df89c9dfe6b66e559116e158fbf96091e32cb7ce
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "ac_exp_param.h"
26 #include "ac_shader_util.h"
27 #include "compiler/nir/nir_serialize.h"
28 #include "nir/tgsi_to_nir.h"
29 #include "si_build_pm4.h"
30 #include "sid.h"
31 #include "util/crc32.h"
32 #include "util/disk_cache.h"
33 #include "util/hash_table.h"
34 #include "util/mesa-sha1.h"
35 #include "util/u_async_debug.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38 #include "tgsi/tgsi_from_mesa.h"
39
40 /* SHADER_CACHE */
41
42 /**
43 * Return the IR key for the shader cache.
44 */
45 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
46 unsigned char ir_sha1_cache_key[20])
47 {
48 struct blob blob = {};
49 unsigned ir_size;
50 void *ir_binary;
51
52 if (sel->nir_binary) {
53 ir_binary = sel->nir_binary;
54 ir_size = sel->nir_size;
55 } else {
56 assert(sel->nir);
57
58 blob_init(&blob);
59 nir_serialize(&blob, sel->nir, true);
60 ir_binary = blob.data;
61 ir_size = blob.size;
62 }
63
64 /* These settings affect the compilation, but they are not derived
65 * from the input shader IR.
66 */
67 unsigned shader_variant_flags = 0;
68
69 if (ngg)
70 shader_variant_flags |= 1 << 0;
71 if (sel->nir)
72 shader_variant_flags |= 1 << 1;
73 if (si_get_wave_size(sel->screen, sel->info.stage, ngg, es, false, false) == 32)
74 shader_variant_flags |= 1 << 2;
75 if (sel->info.stage == MESA_SHADER_FRAGMENT &&
76 /* Derivatives imply helper invocations so check for needs_helper_invocations. */
77 sel->info.base.fs.needs_helper_invocations &&
78 sel->info.base.fs.uses_discard &&
79 sel->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL))
80 shader_variant_flags |= 1 << 3;
81
82 /* This varies depending on whether compute-based culling is enabled. */
83 shader_variant_flags |= sel->screen->num_vbos_in_user_sgprs << 4;
84
85 struct mesa_sha1 ctx;
86 _mesa_sha1_init(&ctx);
87 _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
88 _mesa_sha1_update(&ctx, ir_binary, ir_size);
89 if (sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL ||
90 sel->info.stage == MESA_SHADER_GEOMETRY)
91 _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so));
92 _mesa_sha1_final(&ctx, ir_sha1_cache_key);
93
94 if (ir_binary == blob.data)
95 blob_finish(&blob);
96 }
97
98 /** Copy "data" to "ptr" and return the next dword following copied data. */
99 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
100 {
101 /* data may be NULL if size == 0 */
102 if (size)
103 memcpy(ptr, data, size);
104 ptr += DIV_ROUND_UP(size, 4);
105 return ptr;
106 }
107
108 /** Read data from "ptr". Return the next dword following the data. */
109 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
110 {
111 memcpy(data, ptr, size);
112 ptr += DIV_ROUND_UP(size, 4);
113 return ptr;
114 }
115
116 /**
117 * Write the size as uint followed by the data. Return the next dword
118 * following the copied data.
119 */
120 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
121 {
122 *ptr++ = size;
123 return write_data(ptr, data, size);
124 }
125
126 /**
127 * Read the size as uint followed by the data. Return both via parameters.
128 * Return the next dword following the data.
129 */
130 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
131 {
132 *size = *ptr++;
133 assert(*data == NULL);
134 if (!*size)
135 return ptr;
136 *data = malloc(*size);
137 return read_data(ptr, *data, *size);
138 }
139
140 /**
141 * Return the shader binary in a buffer. The first 4 bytes contain its size
142 * as integer.
143 */
144 static void *si_get_shader_binary(struct si_shader *shader)
145 {
146 /* There is always a size of data followed by the data itself. */
147 unsigned llvm_ir_size =
148 shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
149
150 /* Refuse to allocate overly large buffers and guard against integer
151 * overflow. */
152 if (shader->binary.elf_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4)
153 return NULL;
154
155 unsigned size = 4 + /* total size */
156 4 + /* CRC32 of the data below */
157 align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 +
158 align(shader->binary.elf_size, 4) + 4 + align(llvm_ir_size, 4);
159 void *buffer = CALLOC(1, size);
160 uint32_t *ptr = (uint32_t *)buffer;
161
162 if (!buffer)
163 return NULL;
164
165 *ptr++ = size;
166 ptr++; /* CRC32 is calculated at the end. */
167
168 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
169 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
170 ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size);
171 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
172 assert((char *)ptr - (char *)buffer == size);
173
174 /* Compute CRC32. */
175 ptr = (uint32_t *)buffer;
176 ptr++;
177 *ptr = util_hash_crc32(ptr + 1, size - 8);
178
179 return buffer;
180 }
181
182 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
183 {
184 uint32_t *ptr = (uint32_t *)binary;
185 uint32_t size = *ptr++;
186 uint32_t crc32 = *ptr++;
187 unsigned chunk_size;
188 unsigned elf_size;
189
190 if (util_hash_crc32(ptr, size - 8) != crc32) {
191 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
192 return false;
193 }
194
195 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
196 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
197 ptr = read_chunk(ptr, (void **)&shader->binary.elf_buffer, &elf_size);
198 shader->binary.elf_size = elf_size;
199 ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
200
201 return true;
202 }
203
204 /**
205 * Insert a shader into the cache. It's assumed the shader is not in the cache.
206 * Use si_shader_cache_load_shader before calling this.
207 */
208 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
209 struct si_shader *shader, bool insert_into_disk_cache)
210 {
211 void *hw_binary;
212 struct hash_entry *entry;
213 uint8_t key[CACHE_KEY_SIZE];
214
215 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
216 if (entry)
217 return; /* already added */
218
219 hw_binary = si_get_shader_binary(shader);
220 if (!hw_binary)
221 return;
222
223 if (_mesa_hash_table_insert(sscreen->shader_cache, mem_dup(ir_sha1_cache_key, 20), hw_binary) ==
224 NULL) {
225 FREE(hw_binary);
226 return;
227 }
228
229 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
230 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
231 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, *((uint32_t *)hw_binary), NULL);
232 }
233 }
234
235 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
236 struct si_shader *shader)
237 {
238 struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
239
240 if (entry) {
241 if (si_load_shader_binary(shader, entry->data)) {
242 p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
243 return true;
244 }
245 }
246 p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
247
248 if (!sscreen->disk_shader_cache)
249 return false;
250
251 unsigned char sha1[CACHE_KEY_SIZE];
252 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
253
254 size_t binary_size;
255 uint8_t *buffer = disk_cache_get(sscreen->disk_shader_cache, sha1, &binary_size);
256 if (buffer) {
257 if (binary_size >= sizeof(uint32_t) && *((uint32_t *)buffer) == binary_size) {
258 if (si_load_shader_binary(shader, buffer)) {
259 free(buffer);
260 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
261 p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
262 return true;
263 }
264 } else {
265 /* Something has gone wrong discard the item from the cache and
266 * rebuild/link from source.
267 */
268 assert(!"Invalid radeonsi shader disk cache item!");
269 disk_cache_remove(sscreen->disk_shader_cache, sha1);
270 }
271 }
272
273 free(buffer);
274 p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
275 return false;
276 }
277
278 static uint32_t si_shader_cache_key_hash(const void *key)
279 {
280 /* Take the first dword of SHA1. */
281 return *(uint32_t *)key;
282 }
283
284 static bool si_shader_cache_key_equals(const void *a, const void *b)
285 {
286 /* Compare SHA1s. */
287 return memcmp(a, b, 20) == 0;
288 }
289
290 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
291 {
292 FREE((void *)entry->key);
293 FREE(entry->data);
294 }
295
296 bool si_init_shader_cache(struct si_screen *sscreen)
297 {
298 (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
299 sscreen->shader_cache =
300 _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
301
302 return sscreen->shader_cache != NULL;
303 }
304
305 void si_destroy_shader_cache(struct si_screen *sscreen)
306 {
307 if (sscreen->shader_cache)
308 _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
309 simple_mtx_destroy(&sscreen->shader_cache_mutex);
310 }
311
312 /* SHADER STATES */
313
314 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
315 struct si_pm4_state *pm4)
316 {
317 const struct si_shader_info *info = &tes->info;
318 unsigned tes_prim_mode = info->base.tess.primitive_mode;
319 unsigned tes_spacing = info->base.tess.spacing;
320 bool tes_vertex_order_cw = !info->base.tess.ccw;
321 bool tes_point_mode = info->base.tess.point_mode;
322 unsigned type, partitioning, topology, distribution_mode;
323
324 switch (tes_prim_mode) {
325 case GL_LINES:
326 type = V_028B6C_TESS_ISOLINE;
327 break;
328 case GL_TRIANGLES:
329 type = V_028B6C_TESS_TRIANGLE;
330 break;
331 case GL_QUADS:
332 type = V_028B6C_TESS_QUAD;
333 break;
334 default:
335 assert(0);
336 return;
337 }
338
339 switch (tes_spacing) {
340 case TESS_SPACING_FRACTIONAL_ODD:
341 partitioning = V_028B6C_PART_FRAC_ODD;
342 break;
343 case TESS_SPACING_FRACTIONAL_EVEN:
344 partitioning = V_028B6C_PART_FRAC_EVEN;
345 break;
346 case TESS_SPACING_EQUAL:
347 partitioning = V_028B6C_PART_INTEGER;
348 break;
349 default:
350 assert(0);
351 return;
352 }
353
354 if (tes_point_mode)
355 topology = V_028B6C_OUTPUT_POINT;
356 else if (tes_prim_mode == GL_LINES)
357 topology = V_028B6C_OUTPUT_LINE;
358 else if (tes_vertex_order_cw)
359 /* for some reason, this must be the other way around */
360 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
361 else
362 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
363
364 if (sscreen->info.has_distributed_tess) {
365 if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
366 distribution_mode = V_028B6C_TRAPEZOIDS;
367 else
368 distribution_mode = V_028B6C_DONUTS;
369 } else
370 distribution_mode = V_028B6C_NO_DIST;
371
372 assert(pm4->shader);
373 pm4->shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
374 S_028B6C_TOPOLOGY(topology) |
375 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
376 }
377
378 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
379 * whether the "fractional odd" tessellation spacing is used.
380 *
381 * Possible VGT configurations and which state should set the register:
382 *
383 * Reg set in | VGT shader configuration | Value
384 * ------------------------------------------------------
385 * VS as VS | VS | 30
386 * VS as ES | ES -> GS -> VS | 30
387 * TES as VS | LS -> HS -> VS | 14 or 30
388 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
389 *
390 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
391 */
392 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
393 struct si_shader *shader, struct si_pm4_state *pm4)
394 {
395 if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.chip_class >= GFX10)
396 return;
397
398 /* VS as VS, or VS as ES: */
399 if ((sel->info.stage == MESA_SHADER_VERTEX &&
400 (!shader || (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
401 /* TES as VS, or TES as ES: */
402 sel->info.stage == MESA_SHADER_TESS_EVAL) {
403 unsigned vtx_reuse_depth = 30;
404
405 if (sel->info.stage == MESA_SHADER_TESS_EVAL &&
406 sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
407 vtx_reuse_depth = 14;
408
409 assert(pm4->shader);
410 pm4->shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
411 }
412 }
413
414 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
415 {
416 if (shader->pm4)
417 si_pm4_clear_state(shader->pm4);
418 else
419 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
420
421 if (shader->pm4) {
422 shader->pm4->shader = shader;
423 return shader->pm4;
424 } else {
425 fprintf(stderr, "radeonsi: Failed to create pm4 state.\n");
426 return NULL;
427 }
428 }
429
430 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
431 unsigned num_always_on_user_sgprs)
432 {
433 struct si_shader_selector *vs =
434 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
435 unsigned num_vbos_in_user_sgprs = vs->num_vbos_in_user_sgprs;
436
437 /* 1 SGPR is reserved for the vertex buffer pointer. */
438 assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
439
440 if (num_vbos_in_user_sgprs)
441 return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
442
443 /* Add the pointer to VBO descriptors. */
444 return num_always_on_user_sgprs + 1;
445 }
446
447 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
448 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
449 bool legacy_vs_prim_id)
450 {
451 assert(shader->selector->info.stage == MESA_SHADER_VERTEX ||
452 (shader->previous_stage_sel && shader->previous_stage_sel->info.stage == MESA_SHADER_VERTEX));
453
454 /* GFX6-9 LS (VertexID, RelAutoindex, InstanceID / StepRate0(==1), ...).
455 * GFX6-9 ES,VS (VertexID, InstanceID / StepRate0(==1), VSPrimID, ...)
456 * GFX10 LS (VertexID, RelAutoindex, UserVGPR1, InstanceID).
457 * GFX10 ES,VS (VertexID, UserVGPR0, UserVGPR1 or VSPrimID, UserVGPR2 or
458 * InstanceID)
459 */
460 bool is_ls = shader->selector->info.stage == MESA_SHADER_TESS_CTRL || shader->key.as_ls;
461
462 if (sscreen->info.chip_class >= GFX10 && shader->info.uses_instanceid)
463 return 3;
464 else if ((is_ls && shader->info.uses_instanceid) || legacy_vs_prim_id)
465 return 2;
466 else if (is_ls || shader->info.uses_instanceid)
467 return 1;
468 else
469 return 0;
470 }
471
472 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
473 {
474 struct si_pm4_state *pm4;
475 uint64_t va;
476
477 assert(sscreen->info.chip_class <= GFX8);
478
479 pm4 = si_get_shader_pm4_state(shader);
480 if (!pm4)
481 return;
482
483 va = shader->bo->gpu_address;
484 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
485 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
486
487 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
488 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
489 S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
490 S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode);
491 shader->config.rsrc2 =
492 S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
493 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
494 }
495
496 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
497 {
498 struct si_pm4_state *pm4;
499 uint64_t va;
500
501 pm4 = si_get_shader_pm4_state(shader);
502 if (!pm4)
503 return;
504
505 va = shader->bo->gpu_address;
506
507 if (sscreen->info.chip_class >= GFX9) {
508 if (sscreen->info.chip_class >= GFX10) {
509 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
510 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
511 } else {
512 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
513 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
514 }
515
516 unsigned num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR);
517
518 shader->config.rsrc2 = S_00B42C_USER_SGPR(num_user_sgprs) |
519 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
520
521 if (sscreen->info.chip_class >= GFX10)
522 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
523 else
524 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
525 } else {
526 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
527 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
528
529 shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) |
530 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
531 }
532
533 si_pm4_set_reg(
534 pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
535 S_00B428_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
536 (sscreen->info.chip_class <= GFX9 ? S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8)
537 : 0) |
538 S_00B428_DX10_CLAMP(1) | S_00B428_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
539 S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) |
540 S_00B428_FLOAT_MODE(shader->config.float_mode) |
541 S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9
542 ? si_get_vs_vgpr_comp_cnt(sscreen, shader, false)
543 : 0));
544
545 if (sscreen->info.chip_class <= GFX8) {
546 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
547 }
548 }
549
550 static void si_emit_shader_es(struct si_context *sctx)
551 {
552 struct si_shader *shader = sctx->queued.named.es->shader;
553 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
554
555 if (!shader)
556 return;
557
558 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
559 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
560 shader->selector->esgs_itemsize / 4);
561
562 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
563 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
564 shader->vgt_tf_param);
565
566 if (shader->vgt_vertex_reuse_block_cntl)
567 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
568 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
569 shader->vgt_vertex_reuse_block_cntl);
570
571 if (initial_cdw != sctx->gfx_cs->current.cdw)
572 sctx->context_roll = true;
573 }
574
575 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
576 {
577 struct si_pm4_state *pm4;
578 unsigned num_user_sgprs;
579 unsigned vgpr_comp_cnt;
580 uint64_t va;
581 unsigned oc_lds_en;
582
583 assert(sscreen->info.chip_class <= GFX8);
584
585 pm4 = si_get_shader_pm4_state(shader);
586 if (!pm4)
587 return;
588
589 pm4->atom.emit = si_emit_shader_es;
590 va = shader->bo->gpu_address;
591
592 if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
593 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
594 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
595 } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
596 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
597 num_user_sgprs = SI_TES_NUM_USER_SGPR;
598 } else
599 unreachable("invalid shader selector type");
600
601 oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
602
603 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
604 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
605 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
606 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
607 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
608 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) |
609 S_00B328_FLOAT_MODE(shader->config.float_mode));
610 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
611 S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
612 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
613
614 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
615 si_set_tesseval_regs(sscreen, shader->selector, pm4);
616
617 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
618 }
619
620 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
621 struct gfx9_gs_info *out)
622 {
623 unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
624 unsigned input_prim = gs->info.base.gs.input_primitive;
625 bool uses_adjacency =
626 input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
627
628 /* All these are in dwords: */
629 /* We can't allow using the whole LDS, because GS waves compete with
630 * other shader stages for LDS space. */
631 const unsigned max_lds_size = 8 * 1024;
632 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
633 unsigned esgs_lds_size;
634
635 /* All these are per subgroup: */
636 const unsigned max_out_prims = 32 * 1024;
637 const unsigned max_es_verts = 255;
638 const unsigned ideal_gs_prims = 64;
639 unsigned max_gs_prims, gs_prims;
640 unsigned min_es_verts, es_verts, worst_case_es_verts;
641
642 if (uses_adjacency || gs_num_invocations > 1)
643 max_gs_prims = 127 / gs_num_invocations;
644 else
645 max_gs_prims = 255;
646
647 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
648 * Make sure we don't go over the maximum value.
649 */
650 if (gs->info.base.gs.vertices_out > 0) {
651 max_gs_prims =
652 MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
653 }
654 assert(max_gs_prims > 0);
655
656 /* If the primitive has adjacency, halve the number of vertices
657 * that will be reused in multiple primitives.
658 */
659 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
660
661 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
662 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
663
664 /* Compute ESGS LDS size based on the worst case number of ES vertices
665 * needed to create the target number of GS prims per subgroup.
666 */
667 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
668
669 /* If total LDS usage is too big, refactor partitions based on ratio
670 * of ESGS item sizes.
671 */
672 if (esgs_lds_size > max_lds_size) {
673 /* Our target GS Prims Per Subgroup was too large. Calculate
674 * the maximum number of GS Prims Per Subgroup that will fit
675 * into LDS, capped by the maximum that the hardware can support.
676 */
677 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
678 assert(gs_prims > 0);
679 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
680
681 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
682 assert(esgs_lds_size <= max_lds_size);
683 }
684
685 /* Now calculate remaining ESGS information. */
686 if (esgs_lds_size)
687 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
688 else
689 es_verts = max_es_verts;
690
691 /* Vertices for adjacency primitives are not always reused, so restore
692 * it for ES_VERTS_PER_SUBGRP.
693 */
694 min_es_verts = gs->gs_input_verts_per_prim;
695
696 /* For normal primitives, the VGT only checks if they are past the ES
697 * verts per subgroup after allocating a full GS primitive and if they
698 * are, kick off a new subgroup. But if those additional ES verts are
699 * unique (e.g. not reused) we need to make sure there is enough LDS
700 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
701 */
702 es_verts -= min_es_verts - 1;
703
704 out->es_verts_per_subgroup = es_verts;
705 out->gs_prims_per_subgroup = gs_prims;
706 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
707 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
708 out->esgs_ring_size = esgs_lds_size;
709
710 assert(out->max_prims_per_subgroup <= max_out_prims);
711 }
712
713 static void si_emit_shader_gs(struct si_context *sctx)
714 {
715 struct si_shader *shader = sctx->queued.named.gs->shader;
716 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
717
718 if (!shader)
719 return;
720
721 /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
722 * R_028A68_VGT_GSVS_RING_OFFSET_3 */
723 radeon_opt_set_context_reg3(
724 sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
725 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
726 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3);
727
728 /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
729 radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
730 SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
731 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
732
733 /* R_028B38_VGT_GS_MAX_VERT_OUT */
734 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
735 shader->ctx_reg.gs.vgt_gs_max_vert_out);
736
737 /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
738 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
739 radeon_opt_set_context_reg4(
740 sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
741 shader->ctx_reg.gs.vgt_gs_vert_itemsize, shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
742 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2, shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
743
744 /* R_028B90_VGT_GS_INSTANCE_CNT */
745 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
746 shader->ctx_reg.gs.vgt_gs_instance_cnt);
747
748 if (sctx->chip_class >= GFX9) {
749 /* R_028A44_VGT_GS_ONCHIP_CNTL */
750 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
751 shader->ctx_reg.gs.vgt_gs_onchip_cntl);
752 /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
753 radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
754 SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
755 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
756 /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
757 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
758 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
759 shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
760
761 if (shader->key.part.gs.es->info.stage == MESA_SHADER_TESS_EVAL)
762 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
763 shader->vgt_tf_param);
764 if (shader->vgt_vertex_reuse_block_cntl)
765 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
766 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
767 shader->vgt_vertex_reuse_block_cntl);
768 }
769
770 if (initial_cdw != sctx->gfx_cs->current.cdw)
771 sctx->context_roll = true;
772 }
773
774 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
775 {
776 struct si_shader_selector *sel = shader->selector;
777 const ubyte *num_components = sel->info.num_stream_output_components;
778 unsigned gs_num_invocations = sel->info.base.gs.invocations;
779 struct si_pm4_state *pm4;
780 uint64_t va;
781 unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
782 unsigned offset;
783
784 pm4 = si_get_shader_pm4_state(shader);
785 if (!pm4)
786 return;
787
788 pm4->atom.emit = si_emit_shader_gs;
789
790 offset = num_components[0] * sel->info.base.gs.vertices_out;
791 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
792
793 if (max_stream >= 2)
794 offset += num_components[1] * sel->info.base.gs.vertices_out;
795 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
796
797 if (max_stream >= 3)
798 offset += num_components[2] * sel->info.base.gs.vertices_out;
799 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
800
801 if (max_stream >= 4)
802 offset += num_components[3] * sel->info.base.gs.vertices_out;
803 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
804
805 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
806 assert(offset < (1 << 15));
807
808 shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
809
810 shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
811 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
812 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
813 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
814
815 shader->ctx_reg.gs.vgt_gs_instance_cnt =
816 S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
817
818 va = shader->bo->gpu_address;
819
820 if (sscreen->info.chip_class >= GFX9) {
821 unsigned input_prim = sel->info.base.gs.input_primitive;
822 gl_shader_stage es_stage = shader->key.part.gs.es->info.stage;
823 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
824
825 if (es_stage == MESA_SHADER_VERTEX) {
826 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
827 } else if (es_stage == MESA_SHADER_TESS_EVAL)
828 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
829 else
830 unreachable("invalid shader selector type");
831
832 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
833 * VGPR[0:4] are always loaded.
834 */
835 if (sel->info.uses_invocationid)
836 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
837 else if (sel->info.uses_primid)
838 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
839 else if (input_prim >= PIPE_PRIM_TRIANGLES)
840 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
841 else
842 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
843
844 unsigned num_user_sgprs;
845 if (es_stage == MESA_SHADER_VERTEX)
846 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
847 else
848 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
849
850 if (sscreen->info.chip_class >= GFX10) {
851 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
852 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
853 } else {
854 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
855 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
856 }
857
858 uint32_t rsrc1 = S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_DX10_CLAMP(1) |
859 S_00B228_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
860 S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) |
861 S_00B228_FLOAT_MODE(shader->config.float_mode) |
862 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
863 uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
864 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
865 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
866 S_00B22C_LDS_SIZE(shader->config.lds_size) |
867 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
868
869 if (sscreen->info.chip_class >= GFX10) {
870 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
871 } else {
872 rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8);
873 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
874 }
875
876 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
877 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
878
879 if (sscreen->info.chip_class >= GFX10) {
880 si_pm4_set_reg(pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
881 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0));
882 }
883
884 shader->ctx_reg.gs.vgt_gs_onchip_cntl =
885 S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
886 S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
887 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
888 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
889 S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
890 shader->ctx_reg.gs.vgt_esgs_ring_itemsize = shader->key.part.gs.es->esgs_itemsize / 4;
891
892 if (es_stage == MESA_SHADER_TESS_EVAL)
893 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
894
895 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es, NULL, pm4);
896 } else {
897 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
898 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
899
900 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
901 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
902 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
903 S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode));
904 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
905 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
906 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
907 }
908 }
909
910 static void gfx10_emit_ge_pc_alloc(struct si_context *sctx, unsigned value)
911 {
912 enum si_tracked_reg reg = SI_TRACKED_GE_PC_ALLOC;
913
914 if (((sctx->tracked_regs.reg_saved >> reg) & 0x1) != 0x1 ||
915 sctx->tracked_regs.reg_value[reg] != value) {
916 struct radeon_cmdbuf *cs = sctx->gfx_cs;
917
918 if (sctx->chip_class == GFX10) {
919 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
920 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
921 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
922 }
923
924 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC, value);
925
926 sctx->tracked_regs.reg_saved |= 0x1ull << reg;
927 sctx->tracked_regs.reg_value[reg] = value;
928 }
929 }
930
931 /* Common tail code for NGG primitive shaders. */
932 static void gfx10_emit_shader_ngg_tail(struct si_context *sctx, struct si_shader *shader,
933 unsigned initial_cdw)
934 {
935 radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
936 SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
937 shader->ctx_reg.ngg.ge_max_output_per_subgroup);
938 radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
939 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl);
940 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
941 shader->ctx_reg.ngg.vgt_primitiveid_en);
942 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
943 shader->ctx_reg.ngg.vgt_gs_onchip_cntl);
944 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
945 shader->ctx_reg.ngg.vgt_gs_instance_cnt);
946 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
947 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
948 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize);
949 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
950 shader->ctx_reg.ngg.spi_vs_out_config);
951 radeon_opt_set_context_reg2(
952 sctx, R_028708_SPI_SHADER_IDX_FORMAT, SI_TRACKED_SPI_SHADER_IDX_FORMAT,
953 shader->ctx_reg.ngg.spi_shader_idx_format, shader->ctx_reg.ngg.spi_shader_pos_format);
954 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
955 shader->ctx_reg.ngg.pa_cl_vte_cntl);
956 radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL, SI_TRACKED_PA_CL_NGG_CNTL,
957 shader->ctx_reg.ngg.pa_cl_ngg_cntl);
958
959 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
960 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
961 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
962
963 if (initial_cdw != sctx->gfx_cs->current.cdw)
964 sctx->context_roll = true;
965
966 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
967 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.ngg.ge_pc_alloc);
968 }
969
970 static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx)
971 {
972 struct si_shader *shader = sctx->queued.named.gs->shader;
973 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
974
975 if (!shader)
976 return;
977
978 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
979 }
980
981 static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx)
982 {
983 struct si_shader *shader = sctx->queued.named.gs->shader;
984 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
985
986 if (!shader)
987 return;
988
989 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
990 shader->vgt_tf_param);
991
992 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
993 }
994
995 static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx)
996 {
997 struct si_shader *shader = sctx->queued.named.gs->shader;
998 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
999
1000 if (!shader)
1001 return;
1002
1003 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1004 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1005
1006 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1007 }
1008
1009 static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx)
1010 {
1011 struct si_shader *shader = sctx->queued.named.gs->shader;
1012 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1013
1014 if (!shader)
1015 return;
1016
1017 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1018 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1019 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1020 shader->vgt_tf_param);
1021
1022 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1023 }
1024
1025 unsigned si_get_input_prim(const struct si_shader_selector *gs)
1026 {
1027 if (gs->info.stage == MESA_SHADER_GEOMETRY)
1028 return gs->info.base.gs.input_primitive;
1029
1030 if (gs->info.stage == MESA_SHADER_TESS_EVAL) {
1031 if (gs->info.base.tess.point_mode)
1032 return PIPE_PRIM_POINTS;
1033 if (gs->info.base.tess.primitive_mode == GL_LINES)
1034 return PIPE_PRIM_LINES;
1035 return PIPE_PRIM_TRIANGLES;
1036 }
1037
1038 /* TODO: Set this correctly if the primitive type is set in the shader key. */
1039 return PIPE_PRIM_TRIANGLES; /* worst case for all callers */
1040 }
1041
1042 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel, bool ngg)
1043 {
1044 bool misc_vec_ena = sel->info.writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1045 sel->info.writes_layer || sel->info.writes_viewport_index;
1046 return S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
1047 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1048 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
1049 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1050 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1051 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
1052 }
1053
1054 /**
1055 * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1056 * in NGG mode.
1057 */
1058 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1059 {
1060 const struct si_shader_selector *gs_sel = shader->selector;
1061 const struct si_shader_info *gs_info = &gs_sel->info;
1062 const gl_shader_stage gs_stage = shader->selector->info.stage;
1063 const struct si_shader_selector *es_sel =
1064 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1065 const struct si_shader_info *es_info = &es_sel->info;
1066 const gl_shader_stage es_stage = es_sel->info.stage;
1067 unsigned num_user_sgprs;
1068 unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1069 uint64_t va;
1070 bool window_space = gs_info->stage == MESA_SHADER_VERTEX ?
1071 gs_info->base.vs.window_space_position : 0;
1072 bool es_enable_prim_id = shader->key.mono.u.vs_export_prim_id || es_info->uses_primid;
1073 unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1);
1074 unsigned input_prim = si_get_input_prim(gs_sel);
1075 bool break_wave_at_eoi = false;
1076 struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader);
1077 if (!pm4)
1078 return;
1079
1080 if (es_stage == MESA_SHADER_TESS_EVAL) {
1081 pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs
1082 : gfx10_emit_shader_ngg_tess_nogs;
1083 } else {
1084 pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs
1085 : gfx10_emit_shader_ngg_notess_nogs;
1086 }
1087
1088 va = shader->bo->gpu_address;
1089
1090 if (es_stage == MESA_SHADER_VERTEX) {
1091 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1092
1093 if (es_info->base.vs.blit_sgprs_amd) {
1094 num_user_sgprs =
1095 SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1096 } else {
1097 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
1098 }
1099 } else {
1100 assert(es_stage == MESA_SHADER_TESS_EVAL);
1101 es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1102 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
1103
1104 if (es_enable_prim_id || gs_info->uses_primid)
1105 break_wave_at_eoi = true;
1106 }
1107
1108 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1109 * VGPR[0:4] are always loaded.
1110 *
1111 * Vertex shaders always need to load VGPR3, because they need to
1112 * pass edge flags for decomposed primitives (such as quads) to the PA
1113 * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1114 */
1115 if (gs_info->uses_invocationid ||
1116 (gs_stage == MESA_SHADER_VERTEX && !gfx10_is_ngg_passthrough(shader)))
1117 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1118 else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1119 (gs_stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1120 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1121 else if (input_prim >= PIPE_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1122 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1123 else
1124 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1125
1126 unsigned wave_size = si_get_shader_wave_size(shader);
1127
1128 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1129 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
1130 si_pm4_set_reg(
1131 pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1132 S_00B228_VGPRS((shader->config.num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) |
1133 S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_DX10_CLAMP(1) |
1134 S_00B228_MEM_ORDERED(1) | S_00B228_WGP_MODE(1) |
1135 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1136 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1137 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1138 S_00B22C_USER_SGPR(num_user_sgprs) |
1139 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1140 S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1141 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1142 S_00B22C_LDS_SIZE(shader->config.lds_size));
1143
1144 /* Determine LATE_ALLOC_GS. */
1145 unsigned num_cu_per_sh = sscreen->info.min_good_cu_per_sa;
1146 unsigned late_alloc_wave64; /* The limit is per SA. */
1147
1148 /* For Wave32, the hw will launch twice the number of late
1149 * alloc waves, so 1 == 2x wave32.
1150 *
1151 * Don't use late alloc for NGG on Navi14 due to a hw bug.
1152 */
1153 if (sscreen->info.family == CHIP_NAVI14 || !sscreen->info.use_late_alloc)
1154 late_alloc_wave64 = 0;
1155 else if (num_cu_per_sh <= 6)
1156 late_alloc_wave64 = num_cu_per_sh - 2; /* All CUs enabled */
1157 else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL)
1158 late_alloc_wave64 = (num_cu_per_sh - 2) * 6;
1159 else
1160 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
1161
1162 /* Limit LATE_ALLOC_GS for prevent a hang (hw bug). */
1163 if (sscreen->info.chip_class == GFX10)
1164 late_alloc_wave64 = MIN2(late_alloc_wave64, 64);
1165
1166 si_pm4_set_reg(
1167 pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1168 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
1169
1170 nparams = MAX2(shader->info.nr_param_exports, 1);
1171 shader->ctx_reg.ngg.spi_vs_out_config =
1172 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
1173 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1174
1175 shader->ctx_reg.ngg.spi_shader_idx_format =
1176 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP);
1177 shader->ctx_reg.ngg.spi_shader_pos_format =
1178 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1179 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1180 : V_02870C_SPI_SHADER_NONE) |
1181 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1182 : V_02870C_SPI_SHADER_NONE) |
1183 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1184 : V_02870C_SPI_SHADER_NONE);
1185
1186 shader->ctx_reg.ngg.vgt_primitiveid_en =
1187 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
1188 S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.mono.u.vs_export_prim_id ||
1189 gs_sel->info.writes_primid);
1190
1191 if (gs_stage == MESA_SHADER_GEOMETRY) {
1192 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4;
1193 shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1194 } else {
1195 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1;
1196 }
1197
1198 if (es_stage == MESA_SHADER_TESS_EVAL)
1199 si_set_tesseval_regs(sscreen, es_sel, pm4);
1200
1201 shader->ctx_reg.ngg.vgt_gs_onchip_cntl =
1202 S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1203 S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1204 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1205 shader->ctx_reg.ngg.ge_max_output_per_subgroup =
1206 S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1207 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) |
1208 S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1209 shader->ctx_reg.ngg.vgt_gs_instance_cnt =
1210 S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1211 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1212
1213 /* Always output hw-generated edge flags and pass them via the prim
1214 * export to prevent drawing lines on internal edges of decomposed
1215 * primitives (such as quads) with polygon mode = lines. Only VS needs
1216 * this.
1217 */
1218 shader->ctx_reg.ngg.pa_cl_ngg_cntl =
1219 S_028838_INDEX_BUF_EDGE_FLAG_ENA(gs_stage == MESA_SHADER_VERTEX) |
1220 /* Reuse for NGG. */
1221 S_028838_VERTEX_REUSE_DEPTH(sscreen->info.chip_class >= GFX10_3 ? 30 : 0);
1222 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(gs_sel, true);
1223
1224 /* Oversubscribe PC. This improves performance when there are too many varyings. */
1225 float oversub_pc_factor = 0.25;
1226
1227 if (shader->key.opt.ngg_culling) {
1228 /* Be more aggressive with NGG culling. */
1229 if (shader->info.nr_param_exports > 4)
1230 oversub_pc_factor = 1;
1231 else if (shader->info.nr_param_exports > 2)
1232 oversub_pc_factor = 0.75;
1233 else
1234 oversub_pc_factor = 0.5;
1235 }
1236
1237 unsigned oversub_pc_lines = sscreen->info.pc_lines * oversub_pc_factor;
1238 shader->ctx_reg.ngg.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1239 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1240
1241 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
1242 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1243 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims * 3);
1244 } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
1245 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1246 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims + 2);
1247 } else {
1248 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1249 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
1250 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1251
1252 /* Bug workaround for a possible hang with non-tessellation cases.
1253 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
1254 *
1255 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
1256 */
1257 if ((sscreen->info.chip_class == GFX10) &&
1258 (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1259 shader->ngg.hw_max_esverts != 256) {
1260 shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1261
1262 if (shader->ngg.hw_max_esverts > 5) {
1263 shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1264 }
1265 }
1266 }
1267
1268 if (window_space) {
1269 shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1270 } else {
1271 shader->ctx_reg.ngg.pa_cl_vte_cntl =
1272 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1273 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1274 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1275 }
1276 }
1277
1278 static void si_emit_shader_vs(struct si_context *sctx)
1279 {
1280 struct si_shader *shader = sctx->queued.named.vs->shader;
1281 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1282
1283 if (!shader)
1284 return;
1285
1286 radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1287 shader->ctx_reg.vs.vgt_gs_mode);
1288 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1289 shader->ctx_reg.vs.vgt_primitiveid_en);
1290
1291 if (sctx->chip_class <= GFX8) {
1292 radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1293 shader->ctx_reg.vs.vgt_reuse_off);
1294 }
1295
1296 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1297 shader->ctx_reg.vs.spi_vs_out_config);
1298
1299 radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1300 SI_TRACKED_SPI_SHADER_POS_FORMAT,
1301 shader->ctx_reg.vs.spi_shader_pos_format);
1302
1303 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1304 shader->ctx_reg.vs.pa_cl_vte_cntl);
1305
1306 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1307 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1308 shader->vgt_tf_param);
1309
1310 if (shader->vgt_vertex_reuse_block_cntl)
1311 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1312 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1313 shader->vgt_vertex_reuse_block_cntl);
1314
1315 /* Required programming for tessellation. (legacy pipeline only) */
1316 if (sctx->chip_class >= GFX10 && shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1317 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1318 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1319 S_028A44_ES_VERTS_PER_SUBGRP(250) |
1320 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1321 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1322 }
1323
1324 if (sctx->chip_class >= GFX10) {
1325 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
1326 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
1327 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
1328 }
1329
1330 if (initial_cdw != sctx->gfx_cs->current.cdw)
1331 sctx->context_roll = true;
1332
1333 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1334 if (sctx->chip_class >= GFX10)
1335 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.vs.ge_pc_alloc);
1336 }
1337
1338 /**
1339 * Compute the state for \p shader, which will run as a vertex shader on the
1340 * hardware.
1341 *
1342 * If \p gs is non-NULL, it points to the geometry shader for which this shader
1343 * is the copy shader.
1344 */
1345 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1346 struct si_shader_selector *gs)
1347 {
1348 const struct si_shader_info *info = &shader->selector->info;
1349 struct si_pm4_state *pm4;
1350 unsigned num_user_sgprs, vgpr_comp_cnt;
1351 uint64_t va;
1352 unsigned nparams, oc_lds_en;
1353 bool window_space = info->stage == MESA_SHADER_VERTEX ?
1354 info->base.vs.window_space_position : 0;
1355 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1356
1357 pm4 = si_get_shader_pm4_state(shader);
1358 if (!pm4)
1359 return;
1360
1361 pm4->atom.emit = si_emit_shader_vs;
1362
1363 /* We always write VGT_GS_MODE in the VS state, because every switch
1364 * between different shader pipelines involving a different GS or no
1365 * GS at all involves a switch of the VS (different GS use different
1366 * copy shaders). On the other hand, when the API switches from a GS to
1367 * no GS and then back to the same GS used originally, the GS state is
1368 * not sent again.
1369 */
1370 if (!gs) {
1371 unsigned mode = V_028A40_GS_OFF;
1372
1373 /* PrimID needs GS scenario A. */
1374 if (enable_prim_id)
1375 mode = V_028A40_GS_SCENARIO_A;
1376
1377 shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1378 shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1379 } else {
1380 shader->ctx_reg.vs.vgt_gs_mode =
1381 ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.chip_class);
1382 shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1383 }
1384
1385 if (sscreen->info.chip_class <= GFX8) {
1386 /* Reuse needs to be set off if we write oViewport. */
1387 shader->ctx_reg.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1388 }
1389
1390 va = shader->bo->gpu_address;
1391
1392 if (gs) {
1393 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1394 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1395 } else if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
1396 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1397
1398 if (info->base.vs.blit_sgprs_amd) {
1399 num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1400 } else {
1401 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1402 }
1403 } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1404 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1405 num_user_sgprs = SI_TES_NUM_USER_SGPR;
1406 } else
1407 unreachable("invalid shader selector type");
1408
1409 /* VS is required to export at least one param. */
1410 nparams = MAX2(shader->info.nr_param_exports, 1);
1411 shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1412
1413 if (sscreen->info.chip_class >= GFX10) {
1414 shader->ctx_reg.vs.spi_vs_out_config |=
1415 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1416 }
1417
1418 shader->ctx_reg.vs.spi_shader_pos_format =
1419 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1420 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1421 : V_02870C_SPI_SHADER_NONE) |
1422 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1423 : V_02870C_SPI_SHADER_NONE) |
1424 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1425 : V_02870C_SPI_SHADER_NONE);
1426 shader->ctx_reg.vs.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1427 S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1428 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, false);
1429
1430 oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1431
1432 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1433 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
1434
1435 uint32_t rsrc1 =
1436 S_00B128_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1437 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) |
1438 S_00B128_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1439 S_00B128_FLOAT_MODE(shader->config.float_mode);
1440 uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1441 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1442
1443 if (sscreen->info.chip_class >= GFX10)
1444 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1445 else if (sscreen->info.chip_class == GFX9)
1446 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1447
1448 if (sscreen->info.chip_class <= GFX9)
1449 rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8);
1450
1451 if (!sscreen->use_ngg_streamout) {
1452 rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1453 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1454 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1455 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1456 S_00B12C_SO_EN(!!shader->selector->so.num_outputs);
1457 }
1458
1459 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1460 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1461
1462 if (window_space)
1463 shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1464 else
1465 shader->ctx_reg.vs.pa_cl_vte_cntl =
1466 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1467 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1468 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1469
1470 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1471 si_set_tesseval_regs(sscreen, shader->selector, pm4);
1472
1473 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
1474 }
1475
1476 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1477 {
1478 struct si_shader_info *info = &ps->selector->info;
1479 unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0);
1480 unsigned num_interp =
1481 ps->selector->info.num_inputs + (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1482
1483 assert(num_interp <= 32);
1484 return MIN2(num_interp, 32);
1485 }
1486
1487 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1488 {
1489 unsigned spi_shader_col_format = shader->key.part.ps.epilog.spi_shader_col_format;
1490 unsigned value = 0, num_mrts = 0;
1491 unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1492
1493 /* Remove holes in spi_shader_col_format. */
1494 for (i = 0; i < num_targets; i++) {
1495 unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1496
1497 if (spi_format) {
1498 value |= spi_format << (num_mrts * 4);
1499 num_mrts++;
1500 }
1501 }
1502
1503 return value;
1504 }
1505
1506 static void si_emit_shader_ps(struct si_context *sctx)
1507 {
1508 struct si_shader *shader = sctx->queued.named.ps->shader;
1509 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1510
1511 if (!shader)
1512 return;
1513
1514 /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1515 radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1516 shader->ctx_reg.ps.spi_ps_input_ena,
1517 shader->ctx_reg.ps.spi_ps_input_addr);
1518
1519 radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1520 shader->ctx_reg.ps.spi_baryc_cntl);
1521 radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1522 shader->ctx_reg.ps.spi_ps_in_control);
1523
1524 /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1525 radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1526 shader->ctx_reg.ps.spi_shader_z_format,
1527 shader->ctx_reg.ps.spi_shader_col_format);
1528
1529 radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1530 shader->ctx_reg.ps.cb_shader_mask);
1531
1532 if (initial_cdw != sctx->gfx_cs->current.cdw)
1533 sctx->context_roll = true;
1534 }
1535
1536 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1537 {
1538 struct si_shader_info *info = &shader->selector->info;
1539 struct si_pm4_state *pm4;
1540 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1541 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1542 uint64_t va;
1543 unsigned input_ena = shader->config.spi_ps_input_ena;
1544
1545 /* we need to enable at least one of them, otherwise we hang the GPU */
1546 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1547 G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1548 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1549 G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1550 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1551 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1552 G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1553 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1554
1555 /* Validate interpolation optimization flags (read as implications). */
1556 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1557 (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1558 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1559 (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1560 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1561 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1562 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1563 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1564 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1565 (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1566 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1567 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1568
1569 /* Validate cases when the optimizations are off (read as implications). */
1570 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1571 !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1572 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1573 !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1574
1575 pm4 = si_get_shader_pm4_state(shader);
1576 if (!pm4)
1577 return;
1578
1579 pm4->atom.emit = si_emit_shader_ps;
1580
1581 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1582 * Possible vaules:
1583 * 0 -> Position = pixel center
1584 * 1 -> Position = pixel centroid
1585 * 2 -> Position = at sample position
1586 *
1587 * From GLSL 4.5 specification, section 7.1:
1588 * "The variable gl_FragCoord is available as an input variable from
1589 * within fragment shaders and it holds the window relative coordinates
1590 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1591 * value can be for any location within the pixel, or one of the
1592 * fragment samples. The use of centroid does not further restrict
1593 * this value to be inside the current primitive."
1594 *
1595 * Meaning that centroid has no effect and we can return anything within
1596 * the pixel. Thus, return the value at sample position, because that's
1597 * the most accurate one shaders can get.
1598 */
1599 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1600
1601 if (info->base.fs.pixel_center_integer)
1602 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1603
1604 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1605 cb_shader_mask = ac_get_cb_shader_mask(shader->key.part.ps.epilog.spi_shader_col_format);
1606
1607 /* Ensure that some export memory is always allocated, for two reasons:
1608 *
1609 * 1) Correctness: The hardware ignores the EXEC mask if no export
1610 * memory is allocated, so KILL and alpha test do not work correctly
1611 * without this.
1612 * 2) Performance: Every shader needs at least a NULL export, even when
1613 * it writes no color/depth output. The NULL export instruction
1614 * stalls without this setting.
1615 *
1616 * Don't add this to CB_SHADER_MASK.
1617 *
1618 * GFX10 supports pixel shaders without exports by setting both
1619 * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1620 * instructions if any are present.
1621 */
1622 if ((sscreen->info.chip_class <= GFX9 || info->base.fs.uses_discard ||
1623 shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS) &&
1624 !spi_shader_col_format && !info->writes_z && !info->writes_stencil &&
1625 !info->writes_samplemask)
1626 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1627
1628 shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1629 shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1630
1631 /* Set interpolation controls. */
1632 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
1633 S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32);
1634
1635 shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1636 shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1637 shader->ctx_reg.ps.spi_shader_z_format =
1638 ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask);
1639 shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1640 shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1641
1642 va = shader->bo->gpu_address;
1643 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1644 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1645
1646 uint32_t rsrc1 =
1647 S_00B028_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ps_wave_size == 32 ? 8 : 4)) |
1648 S_00B028_DX10_CLAMP(1) | S_00B028_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1649 S_00B028_FLOAT_MODE(shader->config.float_mode);
1650
1651 if (sscreen->info.chip_class < GFX10) {
1652 rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8);
1653 }
1654
1655 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1);
1656 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1657 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1658 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1659 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1660 }
1661
1662 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
1663 {
1664 switch (shader->selector->info.stage) {
1665 case MESA_SHADER_VERTEX:
1666 if (shader->key.as_ls)
1667 si_shader_ls(sscreen, shader);
1668 else if (shader->key.as_es)
1669 si_shader_es(sscreen, shader);
1670 else if (shader->key.as_ngg)
1671 gfx10_shader_ngg(sscreen, shader);
1672 else
1673 si_shader_vs(sscreen, shader, NULL);
1674 break;
1675 case MESA_SHADER_TESS_CTRL:
1676 si_shader_hs(sscreen, shader);
1677 break;
1678 case MESA_SHADER_TESS_EVAL:
1679 if (shader->key.as_es)
1680 si_shader_es(sscreen, shader);
1681 else if (shader->key.as_ngg)
1682 gfx10_shader_ngg(sscreen, shader);
1683 else
1684 si_shader_vs(sscreen, shader, NULL);
1685 break;
1686 case MESA_SHADER_GEOMETRY:
1687 if (shader->key.as_ngg)
1688 gfx10_shader_ngg(sscreen, shader);
1689 else
1690 si_shader_gs(sscreen, shader);
1691 break;
1692 case MESA_SHADER_FRAGMENT:
1693 si_shader_ps(sscreen, shader);
1694 break;
1695 default:
1696 assert(0);
1697 }
1698 }
1699
1700 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1701 {
1702 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1703 return sctx->queued.named.dsa->alpha_func;
1704 }
1705
1706 void si_shader_selector_key_vs(struct si_context *sctx, struct si_shader_selector *vs,
1707 struct si_shader_key *key, struct si_vs_prolog_bits *prolog_key)
1708 {
1709 if (!sctx->vertex_elements || vs->info.base.vs.blit_sgprs_amd)
1710 return;
1711
1712 struct si_vertex_elements *elts = sctx->vertex_elements;
1713
1714 prolog_key->instance_divisor_is_one = elts->instance_divisor_is_one;
1715 prolog_key->instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
1716 prolog_key->unpack_instance_id_from_vertex_id = sctx->prim_discard_cs_instancing;
1717
1718 /* Prefer a monolithic shader to allow scheduling divisions around
1719 * VBO loads. */
1720 if (prolog_key->instance_divisor_is_fetched)
1721 key->opt.prefer_mono = 1;
1722
1723 unsigned count = MIN2(vs->info.num_inputs, elts->count);
1724 unsigned count_mask = (1 << count) - 1;
1725 unsigned fix = elts->fix_fetch_always & count_mask;
1726 unsigned opencode = elts->fix_fetch_opencode & count_mask;
1727
1728 if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
1729 uint32_t mask = elts->fix_fetch_unaligned & count_mask;
1730 while (mask) {
1731 unsigned i = u_bit_scan(&mask);
1732 unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
1733 unsigned vbidx = elts->vertex_buffer_index[i];
1734 struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
1735 unsigned align_mask = (1 << log_hw_load_size) - 1;
1736 if (vb->buffer_offset & align_mask || vb->stride & align_mask) {
1737 fix |= 1 << i;
1738 opencode |= 1 << i;
1739 }
1740 }
1741 }
1742
1743 while (fix) {
1744 unsigned i = u_bit_scan(&fix);
1745 key->mono.vs_fix_fetch[i].bits = elts->fix_fetch[i];
1746 }
1747 key->mono.vs_fetch_opencode = opencode;
1748 }
1749
1750 static void si_shader_selector_key_hw_vs(struct si_context *sctx, struct si_shader_selector *vs,
1751 struct si_shader_key *key)
1752 {
1753 struct si_shader_selector *ps = sctx->ps_shader.cso;
1754
1755 key->opt.clip_disable = sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1756 (vs->info.base.clip_distance_array_size || vs->info.writes_clipvertex) &&
1757 !vs->info.base.cull_distance_array_size;
1758
1759 /* Find out if PS is disabled. */
1760 bool ps_disabled = true;
1761 if (ps) {
1762 bool ps_modifies_zs = ps->info.base.fs.uses_discard || ps->info.writes_z || ps->info.writes_stencil ||
1763 ps->info.writes_samplemask ||
1764 sctx->queued.named.blend->alpha_to_coverage ||
1765 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1766 unsigned ps_colormask = si_get_total_colormask(sctx);
1767
1768 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1769 (!ps_colormask && !ps_modifies_zs && !ps->info.base.writes_memory);
1770 }
1771
1772 /* Find out which VS outputs aren't used by the PS. */
1773 uint64_t outputs_written = vs->outputs_written_before_ps;
1774 uint64_t inputs_read = 0;
1775
1776 /* Ignore outputs that are not passed from VS to PS. */
1777 outputs_written &= ~((1ull << si_shader_io_get_unique_index(VARYING_SLOT_POS, true)) |
1778 (1ull << si_shader_io_get_unique_index(VARYING_SLOT_PSIZ, true)) |
1779 (1ull << si_shader_io_get_unique_index(VARYING_SLOT_CLIP_VERTEX, true)));
1780
1781 if (!ps_disabled) {
1782 inputs_read = ps->inputs_read;
1783 }
1784
1785 uint64_t linked = outputs_written & inputs_read;
1786
1787 key->opt.kill_outputs = ~linked & outputs_written;
1788 key->opt.ngg_culling = sctx->ngg_culling;
1789
1790 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1791 key->mono.u.vs_export_prim_id = 1;
1792 }
1793
1794 /* Compute the key for the hw shader variant */
1795 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
1796 union si_vgt_stages_key stages_key,
1797 struct si_shader_key *key)
1798 {
1799 struct si_context *sctx = (struct si_context *)ctx;
1800
1801 memset(key, 0, sizeof(*key));
1802
1803 switch (sel->info.stage) {
1804 case MESA_SHADER_VERTEX:
1805 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1806
1807 if (sctx->tes_shader.cso)
1808 key->as_ls = 1;
1809 else if (sctx->gs_shader.cso) {
1810 key->as_es = 1;
1811 key->as_ngg = stages_key.u.ngg;
1812 } else {
1813 key->as_ngg = stages_key.u.ngg;
1814 si_shader_selector_key_hw_vs(sctx, sel, key);
1815 }
1816 break;
1817 case MESA_SHADER_TESS_CTRL:
1818 if (sctx->chip_class >= GFX9) {
1819 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.tcs.ls_prolog);
1820 key->part.tcs.ls = sctx->vs_shader.cso;
1821
1822 /* When the LS VGPR fix is needed, monolithic shaders
1823 * can:
1824 * - avoid initializing EXEC in both the LS prolog
1825 * and the LS main part when !vs_needs_prolog
1826 * - remove the fixup for unused input VGPRs
1827 */
1828 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1829
1830 /* The LS output / HS input layout can be communicated
1831 * directly instead of via user SGPRs for merged LS-HS.
1832 * The LS VGPR fix prefers this too.
1833 */
1834 key->opt.prefer_mono = 1;
1835 }
1836
1837 key->part.tcs.epilog.prim_mode =
1838 sctx->tes_shader.cso->info.base.tess.primitive_mode;
1839 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1840 sel->info.tessfactors_are_def_in_all_invocs;
1841 key->part.tcs.epilog.tes_reads_tess_factors = sctx->tes_shader.cso->info.reads_tess_factors;
1842
1843 if (sel == sctx->fixed_func_tcs_shader.cso)
1844 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1845 break;
1846 case MESA_SHADER_TESS_EVAL:
1847 key->as_ngg = stages_key.u.ngg;
1848
1849 if (sctx->gs_shader.cso)
1850 key->as_es = 1;
1851 else {
1852 si_shader_selector_key_hw_vs(sctx, sel, key);
1853 }
1854 break;
1855 case MESA_SHADER_GEOMETRY:
1856 if (sctx->chip_class >= GFX9) {
1857 if (sctx->tes_shader.cso) {
1858 key->part.gs.es = sctx->tes_shader.cso;
1859 } else {
1860 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.gs.vs_prolog);
1861 key->part.gs.es = sctx->vs_shader.cso;
1862 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1863 }
1864
1865 key->as_ngg = stages_key.u.ngg;
1866
1867 /* Merged ES-GS can have unbalanced wave usage.
1868 *
1869 * ES threads are per-vertex, while GS threads are
1870 * per-primitive. So without any amplification, there
1871 * are fewer GS threads than ES threads, which can result
1872 * in empty (no-op) GS waves. With too much amplification,
1873 * there are more GS threads than ES threads, which
1874 * can result in empty (no-op) ES waves.
1875 *
1876 * Non-monolithic shaders are implemented by setting EXEC
1877 * at the beginning of shader parts, and don't jump to
1878 * the end if EXEC is 0.
1879 *
1880 * Monolithic shaders use conditional blocks, so they can
1881 * jump and skip empty waves of ES or GS. So set this to
1882 * always use optimized variants, which are monolithic.
1883 */
1884 key->opt.prefer_mono = 1;
1885 }
1886 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1887 break;
1888 case MESA_SHADER_FRAGMENT: {
1889 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1890 struct si_state_blend *blend = sctx->queued.named.blend;
1891
1892 if (sel->info.color0_writes_all_cbufs &&
1893 sel->info.colors_written == 0x1)
1894 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1895
1896 /* Select the shader color format based on whether
1897 * blending or alpha are needed.
1898 */
1899 key->part.ps.epilog.spi_shader_col_format =
1900 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1901 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1902 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1903 sctx->framebuffer.spi_shader_col_format_blend) |
1904 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1905 sctx->framebuffer.spi_shader_col_format_alpha) |
1906 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1907 sctx->framebuffer.spi_shader_col_format);
1908 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1909
1910 /* The output for dual source blending should have
1911 * the same format as the first output.
1912 */
1913 if (blend->dual_src_blend) {
1914 key->part.ps.epilog.spi_shader_col_format |=
1915 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1916 }
1917
1918 /* If alpha-to-coverage is enabled, we have to export alpha
1919 * even if there is no color buffer.
1920 */
1921 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) && blend->alpha_to_coverage)
1922 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1923
1924 /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
1925 * to the range supported by the type if a channel has less
1926 * than 16 bits and the export format is 16_ABGR.
1927 */
1928 if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) {
1929 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1930 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1931 }
1932
1933 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1934 if (!key->part.ps.epilog.last_cbuf) {
1935 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1936 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1937 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1938 }
1939
1940 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1941 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1942
1943 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1944 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1945
1946 key->part.ps.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
1947
1948 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1949 key->part.ps.epilog.poly_line_smoothing =
1950 ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) &&
1951 sctx->framebuffer.nr_samples <= 1;
1952 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1953
1954 if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask) {
1955 key->part.ps.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
1956 }
1957
1958 if (rs->force_persample_interp && rs->multisample_enable &&
1959 sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
1960 key->part.ps.prolog.force_persp_sample_interp =
1961 sel->info.uses_persp_center || sel->info.uses_persp_centroid;
1962
1963 key->part.ps.prolog.force_linear_sample_interp =
1964 sel->info.uses_linear_center || sel->info.uses_linear_centroid;
1965 } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
1966 key->part.ps.prolog.bc_optimize_for_persp =
1967 sel->info.uses_persp_center && sel->info.uses_persp_centroid;
1968 key->part.ps.prolog.bc_optimize_for_linear =
1969 sel->info.uses_linear_center && sel->info.uses_linear_centroid;
1970 } else {
1971 /* Make sure SPI doesn't compute more than 1 pair
1972 * of (i,j), which is the optimization here. */
1973 key->part.ps.prolog.force_persp_center_interp = sel->info.uses_persp_center +
1974 sel->info.uses_persp_centroid +
1975 sel->info.uses_persp_sample >
1976 1;
1977
1978 key->part.ps.prolog.force_linear_center_interp = sel->info.uses_linear_center +
1979 sel->info.uses_linear_centroid +
1980 sel->info.uses_linear_sample >
1981 1;
1982
1983 if (sel->info.uses_interp_at_sample)
1984 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1985 }
1986
1987 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1988
1989 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1990 if (sctx->ps_uses_fbfetch && !sctx->blitter->running) {
1991 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1992 struct pipe_resource *tex = cb0->texture;
1993
1994 /* 1D textures are allocated and used as 2D on GFX9. */
1995 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1996 key->mono.u.ps.fbfetch_is_1D =
1997 sctx->chip_class != GFX9 &&
1998 (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
1999 key->mono.u.ps.fbfetch_layered =
2000 tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2001 tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2002 tex->target == PIPE_TEXTURE_3D;
2003 }
2004 break;
2005 }
2006 default:
2007 assert(0);
2008 }
2009
2010 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
2011 memset(&key->opt, 0, sizeof(key->opt));
2012 }
2013
2014 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2015 {
2016 struct si_shader_selector *sel = shader->selector;
2017 struct si_screen *sscreen = sel->screen;
2018 struct ac_llvm_compiler *compiler;
2019 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
2020
2021 if (thread_index >= 0) {
2022 if (low_priority) {
2023 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
2024 compiler = &sscreen->compiler_lowp[thread_index];
2025 } else {
2026 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2027 compiler = &sscreen->compiler[thread_index];
2028 }
2029 if (!debug->async)
2030 debug = NULL;
2031 } else {
2032 assert(!low_priority);
2033 compiler = shader->compiler_ctx_state.compiler;
2034 }
2035
2036 if (!compiler->passes)
2037 si_init_compiler(sscreen, compiler);
2038
2039 if (unlikely(!si_create_shader_variant(sscreen, compiler, shader, debug))) {
2040 PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->info.stage);
2041 shader->compilation_failed = true;
2042 return;
2043 }
2044
2045 if (shader->compiler_ctx_state.is_debug_context) {
2046 FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2047 if (f) {
2048 si_shader_dump(sscreen, shader, NULL, f, false);
2049 fclose(f);
2050 }
2051 }
2052
2053 si_shader_init_pm4_state(sscreen, shader);
2054 }
2055
2056 static void si_build_shader_variant_low_priority(void *job, int thread_index)
2057 {
2058 struct si_shader *shader = (struct si_shader *)job;
2059
2060 assert(thread_index >= 0);
2061
2062 si_build_shader_variant(shader, thread_index, true);
2063 }
2064
2065 static const struct si_shader_key zeroed;
2066
2067 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2068 struct si_compiler_ctx_state *compiler_state,
2069 struct si_shader_key *key)
2070 {
2071 struct si_shader **mainp = si_get_main_shader_part(sel, key);
2072
2073 if (!*mainp) {
2074 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2075
2076 if (!main_part)
2077 return false;
2078
2079 /* We can leave the fence as permanently signaled because the
2080 * main part becomes visible globally only after it has been
2081 * compiled. */
2082 util_queue_fence_init(&main_part->ready);
2083
2084 main_part->selector = sel;
2085 main_part->key.as_es = key->as_es;
2086 main_part->key.as_ls = key->as_ls;
2087 main_part->key.as_ngg = key->as_ngg;
2088 main_part->is_monolithic = false;
2089
2090 if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2091 &compiler_state->debug)) {
2092 FREE(main_part);
2093 return false;
2094 }
2095 *mainp = main_part;
2096 }
2097 return true;
2098 }
2099
2100 /**
2101 * Select a shader variant according to the shader key.
2102 *
2103 * \param optimized_or_none If the key describes an optimized shader variant and
2104 * the compilation isn't finished, don't select any
2105 * shader and return an error.
2106 */
2107 int si_shader_select_with_key(struct si_screen *sscreen, struct si_shader_ctx_state *state,
2108 struct si_compiler_ctx_state *compiler_state,
2109 struct si_shader_key *key, int thread_index, bool optimized_or_none)
2110 {
2111 struct si_shader_selector *sel = state->cso;
2112 struct si_shader_selector *previous_stage_sel = NULL;
2113 struct si_shader *current = state->current;
2114 struct si_shader *iter, *shader = NULL;
2115
2116 again:
2117 /* Check if we don't need to change anything.
2118 * This path is also used for most shaders that don't need multiple
2119 * variants, it will cost just a computation of the key and this
2120 * test. */
2121 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0)) {
2122 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2123 if (current->is_optimized) {
2124 if (optimized_or_none)
2125 return -1;
2126
2127 memset(&key->opt, 0, sizeof(key->opt));
2128 goto current_not_ready;
2129 }
2130
2131 util_queue_fence_wait(&current->ready);
2132 }
2133
2134 return current->compilation_failed ? -1 : 0;
2135 }
2136 current_not_ready:
2137
2138 /* This must be done before the mutex is locked, because async GS
2139 * compilation calls this function too, and therefore must enter
2140 * the mutex first.
2141 *
2142 * Only wait if we are in a draw call. Don't wait if we are
2143 * in a compiler thread.
2144 */
2145 if (thread_index < 0)
2146 util_queue_fence_wait(&sel->ready);
2147
2148 simple_mtx_lock(&sel->mutex);
2149
2150 /* Find the shader variant. */
2151 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
2152 /* Don't check the "current" shader. We checked it above. */
2153 if (current != iter && memcmp(&iter->key, key, sizeof(*key)) == 0) {
2154 simple_mtx_unlock(&sel->mutex);
2155
2156 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2157 /* If it's an optimized shader and its compilation has
2158 * been started but isn't done, use the unoptimized
2159 * shader so as not to cause a stall due to compilation.
2160 */
2161 if (iter->is_optimized) {
2162 if (optimized_or_none)
2163 return -1;
2164 memset(&key->opt, 0, sizeof(key->opt));
2165 goto again;
2166 }
2167
2168 util_queue_fence_wait(&iter->ready);
2169 }
2170
2171 if (iter->compilation_failed) {
2172 return -1; /* skip the draw call */
2173 }
2174
2175 state->current = iter;
2176 return 0;
2177 }
2178 }
2179
2180 /* Build a new shader. */
2181 shader = CALLOC_STRUCT(si_shader);
2182 if (!shader) {
2183 simple_mtx_unlock(&sel->mutex);
2184 return -ENOMEM;
2185 }
2186
2187 util_queue_fence_init(&shader->ready);
2188
2189 shader->selector = sel;
2190 shader->key = *key;
2191 shader->compiler_ctx_state = *compiler_state;
2192
2193 /* If this is a merged shader, get the first shader's selector. */
2194 if (sscreen->info.chip_class >= GFX9) {
2195 if (sel->info.stage == MESA_SHADER_TESS_CTRL)
2196 previous_stage_sel = key->part.tcs.ls;
2197 else if (sel->info.stage == MESA_SHADER_GEOMETRY)
2198 previous_stage_sel = key->part.gs.es;
2199
2200 /* We need to wait for the previous shader. */
2201 if (previous_stage_sel && thread_index < 0)
2202 util_queue_fence_wait(&previous_stage_sel->ready);
2203 }
2204
2205 bool is_pure_monolithic =
2206 sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
2207
2208 /* Compile the main shader part if it doesn't exist. This can happen
2209 * if the initial guess was wrong.
2210 *
2211 * The prim discard CS doesn't need the main shader part.
2212 */
2213 if (!is_pure_monolithic && !key->opt.vs_as_prim_discard_cs) {
2214 bool ok = true;
2215
2216 /* Make sure the main shader part is present. This is needed
2217 * for shaders that can be compiled as VS, LS, or ES, and only
2218 * one of them is compiled at creation.
2219 *
2220 * It is also needed for GS, which can be compiled as non-NGG
2221 * and NGG.
2222 *
2223 * For merged shaders, check that the starting shader's main
2224 * part is present.
2225 */
2226 if (previous_stage_sel) {
2227 struct si_shader_key shader1_key = zeroed;
2228
2229 if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2230 shader1_key.as_ls = 1;
2231 } else if (sel->info.stage == MESA_SHADER_GEOMETRY) {
2232 shader1_key.as_es = 1;
2233 shader1_key.as_ngg = key->as_ngg; /* for Wave32 vs Wave64 */
2234 } else {
2235 assert(0);
2236 }
2237
2238 simple_mtx_lock(&previous_stage_sel->mutex);
2239 ok = si_check_missing_main_part(sscreen, previous_stage_sel, compiler_state, &shader1_key);
2240 simple_mtx_unlock(&previous_stage_sel->mutex);
2241 }
2242
2243 if (ok) {
2244 ok = si_check_missing_main_part(sscreen, sel, compiler_state, key);
2245 }
2246
2247 if (!ok) {
2248 FREE(shader);
2249 simple_mtx_unlock(&sel->mutex);
2250 return -ENOMEM; /* skip the draw call */
2251 }
2252 }
2253
2254 /* Keep the reference to the 1st shader of merged shaders, so that
2255 * Gallium can't destroy it before we destroy the 2nd shader.
2256 *
2257 * Set sctx = NULL, because it's unused if we're not releasing
2258 * the shader, and we don't have any sctx here.
2259 */
2260 si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
2261
2262 /* Monolithic-only shaders don't make a distinction between optimized
2263 * and unoptimized. */
2264 shader->is_monolithic =
2265 is_pure_monolithic || memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2266
2267 /* The prim discard CS is always optimized. */
2268 shader->is_optimized = (!is_pure_monolithic || key->opt.vs_as_prim_discard_cs) &&
2269 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2270
2271 /* If it's an optimized shader, compile it asynchronously. */
2272 if (shader->is_optimized && thread_index < 0) {
2273 /* Compile it asynchronously. */
2274 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->ready,
2275 si_build_shader_variant_low_priority, NULL, 0);
2276
2277 /* Add only after the ready fence was reset, to guard against a
2278 * race with si_bind_XX_shader. */
2279 if (!sel->last_variant) {
2280 sel->first_variant = shader;
2281 sel->last_variant = shader;
2282 } else {
2283 sel->last_variant->next_variant = shader;
2284 sel->last_variant = shader;
2285 }
2286
2287 /* Use the default (unoptimized) shader for now. */
2288 memset(&key->opt, 0, sizeof(key->opt));
2289 simple_mtx_unlock(&sel->mutex);
2290
2291 if (sscreen->options.sync_compile)
2292 util_queue_fence_wait(&shader->ready);
2293
2294 if (optimized_or_none)
2295 return -1;
2296 goto again;
2297 }
2298
2299 /* Reset the fence before adding to the variant list. */
2300 util_queue_fence_reset(&shader->ready);
2301
2302 if (!sel->last_variant) {
2303 sel->first_variant = shader;
2304 sel->last_variant = shader;
2305 } else {
2306 sel->last_variant->next_variant = shader;
2307 sel->last_variant = shader;
2308 }
2309
2310 simple_mtx_unlock(&sel->mutex);
2311
2312 assert(!shader->is_optimized);
2313 si_build_shader_variant(shader, thread_index, false);
2314
2315 util_queue_fence_signal(&shader->ready);
2316
2317 if (!shader->compilation_failed)
2318 state->current = shader;
2319
2320 return shader->compilation_failed ? -1 : 0;
2321 }
2322
2323 static int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state,
2324 union si_vgt_stages_key stages_key,
2325 struct si_compiler_ctx_state *compiler_state)
2326 {
2327 struct si_context *sctx = (struct si_context *)ctx;
2328 struct si_shader_key key;
2329
2330 si_shader_selector_key(ctx, state->cso, stages_key, &key);
2331 return si_shader_select_with_key(sctx->screen, state, compiler_state, &key, -1, false);
2332 }
2333
2334 static void si_parse_next_shader_property(const struct si_shader_info *info, bool streamout,
2335 struct si_shader_key *key)
2336 {
2337 gl_shader_stage next_shader = info->base.next_stage;
2338
2339 switch (info->stage) {
2340 case MESA_SHADER_VERTEX:
2341 switch (next_shader) {
2342 case MESA_SHADER_GEOMETRY:
2343 key->as_es = 1;
2344 break;
2345 case MESA_SHADER_TESS_CTRL:
2346 case MESA_SHADER_TESS_EVAL:
2347 key->as_ls = 1;
2348 break;
2349 default:
2350 /* If POSITION isn't written, it can only be a HW VS
2351 * if streamout is used. If streamout isn't used,
2352 * assume that it's a HW LS. (the next shader is TCS)
2353 * This heuristic is needed for separate shader objects.
2354 */
2355 if (!info->writes_position && !streamout)
2356 key->as_ls = 1;
2357 }
2358 break;
2359
2360 case MESA_SHADER_TESS_EVAL:
2361 if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
2362 key->as_es = 1;
2363 break;
2364
2365 default:;
2366 }
2367 }
2368
2369 /**
2370 * Compile the main shader part or the monolithic shader as part of
2371 * si_shader_selector initialization. Since it can be done asynchronously,
2372 * there is no way to report compile failures to applications.
2373 */
2374 static void si_init_shader_selector_async(void *job, int thread_index)
2375 {
2376 struct si_shader_selector *sel = (struct si_shader_selector *)job;
2377 struct si_screen *sscreen = sel->screen;
2378 struct ac_llvm_compiler *compiler;
2379 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2380
2381 assert(!debug->debug_message || debug->async);
2382 assert(thread_index >= 0);
2383 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2384 compiler = &sscreen->compiler[thread_index];
2385
2386 if (!compiler->passes)
2387 si_init_compiler(sscreen, compiler);
2388
2389 /* Serialize NIR to save memory. Monolithic shader variants
2390 * have to deserialize NIR before compilation.
2391 */
2392 if (sel->nir) {
2393 struct blob blob;
2394 size_t size;
2395
2396 blob_init(&blob);
2397 /* true = remove optional debugging data to increase
2398 * the likehood of getting more shader cache hits.
2399 * It also drops variable names, so we'll save more memory.
2400 */
2401 nir_serialize(&blob, sel->nir, true);
2402 blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
2403 sel->nir_size = size;
2404 }
2405
2406 /* Compile the main shader part for use with a prolog and/or epilog.
2407 * If this fails, the driver will try to compile a monolithic shader
2408 * on demand.
2409 */
2410 if (!sscreen->use_monolithic_shaders) {
2411 struct si_shader *shader = CALLOC_STRUCT(si_shader);
2412 unsigned char ir_sha1_cache_key[20];
2413
2414 if (!shader) {
2415 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2416 return;
2417 }
2418
2419 /* We can leave the fence signaled because use of the default
2420 * main part is guarded by the selector's ready fence. */
2421 util_queue_fence_init(&shader->ready);
2422
2423 shader->selector = sel;
2424 shader->is_monolithic = false;
2425 si_parse_next_shader_property(&sel->info, sel->so.num_outputs != 0, &shader->key);
2426
2427 if (sscreen->use_ngg && (!sel->so.num_outputs || sscreen->use_ngg_streamout) &&
2428 ((sel->info.stage == MESA_SHADER_VERTEX && !shader->key.as_ls) ||
2429 sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY))
2430 shader->key.as_ngg = 1;
2431
2432 if (sel->nir) {
2433 si_get_ir_cache_key(sel, shader->key.as_ngg, shader->key.as_es, ir_sha1_cache_key);
2434 }
2435
2436 /* Try to load the shader from the shader cache. */
2437 simple_mtx_lock(&sscreen->shader_cache_mutex);
2438
2439 if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
2440 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2441 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
2442 } else {
2443 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2444
2445 /* Compile the shader if it hasn't been loaded from the cache. */
2446 if (!si_compile_shader(sscreen, compiler, shader, debug)) {
2447 FREE(shader);
2448 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2449 return;
2450 }
2451
2452 simple_mtx_lock(&sscreen->shader_cache_mutex);
2453 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
2454 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2455 }
2456
2457 *si_get_main_shader_part(sel, &shader->key) = shader;
2458
2459 /* Unset "outputs_written" flags for outputs converted to
2460 * DEFAULT_VAL, so that later inter-shader optimizations don't
2461 * try to eliminate outputs that don't exist in the final
2462 * shader.
2463 *
2464 * This is only done if non-monolithic shaders are enabled.
2465 */
2466 if ((sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL) &&
2467 !shader->key.as_ls && !shader->key.as_es) {
2468 unsigned i;
2469
2470 for (i = 0; i < sel->info.num_outputs; i++) {
2471 unsigned offset = shader->info.vs_output_param_offset[i];
2472
2473 if (offset <= AC_EXP_PARAM_OFFSET_31)
2474 continue;
2475
2476 unsigned semantic = sel->info.output_semantic[i];
2477 unsigned id;
2478
2479 if (semantic < VARYING_SLOT_MAX &&
2480 semantic != VARYING_SLOT_POS &&
2481 semantic != VARYING_SLOT_PSIZ &&
2482 semantic != VARYING_SLOT_CLIP_VERTEX &&
2483 semantic != VARYING_SLOT_EDGE) {
2484 id = si_shader_io_get_unique_index(semantic, true);
2485 sel->outputs_written_before_ps &= ~(1ull << id);
2486 }
2487 }
2488 }
2489 }
2490
2491 /* The GS copy shader is always pre-compiled. */
2492 if (sel->info.stage == MESA_SHADER_GEOMETRY &&
2493 (!sscreen->use_ngg || !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */
2494 sel->tess_turns_off_ngg)) {
2495 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2496 if (!sel->gs_copy_shader) {
2497 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2498 return;
2499 }
2500
2501 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2502 }
2503
2504 /* Free NIR. We only keep serialized NIR after this point. */
2505 if (sel->nir) {
2506 ralloc_free(sel->nir);
2507 sel->nir = NULL;
2508 }
2509 }
2510
2511 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
2512 struct util_queue_fence *ready_fence,
2513 struct si_compiler_ctx_state *compiler_ctx_state, void *job,
2514 util_queue_execute_func execute)
2515 {
2516 util_queue_fence_init(ready_fence);
2517
2518 struct util_async_debug_callback async_debug;
2519 bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
2520 si_can_dump_shader(sctx->screen, stage);
2521
2522 if (debug) {
2523 u_async_debug_init(&async_debug);
2524 compiler_ctx_state->debug = async_debug.base;
2525 }
2526
2527 util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
2528
2529 if (debug) {
2530 util_queue_fence_wait(ready_fence);
2531 u_async_debug_drain(&async_debug, &sctx->debug);
2532 u_async_debug_cleanup(&async_debug);
2533 }
2534
2535 if (sctx->screen->options.sync_compile)
2536 util_queue_fence_wait(ready_fence);
2537 }
2538
2539 /* Return descriptor slot usage masks from the given shader info. */
2540 void si_get_active_slot_masks(const struct si_shader_info *info, uint64_t *const_and_shader_buffers,
2541 uint64_t *samplers_and_images)
2542 {
2543 unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
2544
2545 num_shaderbufs = info->base.num_ssbos;
2546 num_constbufs = info->base.num_ubos;
2547 /* two 8-byte images share one 16-byte slot */
2548 num_images = align(info->base.num_images, 2);
2549 num_msaa_images = align(util_last_bit(info->base.msaa_images), 2);
2550 num_samplers = util_last_bit(info->base.textures_used);
2551
2552 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2553 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2554 *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
2555
2556 /* The layout is:
2557 * - fmask[last] ... fmask[0] go to [15-last .. 15]
2558 * - image[last] ... image[0] go to [31-last .. 31]
2559 * - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
2560 *
2561 * FMASKs for images are placed separately, because MSAA images are rare,
2562 * and so we can benefit from a better cache hit rate if we keep image
2563 * descriptors together.
2564 */
2565 if (num_msaa_images)
2566 num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
2567
2568 start = si_get_image_slot(num_images - 1) / 2;
2569 *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
2570 }
2571
2572 static void *si_create_shader_selector(struct pipe_context *ctx,
2573 const struct pipe_shader_state *state)
2574 {
2575 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2576 struct si_context *sctx = (struct si_context *)ctx;
2577 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2578 int i;
2579
2580 if (!sel)
2581 return NULL;
2582
2583 sel->screen = sscreen;
2584 sel->compiler_ctx_state.debug = sctx->debug;
2585 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2586
2587 sel->so = state->stream_output;
2588
2589 if (state->type == PIPE_SHADER_IR_TGSI) {
2590 sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
2591 } else {
2592 assert(state->type == PIPE_SHADER_IR_NIR);
2593 sel->nir = state->ir.nir;
2594 }
2595
2596 si_nir_scan_shader(sel->nir, &sel->info);
2597
2598 const enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->info.stage);
2599 sel->const_and_shader_buf_descriptors_index =
2600 si_const_and_shader_buffer_descriptors_idx(type);
2601 sel->sampler_and_images_descriptors_index =
2602 si_sampler_and_image_descriptors_idx(type);
2603
2604 p_atomic_inc(&sscreen->num_shaders_created);
2605 si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers,
2606 &sel->active_samplers_and_images);
2607
2608 /* Record which streamout buffers are enabled. */
2609 for (i = 0; i < sel->so.num_outputs; i++) {
2610 sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer)
2611 << (sel->so.output[i].stream * 4);
2612 }
2613
2614 sel->num_vs_inputs =
2615 sel->info.stage == MESA_SHADER_VERTEX && !sel->info.base.vs.blit_sgprs_amd
2616 ? sel->info.num_inputs
2617 : 0;
2618 sel->num_vbos_in_user_sgprs = MIN2(sel->num_vs_inputs, sscreen->num_vbos_in_user_sgprs);
2619
2620 /* The prolog is a no-op if there are no inputs. */
2621 sel->vs_needs_prolog = sel->info.stage == MESA_SHADER_VERTEX && sel->info.num_inputs &&
2622 !sel->info.base.vs.blit_sgprs_amd;
2623
2624 sel->prim_discard_cs_allowed =
2625 sel->info.stage == MESA_SHADER_VERTEX && !sel->info.uses_bindless_images &&
2626 !sel->info.uses_bindless_samplers && !sel->info.base.writes_memory &&
2627 !sel->info.writes_viewport_index &&
2628 !sel->info.base.vs.window_space_position && !sel->so.num_outputs;
2629
2630 switch (sel->info.stage) {
2631 case MESA_SHADER_GEOMETRY:
2632 /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
2633 sel->rast_prim = sel->info.base.gs.output_primitive;
2634 if (util_rast_prim_is_triangles(sel->rast_prim))
2635 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2636
2637 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2638 sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->info.base.gs.vertices_out;
2639 sel->gs_input_verts_per_prim =
2640 u_vertices_per_prim(sel->info.base.gs.input_primitive);
2641
2642 /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation so
2643 * we can't split workgroups. Disable ngg if any of the following conditions is true:
2644 * - num_invocations * gs.vertices_out > 256
2645 * - LDS usage is too high
2646 */
2647 sel->tess_turns_off_ngg = sscreen->info.chip_class >= GFX10 &&
2648 (sel->info.base.gs.invocations * sel->info.base.gs.vertices_out > 256 ||
2649 sel->info.base.gs.invocations * sel->info.base.gs.vertices_out *
2650 (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
2651 break;
2652
2653 case MESA_SHADER_TESS_CTRL:
2654 /* Always reserve space for these. */
2655 sel->patch_outputs_written |=
2656 (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_INNER)) |
2657 (1ull << si_shader_io_get_unique_index_patch(VARYING_SLOT_TESS_LEVEL_OUTER));
2658 /* fall through */
2659 case MESA_SHADER_VERTEX:
2660 case MESA_SHADER_TESS_EVAL:
2661 for (i = 0; i < sel->info.num_outputs; i++) {
2662 unsigned semantic = sel->info.output_semantic[i];
2663
2664 if (semantic == VARYING_SLOT_TESS_LEVEL_INNER ||
2665 semantic == VARYING_SLOT_TESS_LEVEL_OUTER ||
2666 (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_TESS_MAX)) {
2667 sel->patch_outputs_written |= 1ull << si_shader_io_get_unique_index_patch(semantic);
2668 } else if (semantic < VARYING_SLOT_MAX &&
2669 semantic != VARYING_SLOT_EDGE) {
2670 sel->outputs_written |= 1ull << si_shader_io_get_unique_index(semantic, false);
2671 sel->outputs_written_before_ps |= 1ull
2672 << si_shader_io_get_unique_index(semantic, true);
2673 }
2674 }
2675 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2676 sel->lshs_vertex_stride = sel->esgs_itemsize;
2677
2678 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2679 * will start on a different bank. (except for the maximum 32*16).
2680 */
2681 if (sel->lshs_vertex_stride < 32 * 16)
2682 sel->lshs_vertex_stride += 4;
2683
2684 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2685 * conflicts, i.e. each vertex will start at a different bank.
2686 */
2687 if (sctx->chip_class >= GFX9)
2688 sel->esgs_itemsize += 4;
2689
2690 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2691
2692 /* Only for TES: */
2693 if (sel->info.stage == MESA_SHADER_TESS_EVAL) {
2694 if (sel->info.base.tess.point_mode)
2695 sel->rast_prim = PIPE_PRIM_POINTS;
2696 else if (sel->info.base.tess.primitive_mode == GL_LINES)
2697 sel->rast_prim = PIPE_PRIM_LINE_STRIP;
2698 else
2699 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2700 } else {
2701 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2702 }
2703 break;
2704
2705 case MESA_SHADER_FRAGMENT:
2706 for (i = 0; i < sel->info.num_inputs; i++) {
2707 unsigned semantic = sel->info.input_semantic[i];
2708
2709 if (semantic < VARYING_SLOT_MAX &&
2710 semantic != VARYING_SLOT_PNTC) {
2711 sel->inputs_read |= 1ull << si_shader_io_get_unique_index(semantic, true);
2712 }
2713 }
2714
2715 for (i = 0; i < 8; i++)
2716 if (sel->info.colors_written & (1 << i))
2717 sel->colors_written_4bit |= 0xf << (4 * i);
2718
2719 for (i = 0; i < sel->info.num_inputs; i++) {
2720 if (sel->info.input_semantic[i] == VARYING_SLOT_COL0)
2721 sel->color_attr_index[0] = i;
2722 else if (sel->info.input_semantic[i] == VARYING_SLOT_COL1)
2723 sel->color_attr_index[1] = i;
2724 }
2725 break;
2726 default:;
2727 }
2728
2729 sel->ngg_culling_allowed =
2730 sscreen->info.chip_class >= GFX10 &&
2731 sscreen->info.has_dedicated_vram &&
2732 sscreen->use_ngg_culling &&
2733 (sel->info.stage == MESA_SHADER_VERTEX ||
2734 (sel->info.stage == MESA_SHADER_TESS_EVAL &&
2735 (sscreen->always_use_ngg_culling_all ||
2736 sscreen->always_use_ngg_culling_tess))) &&
2737 sel->info.writes_position &&
2738 !sel->info.writes_viewport_index && /* cull only against viewport 0 */
2739 !sel->info.base.writes_memory && !sel->so.num_outputs &&
2740 (sel->info.stage != MESA_SHADER_VERTEX ||
2741 (!sel->info.base.vs.blit_sgprs_amd &&
2742 !sel->info.base.vs.window_space_position));
2743
2744 /* PA_CL_VS_OUT_CNTL */
2745 if (sctx->chip_class <= GFX9)
2746 sel->pa_cl_vs_out_cntl = si_get_vs_out_cntl(sel, false);
2747
2748 sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS :
2749 u_bit_consecutive(0, sel->info.base.clip_distance_array_size);
2750 sel->culldist_mask = u_bit_consecutive(0, sel->info.base.cull_distance_array_size) <<
2751 sel->info.base.clip_distance_array_size;
2752
2753 /* DB_SHADER_CONTROL */
2754 sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2755 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2756 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2757 S_02880C_KILL_ENABLE(sel->info.base.fs.uses_discard);
2758
2759 if (sel->info.stage == MESA_SHADER_FRAGMENT) {
2760 switch (sel->info.base.fs.depth_layout) {
2761 case FRAG_DEPTH_LAYOUT_GREATER:
2762 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2763 break;
2764 case FRAG_DEPTH_LAYOUT_LESS:
2765 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2766 break;
2767 default:;
2768 }
2769
2770 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2771 *
2772 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2773 * --|-----------|------------|------------|--------------------|-------------------|-------------
2774 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2775 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2776 * 2 | false | true | n/a | LateZ | 1 | 0
2777 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2778 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2779 *
2780 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2781 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2782 *
2783 * Don't use ReZ without profiling !!!
2784 *
2785 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2786 * shaders.
2787 */
2788 if (sel->info.base.fs.early_fragment_tests) {
2789 /* Cases 3, 4. */
2790 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2791 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2792 S_02880C_EXEC_ON_NOOP(sel->info.base.writes_memory);
2793 } else if (sel->info.base.writes_memory) {
2794 /* Case 2. */
2795 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1);
2796 } else {
2797 /* Case 1. */
2798 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2799 }
2800
2801 if (sel->info.base.fs.post_depth_coverage)
2802 sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2803 }
2804
2805 (void)simple_mtx_init(&sel->mutex, mtx_plain);
2806
2807 si_schedule_initial_compile(sctx, sel->info.stage, &sel->ready, &sel->compiler_ctx_state,
2808 sel, si_init_shader_selector_async);
2809 return sel;
2810 }
2811
2812 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
2813 {
2814 struct si_context *sctx = (struct si_context *)ctx;
2815 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2816 bool cache_hit;
2817 struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
2818 ctx, &sscreen->live_shader_cache, state, &cache_hit);
2819
2820 if (sel && cache_hit && sctx->debug.debug_message) {
2821 if (sel->main_shader_part)
2822 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug);
2823 if (sel->main_shader_part_ls)
2824 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug);
2825 if (sel->main_shader_part_es)
2826 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
2827 if (sel->main_shader_part_ngg)
2828 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug);
2829 if (sel->main_shader_part_ngg_es)
2830 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug);
2831 }
2832 return sel;
2833 }
2834
2835 static void si_update_streamout_state(struct si_context *sctx)
2836 {
2837 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2838
2839 if (!shader_with_so)
2840 return;
2841
2842 sctx->streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask;
2843 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2844 }
2845
2846 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
2847 struct si_shader *old_hw_vs_variant,
2848 struct si_shader_selector *next_hw_vs,
2849 struct si_shader *next_hw_vs_variant)
2850 {
2851 if (next_hw_vs &&
2852 (!old_hw_vs ||
2853 (old_hw_vs->info.stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
2854 (next_hw_vs->info.stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
2855 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2856 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2857 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant ||
2858 !next_hw_vs_variant ||
2859 old_hw_vs_variant->key.opt.clip_disable != next_hw_vs_variant->key.opt.clip_disable))
2860 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2861 }
2862
2863 static void si_update_common_shader_state(struct si_context *sctx)
2864 {
2865 sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2866 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2867 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2868 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2869 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2870 sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2871 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2872 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2873 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2874 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2875 sctx->do_update_shaders = true;
2876 }
2877
2878 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2879 {
2880 struct si_context *sctx = (struct si_context *)ctx;
2881 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2882 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2883 struct si_shader_selector *sel = state;
2884
2885 if (sctx->vs_shader.cso == sel)
2886 return;
2887
2888 sctx->vs_shader.cso = sel;
2889 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2890 sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
2891
2892 if (si_update_ngg(sctx))
2893 si_shader_change_notify(sctx);
2894
2895 si_update_common_shader_state(sctx);
2896 si_update_vs_viewport_state(sctx);
2897 si_set_active_descriptors_for_shader(sctx, sel);
2898 si_update_streamout_state(sctx);
2899 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2900 si_get_vs_state(sctx));
2901 }
2902
2903 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2904 {
2905 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2906 (sctx->tes_shader.cso && sctx->tes_shader.cso->info.uses_primid) ||
2907 (sctx->tcs_shader.cso && sctx->tcs_shader.cso->info.uses_primid) ||
2908 (sctx->gs_shader.cso && sctx->gs_shader.cso->info.uses_primid) ||
2909 (sctx->ps_shader.cso && !sctx->gs_shader.cso && sctx->ps_shader.cso->info.uses_primid);
2910 }
2911
2912 bool si_update_ngg(struct si_context *sctx)
2913 {
2914 if (!sctx->screen->use_ngg) {
2915 assert(!sctx->ngg);
2916 return false;
2917 }
2918
2919 bool new_ngg = true;
2920
2921 if (sctx->gs_shader.cso && sctx->tes_shader.cso && sctx->gs_shader.cso->tess_turns_off_ngg) {
2922 new_ngg = false;
2923 } else if (!sctx->screen->use_ngg_streamout) {
2924 struct si_shader_selector *last = si_get_vs(sctx)->cso;
2925
2926 if ((last && last->so.num_outputs) || sctx->streamout.prims_gen_query_enabled)
2927 new_ngg = false;
2928 }
2929
2930 if (new_ngg != sctx->ngg) {
2931 /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
2932 * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
2933 * pointers are set.
2934 */
2935 if (sctx->chip_class == GFX10 && !new_ngg)
2936 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
2937
2938 sctx->ngg = new_ngg;
2939 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2940 return true;
2941 }
2942 return false;
2943 }
2944
2945 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2946 {
2947 struct si_context *sctx = (struct si_context *)ctx;
2948 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2949 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2950 struct si_shader_selector *sel = state;
2951 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2952 bool ngg_changed;
2953
2954 if (sctx->gs_shader.cso == sel)
2955 return;
2956
2957 sctx->gs_shader.cso = sel;
2958 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2959 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2960
2961 si_update_common_shader_state(sctx);
2962 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2963
2964 ngg_changed = si_update_ngg(sctx);
2965 if (ngg_changed || enable_changed)
2966 si_shader_change_notify(sctx);
2967 if (enable_changed) {
2968 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2969 si_update_tess_uses_prim_id(sctx);
2970 }
2971 si_update_vs_viewport_state(sctx);
2972 si_set_active_descriptors_for_shader(sctx, sel);
2973 si_update_streamout_state(sctx);
2974 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2975 si_get_vs_state(sctx));
2976 }
2977
2978 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2979 {
2980 struct si_context *sctx = (struct si_context *)ctx;
2981 struct si_shader_selector *sel = state;
2982 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2983
2984 if (sctx->tcs_shader.cso == sel)
2985 return;
2986
2987 sctx->tcs_shader.cso = sel;
2988 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2989 si_update_tess_uses_prim_id(sctx);
2990
2991 si_update_common_shader_state(sctx);
2992
2993 if (enable_changed)
2994 sctx->last_tcs = NULL; /* invalidate derived tess state */
2995
2996 si_set_active_descriptors_for_shader(sctx, sel);
2997 }
2998
2999 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3000 {
3001 struct si_context *sctx = (struct si_context *)ctx;
3002 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3003 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3004 struct si_shader_selector *sel = state;
3005 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
3006
3007 if (sctx->tes_shader.cso == sel)
3008 return;
3009
3010 sctx->tes_shader.cso = sel;
3011 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
3012 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3013 si_update_tess_uses_prim_id(sctx);
3014
3015 si_update_common_shader_state(sctx);
3016 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3017
3018 bool ngg_changed = si_update_ngg(sctx);
3019 if (ngg_changed || enable_changed)
3020 si_shader_change_notify(sctx);
3021 if (enable_changed)
3022 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3023 si_update_vs_viewport_state(sctx);
3024 si_set_active_descriptors_for_shader(sctx, sel);
3025 si_update_streamout_state(sctx);
3026 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3027 si_get_vs_state(sctx));
3028 }
3029
3030 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3031 {
3032 struct si_context *sctx = (struct si_context *)ctx;
3033 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
3034 struct si_shader_selector *sel = state;
3035
3036 /* skip if supplied shader is one already in use */
3037 if (old_sel == sel)
3038 return;
3039
3040 sctx->ps_shader.cso = sel;
3041 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
3042
3043 si_update_common_shader_state(sctx);
3044 if (sel) {
3045 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3046 si_update_tess_uses_prim_id(sctx);
3047
3048 if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3049 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3050
3051 if (sctx->screen->has_out_of_order_rast &&
3052 (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
3053 old_sel->info.base.fs.early_fragment_tests !=
3054 sel->info.base.fs.early_fragment_tests))
3055 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3056 }
3057 si_set_active_descriptors_for_shader(sctx, sel);
3058 si_update_ps_colorbuf0_slot(sctx);
3059 }
3060
3061 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3062 {
3063 if (shader->is_optimized) {
3064 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->ready);
3065 }
3066
3067 util_queue_fence_destroy(&shader->ready);
3068
3069 if (shader->pm4) {
3070 /* If destroyed shaders were not unbound, the next compiled
3071 * shader variant could get the same pointer address and so
3072 * binding it to the same shader stage would be considered
3073 * a no-op, causing random behavior.
3074 */
3075 switch (shader->selector->info.stage) {
3076 case MESA_SHADER_VERTEX:
3077 if (shader->key.as_ls) {
3078 assert(sctx->chip_class <= GFX8);
3079 si_pm4_delete_state(sctx, ls, shader->pm4);
3080 } else if (shader->key.as_es) {
3081 assert(sctx->chip_class <= GFX8);
3082 si_pm4_delete_state(sctx, es, shader->pm4);
3083 } else if (shader->key.as_ngg) {
3084 si_pm4_delete_state(sctx, gs, shader->pm4);
3085 } else {
3086 si_pm4_delete_state(sctx, vs, shader->pm4);
3087 }
3088 break;
3089 case MESA_SHADER_TESS_CTRL:
3090 si_pm4_delete_state(sctx, hs, shader->pm4);
3091 break;
3092 case MESA_SHADER_TESS_EVAL:
3093 if (shader->key.as_es) {
3094 assert(sctx->chip_class <= GFX8);
3095 si_pm4_delete_state(sctx, es, shader->pm4);
3096 } else if (shader->key.as_ngg) {
3097 si_pm4_delete_state(sctx, gs, shader->pm4);
3098 } else {
3099 si_pm4_delete_state(sctx, vs, shader->pm4);
3100 }
3101 break;
3102 case MESA_SHADER_GEOMETRY:
3103 if (shader->is_gs_copy_shader)
3104 si_pm4_delete_state(sctx, vs, shader->pm4);
3105 else
3106 si_pm4_delete_state(sctx, gs, shader->pm4);
3107 break;
3108 case MESA_SHADER_FRAGMENT:
3109 si_pm4_delete_state(sctx, ps, shader->pm4);
3110 break;
3111 default:;
3112 }
3113 }
3114
3115 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3116 si_shader_destroy(shader);
3117 free(shader);
3118 }
3119
3120 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
3121 {
3122 struct si_context *sctx = (struct si_context *)ctx;
3123 struct si_shader_selector *sel = (struct si_shader_selector *)cso;
3124 struct si_shader *p = sel->first_variant, *c;
3125 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
3126 [MESA_SHADER_VERTEX] = &sctx->vs_shader,
3127 [MESA_SHADER_TESS_CTRL] = &sctx->tcs_shader,
3128 [MESA_SHADER_TESS_EVAL] = &sctx->tes_shader,
3129 [MESA_SHADER_GEOMETRY] = &sctx->gs_shader,
3130 [MESA_SHADER_FRAGMENT] = &sctx->ps_shader,
3131 };
3132
3133 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3134
3135 if (current_shader[sel->info.stage]->cso == sel) {
3136 current_shader[sel->info.stage]->cso = NULL;
3137 current_shader[sel->info.stage]->current = NULL;
3138 }
3139
3140 while (p) {
3141 c = p->next_variant;
3142 si_delete_shader(sctx, p);
3143 p = c;
3144 }
3145
3146 if (sel->main_shader_part)
3147 si_delete_shader(sctx, sel->main_shader_part);
3148 if (sel->main_shader_part_ls)
3149 si_delete_shader(sctx, sel->main_shader_part_ls);
3150 if (sel->main_shader_part_es)
3151 si_delete_shader(sctx, sel->main_shader_part_es);
3152 if (sel->main_shader_part_ngg)
3153 si_delete_shader(sctx, sel->main_shader_part_ngg);
3154 if (sel->gs_copy_shader)
3155 si_delete_shader(sctx, sel->gs_copy_shader);
3156
3157 util_queue_fence_destroy(&sel->ready);
3158 simple_mtx_destroy(&sel->mutex);
3159 ralloc_free(sel->nir);
3160 free(sel->nir_binary);
3161 free(sel);
3162 }
3163
3164 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3165 {
3166 struct si_context *sctx = (struct si_context *)ctx;
3167 struct si_shader_selector *sel = (struct si_shader_selector *)state;
3168
3169 si_shader_selector_reference(sctx, &sel, NULL);
3170 }
3171
3172 static unsigned si_get_ps_input_cntl(struct si_context *sctx, struct si_shader *vs,
3173 unsigned semantic, enum glsl_interp_mode interpolate)
3174 {
3175 struct si_shader_info *vsinfo = &vs->selector->info;
3176 unsigned offset, ps_input_cntl = 0;
3177
3178 if (interpolate == INTERP_MODE_FLAT ||
3179 (interpolate == INTERP_MODE_COLOR && sctx->flatshade) ||
3180 semantic == VARYING_SLOT_PRIMITIVE_ID)
3181 ps_input_cntl |= S_028644_FLAT_SHADE(1);
3182
3183 if (semantic == VARYING_SLOT_PNTC ||
3184 (semantic >= VARYING_SLOT_TEX0 && semantic <= VARYING_SLOT_TEX7 &&
3185 sctx->sprite_coord_enable & (1 << (semantic - VARYING_SLOT_TEX0)))) {
3186 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
3187 }
3188
3189 int vs_slot = vsinfo->output_semantic_to_slot[semantic];
3190 if (vs_slot >= 0) {
3191 offset = vs->info.vs_output_param_offset[vs_slot];
3192
3193 if (offset <= AC_EXP_PARAM_OFFSET_31) {
3194 /* The input is loaded from parameter memory. */
3195 ps_input_cntl |= S_028644_OFFSET(offset);
3196 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3197 if (offset == AC_EXP_PARAM_UNDEFINED) {
3198 /* This can happen with depth-only rendering. */
3199 offset = 0;
3200 } else {
3201 /* The input is a DEFAULT_VAL constant. */
3202 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
3203 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
3204 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
3205 }
3206
3207 ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
3208 }
3209 } else {
3210 /* VS output not found. */
3211 if (semantic == VARYING_SLOT_PRIMITIVE_ID) {
3212 /* PrimID is written after the last output when HW VS is used. */
3213 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
3214 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3215 /* No corresponding output found, load defaults into input.
3216 * Don't set any other bits.
3217 * (FLAT_SHADE=1 completely changes behavior) */
3218 ps_input_cntl = S_028644_OFFSET(0x20);
3219 /* D3D 9 behaviour. GL is undefined */
3220 if (semantic == VARYING_SLOT_COL0)
3221 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
3222 }
3223 }
3224
3225 return ps_input_cntl;
3226 }
3227
3228 static void si_emit_spi_map(struct si_context *sctx)
3229 {
3230 struct si_shader *ps = sctx->ps_shader.current;
3231 struct si_shader *vs = si_get_vs_state(sctx);
3232 struct si_shader_info *psinfo = ps ? &ps->selector->info : NULL;
3233 unsigned i, num_interp, num_written = 0;
3234 unsigned spi_ps_input_cntl[32];
3235
3236 if (!ps || !ps->selector->info.num_inputs)
3237 return;
3238
3239 num_interp = si_get_ps_num_interp(ps);
3240 assert(num_interp > 0);
3241
3242 for (i = 0; i < psinfo->num_inputs; i++) {
3243 unsigned semantic = psinfo->input_semantic[i];
3244 unsigned interpolate = psinfo->input_interpolate[i];
3245
3246 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, semantic, interpolate);
3247 }
3248
3249 if (ps->key.part.ps.prolog.color_two_side) {
3250 for (i = 0; i < 2; i++) {
3251 if (!(psinfo->colors_read & (0xf << (i * 4))))
3252 continue;
3253
3254 unsigned semantic = VARYING_SLOT_BFC0 + i;
3255 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, semantic,
3256 psinfo->color_interpolate[i]);
3257 }
3258 }
3259 assert(num_interp == num_written);
3260
3261 /* R_028644_SPI_PS_INPUT_CNTL_0 */
3262 /* Dota 2: Only ~16% of SPI map updates set different values. */
3263 /* Talos: Only ~9% of SPI map updates set different values. */
3264 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
3265 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
3266 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
3267
3268 if (initial_cdw != sctx->gfx_cs->current.cdw)
3269 sctx->context_roll = true;
3270 }
3271
3272 /**
3273 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3274 */
3275 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx)
3276 {
3277 /* We shouldn't get here if registers are shadowed. */
3278 assert(!sctx->shadowed_regs);
3279
3280 if (sctx->cs_preamble_has_vgt_flush)
3281 return;
3282
3283 /* Done by Vulkan before VGT_FLUSH. */
3284 si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3285 si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3286
3287 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3288 si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3289 si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3290 sctx->cs_preamble_has_vgt_flush = true;
3291 }
3292
3293 /**
3294 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3295 */
3296 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
3297 {
3298 /* This is required before VGT_FLUSH. */
3299 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3300 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3301
3302 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3303 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3304 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3305 }
3306
3307 /* Initialize state related to ESGS / GSVS ring buffers */
3308 static bool si_update_gs_ring_buffers(struct si_context *sctx)
3309 {
3310 struct si_shader_selector *es =
3311 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
3312 struct si_shader_selector *gs = sctx->gs_shader.cso;
3313 struct si_pm4_state *pm4;
3314
3315 /* Chip constants. */
3316 unsigned num_se = sctx->screen->info.max_se;
3317 unsigned wave_size = 64;
3318 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3319 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3320 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3321 */
3322 unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se;
3323 unsigned alignment = 256 * num_se;
3324 /* The maximum size is 63.999 MB per SE. */
3325 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3326
3327 /* Calculate the minimum size. */
3328 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment);
3329
3330 /* These are recommended sizes, not minimum sizes. */
3331 unsigned esgs_ring_size =
3332 max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim;
3333 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size;
3334
3335 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3336 esgs_ring_size = align(esgs_ring_size, alignment);
3337 gsvs_ring_size = align(gsvs_ring_size, alignment);
3338
3339 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3340 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3341
3342 /* Some rings don't have to be allocated if shaders don't use them.
3343 * (e.g. no varyings between ES and GS or GS and VS)
3344 *
3345 * GFX9 doesn't have the ESGS ring.
3346 */
3347 bool update_esgs = sctx->chip_class <= GFX8 && esgs_ring_size &&
3348 (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
3349 bool update_gsvs =
3350 gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
3351
3352 if (!update_esgs && !update_gsvs)
3353 return true;
3354
3355 if (update_esgs) {
3356 pipe_resource_reference(&sctx->esgs_ring, NULL);
3357 sctx->esgs_ring =
3358 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3359 esgs_ring_size, sctx->screen->info.pte_fragment_size);
3360 if (!sctx->esgs_ring)
3361 return false;
3362 }
3363
3364 if (update_gsvs) {
3365 pipe_resource_reference(&sctx->gsvs_ring, NULL);
3366 sctx->gsvs_ring =
3367 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3368 gsvs_ring_size, sctx->screen->info.pte_fragment_size);
3369 if (!sctx->gsvs_ring)
3370 return false;
3371 }
3372
3373 /* Set ring bindings. */
3374 if (sctx->esgs_ring) {
3375 assert(sctx->chip_class <= GFX8);
3376 si_set_ring_buffer(sctx, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true,
3377 true, 4, 64, 0);
3378 si_set_ring_buffer(sctx, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
3379 false, 0, 0, 0);
3380 }
3381 if (sctx->gsvs_ring) {
3382 si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
3383 false, 0, 0, 0);
3384 }
3385
3386 if (sctx->shadowed_regs) {
3387 /* These registers will be shadowed, so set them only once. */
3388 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3389
3390 assert(sctx->chip_class >= GFX7);
3391
3392 si_emit_vgt_flush(cs);
3393
3394 /* Set the GS registers. */
3395 if (sctx->esgs_ring) {
3396 assert(sctx->chip_class <= GFX8);
3397 radeon_set_uconfig_reg(cs, R_030900_VGT_ESGS_RING_SIZE,
3398 sctx->esgs_ring->width0 / 256);
3399 }
3400 if (sctx->gsvs_ring) {
3401 radeon_set_uconfig_reg(cs, R_030904_VGT_GSVS_RING_SIZE,
3402 sctx->gsvs_ring->width0 / 256);
3403 }
3404 return true;
3405 }
3406
3407 /* The codepath without register shadowing. */
3408 /* Create the "cs_preamble_gs_rings" state. */
3409 pm4 = CALLOC_STRUCT(si_pm4_state);
3410 if (!pm4)
3411 return false;
3412
3413 if (sctx->chip_class >= GFX7) {
3414 if (sctx->esgs_ring) {
3415 assert(sctx->chip_class <= GFX8);
3416 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3417 }
3418 if (sctx->gsvs_ring)
3419 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3420 } else {
3421 if (sctx->esgs_ring)
3422 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3423 if (sctx->gsvs_ring)
3424 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3425 }
3426
3427 /* Set the state. */
3428 if (sctx->cs_preamble_gs_rings)
3429 si_pm4_free_state(sctx, sctx->cs_preamble_gs_rings, ~0);
3430 sctx->cs_preamble_gs_rings = pm4;
3431
3432 si_cs_preamble_add_vgt_flush(sctx);
3433
3434 /* Flush the context to re-emit both cs_preamble states. */
3435 sctx->initial_gfx_cs_size = 0; /* force flush */
3436 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3437
3438 return true;
3439 }
3440
3441 static void si_shader_lock(struct si_shader *shader)
3442 {
3443 simple_mtx_lock(&shader->selector->mutex);
3444 if (shader->previous_stage_sel) {
3445 assert(shader->previous_stage_sel != shader->selector);
3446 simple_mtx_lock(&shader->previous_stage_sel->mutex);
3447 }
3448 }
3449
3450 static void si_shader_unlock(struct si_shader *shader)
3451 {
3452 if (shader->previous_stage_sel)
3453 simple_mtx_unlock(&shader->previous_stage_sel->mutex);
3454 simple_mtx_unlock(&shader->selector->mutex);
3455 }
3456
3457 /**
3458 * @returns 1 if \p sel has been updated to use a new scratch buffer
3459 * 0 if not
3460 * < 0 if there was a failure
3461 */
3462 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
3463 {
3464 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3465
3466 if (!shader)
3467 return 0;
3468
3469 /* This shader doesn't need a scratch buffer */
3470 if (shader->config.scratch_bytes_per_wave == 0)
3471 return 0;
3472
3473 /* Prevent race conditions when updating:
3474 * - si_shader::scratch_bo
3475 * - si_shader::binary::code
3476 * - si_shader::previous_stage::binary::code.
3477 */
3478 si_shader_lock(shader);
3479
3480 /* This shader is already configured to use the current
3481 * scratch buffer. */
3482 if (shader->scratch_bo == sctx->scratch_buffer) {
3483 si_shader_unlock(shader);
3484 return 0;
3485 }
3486
3487 assert(sctx->scratch_buffer);
3488
3489 /* Replace the shader bo with a new bo that has the relocs applied. */
3490 if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
3491 si_shader_unlock(shader);
3492 return -1;
3493 }
3494
3495 /* Update the shader state to use the new shader bo. */
3496 si_shader_init_pm4_state(sctx->screen, shader);
3497
3498 si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3499
3500 si_shader_unlock(shader);
3501 return 1;
3502 }
3503
3504 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
3505 {
3506 return shader ? shader->config.scratch_bytes_per_wave : 0;
3507 }
3508
3509 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3510 {
3511 if (!sctx->tes_shader.cso)
3512 return NULL; /* tessellation disabled */
3513
3514 return sctx->tcs_shader.cso ? sctx->tcs_shader.current : sctx->fixed_func_tcs_shader.current;
3515 }
3516
3517 static bool si_update_scratch_relocs(struct si_context *sctx)
3518 {
3519 struct si_shader *tcs = si_get_tcs_current(sctx);
3520 int r;
3521
3522 /* Update the shaders, so that they are using the latest scratch.
3523 * The scratch buffer may have been changed since these shaders were
3524 * last used, so we still need to try to update them, even if they
3525 * require scratch buffers smaller than the current size.
3526 */
3527 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
3528 if (r < 0)
3529 return false;
3530 if (r == 1)
3531 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3532
3533 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
3534 if (r < 0)
3535 return false;
3536 if (r == 1)
3537 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3538
3539 r = si_update_scratch_buffer(sctx, tcs);
3540 if (r < 0)
3541 return false;
3542 if (r == 1)
3543 si_pm4_bind_state(sctx, hs, tcs->pm4);
3544
3545 /* VS can be bound as LS, ES, or VS. */
3546 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
3547 if (r < 0)
3548 return false;
3549 if (r == 1) {
3550 if (sctx->vs_shader.current->key.as_ls)
3551 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3552 else if (sctx->vs_shader.current->key.as_es)
3553 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3554 else if (sctx->vs_shader.current->key.as_ngg)
3555 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3556 else
3557 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3558 }
3559
3560 /* TES can be bound as ES or VS. */
3561 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
3562 if (r < 0)
3563 return false;
3564 if (r == 1) {
3565 if (sctx->tes_shader.current->key.as_es)
3566 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3567 else if (sctx->tes_shader.current->key.as_ngg)
3568 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3569 else
3570 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3571 }
3572
3573 return true;
3574 }
3575
3576 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3577 {
3578 /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer.
3579 * There are 2 cases to handle:
3580 *
3581 * - If the current needed size is less than the maximum seen size,
3582 * use the maximum seen size, so that WAVESIZE remains the same.
3583 *
3584 * - If the current needed size is greater than the maximum seen size,
3585 * the scratch buffer is reallocated, so we can increase WAVESIZE.
3586 *
3587 * Shaders that set SCRATCH_EN=0 don't allocate scratch space.
3588 * Otherwise, the number of waves that can use scratch is
3589 * SPI_TMPRING_SIZE.WAVES.
3590 */
3591 unsigned bytes = 0;
3592
3593 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
3594 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
3595 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
3596
3597 if (sctx->tes_shader.cso) {
3598 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
3599 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(si_get_tcs_current(sctx)));
3600 }
3601
3602 sctx->max_seen_scratch_bytes_per_wave = MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes);
3603
3604 unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves;
3605 unsigned spi_tmpring_size;
3606
3607 if (scratch_needed_size > 0) {
3608 if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
3609 /* Create a bigger scratch buffer */
3610 si_resource_reference(&sctx->scratch_buffer, NULL);
3611
3612 sctx->scratch_buffer = si_aligned_buffer_create(
3613 &sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, scratch_needed_size,
3614 sctx->screen->info.pte_fragment_size);
3615 if (!sctx->scratch_buffer)
3616 return false;
3617
3618 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3619 si_context_add_resource_size(sctx, &sctx->scratch_buffer->b.b);
3620 }
3621
3622 if (!si_update_scratch_relocs(sctx))
3623 return false;
3624 }
3625
3626 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3627 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3628 "scratch size should already be aligned correctly.");
3629
3630 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3631 S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10);
3632 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3633 sctx->spi_tmpring_size = spi_tmpring_size;
3634 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3635 }
3636 return true;
3637 }
3638
3639 static void si_init_tess_factor_ring(struct si_context *sctx)
3640 {
3641 assert(!sctx->tess_rings);
3642 assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0);
3643
3644 /* The address must be aligned to 2^19, because the shader only
3645 * receives the high 13 bits.
3646 */
3647 sctx->tess_rings = pipe_aligned_buffer_create(
3648 sctx->b.screen, SI_RESOURCE_FLAG_32BIT, PIPE_USAGE_DEFAULT,
3649 sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19);
3650 if (!sctx->tess_rings)
3651 return;
3652
3653 uint64_t factor_va =
3654 si_resource(sctx->tess_rings)->gpu_address + sctx->screen->tess_offchip_ring_size;
3655
3656 if (sctx->shadowed_regs) {
3657 /* These registers will be shadowed, so set them only once. */
3658 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3659
3660 assert(sctx->chip_class >= GFX7);
3661
3662 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(sctx->tess_rings),
3663 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3664 si_emit_vgt_flush(cs);
3665
3666 /* Set tessellation registers. */
3667 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
3668 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3669 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3670 if (sctx->chip_class >= GFX10) {
3671 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3672 S_030984_BASE_HI(factor_va >> 40));
3673 } else if (sctx->chip_class == GFX9) {
3674 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
3675 S_030944_BASE_HI(factor_va >> 40));
3676 }
3677 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM,
3678 sctx->screen->vgt_hs_offchip_param);
3679 return;
3680 }
3681
3682 /* The codepath without register shadowing. */
3683 si_cs_preamble_add_vgt_flush(sctx);
3684
3685 /* Append these registers to the init config state. */
3686 if (sctx->chip_class >= GFX7) {
3687 si_pm4_set_reg(sctx->cs_preamble_state, R_030938_VGT_TF_RING_SIZE,
3688 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3689 si_pm4_set_reg(sctx->cs_preamble_state, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3690 if (sctx->chip_class >= GFX10)
3691 si_pm4_set_reg(sctx->cs_preamble_state, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3692 S_030984_BASE_HI(factor_va >> 40));
3693 else if (sctx->chip_class == GFX9)
3694 si_pm4_set_reg(sctx->cs_preamble_state, R_030944_VGT_TF_MEMORY_BASE_HI,
3695 S_030944_BASE_HI(factor_va >> 40));
3696 si_pm4_set_reg(sctx->cs_preamble_state, R_03093C_VGT_HS_OFFCHIP_PARAM,
3697 sctx->screen->vgt_hs_offchip_param);
3698 } else {
3699 si_pm4_set_reg(sctx->cs_preamble_state, R_008988_VGT_TF_RING_SIZE,
3700 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3701 si_pm4_set_reg(sctx->cs_preamble_state, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
3702 si_pm4_set_reg(sctx->cs_preamble_state, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3703 sctx->screen->vgt_hs_offchip_param);
3704 }
3705
3706 /* Flush the context to re-emit the cs_preamble state.
3707 * This is done only once in a lifetime of a context.
3708 */
3709 sctx->initial_gfx_cs_size = 0; /* force flush */
3710 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3711 }
3712
3713 static struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen,
3714 union si_vgt_stages_key key)
3715 {
3716 struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3717 uint32_t stages = 0;
3718
3719 if (key.u.tess) {
3720 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3721
3722 if (key.u.gs)
3723 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
3724 else if (key.u.ngg)
3725 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
3726 else
3727 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3728 } else if (key.u.gs) {
3729 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
3730 } else if (key.u.ngg) {
3731 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
3732 }
3733
3734 if (key.u.ngg) {
3735 stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_GS_FAST_LAUNCH(key.u.ngg_gs_fast_launch) |
3736 S_028B54_NGG_WAVE_ID_EN(key.u.streamout) |
3737 S_028B54_PRIMGEN_PASSTHRU_EN(key.u.ngg_passthrough);
3738 } else if (key.u.gs)
3739 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3740
3741 if (screen->info.chip_class >= GFX9)
3742 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3743
3744 if (screen->info.chip_class >= GFX10 &&
3745 /* GS fast launch hangs with Wave64, so always use Wave32. */
3746 (screen->ge_wave_size == 32 || (key.u.ngg && key.u.ngg_gs_fast_launch))) {
3747 stages |= S_028B54_HS_W32_EN(1) |
3748 S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */
3749 S_028B54_VS_W32_EN(1);
3750 }
3751
3752 si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3753 return pm4;
3754 }
3755
3756 static void si_update_vgt_shader_config(struct si_context *sctx, union si_vgt_stages_key key)
3757 {
3758 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index];
3759
3760 if (unlikely(!*pm4))
3761 *pm4 = si_build_vgt_shader_config(sctx->screen, key);
3762 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3763 }
3764
3765 bool si_update_shaders(struct si_context *sctx)
3766 {
3767 struct pipe_context *ctx = (struct pipe_context *)sctx;
3768 struct si_compiler_ctx_state compiler_state;
3769 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3770 struct si_shader *old_vs = si_get_vs_state(sctx);
3771 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3772 struct si_shader *old_ps = sctx->ps_shader.current;
3773 union si_vgt_stages_key key;
3774 unsigned old_spi_shader_col_format =
3775 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3776 int r;
3777
3778 if (!sctx->compiler.passes)
3779 si_init_compiler(sctx->screen, &sctx->compiler);
3780
3781 compiler_state.compiler = &sctx->compiler;
3782 compiler_state.debug = sctx->debug;
3783 compiler_state.is_debug_context = sctx->is_debug;
3784
3785 key.index = 0;
3786
3787 if (sctx->tes_shader.cso)
3788 key.u.tess = 1;
3789 if (sctx->gs_shader.cso)
3790 key.u.gs = 1;
3791
3792 if (sctx->ngg) {
3793 key.u.ngg = 1;
3794 key.u.streamout = !!si_get_vs(sctx)->cso->so.num_outputs;
3795 }
3796
3797 /* Update TCS and TES. */
3798 if (sctx->tes_shader.cso) {
3799 if (!sctx->tess_rings) {
3800 si_init_tess_factor_ring(sctx);
3801 if (!sctx->tess_rings)
3802 return false;
3803 }
3804
3805 if (sctx->tcs_shader.cso) {
3806 r = si_shader_select(ctx, &sctx->tcs_shader, key, &compiler_state);
3807 if (r)
3808 return false;
3809 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3810 } else {
3811 if (!sctx->fixed_func_tcs_shader.cso) {
3812 sctx->fixed_func_tcs_shader.cso = si_create_fixed_func_tcs(sctx);
3813 if (!sctx->fixed_func_tcs_shader.cso)
3814 return false;
3815 }
3816
3817 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader, key, &compiler_state);
3818 if (r)
3819 return false;
3820 si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader.current->pm4);
3821 }
3822
3823 if (!sctx->gs_shader.cso || sctx->chip_class <= GFX8) {
3824 r = si_shader_select(ctx, &sctx->tes_shader, key, &compiler_state);
3825 if (r)
3826 return false;
3827
3828 if (sctx->gs_shader.cso) {
3829 /* TES as ES */
3830 assert(sctx->chip_class <= GFX8);
3831 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3832 } else if (key.u.ngg) {
3833 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3834 } else {
3835 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3836 }
3837 }
3838 } else {
3839 if (sctx->chip_class <= GFX8)
3840 si_pm4_bind_state(sctx, ls, NULL);
3841 si_pm4_bind_state(sctx, hs, NULL);
3842 }
3843
3844 /* Update GS. */
3845 if (sctx->gs_shader.cso) {
3846 r = si_shader_select(ctx, &sctx->gs_shader, key, &compiler_state);
3847 if (r)
3848 return false;
3849 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3850 if (!key.u.ngg) {
3851 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3852
3853 if (!si_update_gs_ring_buffers(sctx))
3854 return false;
3855 } else {
3856 si_pm4_bind_state(sctx, vs, NULL);
3857 }
3858 } else {
3859 if (!key.u.ngg) {
3860 si_pm4_bind_state(sctx, gs, NULL);
3861 if (sctx->chip_class <= GFX8)
3862 si_pm4_bind_state(sctx, es, NULL);
3863 }
3864 }
3865
3866 /* Update VS. */
3867 if ((!key.u.tess && !key.u.gs) || sctx->chip_class <= GFX8) {
3868 r = si_shader_select(ctx, &sctx->vs_shader, key, &compiler_state);
3869 if (r)
3870 return false;
3871
3872 if (!key.u.tess && !key.u.gs) {
3873 if (key.u.ngg) {
3874 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3875 si_pm4_bind_state(sctx, vs, NULL);
3876 } else {
3877 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3878 }
3879 } else if (sctx->tes_shader.cso) {
3880 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3881 } else {
3882 assert(sctx->gs_shader.cso);
3883 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3884 }
3885 }
3886
3887 /* This must be done after the shader variant is selected. */
3888 if (sctx->ngg) {
3889 struct si_shader *vs = si_get_vs(sctx)->current;
3890
3891 key.u.ngg_passthrough = gfx10_is_ngg_passthrough(vs);
3892 key.u.ngg_gs_fast_launch = !!(vs->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL);
3893 }
3894
3895 si_update_vgt_shader_config(sctx, key);
3896
3897 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3898 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3899
3900 if (sctx->ps_shader.cso) {
3901 unsigned db_shader_control;
3902
3903 r = si_shader_select(ctx, &sctx->ps_shader, key, &compiler_state);
3904 if (r)
3905 return false;
3906 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3907
3908 db_shader_control = sctx->ps_shader.cso->db_shader_control |
3909 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3910
3911 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3912 (key.u.ngg && si_pm4_state_changed(sctx, gs)) ||
3913 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3914 sctx->flatshade != rs->flatshade) {
3915 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3916 sctx->flatshade = rs->flatshade;
3917 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3918 }
3919
3920 if (sctx->screen->info.rbplus_allowed && si_pm4_state_changed(sctx, ps) &&
3921 (!old_ps || old_spi_shader_col_format !=
3922 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3923 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3924
3925 if (sctx->ps_db_shader_control != db_shader_control) {
3926 sctx->ps_db_shader_control = db_shader_control;
3927 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3928 if (sctx->screen->dpbb_allowed)
3929 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3930 }
3931
3932 if (sctx->smoothing_enabled !=
3933 sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3934 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3935 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3936
3937 if (sctx->chip_class == GFX6)
3938 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3939
3940 if (sctx->framebuffer.nr_samples <= 1)
3941 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3942 }
3943 }
3944
3945 if (si_pm4_state_enabled_and_changed(sctx, ls) || si_pm4_state_enabled_and_changed(sctx, hs) ||
3946 si_pm4_state_enabled_and_changed(sctx, es) || si_pm4_state_enabled_and_changed(sctx, gs) ||
3947 si_pm4_state_enabled_and_changed(sctx, vs) || si_pm4_state_enabled_and_changed(sctx, ps)) {
3948 if (!si_update_spi_tmpring_size(sctx))
3949 return false;
3950 }
3951
3952 if (sctx->chip_class >= GFX7) {
3953 if (si_pm4_state_enabled_and_changed(sctx, ls))
3954 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3955 else if (!sctx->queued.named.ls)
3956 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3957
3958 if (si_pm4_state_enabled_and_changed(sctx, hs))
3959 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3960 else if (!sctx->queued.named.hs)
3961 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3962
3963 if (si_pm4_state_enabled_and_changed(sctx, es))
3964 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3965 else if (!sctx->queued.named.es)
3966 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3967
3968 if (si_pm4_state_enabled_and_changed(sctx, gs))
3969 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3970 else if (!sctx->queued.named.gs)
3971 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3972
3973 if (si_pm4_state_enabled_and_changed(sctx, vs))
3974 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3975 else if (!sctx->queued.named.vs)
3976 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3977
3978 if (si_pm4_state_enabled_and_changed(sctx, ps))
3979 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3980 else if (!sctx->queued.named.ps)
3981 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3982 }
3983
3984 sctx->do_update_shaders = false;
3985 return true;
3986 }
3987
3988 static void si_emit_scratch_state(struct si_context *sctx)
3989 {
3990 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3991
3992 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
3993
3994 if (sctx->scratch_buffer) {
3995 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3996 RADEON_PRIO_SCRATCH_BUFFER);
3997 }
3998 }
3999
4000 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
4001 {
4002 util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
4003 si_destroy_shader_selector);
4004 }
4005
4006 void si_init_shader_functions(struct si_context *sctx)
4007 {
4008 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
4009 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
4010
4011 sctx->b.create_vs_state = si_create_shader;
4012 sctx->b.create_tcs_state = si_create_shader;
4013 sctx->b.create_tes_state = si_create_shader;
4014 sctx->b.create_gs_state = si_create_shader;
4015 sctx->b.create_fs_state = si_create_shader;
4016
4017 sctx->b.bind_vs_state = si_bind_vs_shader;
4018 sctx->b.bind_tcs_state = si_bind_tcs_shader;
4019 sctx->b.bind_tes_state = si_bind_tes_shader;
4020 sctx->b.bind_gs_state = si_bind_gs_shader;
4021 sctx->b.bind_fs_state = si_bind_ps_shader;
4022
4023 sctx->b.delete_vs_state = si_delete_shader_selector;
4024 sctx->b.delete_tcs_state = si_delete_shader_selector;
4025 sctx->b.delete_tes_state = si_delete_shader_selector;
4026 sctx->b.delete_gs_state = si_delete_shader_selector;
4027 sctx->b.delete_fs_state = si_delete_shader_selector;
4028 }