader_selector *sel = (struct si_shader_selector *)cso;
3141 struct si_shader *p = sel->first_variant, *c;
3142 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
3143 [PIPE_SHADER_VERTEX] = &sctx->vs_shader, [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
3144 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader, [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
3145 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
3146 };
3147
3148 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3149
3150 if (current_shader[sel->type]->cso == sel) {
3151 current_shader[sel->type]->cso = NULL;
3152 current_shader[sel->type]->current = NULL;
3153 }
3154
3155 while (p) {
3156 c = p->next_variant;
3157 si_delete_shader(sctx, p);
3158 p = c;
3159 }
3160
3161 if (sel->main_shader_part)
3162 si_delete_shader(sctx, sel->main_shader_part);
3163 if (sel->main_shader_part_ls)
3164 si_delete_shader(sctx, sel->main_shader_part_ls);
3165 if (sel->main_shader_part_es)
3166 si_delete_shader(sctx, sel->main_shader_part_es);
3167 if (sel->main_shader_part_ngg)
3168 si_delete_shader(sctx, sel->main_shader_part_ngg);
3169 if (sel->gs_copy_shader)
3170 si_delete_shader(sctx, sel->gs_copy_shader);
3171
3172 util_queue_fence_destroy(&sel->ready);
3173 simple_mtx_destroy(&sel->mutex);
3174 ralloc_free(sel->nir);
3175 free(sel->nir_binary);
3176 free(sel);
3177 }
3178
3179 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3180 {
3181 struct si_context *sctx = (struct si_context *)ctx;
3182 struct si_shader_selector *sel = (struct si_shader_selector *)state;
3183
3184 si_shader_selector_reference(sctx, &sel, NULL);
3185 }
3186
3187 static unsigned si_get_ps_input_cntl(struct si_context *sctx, struct si_shader *vs, unsigned name,
3188 unsigned index, unsigned interpolate)
3189 {
3190 struct si_shader_info *vsinfo = &vs->selector->info;
3191 unsigned j, offset, ps_input_cntl = 0;
3192
3193 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
3194 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade) || name == TGSI_SEMANTIC_PRIMID)
3195 ps_input_cntl |= S_028644_FLAT_SHADE(1);
3196
3197 if (name == TGSI_SEMANTIC_PCOORD ||
3198 (name == TGSI_SEMANTIC_TEXCOORD && sctx->sprite_coord_enable & (1 << index))) {
3199 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
3200 }
3201
3202 for (j = 0; j < vsinfo->num_outputs; j++) {
3203 if (name == vsinfo->output_semantic_name[j] && index == vsinfo->output_semantic_index[j]) {
3204 offset = vs->info.vs_output_param_offset[j];
3205
3206 if (offset <= AC_EXP_PARAM_OFFSET_31) {
3207 /* The input is loaded from parameter memory. */
3208 ps_input_cntl |= S_028644_OFFSET(offset);
3209 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3210 if (offset == AC_EXP_PARAM_UNDEFINED) {
3211 /* This can happen with depth-only rendering. */
3212 offset = 0;
3213 } else {
3214 /* The input is a DEFAULT_VAL constant. */
3215 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
3216 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
3217 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
3218 }
3219
3220 ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
3221 }
3222 break;
3223 }
3224 }
3225
3226 if (j == vsinfo->num_outputs && name == TGSI_SEMANTIC_PRIMID)
3227 /* PrimID is written after the last output when HW VS is used. */
3228 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
3229 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3230 /* No corresponding output found, load defaults into input.
3231 * Don't set any other bits.
3232 * (FLAT_SHADE=1 completely changes behavior) */
3233 ps_input_cntl = S_028644_OFFSET(0x20);
3234 /* D3D 9 behaviour. GL is undefined */
3235 if (name == TGSI_SEMANTIC_COLOR && index == 0)
3236 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
3237 }
3238 return ps_input_cntl;
3239 }
3240
3241 static void si_emit_spi_map(struct si_context *sctx)
3242 {
3243 struct si_shader *ps = sctx->ps_shader.current;
3244 struct si_shader *vs = si_get_vs_state(sctx);
3245 struct si_shader_info *psinfo = ps ? &ps->selector->info : NULL;
3246 unsigned i, num_interp, num_written = 0, bcol_interp[2];
3247 unsigned spi_ps_input_cntl[32];
3248
3249 if (!ps || !ps->selector->info.num_inputs)
3250 return;
3251
3252 num_interp = si_get_ps_num_interp(ps);
3253 assert(num_interp > 0);
3254
3255 for (i = 0; i < psinfo->num_inputs; i++) {
3256 unsigned name = psinfo->input_semantic_name[i];
3257 unsigned index = psinfo->input_semantic_index[i];
3258 unsigned interpolate = psinfo->input_interpolate[i];
3259
3260 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name, index, interpolate);
3261
3262 if (name == TGSI_SEMANTIC_COLOR) {
3263 assert(index < ARRAY_SIZE(bcol_interp));
3264 bcol_interp[index] = interpolate;
3265 }
3266 }
3267
3268 if (ps->key.part.ps.prolog.color_two_side) {
3269 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
3270
3271 for (i = 0; i < 2; i++) {
3272 if (!(psinfo->colors_read & (0xf << (i * 4))))
3273 continue;
3274
3275 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
3276 }
3277 }
3278 assert(num_interp == num_written);
3279
3280 /* R_028644_SPI_PS_INPUT_CNTL_0 */
3281 /* Dota 2: Only ~16% of SPI map updates set different values. */
3282 /* Talos: Only ~9% of SPI map updates set different values. */
3283 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
3284 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
3285 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
3286
3287 if (initial_cdw != sctx->gfx_cs->current.cdw)
3288 sctx->context_roll = true;
3289 }
3290
3291 /**
3292 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3293 */
3294 static void si_init_config_add_vgt_flush(struct si_context *sctx)
3295 {
3296 if (sctx->init_config_has_vgt_flush)
3297 return;
3298
3299 /* Done by Vulkan before VGT_FLUSH. */
3300 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
3301 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3302 si_pm4_cmd_end(sctx->init_config, false);
3303
3304 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3305 si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
3306 si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3307 si_pm4_cmd_end(sctx->init_config, false);
3308 sctx->init_config_has_vgt_flush = true;
3309 }
3310
3311 /* Initialize state related to ESGS / GSVS ring buffers */
3312 static bool si_update_gs_ring_buffers(struct si_context *sctx)
3313 {
3314 struct si_shader_selector *es =
3315 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
3316 struct si_shader_selector *gs = sctx->gs_shader.cso;
3317 struct si_pm4_state *pm4;
3318
3319 /* Chip constants. */
3320 unsigned num_se = sctx->screen->info.max_se;
3321 unsigned wave_size = 64;
3322 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3323 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3324 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3325 */
3326 unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se;
3327 unsigned alignment = 256 * num_se;
3328 /* The maximum size is 63.999 MB per SE. */
3329 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3330
3331 /* Calculate the minimum size. */
3332 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment);
3333
3334 /* These are recommended sizes, not minimum sizes. */
3335 unsigned esgs_ring_size =
3336 max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim;
3337 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size;
3338
3339 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3340 esgs_ring_size = align(esgs_ring_size, alignment);
3341 gsvs_ring_size = align(gsvs_ring_size, alignment);
3342
3343 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3344 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3345
3346 /* Some rings don't have to be allocated if shaders don't use them.
3347 * (e.g. no varyings between ES and GS or GS and VS)
3348 *
3349 * GFX9 doesn't have the ESGS ring.
3350 */
3351 bool update_esgs = sctx->chip_class <= GFX8 && esgs_ring_size &&
3352 (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
3353 bool update_gsvs =
3354 gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
3355
3356 if (!update_esgs && !update_gsvs)
3357 return true;
3358
3359 if (update_esgs) {
3360 pipe_resource_reference(&sctx->esgs_ring, NULL);
3361 sctx->esgs_ring =
3362 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3363 esgs_ring_size, sctx->screen->info.pte_fragment_size);
3364 if (!sctx->esgs_ring)
3365 return false;
3366 }
3367
3368 if (update_gsvs) {
3369 pipe_resource_reference(&sctx->gsvs_ring, NULL);
3370 sctx->gsvs_ring =
3371 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3372 gsvs_ring_size, sctx->screen->info.pte_fragment_size);
3373 if (!sctx->gsvs_ring)
3374 return false;
3375 }
3376
3377 /* Create the "init_config_gs_rings" state. */
3378 pm4 = CALLOC_STRUCT(si_pm4_state);
3379 if (!pm4)
3380 return false;
3381
3382 if (sctx->chip_class >= GFX7) {
3383 if (sctx->esgs_ring) {
3384 assert(sctx->chip_class <= GFX8);
3385 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3386 }
3387 if (sctx->gsvs_ring)
3388 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3389 } else {
3390 if (sctx->esgs_ring)
3391 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3392 if (sctx->gsvs_ring)
3393 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3394 }
3395
3396 /* Set the state. */
3397 if (sctx->init_config_gs_rings)
3398 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
3399 sctx->init_config_gs_rings = pm4;
3400
3401 if (!sctx->init_config_has_vgt_flush) {
3402 si_init_config_add_vgt_flush(sctx);
3403 }
3404
3405 /* Flush the context to re-emit both init_config states. */
3406 sctx->initial_gfx_cs_size = 0; /* force flush */
3407 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3408
3409 /* Set ring bindings. */
3410 if (sctx->esgs_ring) {
3411 assert(sctx->chip_class <= GFX8);
3412 si_set_ring_buffer(sctx, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true,
3413 true, 4, 64, 0);
3414 si_set_ring_buffer(sctx, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
3415 false, 0, 0, 0);
3416 }
3417 if (sctx->gsvs_ring) {
3418 si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
3419 false, 0, 0, 0);
3420 }
3421
3422 return true;
3423 }
3424
3425 static void si_shader_lock(struct si_shader *shader)
3426 {
3427 simple_mtx_lock(&shader->selector->mutex);
3428 if (shader->previous_stage_sel) {
3429 assert(shader->previous_stage_sel != shader->selector);
3430 simple_mtx_lock(&shader->previous_stage_sel->mutex);
3431 }
3432 }
3433
3434 static void si_shader_unlock(struct si_shader *shader)
3435 {
3436 if (shader->previous_stage_sel)
3437 simple_mtx_unlock(&shader->previous_stage_sel->mutex);
3438 simple_mtx_unlock(&shader->selector->mutex);
3439 }
3440
3441 /**
3442 * @returns 1 if \p sel has been updated to use a new scratch buffer
3443 * 0 if not
3444 * < 0 if there was a failure
3445 */
3446 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
3447 {
3448 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3449
3450 if (!shader)
3451 return 0;
3452
3453 /* This shader doesn't need a scratch buffer */
3454 if (shader->config.scratch_bytes_per_wave == 0)
3455 return 0;
3456
3457 /* Prevent race conditions when updating:
3458 * - si_shader::scratch_bo
3459 * - si_shader::binary::code
3460 * - si_shader::previous_stage::binary::code.
3461 */
3462 si_shader_lock(shader);
3463
3464 /* This shader is already configured to use the current
3465 * scratch buffer. */
3466 if (shader->scratch_bo == sctx->scratch_buffer) {
3467 si_shader_unlock(shader);
3468 return 0;
3469 }
3470
3471 assert(sctx->scratch_buffer);
3472
3473 /* Replace the shader bo with a new bo that has the relocs applied. */
3474 if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
3475 si_shader_unlock(shader);
3476 return -1;
3477 }
3478
3479 /* Update the shader state to use the new shader bo. */
3480 si_shader_init_pm4_state(sctx->screen, shader);
3481
3482 si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3483
3484 si_shader_unlock(shader);
3485 return 1;
3486 }
3487
3488 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
3489 {
3490 return shader ? shader->config.scratch_bytes_per_wave : 0;
3491 }
3492
3493 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3494 {
3495 if (!sctx->tes_shader.cso)
3496 return NULL; /* tessellation disabled */
3497
3498 return sctx->tcs_shader.cso ? sctx->tcs_shader.current : sctx->fixed_func_tcs_shader.current;
3499 }
3500
3501 static bool si_update_scratch_relocs(struct si_context *sctx)
3502 {
3503 struct si_shader *tcs = si_get_tcs_current(sctx);
3504 int r;
3505
3506 /* Update the shaders, so that they are using the latest scratch.
3507 * The scratch buffer may have been changed since these shaders were
3508 * last used, so we still need to try to update them, even if they
3509 * require scratch buffers smaller than the current size.
3510 */
3511 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
3512 if (r < 0)
3513 return false;
3514 if (r == 1)
3515 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3516
3517 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
3518 if (r < 0)
3519 return false;
3520 if (r == 1)
3521 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3522
3523 r = si_update_scratch_buffer(sctx, tcs);
3524 if (r < 0)
3525 return false;
3526 if (r == 1)
3527 si_pm4_bind_state(sctx, hs, tcs->pm4);
3528
3529 /* VS can be bound as LS, ES, or VS. */
3530 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
3531 if (r < 0)
3532 return false;
3533 if (r == 1) {
3534 if (sctx->vs_shader.current->key.as_ls)
3535 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3536 else if (sctx->vs_shader.current->key.as_es)
3537 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3538 else if (sctx->vs_shader.current->key.as_ngg)
3539 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3540 else
3541 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3542 }
3543
3544 /* TES can be bound as ES or VS. */
3545 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
3546 if (r < 0)
3547 return false;
3548 if (r == 1) {
3549 if (sctx->tes_shader.current->key.as_es)
3550 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3551 else if (sctx->tes_shader.current->key.as_ngg)
3552 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3553 else
3554 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3555 }
3556
3557 return true;
3558 }
3559
3560 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3561 {
3562 /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer.
3563 * There are 2 cases to handle:
3564 *
3565 * - If the current needed size is less than the maximum seen size,
3566 * use the maximum seen size, so that WAVESIZE remains the same.
3567 *
3568 * - If the current needed size is greater than the maximum seen size,
3569 * the scratch buffer is reallocated, so we can increase WAVESIZE.
3570 *
3571 * Shaders that set SCRATCH_EN=0 don't allocate scratch space.
3572 * Otherwise, the number of waves that can use scratch is
3573 * SPI_TMPRING_SIZE.WAVES.
3574 */
3575 unsigned bytes = 0;
3576
3577 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
3578 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
3579 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
3580
3581 if (sctx->tes_shader.cso) {
3582 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
3583 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(si_get_tcs_current(sctx)));
3584 }
3585
3586 sctx->max_seen_scratch_bytes_per_wave = MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes);
3587
3588 unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves;
3589 unsigned spi_tmpring_size;
3590
3591 if (scratch_needed_size > 0) {
3592 if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
3593 /* Create a bigger scratch buffer */
3594 si_resource_reference(&sctx->scratch_buffer, NULL);
3595
3596 sctx->scratch_buffer = si_aligned_buffer_create(
3597 &sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, scratch_needed_size,
3598 sctx->screen->info.pte_fragment_size);
3599 if (!sctx->scratch_buffer)
3600 return false;
3601
3602 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3603 si_context_add_resource_size(sctx, &sctx->scratch_buffer->b.b);
3604 }
3605
3606 if (!si_update_scratch_relocs(sctx))
3607 return false;
3608 }
3609
3610 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3611 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3612 "scratch size should already be aligned correctly.");
3613
3614 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3615 S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10);
3616 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3617 sctx->spi_tmpring_size = spi_tmpring_size;
3618 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3619 }
3620 return true;
3621 }
3622
3623 static void si_init_tess_factor_ring(struct si_context *sctx)
3624 {
3625 assert(!sctx->tess_rings);
3626 assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0);
3627
3628 /* The address must be aligned to 2^19, because the shader only
3629 * receives the high 13 bits.
3630 */
3631 sctx->tess_rings = pipe_aligned_buffer_create(
3632 sctx->b.screen, SI_RESOURCE_FLAG_32BIT, PIPE_USAGE_DEFAULT,
3633 sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19);
3634 if (!sctx->tess_rings)
3635 return;
3636
3637 si_init_config_add_vgt_flush(sctx);
3638
3639 si_pm4_add_bo(sctx->init_config, si_resource(sctx->tess_rings), RADEON_USAGE_READWRITE,
3640 RADEON_PRIO_SHADER_RINGS);
3641
3642 uint64_t factor_va =
3643 si_resource(sctx->tess_rings)->gpu_address + sctx->screen->tess_offchip_ring_size;
3644
3645 /* Append these registers to the init config state. */
3646 if (sctx->chip_class >= GFX7) {
3647 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3648 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3649 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3650 if (sctx->chip_class >= GFX10)
3651 si_pm4_set_reg(sctx->init_config, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3652 S_030984_BASE_HI(factor_va >> 40));
3653 else if (sctx->chip_class == GFX9)
3654 si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3655 S_030944_BASE_HI(factor_va >> 40));
3656 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3657 sctx->screen->vgt_hs_offchip_param);
3658 } else {
3659 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3660 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3661 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
3662 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3663 sctx->screen->vgt_hs_offchip_param);
3664 }
3665
3666 /* Flush the context to re-emit the init_config state.
3667 * This is done only once in a lifetime of a context.
3668 */
3669 sctx->initial_gfx_cs_size = 0; /* force flush */
3670 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3671 }
3672
3673 static struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen,
3674 union si_vgt_stages_key key)
3675 {
3676 struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3677 uint32_t stages = 0;
3678
3679 if (key.u.tess) {
3680 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3681
3682 if (key.u.gs)
3683 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
3684 else if (key.u.ngg)
3685 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
3686 else
3687 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3688 } else if (key.u.gs) {
3689 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
3690 } else if (key.u.ngg) {
3691 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
3692 }
3693
3694 if (key.u.ngg) {
3695 stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_GS_FAST_LAUNCH(key.u.ngg_gs_fast_launch) |
3696 S_028B54_NGG_WAVE_ID_EN(key.u.streamout) |
3697 S_028B54_PRIMGEN_PASSTHRU_EN(key.u.ngg_passthrough);
3698 } else if (key.u.gs)
3699 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3700
3701 if (screen->info.chip_class >= GFX9)
3702 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3703
3704 if (screen->info.chip_class >= GFX10 && screen->ge_wave_size == 32) {
3705 stages |= S_028B54_HS_W32_EN(1) |
3706 S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */
3707 S_028B54_VS_W32_EN(1);
3708 }
3709
3710 si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3711 return pm4;
3712 }
3713
3714 static void si_update_vgt_shader_config(struct si_context *sctx, union si_vgt_stages_key key)
3715 {
3716 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index];
3717
3718 if (unlikely(!*pm4))
3719 *pm4 = si_build_vgt_shader_config(sctx->screen, key);
3720 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3721 }
3722
3723 bool si_update_shaders(struct si_context *sctx)
3724 {
3725 struct pipe_context *ctx = (struct pipe_context *)sctx;
3726 struct si_compiler_ctx_state compiler_state;
3727 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3728 struct si_shader *old_vs = si_get_vs_state(sctx);
3729 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3730 struct si_shader *old_ps = sctx->ps_shader.current;
3731 union si_vgt_stages_key key;
3732 unsigned old_spi_shader_col_format =
3733 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3734 int r;
3735
3736 if (!sctx->compiler.passes)
3737 si_init_compiler(sctx->screen, &sctx->compiler);
3738
3739 compiler_state.compiler = &sctx->compiler;
3740 compiler_state.debug = sctx->debug;
3741 compiler_state.is_debug_context = sctx->is_debug;
3742
3743 key.index = 0;
3744
3745 if (sctx->tes_shader.cso)
3746 key.u.tess = 1;
3747 if (sctx->gs_shader.cso)
3748 key.u.gs = 1;
3749
3750 if (sctx->ngg) {
3751 key.u.ngg = 1;
3752 key.u.streamout = !!si_get_vs(sctx)->cso->so.num_outputs;
3753 }
3754
3755 /* Update TCS and TES. */
3756 if (sctx->tes_shader.cso) {
3757 if (!sctx->tess_rings) {
3758 si_init_tess_factor_ring(sctx);
3759 if (!sctx->tess_rings)
3760 return false;
3761 }
3762
3763 if (sctx->tcs_shader.cso) {
3764 r = si_shader_select(ctx, &sctx->tcs_shader, key, &compiler_state);
3765 if (r)
3766 return false;
3767 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3768 } else {
3769 if (!sctx->fixed_func_tcs_shader.cso) {
3770 sctx->fixed_func_tcs_shader.cso = si_create_fixed_func_tcs(sctx);
3771 if (!sctx->fixed_func_tcs_shader.cso)
3772 return false;
3773 }
3774
3775 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader, key, &compiler_state);
3776 if (r)
3777 return false;
3778 si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader.current->pm4);
3779 }
3780
3781 if (!sctx->gs_shader.cso || sctx->chip_class <= GFX8) {
3782 r = si_shader_select(ctx, &sctx->tes_shader, key, &compiler_state);
3783 if (r)
3784 return false;
3785
3786 if (sctx->gs_shader.cso) {
3787 /* TES as ES */
3788 assert(sctx->chip_class <= GFX8);
3789 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3790 } else if (key.u.ngg) {
3791 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3792 } else {
3793 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3794 }
3795 }
3796 } else {
3797 if (sctx->chip_class <= GFX8)
3798 si_pm4_bind_state(sctx, ls, NULL);
3799 si_pm4_bind_state(sctx, hs, NULL);
3800 }
3801
3802 /* Update GS. */
3803 if (sctx->gs_shader.cso) {
3804 r = si_shader_select(ctx, &sctx->gs_shader, key, &compiler_state);
3805 if (r)
3806 return false;
3807 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3808 if (!key.u.ngg) {
3809 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3810
3811 if (!si_update_gs_ring_buffers(sctx))
3812 return false;
3813 } else {
3814 si_pm4_bind_state(sctx, vs, NULL);
3815 }
3816 } else {
3817 if (!key.u.ngg) {
3818 si_pm4_bind_state(sctx, gs, NULL);
3819 if (sctx->chip_class <= GFX8)
3820 si_pm4_bind_state(sctx, es, NULL);
3821 }
3822 }
3823
3824 /* Update VS. */
3825 if ((!key.u.tess && !key.u.gs) || sctx->chip_class <= GFX8) {
3826 r = si_shader_select(ctx, &sctx->vs_shader, key, &compiler_state);
3827 if (r)
3828 return false;
3829
3830 if (!key.u.tess && !key.u.gs) {
3831 if (key.u.ngg) {
3832 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3833 si_pm4_bind_state(sctx, vs, NULL);
3834 } else {
3835 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3836 }
3837 } else if (sctx->tes_shader.cso) {
3838 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3839 } else {
3840 assert(sctx->gs_shader.cso);
3841 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3842 }
3843 }
3844
3845 /* This must be done after the shader variant is selected. */
3846 if (sctx->ngg) {
3847 struct si_shader *vs = si_get_vs(sctx)->current;
3848
3849 key.u.ngg_passthrough = gfx10_is_ngg_passthrough(vs);
3850 key.u.ngg_gs_fast_launch = !!(vs->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL);
3851 }
3852
3853 si_update_vgt_shader_config(sctx, key);
3854
3855 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3856 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3857
3858 if (sctx->ps_shader.cso) {
3859 unsigned db_shader_control;
3860
3861 r = si_shader_select(ctx, &sctx->ps_shader, key, &compiler_state);
3862 if (r)
3863 return false;
3864 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3865
3866 db_shader_control = sctx->ps_shader.cso->db_shader_control |
3867 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3868
3869 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3870 (key.u.ngg && si_pm4_state_changed(sctx, gs)) ||
3871 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3872 sctx->flatshade != rs->flatshade) {
3873 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3874 sctx->flatshade = rs->flatshade;
3875 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3876 }
3877
3878 if (sctx->screen->info.rbplus_allowed && si_pm4_state_changed(sctx, ps) &&
3879 (!old_ps || old_spi_shader_col_format !=
3880 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3881 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3882
3883 if (sctx->ps_db_shader_control != db_shader_control) {
3884 sctx->ps_db_shader_control = db_shader_control;
3885 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3886 if (sctx->screen->dpbb_allowed)
3887 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3888 }
3889
3890 if (sctx->smoothing_enabled !=
3891 sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3892 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3893 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3894
3895 if (sctx->chip_class == GFX6)
3896 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3897
3898 if (sctx->framebuffer.nr_samples <= 1)
3899 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3900 }
3901 }
3902
3903 if (si_pm4_state_enabled_and_changed(sctx, ls) || si_pm4_state_enabled_and_changed(sctx, hs) ||
3904 si_pm4_state_enabled_and_changed(sctx, es) || si_pm4_state_enabled_and_changed(sctx, gs) ||
3905 si_pm4_state_enabled_and_changed(sctx, vs) || si_pm4_state_enabled_and_changed(sctx, ps)) {
3906 if (!si_update_spi_tmpring_size(sctx))
3907 return false;
3908 }
3909
3910 if (sctx->chip_class >= GFX7) {
3911 if (si_pm4_state_enabled_and_changed(sctx, ls))
3912 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3913 else if (!sctx->queued.named.ls)
3914 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3915
3916 if (si_pm4_state_enabled_and_changed(sctx, hs))
3917 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3918 else if (!sctx->queued.named.hs)
3919 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3920
3921 if (si_pm4_state_enabled_and_changed(sctx, es))
3922 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3923 else if (!sctx->queued.named.es)
3924 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3925
3926 if (si_pm4_state_enabled_and_changed(sctx, gs))
3927 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3928 else if (!sctx->queued.named.gs)
3929 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3930
3931 if (si_pm4_state_enabled_and_changed(sctx, vs))
3932 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3933 else if (!sctx->queued.named.vs)
3934 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3935
3936 if (si_pm4_state_enabled_and_changed(sctx, ps))
3937 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3938 else if (!sctx->queued.named.ps)
3939 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3940 }
3941
3942 sctx->do_update_shaders = false;
3943 return true;
3944 }
3945
3946 static void si_emit_scratch_state(struct si_context *sctx)
3947 {
3948 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3949
3950 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
3951
3952 if (sctx->scratch_buffer) {
3953 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3954 RADEON_PRIO_SCRATCH_BUFFER);
3955 }
3956 }
3957
3958 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
3959 {
3960 util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
3961 si_destroy_shader_selector);
3962 }
3963
3964 void si_init_shader_functions(struct si_context *sctx)
3965 {
3966 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
3967 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
3968
3969 sctx->b.create_vs_state = si_create_shader;
3970 sctx->b.create_tcs_state = si_create_shader;
3971 sctx->b.create_tes_state = si_create_shader;
3972 sctx->b.create_gs_state = si_create_shader;
3973 sctx->b.create_fs_state = si_create_shader;
3974
3975 sctx->b.bind_vs_state = si_bind_vs_shader;
3976 sctx->b.bind_tcs_state = si_bind_tcs_shader;
3977 sctx->b.bind_tes_state = si_bind_tes_shader;
3978 sctx->b.bind_gs_state = si_bind_gs_shader;
3979 sctx->b.bind_fs_state = si_bind_ps_shader;
3980
3981 sctx->b.delete_vs_state = si_delete_shader_selector;
3982 sctx->b.delete_tcs_state = si_delete_shader_selector;
3983 sctx->b.delete_tes_state = si_delete_shader_selector;
3984 sctx->b.delete_gs_state = si_delete_shader_selector;
3985 sctx->b.delete_fs_state = si_delete_shader_selector;
3986 }