radeonsi: change PIPE_SHADER to MESA_SHADER (si_shader_selector::type)
[mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "ac_exp_param.h"
26 #include "ac_shader_util.h"
27 #include "compiler/nir/nir_serialize.h"
28 #include "nir/tgsi_to_nir.h"
29 #include "si_build_pm4.h"
30 #include "sid.h"
31 #include "util/crc32.h"
32 #include "util/disk_cache.h"
33 #include "util/hash_table.h"
34 #include "util/mesa-sha1.h"
35 #include "util/u_async_debug.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38 #include "tgsi/tgsi_from_mesa.h"
39
40 /* SHADER_CACHE */
41
42 /**
43 * Return the IR key for the shader cache.
44 */
45 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
46 unsigned char ir_sha1_cache_key[20])
47 {
48 struct blob blob = {};
49 unsigned ir_size;
50 void *ir_binary;
51
52 if (sel->nir_binary) {
53 ir_binary = sel->nir_binary;
54 ir_size = sel->nir_size;
55 } else {
56 assert(sel->nir);
57
58 blob_init(&blob);
59 nir_serialize(&blob, sel->nir, true);
60 ir_binary = blob.data;
61 ir_size = blob.size;
62 }
63
64 /* These settings affect the compilation, but they are not derived
65 * from the input shader IR.
66 */
67 unsigned shader_variant_flags = 0;
68
69 if (ngg)
70 shader_variant_flags |= 1 << 0;
71 if (sel->nir)
72 shader_variant_flags |= 1 << 1;
73 if (si_get_wave_size(sel->screen, sel->info.stage, ngg, es, false, false) == 32)
74 shader_variant_flags |= 1 << 2;
75 if (sel->info.stage == MESA_SHADER_FRAGMENT && sel->info.uses_derivatives && sel->info.uses_kill &&
76 sel->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL))
77 shader_variant_flags |= 1 << 3;
78
79 /* This varies depending on whether compute-based culling is enabled. */
80 shader_variant_flags |= sel->screen->num_vbos_in_user_sgprs << 4;
81
82 struct mesa_sha1 ctx;
83 _mesa_sha1_init(&ctx);
84 _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
85 _mesa_sha1_update(&ctx, ir_binary, ir_size);
86 if (sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL ||
87 sel->info.stage == MESA_SHADER_GEOMETRY)
88 _mesa_sha1_update(&ctx, &sel->so, sizeof(sel->so));
89 _mesa_sha1_final(&ctx, ir_sha1_cache_key);
90
91 if (ir_binary == blob.data)
92 blob_finish(&blob);
93 }
94
95 /** Copy "data" to "ptr" and return the next dword following copied data. */
96 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
97 {
98 /* data may be NULL if size == 0 */
99 if (size)
100 memcpy(ptr, data, size);
101 ptr += DIV_ROUND_UP(size, 4);
102 return ptr;
103 }
104
105 /** Read data from "ptr". Return the next dword following the data. */
106 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
107 {
108 memcpy(data, ptr, size);
109 ptr += DIV_ROUND_UP(size, 4);
110 return ptr;
111 }
112
113 /**
114 * Write the size as uint followed by the data. Return the next dword
115 * following the copied data.
116 */
117 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
118 {
119 *ptr++ = size;
120 return write_data(ptr, data, size);
121 }
122
123 /**
124 * Read the size as uint followed by the data. Return both via parameters.
125 * Return the next dword following the data.
126 */
127 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
128 {
129 *size = *ptr++;
130 assert(*data == NULL);
131 if (!*size)
132 return ptr;
133 *data = malloc(*size);
134 return read_data(ptr, *data, *size);
135 }
136
137 /**
138 * Return the shader binary in a buffer. The first 4 bytes contain its size
139 * as integer.
140 */
141 static void *si_get_shader_binary(struct si_shader *shader)
142 {
143 /* There is always a size of data followed by the data itself. */
144 unsigned llvm_ir_size =
145 shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
146
147 /* Refuse to allocate overly large buffers and guard against integer
148 * overflow. */
149 if (shader->binary.elf_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4)
150 return NULL;
151
152 unsigned size = 4 + /* total size */
153 4 + /* CRC32 of the data below */
154 align(sizeof(shader->config), 4) + align(sizeof(shader->info), 4) + 4 +
155 align(shader->binary.elf_size, 4) + 4 + align(llvm_ir_size, 4);
156 void *buffer = CALLOC(1, size);
157 uint32_t *ptr = (uint32_t *)buffer;
158
159 if (!buffer)
160 return NULL;
161
162 *ptr++ = size;
163 ptr++; /* CRC32 is calculated at the end. */
164
165 ptr = write_data(ptr, &shader->config, sizeof(shader->config));
166 ptr = write_data(ptr, &shader->info, sizeof(shader->info));
167 ptr = write_chunk(ptr, shader->binary.elf_buffer, shader->binary.elf_size);
168 ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
169 assert((char *)ptr - (char *)buffer == size);
170
171 /* Compute CRC32. */
172 ptr = (uint32_t *)buffer;
173 ptr++;
174 *ptr = util_hash_crc32(ptr + 1, size - 8);
175
176 return buffer;
177 }
178
179 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
180 {
181 uint32_t *ptr = (uint32_t *)binary;
182 uint32_t size = *ptr++;
183 uint32_t crc32 = *ptr++;
184 unsigned chunk_size;
185 unsigned elf_size;
186
187 if (util_hash_crc32(ptr, size - 8) != crc32) {
188 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
189 return false;
190 }
191
192 ptr = read_data(ptr, &shader->config, sizeof(shader->config));
193 ptr = read_data(ptr, &shader->info, sizeof(shader->info));
194 ptr = read_chunk(ptr, (void **)&shader->binary.elf_buffer, &elf_size);
195 shader->binary.elf_size = elf_size;
196 ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
197
198 return true;
199 }
200
201 /**
202 * Insert a shader into the cache. It's assumed the shader is not in the cache.
203 * Use si_shader_cache_load_shader before calling this.
204 */
205 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
206 struct si_shader *shader, bool insert_into_disk_cache)
207 {
208 void *hw_binary;
209 struct hash_entry *entry;
210 uint8_t key[CACHE_KEY_SIZE];
211
212 entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
213 if (entry)
214 return; /* already added */
215
216 hw_binary = si_get_shader_binary(shader);
217 if (!hw_binary)
218 return;
219
220 if (_mesa_hash_table_insert(sscreen->shader_cache, mem_dup(ir_sha1_cache_key, 20), hw_binary) ==
221 NULL) {
222 FREE(hw_binary);
223 return;
224 }
225
226 if (sscreen->disk_shader_cache && insert_into_disk_cache) {
227 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
228 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, *((uint32_t *)hw_binary), NULL);
229 }
230 }
231
232 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
233 struct si_shader *shader)
234 {
235 struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
236
237 if (entry) {
238 if (si_load_shader_binary(shader, entry->data)) {
239 p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
240 return true;
241 }
242 }
243 p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
244
245 if (!sscreen->disk_shader_cache)
246 return false;
247
248 unsigned char sha1[CACHE_KEY_SIZE];
249 disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
250
251 size_t binary_size;
252 uint8_t *buffer = disk_cache_get(sscreen->disk_shader_cache, sha1, &binary_size);
253 if (buffer) {
254 if (binary_size >= sizeof(uint32_t) && *((uint32_t *)buffer) == binary_size) {
255 if (si_load_shader_binary(shader, buffer)) {
256 free(buffer);
257 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
258 p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
259 return true;
260 }
261 } else {
262 /* Something has gone wrong discard the item from the cache and
263 * rebuild/link from source.
264 */
265 assert(!"Invalid radeonsi shader disk cache item!");
266 disk_cache_remove(sscreen->disk_shader_cache, sha1);
267 }
268 }
269
270 free(buffer);
271 p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
272 return false;
273 }
274
275 static uint32_t si_shader_cache_key_hash(const void *key)
276 {
277 /* Take the first dword of SHA1. */
278 return *(uint32_t *)key;
279 }
280
281 static bool si_shader_cache_key_equals(const void *a, const void *b)
282 {
283 /* Compare SHA1s. */
284 return memcmp(a, b, 20) == 0;
285 }
286
287 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
288 {
289 FREE((void *)entry->key);
290 FREE(entry->data);
291 }
292
293 bool si_init_shader_cache(struct si_screen *sscreen)
294 {
295 (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
296 sscreen->shader_cache =
297 _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
298
299 return sscreen->shader_cache != NULL;
300 }
301
302 void si_destroy_shader_cache(struct si_screen *sscreen)
303 {
304 if (sscreen->shader_cache)
305 _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
306 simple_mtx_destroy(&sscreen->shader_cache_mutex);
307 }
308
309 /* SHADER STATES */
310
311 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
312 struct si_pm4_state *pm4)
313 {
314 const struct si_shader_info *info = &tes->info;
315 unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
316 unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
317 bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
318 bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
319 unsigned type, partitioning, topology, distribution_mode;
320
321 switch (tes_prim_mode) {
322 case PIPE_PRIM_LINES:
323 type = V_028B6C_TESS_ISOLINE;
324 break;
325 case PIPE_PRIM_TRIANGLES:
326 type = V_028B6C_TESS_TRIANGLE;
327 break;
328 case PIPE_PRIM_QUADS:
329 type = V_028B6C_TESS_QUAD;
330 break;
331 default:
332 assert(0);
333 return;
334 }
335
336 switch (tes_spacing) {
337 case PIPE_TESS_SPACING_FRACTIONAL_ODD:
338 partitioning = V_028B6C_PART_FRAC_ODD;
339 break;
340 case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
341 partitioning = V_028B6C_PART_FRAC_EVEN;
342 break;
343 case PIPE_TESS_SPACING_EQUAL:
344 partitioning = V_028B6C_PART_INTEGER;
345 break;
346 default:
347 assert(0);
348 return;
349 }
350
351 if (tes_point_mode)
352 topology = V_028B6C_OUTPUT_POINT;
353 else if (tes_prim_mode == PIPE_PRIM_LINES)
354 topology = V_028B6C_OUTPUT_LINE;
355 else if (tes_vertex_order_cw)
356 /* for some reason, this must be the other way around */
357 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
358 else
359 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
360
361 if (sscreen->info.has_distributed_tess) {
362 if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
363 distribution_mode = V_028B6C_TRAPEZOIDS;
364 else
365 distribution_mode = V_028B6C_DONUTS;
366 } else
367 distribution_mode = V_028B6C_NO_DIST;
368
369 assert(pm4->shader);
370 pm4->shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
371 S_028B6C_TOPOLOGY(topology) |
372 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
373 }
374
375 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
376 * whether the "fractional odd" tessellation spacing is used.
377 *
378 * Possible VGT configurations and which state should set the register:
379 *
380 * Reg set in | VGT shader configuration | Value
381 * ------------------------------------------------------
382 * VS as VS | VS | 30
383 * VS as ES | ES -> GS -> VS | 30
384 * TES as VS | LS -> HS -> VS | 14 or 30
385 * TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
386 *
387 * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
388 */
389 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
390 struct si_shader *shader, struct si_pm4_state *pm4)
391 {
392 if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.chip_class >= GFX10)
393 return;
394
395 /* VS as VS, or VS as ES: */
396 if ((sel->info.stage == MESA_SHADER_VERTEX &&
397 (!shader || (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
398 /* TES as VS, or TES as ES: */
399 sel->info.stage == MESA_SHADER_TESS_EVAL) {
400 unsigned vtx_reuse_depth = 30;
401
402 if (sel->info.stage == MESA_SHADER_TESS_EVAL &&
403 sel->info.properties[TGSI_PROPERTY_TES_SPACING] == PIPE_TESS_SPACING_FRACTIONAL_ODD)
404 vtx_reuse_depth = 14;
405
406 assert(pm4->shader);
407 pm4->shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
408 }
409 }
410
411 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
412 {
413 if (shader->pm4)
414 si_pm4_clear_state(shader->pm4);
415 else
416 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
417
418 if (shader->pm4) {
419 shader->pm4->shader = shader;
420 return shader->pm4;
421 } else {
422 fprintf(stderr, "radeonsi: Failed to create pm4 state.\n");
423 return NULL;
424 }
425 }
426
427 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
428 unsigned num_always_on_user_sgprs)
429 {
430 struct si_shader_selector *vs =
431 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
432 unsigned num_vbos_in_user_sgprs = vs->num_vbos_in_user_sgprs;
433
434 /* 1 SGPR is reserved for the vertex buffer pointer. */
435 assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
436
437 if (num_vbos_in_user_sgprs)
438 return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
439
440 /* Add the pointer to VBO descriptors. */
441 return num_always_on_user_sgprs + 1;
442 }
443
444 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
445 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
446 bool legacy_vs_prim_id)
447 {
448 assert(shader->selector->info.stage == MESA_SHADER_VERTEX ||
449 (shader->previous_stage_sel && shader->previous_stage_sel->info.stage == MESA_SHADER_VERTEX));
450
451 /* GFX6-9 LS (VertexID, RelAutoindex, InstanceID / StepRate0(==1), ...).
452 * GFX6-9 ES,VS (VertexID, InstanceID / StepRate0(==1), VSPrimID, ...)
453 * GFX10 LS (VertexID, RelAutoindex, UserVGPR1, InstanceID).
454 * GFX10 ES,VS (VertexID, UserVGPR0, UserVGPR1 or VSPrimID, UserVGPR2 or
455 * InstanceID)
456 */
457 bool is_ls = shader->selector->info.stage == MESA_SHADER_TESS_CTRL || shader->key.as_ls;
458
459 if (sscreen->info.chip_class >= GFX10 && shader->info.uses_instanceid)
460 return 3;
461 else if ((is_ls && shader->info.uses_instanceid) || legacy_vs_prim_id)
462 return 2;
463 else if (is_ls || shader->info.uses_instanceid)
464 return 1;
465 else
466 return 0;
467 }
468
469 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
470 {
471 struct si_pm4_state *pm4;
472 uint64_t va;
473
474 assert(sscreen->info.chip_class <= GFX8);
475
476 pm4 = si_get_shader_pm4_state(shader);
477 if (!pm4)
478 return;
479
480 va = shader->bo->gpu_address;
481 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
482 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
483
484 shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
485 S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
486 S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
487 S_00B528_DX10_CLAMP(1) | S_00B528_FLOAT_MODE(shader->config.float_mode);
488 shader->config.rsrc2 =
489 S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
490 S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
491 }
492
493 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
494 {
495 struct si_pm4_state *pm4;
496 uint64_t va;
497
498 pm4 = si_get_shader_pm4_state(shader);
499 if (!pm4)
500 return;
501
502 va = shader->bo->gpu_address;
503
504 if (sscreen->info.chip_class >= GFX9) {
505 if (sscreen->info.chip_class >= GFX10) {
506 si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
507 si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
508 } else {
509 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
510 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
511 }
512
513 unsigned num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR);
514
515 shader->config.rsrc2 = S_00B42C_USER_SGPR(num_user_sgprs) |
516 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
517
518 if (sscreen->info.chip_class >= GFX10)
519 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
520 else
521 shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
522 } else {
523 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
524 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
525
526 shader->config.rsrc2 = S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) | S_00B42C_OC_LDS_EN(1) |
527 S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
528 }
529
530 si_pm4_set_reg(
531 pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
532 S_00B428_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
533 (sscreen->info.chip_class <= GFX9 ? S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8)
534 : 0) |
535 S_00B428_DX10_CLAMP(1) | S_00B428_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
536 S_00B428_WGP_MODE(sscreen->info.chip_class >= GFX10) |
537 S_00B428_FLOAT_MODE(shader->config.float_mode) |
538 S_00B428_LS_VGPR_COMP_CNT(sscreen->info.chip_class >= GFX9
539 ? si_get_vs_vgpr_comp_cnt(sscreen, shader, false)
540 : 0));
541
542 if (sscreen->info.chip_class <= GFX8) {
543 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
544 }
545 }
546
547 static void si_emit_shader_es(struct si_context *sctx)
548 {
549 struct si_shader *shader = sctx->queued.named.es->shader;
550 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
551
552 if (!shader)
553 return;
554
555 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
556 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
557 shader->selector->esgs_itemsize / 4);
558
559 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
560 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
561 shader->vgt_tf_param);
562
563 if (shader->vgt_vertex_reuse_block_cntl)
564 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
565 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
566 shader->vgt_vertex_reuse_block_cntl);
567
568 if (initial_cdw != sctx->gfx_cs->current.cdw)
569 sctx->context_roll = true;
570 }
571
572 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
573 {
574 struct si_pm4_state *pm4;
575 unsigned num_user_sgprs;
576 unsigned vgpr_comp_cnt;
577 uint64_t va;
578 unsigned oc_lds_en;
579
580 assert(sscreen->info.chip_class <= GFX8);
581
582 pm4 = si_get_shader_pm4_state(shader);
583 if (!pm4)
584 return;
585
586 pm4->atom.emit = si_emit_shader_es;
587 va = shader->bo->gpu_address;
588
589 if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
590 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
591 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
592 } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
593 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
594 num_user_sgprs = SI_TES_NUM_USER_SGPR;
595 } else
596 unreachable("invalid shader selector type");
597
598 oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
599
600 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
601 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
602 si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
603 S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
604 S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
605 S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B328_DX10_CLAMP(1) |
606 S_00B328_FLOAT_MODE(shader->config.float_mode));
607 si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
608 S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
609 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
610
611 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
612 si_set_tesseval_regs(sscreen, shader->selector, pm4);
613
614 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
615 }
616
617 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
618 struct gfx9_gs_info *out)
619 {
620 unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
621 unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
622 bool uses_adjacency =
623 input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
624
625 /* All these are in dwords: */
626 /* We can't allow using the whole LDS, because GS waves compete with
627 * other shader stages for LDS space. */
628 const unsigned max_lds_size = 8 * 1024;
629 const unsigned esgs_itemsize = es->esgs_itemsize / 4;
630 unsigned esgs_lds_size;
631
632 /* All these are per subgroup: */
633 const unsigned max_out_prims = 32 * 1024;
634 const unsigned max_es_verts = 255;
635 const unsigned ideal_gs_prims = 64;
636 unsigned max_gs_prims, gs_prims;
637 unsigned min_es_verts, es_verts, worst_case_es_verts;
638
639 if (uses_adjacency || gs_num_invocations > 1)
640 max_gs_prims = 127 / gs_num_invocations;
641 else
642 max_gs_prims = 255;
643
644 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
645 * Make sure we don't go over the maximum value.
646 */
647 if (gs->gs_max_out_vertices > 0) {
648 max_gs_prims =
649 MIN2(max_gs_prims, max_out_prims / (gs->gs_max_out_vertices * gs_num_invocations));
650 }
651 assert(max_gs_prims > 0);
652
653 /* If the primitive has adjacency, halve the number of vertices
654 * that will be reused in multiple primitives.
655 */
656 min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
657
658 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
659 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
660
661 /* Compute ESGS LDS size based on the worst case number of ES vertices
662 * needed to create the target number of GS prims per subgroup.
663 */
664 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
665
666 /* If total LDS usage is too big, refactor partitions based on ratio
667 * of ESGS item sizes.
668 */
669 if (esgs_lds_size > max_lds_size) {
670 /* Our target GS Prims Per Subgroup was too large. Calculate
671 * the maximum number of GS Prims Per Subgroup that will fit
672 * into LDS, capped by the maximum that the hardware can support.
673 */
674 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
675 assert(gs_prims > 0);
676 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
677
678 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
679 assert(esgs_lds_size <= max_lds_size);
680 }
681
682 /* Now calculate remaining ESGS information. */
683 if (esgs_lds_size)
684 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
685 else
686 es_verts = max_es_verts;
687
688 /* Vertices for adjacency primitives are not always reused, so restore
689 * it for ES_VERTS_PER_SUBGRP.
690 */
691 min_es_verts = gs->gs_input_verts_per_prim;
692
693 /* For normal primitives, the VGT only checks if they are past the ES
694 * verts per subgroup after allocating a full GS primitive and if they
695 * are, kick off a new subgroup. But if those additional ES verts are
696 * unique (e.g. not reused) we need to make sure there is enough LDS
697 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
698 */
699 es_verts -= min_es_verts - 1;
700
701 out->es_verts_per_subgroup = es_verts;
702 out->gs_prims_per_subgroup = gs_prims;
703 out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
704 out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->gs_max_out_vertices;
705 out->esgs_ring_size = esgs_lds_size;
706
707 assert(out->max_prims_per_subgroup <= max_out_prims);
708 }
709
710 static void si_emit_shader_gs(struct si_context *sctx)
711 {
712 struct si_shader *shader = sctx->queued.named.gs->shader;
713 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
714
715 if (!shader)
716 return;
717
718 /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
719 * R_028A68_VGT_GSVS_RING_OFFSET_3 */
720 radeon_opt_set_context_reg3(
721 sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
722 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1, shader->ctx_reg.gs.vgt_gsvs_ring_offset_2,
723 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3);
724
725 /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
726 radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
727 SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
728 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize);
729
730 /* R_028B38_VGT_GS_MAX_VERT_OUT */
731 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
732 shader->ctx_reg.gs.vgt_gs_max_vert_out);
733
734 /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
735 * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
736 radeon_opt_set_context_reg4(
737 sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
738 shader->ctx_reg.gs.vgt_gs_vert_itemsize, shader->ctx_reg.gs.vgt_gs_vert_itemsize_1,
739 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2, shader->ctx_reg.gs.vgt_gs_vert_itemsize_3);
740
741 /* R_028B90_VGT_GS_INSTANCE_CNT */
742 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
743 shader->ctx_reg.gs.vgt_gs_instance_cnt);
744
745 if (sctx->chip_class >= GFX9) {
746 /* R_028A44_VGT_GS_ONCHIP_CNTL */
747 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
748 shader->ctx_reg.gs.vgt_gs_onchip_cntl);
749 /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
750 radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
751 SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
752 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup);
753 /* R_028AAC_VGT_ESGS_RING_ITEMSIZE */
754 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
755 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
756 shader->ctx_reg.gs.vgt_esgs_ring_itemsize);
757
758 if (shader->key.part.gs.es->info.stage == MESA_SHADER_TESS_EVAL)
759 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
760 shader->vgt_tf_param);
761 if (shader->vgt_vertex_reuse_block_cntl)
762 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
763 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
764 shader->vgt_vertex_reuse_block_cntl);
765 }
766
767 if (initial_cdw != sctx->gfx_cs->current.cdw)
768 sctx->context_roll = true;
769 }
770
771 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
772 {
773 struct si_shader_selector *sel = shader->selector;
774 const ubyte *num_components = sel->info.num_stream_output_components;
775 unsigned gs_num_invocations = sel->gs_num_invocations;
776 struct si_pm4_state *pm4;
777 uint64_t va;
778 unsigned max_stream = sel->max_gs_stream;
779 unsigned offset;
780
781 pm4 = si_get_shader_pm4_state(shader);
782 if (!pm4)
783 return;
784
785 pm4->atom.emit = si_emit_shader_gs;
786
787 offset = num_components[0] * sel->gs_max_out_vertices;
788 shader->ctx_reg.gs.vgt_gsvs_ring_offset_1 = offset;
789
790 if (max_stream >= 1)
791 offset += num_components[1] * sel->gs_max_out_vertices;
792 shader->ctx_reg.gs.vgt_gsvs_ring_offset_2 = offset;
793
794 if (max_stream >= 2)
795 offset += num_components[2] * sel->gs_max_out_vertices;
796 shader->ctx_reg.gs.vgt_gsvs_ring_offset_3 = offset;
797
798 if (max_stream >= 3)
799 offset += num_components[3] * sel->gs_max_out_vertices;
800 shader->ctx_reg.gs.vgt_gsvs_ring_itemsize = offset;
801
802 /* The GSVS_RING_ITEMSIZE register takes 15 bits */
803 assert(offset < (1 << 15));
804
805 shader->ctx_reg.gs.vgt_gs_max_vert_out = sel->gs_max_out_vertices;
806
807 shader->ctx_reg.gs.vgt_gs_vert_itemsize = num_components[0];
808 shader->ctx_reg.gs.vgt_gs_vert_itemsize_1 = (max_stream >= 1) ? num_components[1] : 0;
809 shader->ctx_reg.gs.vgt_gs_vert_itemsize_2 = (max_stream >= 2) ? num_components[2] : 0;
810 shader->ctx_reg.gs.vgt_gs_vert_itemsize_3 = (max_stream >= 3) ? num_components[3] : 0;
811
812 shader->ctx_reg.gs.vgt_gs_instance_cnt =
813 S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
814
815 va = shader->bo->gpu_address;
816
817 if (sscreen->info.chip_class >= GFX9) {
818 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
819 gl_shader_stage es_stage = shader->key.part.gs.es->info.stage;
820 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
821
822 if (es_stage == MESA_SHADER_VERTEX) {
823 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
824 } else if (es_stage == MESA_SHADER_TESS_EVAL)
825 es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
826 else
827 unreachable("invalid shader selector type");
828
829 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
830 * VGPR[0:4] are always loaded.
831 */
832 if (sel->info.uses_invocationid)
833 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
834 else if (sel->info.uses_primid)
835 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
836 else if (input_prim >= PIPE_PRIM_TRIANGLES)
837 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
838 else
839 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
840
841 unsigned num_user_sgprs;
842 if (es_stage == MESA_SHADER_VERTEX)
843 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
844 else
845 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
846
847 if (sscreen->info.chip_class >= GFX10) {
848 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
849 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
850 } else {
851 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
852 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
853 }
854
855 uint32_t rsrc1 = S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) | S_00B228_DX10_CLAMP(1) |
856 S_00B228_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
857 S_00B228_WGP_MODE(sscreen->info.chip_class >= GFX10) |
858 S_00B228_FLOAT_MODE(shader->config.float_mode) |
859 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
860 uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
861 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
862 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
863 S_00B22C_LDS_SIZE(shader->config.lds_size) |
864 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
865
866 if (sscreen->info.chip_class >= GFX10) {
867 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
868 } else {
869 rsrc1 |= S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8);
870 rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
871 }
872
873 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
874 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
875
876 if (sscreen->info.chip_class >= GFX10) {
877 si_pm4_set_reg(pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
878 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0));
879 }
880
881 shader->ctx_reg.gs.vgt_gs_onchip_cntl =
882 S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
883 S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
884 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
885 shader->ctx_reg.gs.vgt_gs_max_prims_per_subgroup =
886 S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
887 shader->ctx_reg.gs.vgt_esgs_ring_itemsize = shader->key.part.gs.es->esgs_itemsize / 4;
888
889 if (es_stage == MESA_SHADER_TESS_EVAL)
890 si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
891
892 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es, NULL, pm4);
893 } else {
894 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
895 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
896
897 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
898 S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
899 S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
900 S_00B228_DX10_CLAMP(1) | S_00B228_FLOAT_MODE(shader->config.float_mode));
901 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
902 S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
903 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
904 }
905 }
906
907 static void gfx10_emit_ge_pc_alloc(struct si_context *sctx, unsigned value)
908 {
909 enum si_tracked_reg reg = SI_TRACKED_GE_PC_ALLOC;
910
911 if (((sctx->tracked_regs.reg_saved >> reg) & 0x1) != 0x1 ||
912 sctx->tracked_regs.reg_value[reg] != value) {
913 struct radeon_cmdbuf *cs = sctx->gfx_cs;
914
915 if (sctx->chip_class == GFX10) {
916 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
917 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
918 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
919 }
920
921 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC, value);
922
923 sctx->tracked_regs.reg_saved |= 0x1ull << reg;
924 sctx->tracked_regs.reg_value[reg] = value;
925 }
926 }
927
928 /* Common tail code for NGG primitive shaders. */
929 static void gfx10_emit_shader_ngg_tail(struct si_context *sctx, struct si_shader *shader,
930 unsigned initial_cdw)
931 {
932 radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
933 SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
934 shader->ctx_reg.ngg.ge_max_output_per_subgroup);
935 radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
936 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl);
937 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
938 shader->ctx_reg.ngg.vgt_primitiveid_en);
939 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
940 shader->ctx_reg.ngg.vgt_gs_onchip_cntl);
941 radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
942 shader->ctx_reg.ngg.vgt_gs_instance_cnt);
943 radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
944 SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
945 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize);
946 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
947 shader->ctx_reg.ngg.spi_vs_out_config);
948 radeon_opt_set_context_reg2(
949 sctx, R_028708_SPI_SHADER_IDX_FORMAT, SI_TRACKED_SPI_SHADER_IDX_FORMAT,
950 shader->ctx_reg.ngg.spi_shader_idx_format, shader->ctx_reg.ngg.spi_shader_pos_format);
951 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
952 shader->ctx_reg.ngg.pa_cl_vte_cntl);
953 radeon_opt_set_context_reg(sctx, R_028838_PA_CL_NGG_CNTL, SI_TRACKED_PA_CL_NGG_CNTL,
954 shader->ctx_reg.ngg.pa_cl_ngg_cntl);
955
956 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
957 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
958 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
959
960 if (initial_cdw != sctx->gfx_cs->current.cdw)
961 sctx->context_roll = true;
962
963 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
964 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.ngg.ge_pc_alloc);
965 }
966
967 static void gfx10_emit_shader_ngg_notess_nogs(struct si_context *sctx)
968 {
969 struct si_shader *shader = sctx->queued.named.gs->shader;
970 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
971
972 if (!shader)
973 return;
974
975 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
976 }
977
978 static void gfx10_emit_shader_ngg_tess_nogs(struct si_context *sctx)
979 {
980 struct si_shader *shader = sctx->queued.named.gs->shader;
981 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
982
983 if (!shader)
984 return;
985
986 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
987 shader->vgt_tf_param);
988
989 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
990 }
991
992 static void gfx10_emit_shader_ngg_notess_gs(struct si_context *sctx)
993 {
994 struct si_shader *shader = sctx->queued.named.gs->shader;
995 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
996
997 if (!shader)
998 return;
999
1000 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1001 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1002
1003 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1004 }
1005
1006 static void gfx10_emit_shader_ngg_tess_gs(struct si_context *sctx)
1007 {
1008 struct si_shader *shader = sctx->queued.named.gs->shader;
1009 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1010
1011 if (!shader)
1012 return;
1013
1014 radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1015 shader->ctx_reg.ngg.vgt_gs_max_vert_out);
1016 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1017 shader->vgt_tf_param);
1018
1019 gfx10_emit_shader_ngg_tail(sctx, shader, initial_cdw);
1020 }
1021
1022 unsigned si_get_input_prim(const struct si_shader_selector *gs)
1023 {
1024 if (gs->info.stage == MESA_SHADER_GEOMETRY)
1025 return gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
1026
1027 if (gs->info.stage == MESA_SHADER_TESS_EVAL) {
1028 if (gs->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
1029 return PIPE_PRIM_POINTS;
1030 if (gs->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
1031 return PIPE_PRIM_LINES;
1032 return PIPE_PRIM_TRIANGLES;
1033 }
1034
1035 /* TODO: Set this correctly if the primitive type is set in the shader key. */
1036 return PIPE_PRIM_TRIANGLES; /* worst case for all callers */
1037 }
1038
1039 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel, bool ngg)
1040 {
1041 bool misc_vec_ena = sel->info.writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1042 sel->info.writes_layer || sel->info.writes_viewport_index;
1043 return S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
1044 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1045 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
1046 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1047 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1048 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
1049 }
1050
1051 /**
1052 * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1053 * in NGG mode.
1054 */
1055 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1056 {
1057 const struct si_shader_selector *gs_sel = shader->selector;
1058 const struct si_shader_info *gs_info = &gs_sel->info;
1059 const gl_shader_stage gs_stage = shader->selector->info.stage;
1060 const struct si_shader_selector *es_sel =
1061 shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1062 const struct si_shader_info *es_info = &es_sel->info;
1063 const gl_shader_stage es_stage = es_sel->info.stage;
1064 unsigned num_user_sgprs;
1065 unsigned nparams, es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1066 uint64_t va;
1067 unsigned window_space = gs_info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1068 bool es_enable_prim_id = shader->key.mono.u.vs_export_prim_id || es_info->uses_primid;
1069 unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
1070 unsigned input_prim = si_get_input_prim(gs_sel);
1071 bool break_wave_at_eoi = false;
1072 struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader);
1073 if (!pm4)
1074 return;
1075
1076 if (es_stage == MESA_SHADER_TESS_EVAL) {
1077 pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_tess_gs
1078 : gfx10_emit_shader_ngg_tess_nogs;
1079 } else {
1080 pm4->atom.emit = gs_stage == MESA_SHADER_GEOMETRY ? gfx10_emit_shader_ngg_notess_gs
1081 : gfx10_emit_shader_ngg_notess_nogs;
1082 }
1083
1084 va = shader->bo->gpu_address;
1085
1086 if (es_stage == MESA_SHADER_VERTEX) {
1087 es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1088
1089 if (es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1090 num_user_sgprs =
1091 SI_SGPR_VS_BLIT_DATA + es_info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1092 } else {
1093 num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_VSGS_NUM_USER_SGPR);
1094 }
1095 } else {
1096 assert(es_stage == MESA_SHADER_TESS_EVAL);
1097 es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1098 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
1099
1100 if (es_enable_prim_id || gs_info->uses_primid)
1101 break_wave_at_eoi = true;
1102 }
1103
1104 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1105 * VGPR[0:4] are always loaded.
1106 *
1107 * Vertex shaders always need to load VGPR3, because they need to
1108 * pass edge flags for decomposed primitives (such as quads) to the PA
1109 * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1110 */
1111 if (gs_info->uses_invocationid ||
1112 (gs_stage == MESA_SHADER_VERTEX && !gfx10_is_ngg_passthrough(shader)))
1113 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1114 else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1115 (gs_stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1116 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1117 else if (input_prim >= PIPE_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1118 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1119 else
1120 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1121
1122 unsigned wave_size = si_get_shader_wave_size(shader);
1123
1124 si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1125 si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
1126 si_pm4_set_reg(
1127 pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1128 S_00B228_VGPRS((shader->config.num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) |
1129 S_00B228_FLOAT_MODE(shader->config.float_mode) | S_00B228_DX10_CLAMP(1) |
1130 S_00B228_MEM_ORDERED(1) | S_00B228_WGP_MODE(1) |
1131 S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1132 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1133 S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1134 S_00B22C_USER_SGPR(num_user_sgprs) |
1135 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1136 S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1137 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1138 S_00B22C_LDS_SIZE(shader->config.lds_size));
1139
1140 /* Determine LATE_ALLOC_GS. */
1141 unsigned num_cu_per_sh = sscreen->info.min_good_cu_per_sa;
1142 unsigned late_alloc_wave64; /* The limit is per SA. */
1143
1144 /* For Wave32, the hw will launch twice the number of late
1145 * alloc waves, so 1 == 2x wave32.
1146 *
1147 * Don't use late alloc for NGG on Navi14 due to a hw bug.
1148 */
1149 if (sscreen->info.family == CHIP_NAVI14 || !sscreen->info.use_late_alloc)
1150 late_alloc_wave64 = 0;
1151 else if (num_cu_per_sh <= 6)
1152 late_alloc_wave64 = num_cu_per_sh - 2; /* All CUs enabled */
1153 else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL)
1154 late_alloc_wave64 = (num_cu_per_sh - 2) * 6;
1155 else
1156 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
1157
1158 /* Limit LATE_ALLOC_GS for prevent a hang (hw bug). */
1159 if (sscreen->info.chip_class == GFX10)
1160 late_alloc_wave64 = MIN2(late_alloc_wave64, 64);
1161
1162 si_pm4_set_reg(
1163 pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1164 S_00B204_CU_EN(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
1165
1166 nparams = MAX2(shader->info.nr_param_exports, 1);
1167 shader->ctx_reg.ngg.spi_vs_out_config =
1168 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
1169 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1170
1171 shader->ctx_reg.ngg.spi_shader_idx_format =
1172 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP);
1173 shader->ctx_reg.ngg.spi_shader_pos_format =
1174 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1175 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1176 : V_02870C_SPI_SHADER_NONE) |
1177 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1178 : V_02870C_SPI_SHADER_NONE) |
1179 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1180 : V_02870C_SPI_SHADER_NONE);
1181
1182 shader->ctx_reg.ngg.vgt_primitiveid_en =
1183 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
1184 S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.mono.u.vs_export_prim_id ||
1185 gs_sel->info.writes_primid);
1186
1187 if (gs_stage == MESA_SHADER_GEOMETRY) {
1188 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = es_sel->esgs_itemsize / 4;
1189 shader->ctx_reg.ngg.vgt_gs_max_vert_out = gs_sel->gs_max_out_vertices;
1190 } else {
1191 shader->ctx_reg.ngg.vgt_esgs_ring_itemsize = 1;
1192 }
1193
1194 if (es_stage == MESA_SHADER_TESS_EVAL)
1195 si_set_tesseval_regs(sscreen, es_sel, pm4);
1196
1197 shader->ctx_reg.ngg.vgt_gs_onchip_cntl =
1198 S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1199 S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1200 S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1201 shader->ctx_reg.ngg.ge_max_output_per_subgroup =
1202 S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1203 shader->ctx_reg.ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(shader->ngg.prim_amp_factor) |
1204 S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1205 shader->ctx_reg.ngg.vgt_gs_instance_cnt =
1206 S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1207 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1208
1209 /* Always output hw-generated edge flags and pass them via the prim
1210 * export to prevent drawing lines on internal edges of decomposed
1211 * primitives (such as quads) with polygon mode = lines. Only VS needs
1212 * this.
1213 */
1214 shader->ctx_reg.ngg.pa_cl_ngg_cntl =
1215 S_028838_INDEX_BUF_EDGE_FLAG_ENA(gs_stage == MESA_SHADER_VERTEX) |
1216 /* Reuse for NGG. */
1217 S_028838_VERTEX_REUSE_DEPTH(sscreen->info.chip_class >= GFX10_3 ? 30 : 0);
1218 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(gs_sel, true);
1219
1220 /* Oversubscribe PC. This improves performance when there are too many varyings. */
1221 float oversub_pc_factor = 0.25;
1222
1223 if (shader->key.opt.ngg_culling) {
1224 /* Be more aggressive with NGG culling. */
1225 if (shader->info.nr_param_exports > 4)
1226 oversub_pc_factor = 1;
1227 else if (shader->info.nr_param_exports > 2)
1228 oversub_pc_factor = 0.75;
1229 else
1230 oversub_pc_factor = 0.5;
1231 }
1232
1233 unsigned oversub_pc_lines = sscreen->info.pc_lines * oversub_pc_factor;
1234 shader->ctx_reg.ngg.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1235 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1236
1237 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
1238 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1239 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims * 3);
1240 } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
1241 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1242 S_03096C_VERT_GRP_SIZE(shader->ngg.max_gsprims + 2);
1243 } else {
1244 shader->ge_cntl = S_03096C_PRIM_GRP_SIZE(shader->ngg.max_gsprims) |
1245 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
1246 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1247
1248 /* Bug workaround for a possible hang with non-tessellation cases.
1249 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
1250 *
1251 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
1252 */
1253 if ((sscreen->info.chip_class == GFX10) &&
1254 (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1255 shader->ngg.hw_max_esverts != 256) {
1256 shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1257
1258 if (shader->ngg.hw_max_esverts > 5) {
1259 shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1260 }
1261 }
1262 }
1263
1264 if (window_space) {
1265 shader->ctx_reg.ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1266 } else {
1267 shader->ctx_reg.ngg.pa_cl_vte_cntl =
1268 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1269 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1270 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1271 }
1272 }
1273
1274 static void si_emit_shader_vs(struct si_context *sctx)
1275 {
1276 struct si_shader *shader = sctx->queued.named.vs->shader;
1277 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1278
1279 if (!shader)
1280 return;
1281
1282 radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1283 shader->ctx_reg.vs.vgt_gs_mode);
1284 radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1285 shader->ctx_reg.vs.vgt_primitiveid_en);
1286
1287 if (sctx->chip_class <= GFX8) {
1288 radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1289 shader->ctx_reg.vs.vgt_reuse_off);
1290 }
1291
1292 radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1293 shader->ctx_reg.vs.spi_vs_out_config);
1294
1295 radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1296 SI_TRACKED_SPI_SHADER_POS_FORMAT,
1297 shader->ctx_reg.vs.spi_shader_pos_format);
1298
1299 radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1300 shader->ctx_reg.vs.pa_cl_vte_cntl);
1301
1302 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1303 radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1304 shader->vgt_tf_param);
1305
1306 if (shader->vgt_vertex_reuse_block_cntl)
1307 radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1308 SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1309 shader->vgt_vertex_reuse_block_cntl);
1310
1311 /* Required programming for tessellation. (legacy pipeline only) */
1312 if (sctx->chip_class >= GFX10 && shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1313 radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1314 SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1315 S_028A44_ES_VERTS_PER_SUBGRP(250) |
1316 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1317 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1318 }
1319
1320 if (sctx->chip_class >= GFX10) {
1321 radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
1322 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS, shader->pa_cl_vs_out_cntl,
1323 SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
1324 }
1325
1326 if (initial_cdw != sctx->gfx_cs->current.cdw)
1327 sctx->context_roll = true;
1328
1329 /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1330 if (sctx->chip_class >= GFX10)
1331 gfx10_emit_ge_pc_alloc(sctx, shader->ctx_reg.vs.ge_pc_alloc);
1332 }
1333
1334 /**
1335 * Compute the state for \p shader, which will run as a vertex shader on the
1336 * hardware.
1337 *
1338 * If \p gs is non-NULL, it points to the geometry shader for which this shader
1339 * is the copy shader.
1340 */
1341 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1342 struct si_shader_selector *gs)
1343 {
1344 const struct si_shader_info *info = &shader->selector->info;
1345 struct si_pm4_state *pm4;
1346 unsigned num_user_sgprs, vgpr_comp_cnt;
1347 uint64_t va;
1348 unsigned nparams, oc_lds_en;
1349 unsigned window_space = info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
1350 bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
1351
1352 pm4 = si_get_shader_pm4_state(shader);
1353 if (!pm4)
1354 return;
1355
1356 pm4->atom.emit = si_emit_shader_vs;
1357
1358 /* We always write VGT_GS_MODE in the VS state, because every switch
1359 * between different shader pipelines involving a different GS or no
1360 * GS at all involves a switch of the VS (different GS use different
1361 * copy shaders). On the other hand, when the API switches from a GS to
1362 * no GS and then back to the same GS used originally, the GS state is
1363 * not sent again.
1364 */
1365 if (!gs) {
1366 unsigned mode = V_028A40_GS_OFF;
1367
1368 /* PrimID needs GS scenario A. */
1369 if (enable_prim_id)
1370 mode = V_028A40_GS_SCENARIO_A;
1371
1372 shader->ctx_reg.vs.vgt_gs_mode = S_028A40_MODE(mode);
1373 shader->ctx_reg.vs.vgt_primitiveid_en = enable_prim_id;
1374 } else {
1375 shader->ctx_reg.vs.vgt_gs_mode =
1376 ac_vgt_gs_mode(gs->gs_max_out_vertices, sscreen->info.chip_class);
1377 shader->ctx_reg.vs.vgt_primitiveid_en = 0;
1378 }
1379
1380 if (sscreen->info.chip_class <= GFX8) {
1381 /* Reuse needs to be set off if we write oViewport. */
1382 shader->ctx_reg.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1383 }
1384
1385 va = shader->bo->gpu_address;
1386
1387 if (gs) {
1388 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1389 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1390 } else if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
1391 vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1392
1393 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
1394 num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
1395 } else {
1396 num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1397 }
1398 } else if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL) {
1399 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1400 num_user_sgprs = SI_TES_NUM_USER_SGPR;
1401 } else
1402 unreachable("invalid shader selector type");
1403
1404 /* VS is required to export at least one param. */
1405 nparams = MAX2(shader->info.nr_param_exports, 1);
1406 shader->ctx_reg.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1407
1408 if (sscreen->info.chip_class >= GFX10) {
1409 shader->ctx_reg.vs.spi_vs_out_config |=
1410 S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1411 }
1412
1413 shader->ctx_reg.vs.spi_shader_pos_format =
1414 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1415 S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1416 : V_02870C_SPI_SHADER_NONE) |
1417 S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1418 : V_02870C_SPI_SHADER_NONE) |
1419 S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1420 : V_02870C_SPI_SHADER_NONE);
1421 shader->ctx_reg.vs.ge_pc_alloc = S_030980_OVERSUB_EN(sscreen->info.use_late_alloc) |
1422 S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1423 shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, false);
1424
1425 oc_lds_en = shader->selector->info.stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1426
1427 si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1428 si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
1429
1430 uint32_t rsrc1 =
1431 S_00B128_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ge_wave_size == 32 ? 8 : 4)) |
1432 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B128_DX10_CLAMP(1) |
1433 S_00B128_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1434 S_00B128_FLOAT_MODE(shader->config.float_mode);
1435 uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1436 S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1437
1438 if (sscreen->info.chip_class >= GFX10)
1439 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1440 else if (sscreen->info.chip_class == GFX9)
1441 rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1442
1443 if (sscreen->info.chip_class <= GFX9)
1444 rsrc1 |= S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8);
1445
1446 if (!sscreen->use_ngg_streamout) {
1447 rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
1448 S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
1449 S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
1450 S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
1451 S_00B12C_SO_EN(!!shader->selector->so.num_outputs);
1452 }
1453
1454 si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1455 si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1456
1457 if (window_space)
1458 shader->ctx_reg.vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1459 else
1460 shader->ctx_reg.vs.pa_cl_vte_cntl =
1461 S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1462 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1463 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1464
1465 if (shader->selector->info.stage == MESA_SHADER_TESS_EVAL)
1466 si_set_tesseval_regs(sscreen, shader->selector, pm4);
1467
1468 polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
1469 }
1470
1471 static unsigned si_get_ps_num_interp(struct si_shader *ps)
1472 {
1473 struct si_shader_info *info = &ps->selector->info;
1474 unsigned num_colors = !!(info->colors_read & 0x0f) + !!(info->colors_read & 0xf0);
1475 unsigned num_interp =
1476 ps->selector->info.num_inputs + (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
1477
1478 assert(num_interp <= 32);
1479 return MIN2(num_interp, 32);
1480 }
1481
1482 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1483 {
1484 unsigned spi_shader_col_format = shader->key.part.ps.epilog.spi_shader_col_format;
1485 unsigned value = 0, num_mrts = 0;
1486 unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1487
1488 /* Remove holes in spi_shader_col_format. */
1489 for (i = 0; i < num_targets; i++) {
1490 unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1491
1492 if (spi_format) {
1493 value |= spi_format << (num_mrts * 4);
1494 num_mrts++;
1495 }
1496 }
1497
1498 return value;
1499 }
1500
1501 static void si_emit_shader_ps(struct si_context *sctx)
1502 {
1503 struct si_shader *shader = sctx->queued.named.ps->shader;
1504 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
1505
1506 if (!shader)
1507 return;
1508
1509 /* R_0286CC_SPI_PS_INPUT_ENA, R_0286D0_SPI_PS_INPUT_ADDR*/
1510 radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1511 shader->ctx_reg.ps.spi_ps_input_ena,
1512 shader->ctx_reg.ps.spi_ps_input_addr);
1513
1514 radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1515 shader->ctx_reg.ps.spi_baryc_cntl);
1516 radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1517 shader->ctx_reg.ps.spi_ps_in_control);
1518
1519 /* R_028710_SPI_SHADER_Z_FORMAT, R_028714_SPI_SHADER_COL_FORMAT */
1520 radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1521 shader->ctx_reg.ps.spi_shader_z_format,
1522 shader->ctx_reg.ps.spi_shader_col_format);
1523
1524 radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1525 shader->ctx_reg.ps.cb_shader_mask);
1526
1527 if (initial_cdw != sctx->gfx_cs->current.cdw)
1528 sctx->context_roll = true;
1529 }
1530
1531 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1532 {
1533 struct si_shader_info *info = &shader->selector->info;
1534 struct si_pm4_state *pm4;
1535 unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1536 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1537 uint64_t va;
1538 unsigned input_ena = shader->config.spi_ps_input_ena;
1539
1540 /* we need to enable at least one of them, otherwise we hang the GPU */
1541 assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1542 G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1543 G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1544 G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1545 /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1546 assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1547 G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1548 G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1549
1550 /* Validate interpolation optimization flags (read as implications). */
1551 assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1552 (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1553 assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1554 (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1555 assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1556 (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1557 assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1558 (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1559 assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1560 (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1561 assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1562 (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1563
1564 /* Validate cases when the optimizations are off (read as implications). */
1565 assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1566 !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1567 assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1568 !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1569
1570 pm4 = si_get_shader_pm4_state(shader);
1571 if (!pm4)
1572 return;
1573
1574 pm4->atom.emit = si_emit_shader_ps;
1575
1576 /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1577 * Possible vaules:
1578 * 0 -> Position = pixel center
1579 * 1 -> Position = pixel centroid
1580 * 2 -> Position = at sample position
1581 *
1582 * From GLSL 4.5 specification, section 7.1:
1583 * "The variable gl_FragCoord is available as an input variable from
1584 * within fragment shaders and it holds the window relative coordinates
1585 * (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1586 * value can be for any location within the pixel, or one of the
1587 * fragment samples. The use of centroid does not further restrict
1588 * this value to be inside the current primitive."
1589 *
1590 * Meaning that centroid has no effect and we can return anything within
1591 * the pixel. Thus, return the value at sample position, because that's
1592 * the most accurate one shaders can get.
1593 */
1594 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1595
1596 if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] == TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1597 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1598
1599 spi_shader_col_format = si_get_spi_shader_col_format(shader);
1600 cb_shader_mask = ac_get_cb_shader_mask(shader->key.part.ps.epilog.spi_shader_col_format);
1601
1602 /* Ensure that some export memory is always allocated, for two reasons:
1603 *
1604 * 1) Correctness: The hardware ignores the EXEC mask if no export
1605 * memory is allocated, so KILL and alpha test do not work correctly
1606 * without this.
1607 * 2) Performance: Every shader needs at least a NULL export, even when
1608 * it writes no color/depth output. The NULL export instruction
1609 * stalls without this setting.
1610 *
1611 * Don't add this to CB_SHADER_MASK.
1612 *
1613 * GFX10 supports pixel shaders without exports by setting both
1614 * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1615 * instructions if any are present.
1616 */
1617 if ((sscreen->info.chip_class <= GFX9 || info->uses_kill ||
1618 shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS) &&
1619 !spi_shader_col_format && !info->writes_z && !info->writes_stencil &&
1620 !info->writes_samplemask)
1621 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1622
1623 shader->ctx_reg.ps.spi_ps_input_ena = input_ena;
1624 shader->ctx_reg.ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1625
1626 /* Set interpolation controls. */
1627 spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
1628 S_0286D8_PS_W32_EN(sscreen->ps_wave_size == 32);
1629
1630 shader->ctx_reg.ps.spi_baryc_cntl = spi_baryc_cntl;
1631 shader->ctx_reg.ps.spi_ps_in_control = spi_ps_in_control;
1632 shader->ctx_reg.ps.spi_shader_z_format =
1633 ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, info->writes_samplemask);
1634 shader->ctx_reg.ps.spi_shader_col_format = spi_shader_col_format;
1635 shader->ctx_reg.ps.cb_shader_mask = cb_shader_mask;
1636
1637 va = shader->bo->gpu_address;
1638 si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1639 si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1640
1641 uint32_t rsrc1 =
1642 S_00B028_VGPRS((shader->config.num_vgprs - 1) / (sscreen->ps_wave_size == 32 ? 8 : 4)) |
1643 S_00B028_DX10_CLAMP(1) | S_00B028_MEM_ORDERED(sscreen->info.chip_class >= GFX10) |
1644 S_00B028_FLOAT_MODE(shader->config.float_mode);
1645
1646 if (sscreen->info.chip_class < GFX10) {
1647 rsrc1 |= S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8);
1648 }
1649
1650 si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS, rsrc1);
1651 si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1652 S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1653 S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1654 S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1655 }
1656
1657 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
1658 {
1659 switch (shader->selector->info.stage) {
1660 case MESA_SHADER_VERTEX:
1661 if (shader->key.as_ls)
1662 si_shader_ls(sscreen, shader);
1663 else if (shader->key.as_es)
1664 si_shader_es(sscreen, shader);
1665 else if (shader->key.as_ngg)
1666 gfx10_shader_ngg(sscreen, shader);
1667 else
1668 si_shader_vs(sscreen, shader, NULL);
1669 break;
1670 case MESA_SHADER_TESS_CTRL:
1671 si_shader_hs(sscreen, shader);
1672 break;
1673 case MESA_SHADER_TESS_EVAL:
1674 if (shader->key.as_es)
1675 si_shader_es(sscreen, shader);
1676 else if (shader->key.as_ngg)
1677 gfx10_shader_ngg(sscreen, shader);
1678 else
1679 si_shader_vs(sscreen, shader, NULL);
1680 break;
1681 case MESA_SHADER_GEOMETRY:
1682 if (shader->key.as_ngg)
1683 gfx10_shader_ngg(sscreen, shader);
1684 else
1685 si_shader_gs(sscreen, shader);
1686 break;
1687 case MESA_SHADER_FRAGMENT:
1688 si_shader_ps(sscreen, shader);
1689 break;
1690 default:
1691 assert(0);
1692 }
1693 }
1694
1695 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1696 {
1697 /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1698 return sctx->queued.named.dsa->alpha_func;
1699 }
1700
1701 void si_shader_selector_key_vs(struct si_context *sctx, struct si_shader_selector *vs,
1702 struct si_shader_key *key, struct si_vs_prolog_bits *prolog_key)
1703 {
1704 if (!sctx->vertex_elements || vs->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD])
1705 return;
1706
1707 struct si_vertex_elements *elts = sctx->vertex_elements;
1708
1709 prolog_key->instance_divisor_is_one = elts->instance_divisor_is_one;
1710 prolog_key->instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
1711 prolog_key->unpack_instance_id_from_vertex_id = sctx->prim_discard_cs_instancing;
1712
1713 /* Prefer a monolithic shader to allow scheduling divisions around
1714 * VBO loads. */
1715 if (prolog_key->instance_divisor_is_fetched)
1716 key->opt.prefer_mono = 1;
1717
1718 unsigned count = MIN2(vs->info.num_inputs, elts->count);
1719 unsigned count_mask = (1 << count) - 1;
1720 unsigned fix = elts->fix_fetch_always & count_mask;
1721 unsigned opencode = elts->fix_fetch_opencode & count_mask;
1722
1723 if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
1724 uint32_t mask = elts->fix_fetch_unaligned & count_mask;
1725 while (mask) {
1726 unsigned i = u_bit_scan(&mask);
1727 unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
1728 unsigned vbidx = elts->vertex_buffer_index[i];
1729 struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
1730 unsigned align_mask = (1 << log_hw_load_size) - 1;
1731 if (vb->buffer_offset & align_mask || vb->stride & align_mask) {
1732 fix |= 1 << i;
1733 opencode |= 1 << i;
1734 }
1735 }
1736 }
1737
1738 while (fix) {
1739 unsigned i = u_bit_scan(&fix);
1740 key->mono.vs_fix_fetch[i].bits = elts->fix_fetch[i];
1741 }
1742 key->mono.vs_fetch_opencode = opencode;
1743 }
1744
1745 static void si_shader_selector_key_hw_vs(struct si_context *sctx, struct si_shader_selector *vs,
1746 struct si_shader_key *key)
1747 {
1748 struct si_shader_selector *ps = sctx->ps_shader.cso;
1749
1750 key->opt.clip_disable = sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1751 (vs->info.clipdist_writemask || vs->info.writes_clipvertex) &&
1752 !vs->info.culldist_writemask;
1753
1754 /* Find out if PS is disabled. */
1755 bool ps_disabled = true;
1756 if (ps) {
1757 bool ps_modifies_zs = ps->info.uses_kill || ps->info.writes_z || ps->info.writes_stencil ||
1758 ps->info.writes_samplemask ||
1759 sctx->queued.named.blend->alpha_to_coverage ||
1760 si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1761 unsigned ps_colormask = si_get_total_colormask(sctx);
1762
1763 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1764 (!ps_colormask && !ps_modifies_zs && !ps->info.writes_memory);
1765 }
1766
1767 /* Find out which VS outputs aren't used by the PS. */
1768 uint64_t outputs_written = vs->outputs_written_before_ps;
1769 uint64_t inputs_read = 0;
1770
1771 /* Ignore outputs that are not passed from VS to PS. */
1772 outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1773 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1774 (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1775
1776 if (!ps_disabled) {
1777 inputs_read = ps->inputs_read;
1778 }
1779
1780 uint64_t linked = outputs_written & inputs_read;
1781
1782 key->opt.kill_outputs = ~linked & outputs_written;
1783 key->opt.ngg_culling = sctx->ngg_culling;
1784 }
1785
1786 /* Compute the key for the hw shader variant */
1787 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
1788 union si_vgt_stages_key stages_key,
1789 struct si_shader_key *key)
1790 {
1791 struct si_context *sctx = (struct si_context *)ctx;
1792
1793 memset(key, 0, sizeof(*key));
1794
1795 switch (sel->info.stage) {
1796 case MESA_SHADER_VERTEX:
1797 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1798
1799 if (sctx->tes_shader.cso)
1800 key->as_ls = 1;
1801 else if (sctx->gs_shader.cso) {
1802 key->as_es = 1;
1803 key->as_ngg = stages_key.u.ngg;
1804 } else {
1805 key->as_ngg = stages_key.u.ngg;
1806 si_shader_selector_key_hw_vs(sctx, sel, key);
1807
1808 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1809 key->mono.u.vs_export_prim_id = 1;
1810 }
1811 break;
1812 case MESA_SHADER_TESS_CTRL:
1813 if (sctx->chip_class >= GFX9) {
1814 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.tcs.ls_prolog);
1815 key->part.tcs.ls = sctx->vs_shader.cso;
1816
1817 /* When the LS VGPR fix is needed, monolithic shaders
1818 * can:
1819 * - avoid initializing EXEC in both the LS prolog
1820 * and the LS main part when !vs_needs_prolog
1821 * - remove the fixup for unused input VGPRs
1822 */
1823 key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1824
1825 /* The LS output / HS input layout can be communicated
1826 * directly instead of via user SGPRs for merged LS-HS.
1827 * The LS VGPR fix prefers this too.
1828 */
1829 key->opt.prefer_mono = 1;
1830 }
1831
1832 key->part.tcs.epilog.prim_mode =
1833 sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1834 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1835 sel->info.tessfactors_are_def_in_all_invocs;
1836 key->part.tcs.epilog.tes_reads_tess_factors = sctx->tes_shader.cso->info.reads_tess_factors;
1837
1838 if (sel == sctx->fixed_func_tcs_shader.cso)
1839 key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1840 break;
1841 case MESA_SHADER_TESS_EVAL:
1842 key->as_ngg = stages_key.u.ngg;
1843
1844 if (sctx->gs_shader.cso)
1845 key->as_es = 1;
1846 else {
1847 si_shader_selector_key_hw_vs(sctx, sel, key);
1848
1849 if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1850 key->mono.u.vs_export_prim_id = 1;
1851 }
1852 break;
1853 case MESA_SHADER_GEOMETRY:
1854 if (sctx->chip_class >= GFX9) {
1855 if (sctx->tes_shader.cso) {
1856 key->part.gs.es = sctx->tes_shader.cso;
1857 } else {
1858 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, key, &key->part.gs.vs_prolog);
1859 key->part.gs.es = sctx->vs_shader.cso;
1860 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1861 }
1862
1863 key->as_ngg = stages_key.u.ngg;
1864
1865 /* Merged ES-GS can have unbalanced wave usage.
1866 *
1867 * ES threads are per-vertex, while GS threads are
1868 * per-primitive. So without any amplification, there
1869 * are fewer GS threads than ES threads, which can result
1870 * in empty (no-op) GS waves. With too much amplification,
1871 * there are more GS threads than ES threads, which
1872 * can result in empty (no-op) ES waves.
1873 *
1874 * Non-monolithic shaders are implemented by setting EXEC
1875 * at the beginning of shader parts, and don't jump to
1876 * the end if EXEC is 0.
1877 *
1878 * Monolithic shaders use conditional blocks, so they can
1879 * jump and skip empty waves of ES or GS. So set this to
1880 * always use optimized variants, which are monolithic.
1881 */
1882 key->opt.prefer_mono = 1;
1883 }
1884 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1885 break;
1886 case MESA_SHADER_FRAGMENT: {
1887 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1888 struct si_state_blend *blend = sctx->queued.named.blend;
1889
1890 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1891 sel->info.colors_written == 0x1)
1892 key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1893
1894 /* Select the shader color format based on whether
1895 * blending or alpha are needed.
1896 */
1897 key->part.ps.epilog.spi_shader_col_format =
1898 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1899 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1900 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1901 sctx->framebuffer.spi_shader_col_format_blend) |
1902 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1903 sctx->framebuffer.spi_shader_col_format_alpha) |
1904 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1905 sctx->framebuffer.spi_shader_col_format);
1906 key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1907
1908 /* The output for dual source blending should have
1909 * the same format as the first output.
1910 */
1911 if (blend->dual_src_blend) {
1912 key->part.ps.epilog.spi_shader_col_format |=
1913 (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1914 }
1915
1916 /* If alpha-to-coverage is enabled, we have to export alpha
1917 * even if there is no color buffer.
1918 */
1919 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) && blend->alpha_to_coverage)
1920 key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1921
1922 /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
1923 * to the range supported by the type if a channel has less
1924 * than 16 bits and the export format is 16_ABGR.
1925 */
1926 if (sctx->chip_class <= GFX7 && sctx->family != CHIP_HAWAII) {
1927 key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1928 key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1929 }
1930
1931 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1932 if (!key->part.ps.epilog.last_cbuf) {
1933 key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1934 key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1935 key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1936 }
1937
1938 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1939 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1940
1941 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1942 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1943
1944 key->part.ps.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
1945
1946 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1947 key->part.ps.epilog.poly_line_smoothing =
1948 ((is_poly && rs->poly_smooth) || (is_line && rs->line_smooth)) &&
1949 sctx->framebuffer.nr_samples <= 1;
1950 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1951
1952 if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask) {
1953 key->part.ps.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
1954 }
1955
1956 if (rs->force_persample_interp && rs->multisample_enable &&
1957 sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
1958 key->part.ps.prolog.force_persp_sample_interp =
1959 sel->info.uses_persp_center || sel->info.uses_persp_centroid;
1960
1961 key->part.ps.prolog.force_linear_sample_interp =
1962 sel->info.uses_linear_center || sel->info.uses_linear_centroid;
1963 } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
1964 key->part.ps.prolog.bc_optimize_for_persp =
1965 sel->info.uses_persp_center && sel->info.uses_persp_centroid;
1966 key->part.ps.prolog.bc_optimize_for_linear =
1967 sel->info.uses_linear_center && sel->info.uses_linear_centroid;
1968 } else {
1969 /* Make sure SPI doesn't compute more than 1 pair
1970 * of (i,j), which is the optimization here. */
1971 key->part.ps.prolog.force_persp_center_interp = sel->info.uses_persp_center +
1972 sel->info.uses_persp_centroid +
1973 sel->info.uses_persp_sample >
1974 1;
1975
1976 key->part.ps.prolog.force_linear_center_interp = sel->info.uses_linear_center +
1977 sel->info.uses_linear_centroid +
1978 sel->info.uses_linear_sample >
1979 1;
1980
1981 if (sel->info.uses_persp_opcode_interp_sample ||
1982 sel->info.uses_linear_opcode_interp_sample)
1983 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1984 }
1985
1986 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1987
1988 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1989 if (sctx->ps_uses_fbfetch && !sctx->blitter->running) {
1990 struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1991 struct pipe_resource *tex = cb0->texture;
1992
1993 /* 1D textures are allocated and used as 2D on GFX9. */
1994 key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1995 key->mono.u.ps.fbfetch_is_1D =
1996 sctx->chip_class != GFX9 &&
1997 (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
1998 key->mono.u.ps.fbfetch_layered =
1999 tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2000 tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2001 tex->target == PIPE_TEXTURE_3D;
2002 }
2003 break;
2004 }
2005 default:
2006 assert(0);
2007 }
2008
2009 if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
2010 memset(&key->opt, 0, sizeof(key->opt));
2011 }
2012
2013 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2014 {
2015 struct si_shader_selector *sel = shader->selector;
2016 struct si_screen *sscreen = sel->screen;
2017 struct ac_llvm_compiler *compiler;
2018 struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
2019
2020 if (thread_index >= 0) {
2021 if (low_priority) {
2022 assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
2023 compiler = &sscreen->compiler_lowp[thread_index];
2024 } else {
2025 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2026 compiler = &sscreen->compiler[thread_index];
2027 }
2028 if (!debug->async)
2029 debug = NULL;
2030 } else {
2031 assert(!low_priority);
2032 compiler = shader->compiler_ctx_state.compiler;
2033 }
2034
2035 if (!compiler->passes)
2036 si_init_compiler(sscreen, compiler);
2037
2038 if (unlikely(!si_create_shader_variant(sscreen, compiler, shader, debug))) {
2039 PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->info.stage);
2040 shader->compilation_failed = true;
2041 return;
2042 }
2043
2044 if (shader->compiler_ctx_state.is_debug_context) {
2045 FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2046 if (f) {
2047 si_shader_dump(sscreen, shader, NULL, f, false);
2048 fclose(f);
2049 }
2050 }
2051
2052 si_shader_init_pm4_state(sscreen, shader);
2053 }
2054
2055 static void si_build_shader_variant_low_priority(void *job, int thread_index)
2056 {
2057 struct si_shader *shader = (struct si_shader *)job;
2058
2059 assert(thread_index >= 0);
2060
2061 si_build_shader_variant(shader, thread_index, true);
2062 }
2063
2064 static const struct si_shader_key zeroed;
2065
2066 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2067 struct si_compiler_ctx_state *compiler_state,
2068 struct si_shader_key *key)
2069 {
2070 struct si_shader **mainp = si_get_main_shader_part(sel, key);
2071
2072 if (!*mainp) {
2073 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2074
2075 if (!main_part)
2076 return false;
2077
2078 /* We can leave the fence as permanently signaled because the
2079 * main part becomes visible globally only after it has been
2080 * compiled. */
2081 util_queue_fence_init(&main_part->ready);
2082
2083 main_part->selector = sel;
2084 main_part->key.as_es = key->as_es;
2085 main_part->key.as_ls = key->as_ls;
2086 main_part->key.as_ngg = key->as_ngg;
2087 main_part->is_monolithic = false;
2088
2089 if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2090 &compiler_state->debug)) {
2091 FREE(main_part);
2092 return false;
2093 }
2094 *mainp = main_part;
2095 }
2096 return true;
2097 }
2098
2099 /**
2100 * Select a shader variant according to the shader key.
2101 *
2102 * \param optimized_or_none If the key describes an optimized shader variant and
2103 * the compilation isn't finished, don't select any
2104 * shader and return an error.
2105 */
2106 int si_shader_select_with_key(struct si_screen *sscreen, struct si_shader_ctx_state *state,
2107 struct si_compiler_ctx_state *compiler_state,
2108 struct si_shader_key *key, int thread_index, bool optimized_or_none)
2109 {
2110 struct si_shader_selector *sel = state->cso;
2111 struct si_shader_selector *previous_stage_sel = NULL;
2112 struct si_shader *current = state->current;
2113 struct si_shader *iter, *shader = NULL;
2114
2115 again:
2116 /* Check if we don't need to change anything.
2117 * This path is also used for most shaders that don't need multiple
2118 * variants, it will cost just a computation of the key and this
2119 * test. */
2120 if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0)) {
2121 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2122 if (current->is_optimized) {
2123 if (optimized_or_none)
2124 return -1;
2125
2126 memset(&key->opt, 0, sizeof(key->opt));
2127 goto current_not_ready;
2128 }
2129
2130 util_queue_fence_wait(&current->ready);
2131 }
2132
2133 return current->compilation_failed ? -1 : 0;
2134 }
2135 current_not_ready:
2136
2137 /* This must be done before the mutex is locked, because async GS
2138 * compilation calls this function too, and therefore must enter
2139 * the mutex first.
2140 *
2141 * Only wait if we are in a draw call. Don't wait if we are
2142 * in a compiler thread.
2143 */
2144 if (thread_index < 0)
2145 util_queue_fence_wait(&sel->ready);
2146
2147 simple_mtx_lock(&sel->mutex);
2148
2149 /* Find the shader variant. */
2150 for (iter = sel->first_variant; iter; iter = iter->next_variant) {
2151 /* Don't check the "current" shader. We checked it above. */
2152 if (current != iter && memcmp(&iter->key, key, sizeof(*key)) == 0) {
2153 simple_mtx_unlock(&sel->mutex);
2154
2155 if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2156 /* If it's an optimized shader and its compilation has
2157 * been started but isn't done, use the unoptimized
2158 * shader so as not to cause a stall due to compilation.
2159 */
2160 if (iter->is_optimized) {
2161 if (optimized_or_none)
2162 return -1;
2163 memset(&key->opt, 0, sizeof(key->opt));
2164 goto again;
2165 }
2166
2167 util_queue_fence_wait(&iter->ready);
2168 }
2169
2170 if (iter->compilation_failed) {
2171 return -1; /* skip the draw call */
2172 }
2173
2174 state->current = iter;
2175 return 0;
2176 }
2177 }
2178
2179 /* Build a new shader. */
2180 shader = CALLOC_STRUCT(si_shader);
2181 if (!shader) {
2182 simple_mtx_unlock(&sel->mutex);
2183 return -ENOMEM;
2184 }
2185
2186 util_queue_fence_init(&shader->ready);
2187
2188 shader->selector = sel;
2189 shader->key = *key;
2190 shader->compiler_ctx_state = *compiler_state;
2191
2192 /* If this is a merged shader, get the first shader's selector. */
2193 if (sscreen->info.chip_class >= GFX9) {
2194 if (sel->info.stage == MESA_SHADER_TESS_CTRL)
2195 previous_stage_sel = key->part.tcs.ls;
2196 else if (sel->info.stage == MESA_SHADER_GEOMETRY)
2197 previous_stage_sel = key->part.gs.es;
2198
2199 /* We need to wait for the previous shader. */
2200 if (previous_stage_sel && thread_index < 0)
2201 util_queue_fence_wait(&previous_stage_sel->ready);
2202 }
2203
2204 bool is_pure_monolithic =
2205 sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
2206
2207 /* Compile the main shader part if it doesn't exist. This can happen
2208 * if the initial guess was wrong.
2209 *
2210 * The prim discard CS doesn't need the main shader part.
2211 */
2212 if (!is_pure_monolithic && !key->opt.vs_as_prim_discard_cs) {
2213 bool ok = true;
2214
2215 /* Make sure the main shader part is present. This is needed
2216 * for shaders that can be compiled as VS, LS, or ES, and only
2217 * one of them is compiled at creation.
2218 *
2219 * It is also needed for GS, which can be compiled as non-NGG
2220 * and NGG.
2221 *
2222 * For merged shaders, check that the starting shader's main
2223 * part is present.
2224 */
2225 if (previous_stage_sel) {
2226 struct si_shader_key shader1_key = zeroed;
2227
2228 if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2229 shader1_key.as_ls = 1;
2230 } else if (sel->info.stage == MESA_SHADER_GEOMETRY) {
2231 shader1_key.as_es = 1;
2232 shader1_key.as_ngg = key->as_ngg; /* for Wave32 vs Wave64 */
2233 } else {
2234 assert(0);
2235 }
2236
2237 simple_mtx_lock(&previous_stage_sel->mutex);
2238 ok = si_check_missing_main_part(sscreen, previous_stage_sel, compiler_state, &shader1_key);
2239 simple_mtx_unlock(&previous_stage_sel->mutex);
2240 }
2241
2242 if (ok) {
2243 ok = si_check_missing_main_part(sscreen, sel, compiler_state, key);
2244 }
2245
2246 if (!ok) {
2247 FREE(shader);
2248 simple_mtx_unlock(&sel->mutex);
2249 return -ENOMEM; /* skip the draw call */
2250 }
2251 }
2252
2253 /* Keep the reference to the 1st shader of merged shaders, so that
2254 * Gallium can't destroy it before we destroy the 2nd shader.
2255 *
2256 * Set sctx = NULL, because it's unused if we're not releasing
2257 * the shader, and we don't have any sctx here.
2258 */
2259 si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
2260
2261 /* Monolithic-only shaders don't make a distinction between optimized
2262 * and unoptimized. */
2263 shader->is_monolithic =
2264 is_pure_monolithic || memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2265
2266 /* The prim discard CS is always optimized. */
2267 shader->is_optimized = (!is_pure_monolithic || key->opt.vs_as_prim_discard_cs) &&
2268 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
2269
2270 /* If it's an optimized shader, compile it asynchronously. */
2271 if (shader->is_optimized && thread_index < 0) {
2272 /* Compile it asynchronously. */
2273 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority, shader, &shader->ready,
2274 si_build_shader_variant_low_priority, NULL, 0);
2275
2276 /* Add only after the ready fence was reset, to guard against a
2277 * race with si_bind_XX_shader. */
2278 if (!sel->last_variant) {
2279 sel->first_variant = shader;
2280 sel->last_variant = shader;
2281 } else {
2282 sel->last_variant->next_variant = shader;
2283 sel->last_variant = shader;
2284 }
2285
2286 /* Use the default (unoptimized) shader for now. */
2287 memset(&key->opt, 0, sizeof(key->opt));
2288 simple_mtx_unlock(&sel->mutex);
2289
2290 if (sscreen->options.sync_compile)
2291 util_queue_fence_wait(&shader->ready);
2292
2293 if (optimized_or_none)
2294 return -1;
2295 goto again;
2296 }
2297
2298 /* Reset the fence before adding to the variant list. */
2299 util_queue_fence_reset(&shader->ready);
2300
2301 if (!sel->last_variant) {
2302 sel->first_variant = shader;
2303 sel->last_variant = shader;
2304 } else {
2305 sel->last_variant->next_variant = shader;
2306 sel->last_variant = shader;
2307 }
2308
2309 simple_mtx_unlock(&sel->mutex);
2310
2311 assert(!shader->is_optimized);
2312 si_build_shader_variant(shader, thread_index, false);
2313
2314 util_queue_fence_signal(&shader->ready);
2315
2316 if (!shader->compilation_failed)
2317 state->current = shader;
2318
2319 return shader->compilation_failed ? -1 : 0;
2320 }
2321
2322 static int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state,
2323 union si_vgt_stages_key stages_key,
2324 struct si_compiler_ctx_state *compiler_state)
2325 {
2326 struct si_context *sctx = (struct si_context *)ctx;
2327 struct si_shader_key key;
2328
2329 si_shader_selector_key(ctx, state->cso, stages_key, &key);
2330 return si_shader_select_with_key(sctx->screen, state, compiler_state, &key, -1, false);
2331 }
2332
2333 static void si_parse_next_shader_property(const struct si_shader_info *info, bool streamout,
2334 struct si_shader_key *key)
2335 {
2336 unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
2337
2338 switch (info->stage) {
2339 case MESA_SHADER_VERTEX:
2340 switch (next_shader) {
2341 case PIPE_SHADER_GEOMETRY:
2342 key->as_es = 1;
2343 break;
2344 case PIPE_SHADER_TESS_CTRL:
2345 case PIPE_SHADER_TESS_EVAL:
2346 key->as_ls = 1;
2347 break;
2348 default:
2349 /* If POSITION isn't written, it can only be a HW VS
2350 * if streamout is used. If streamout isn't used,
2351 * assume that it's a HW LS. (the next shader is TCS)
2352 * This heuristic is needed for separate shader objects.
2353 */
2354 if (!info->writes_position && !streamout)
2355 key->as_ls = 1;
2356 }
2357 break;
2358
2359 case MESA_SHADER_TESS_EVAL:
2360 if (next_shader == PIPE_SHADER_GEOMETRY || !info->writes_position)
2361 key->as_es = 1;
2362 break;
2363
2364 default:;
2365 }
2366 }
2367
2368 /**
2369 * Compile the main shader part or the monolithic shader as part of
2370 * si_shader_selector initialization. Since it can be done asynchronously,
2371 * there is no way to report compile failures to applications.
2372 */
2373 static void si_init_shader_selector_async(void *job, int thread_index)
2374 {
2375 struct si_shader_selector *sel = (struct si_shader_selector *)job;
2376 struct si_screen *sscreen = sel->screen;
2377 struct ac_llvm_compiler *compiler;
2378 struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
2379
2380 assert(!debug->debug_message || debug->async);
2381 assert(thread_index >= 0);
2382 assert(thread_index < ARRAY_SIZE(sscreen->compiler));
2383 compiler = &sscreen->compiler[thread_index];
2384
2385 if (!compiler->passes)
2386 si_init_compiler(sscreen, compiler);
2387
2388 /* Serialize NIR to save memory. Monolithic shader variants
2389 * have to deserialize NIR before compilation.
2390 */
2391 if (sel->nir) {
2392 struct blob blob;
2393 size_t size;
2394
2395 blob_init(&blob);
2396 /* true = remove optional debugging data to increase
2397 * the likehood of getting more shader cache hits.
2398 * It also drops variable names, so we'll save more memory.
2399 */
2400 nir_serialize(&blob, sel->nir, true);
2401 blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
2402 sel->nir_size = size;
2403 }
2404
2405 /* Compile the main shader part for use with a prolog and/or epilog.
2406 * If this fails, the driver will try to compile a monolithic shader
2407 * on demand.
2408 */
2409 if (!sscreen->use_monolithic_shaders) {
2410 struct si_shader *shader = CALLOC_STRUCT(si_shader);
2411 unsigned char ir_sha1_cache_key[20];
2412
2413 if (!shader) {
2414 fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
2415 return;
2416 }
2417
2418 /* We can leave the fence signaled because use of the default
2419 * main part is guarded by the selector's ready fence. */
2420 util_queue_fence_init(&shader->ready);
2421
2422 shader->selector = sel;
2423 shader->is_monolithic = false;
2424 si_parse_next_shader_property(&sel->info, sel->so.num_outputs != 0, &shader->key);
2425
2426 if (sscreen->use_ngg && (!sel->so.num_outputs || sscreen->use_ngg_streamout) &&
2427 ((sel->info.stage == MESA_SHADER_VERTEX && !shader->key.as_ls) ||
2428 sel->info.stage == MESA_SHADER_TESS_EVAL || sel->info.stage == MESA_SHADER_GEOMETRY))
2429 shader->key.as_ngg = 1;
2430
2431 if (sel->nir) {
2432 si_get_ir_cache_key(sel, shader->key.as_ngg, shader->key.as_es, ir_sha1_cache_key);
2433 }
2434
2435 /* Try to load the shader from the shader cache. */
2436 simple_mtx_lock(&sscreen->shader_cache_mutex);
2437
2438 if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
2439 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2440 si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
2441 } else {
2442 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2443
2444 /* Compile the shader if it hasn't been loaded from the cache. */
2445 if (!si_compile_shader(sscreen, compiler, shader, debug)) {
2446 FREE(shader);
2447 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
2448 return;
2449 }
2450
2451 simple_mtx_lock(&sscreen->shader_cache_mutex);
2452 si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
2453 simple_mtx_unlock(&sscreen->shader_cache_mutex);
2454 }
2455
2456 *si_get_main_shader_part(sel, &shader->key) = shader;
2457
2458 /* Unset "outputs_written" flags for outputs converted to
2459 * DEFAULT_VAL, so that later inter-shader optimizations don't
2460 * try to eliminate outputs that don't exist in the final
2461 * shader.
2462 *
2463 * This is only done if non-monolithic shaders are enabled.
2464 */
2465 if ((sel->info.stage == MESA_SHADER_VERTEX || sel->info.stage == MESA_SHADER_TESS_EVAL) &&
2466 !shader->key.as_ls && !shader->key.as_es) {
2467 unsigned i;
2468
2469 for (i = 0; i < sel->info.num_outputs; i++) {
2470 unsigned offset = shader->info.vs_output_param_offset[i];
2471
2472 if (offset <= AC_EXP_PARAM_OFFSET_31)
2473 continue;
2474
2475 unsigned name = sel->info.output_semantic_name[i];
2476 unsigned index = sel->info.output_semantic_index[i];
2477 unsigned id;
2478
2479 switch (name) {
2480 case TGSI_SEMANTIC_GENERIC:
2481 /* don't process indices the function can't handle */
2482 if (index >= SI_MAX_IO_GENERIC)
2483 break;
2484 /* fall through */
2485 default:
2486 id = si_shader_io_get_unique_index(name, index, true);
2487 sel->outputs_written_before_ps &= ~(1ull << id);
2488 break;
2489 case TGSI_SEMANTIC_POSITION: /* ignore these */
2490 case TGSI_SEMANTIC_PSIZE:
2491 case TGSI_SEMANTIC_CLIPVERTEX:
2492 case TGSI_SEMANTIC_EDGEFLAG:
2493 break;
2494 }
2495 }
2496 }
2497 }
2498
2499 /* The GS copy shader is always pre-compiled. */
2500 if (sel->info.stage == MESA_SHADER_GEOMETRY &&
2501 (!sscreen->use_ngg || !sscreen->use_ngg_streamout || /* also for PRIMITIVES_GENERATED */
2502 sel->tess_turns_off_ngg)) {
2503 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
2504 if (!sel->gs_copy_shader) {
2505 fprintf(stderr, "radeonsi: can't create GS copy shader\n");
2506 return;
2507 }
2508
2509 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
2510 }
2511
2512 /* Free NIR. We only keep serialized NIR after this point. */
2513 if (sel->nir) {
2514 ralloc_free(sel->nir);
2515 sel->nir = NULL;
2516 }
2517 }
2518
2519 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
2520 struct util_queue_fence *ready_fence,
2521 struct si_compiler_ctx_state *compiler_ctx_state, void *job,
2522 util_queue_execute_func execute)
2523 {
2524 util_queue_fence_init(ready_fence);
2525
2526 struct util_async_debug_callback async_debug;
2527 bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
2528 si_can_dump_shader(sctx->screen, pipe_shader_type_from_mesa(stage));
2529
2530 if (debug) {
2531 u_async_debug_init(&async_debug);
2532 compiler_ctx_state->debug = async_debug.base;
2533 }
2534
2535 util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
2536
2537 if (debug) {
2538 util_queue_fence_wait(ready_fence);
2539 u_async_debug_drain(&async_debug, &sctx->debug);
2540 u_async_debug_cleanup(&async_debug);
2541 }
2542
2543 if (sctx->screen->options.sync_compile)
2544 util_queue_fence_wait(ready_fence);
2545 }
2546
2547 /* Return descriptor slot usage masks from the given shader info. */
2548 void si_get_active_slot_masks(const struct si_shader_info *info, uint64_t *const_and_shader_buffers,
2549 uint64_t *samplers_and_images)
2550 {
2551 unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
2552
2553 num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2554 num_constbufs = util_last_bit(info->const_buffers_declared);
2555 /* two 8-byte images share one 16-byte slot */
2556 num_images = align(util_last_bit(info->images_declared), 2);
2557 num_msaa_images = align(util_last_bit(info->msaa_images_declared), 2);
2558 num_samplers = util_last_bit(info->samplers_declared);
2559
2560 /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2561 start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2562 *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
2563
2564 /* The layout is:
2565 * - fmask[last] ... fmask[0] go to [15-last .. 15]
2566 * - image[last] ... image[0] go to [31-last .. 31]
2567 * - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
2568 *
2569 * FMASKs for images are placed separately, because MSAA images are rare,
2570 * and so we can benefit from a better cache hit rate if we keep image
2571 * descriptors together.
2572 */
2573 if (num_msaa_images)
2574 num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
2575
2576 start = si_get_image_slot(num_images - 1) / 2;
2577 *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
2578 }
2579
2580 static void *si_create_shader_selector(struct pipe_context *ctx,
2581 const struct pipe_shader_state *state)
2582 {
2583 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2584 struct si_context *sctx = (struct si_context *)ctx;
2585 struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2586 int i;
2587
2588 if (!sel)
2589 return NULL;
2590
2591 sel->screen = sscreen;
2592 sel->compiler_ctx_state.debug = sctx->debug;
2593 sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2594
2595 sel->so = state->stream_output;
2596
2597 if (state->type == PIPE_SHADER_IR_TGSI) {
2598 sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
2599 } else {
2600 assert(state->type == PIPE_SHADER_IR_NIR);
2601 sel->nir = state->ir.nir;
2602 }
2603
2604 si_nir_scan_shader(sel->nir, &sel->info);
2605
2606 sel->type = pipe_shader_type_from_mesa(sel->info.stage);
2607 p_atomic_inc(&sscreen->num_shaders_created);
2608 si_get_active_slot_masks(&sel->info, &sel->active_const_and_shader_buffers,
2609 &sel->active_samplers_and_images);
2610
2611 /* Record which streamout buffers are enabled. */
2612 for (i = 0; i < sel->so.num_outputs; i++) {
2613 sel->enabled_streamout_buffer_mask |= (1 << sel->so.output[i].output_buffer)
2614 << (sel->so.output[i].stream * 4);
2615 }
2616
2617 sel->num_vs_inputs =
2618 sel->info.stage == MESA_SHADER_VERTEX && !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]
2619 ? sel->info.num_inputs
2620 : 0;
2621 sel->num_vbos_in_user_sgprs = MIN2(sel->num_vs_inputs, sscreen->num_vbos_in_user_sgprs);
2622
2623 /* The prolog is a no-op if there are no inputs. */
2624 sel->vs_needs_prolog = sel->info.stage == MESA_SHADER_VERTEX && sel->info.num_inputs &&
2625 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
2626
2627 sel->prim_discard_cs_allowed =
2628 sel->info.stage == MESA_SHADER_VERTEX && !sel->info.uses_bindless_images &&
2629 !sel->info.uses_bindless_samplers && !sel->info.writes_memory &&
2630 !sel->info.writes_viewport_index &&
2631 !sel->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] && !sel->so.num_outputs;
2632
2633 switch (sel->info.stage) {
2634 case MESA_SHADER_GEOMETRY:
2635 sel->gs_output_prim = sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2636
2637 /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
2638 sel->rast_prim = sel->gs_output_prim;
2639 if (util_rast_prim_is_triangles(sel->rast_prim))
2640 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2641
2642 sel->gs_max_out_vertices = sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2643 sel->gs_num_invocations = sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2644 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2645 sel->max_gsvs_emit_size = sel->gsvs_vertex_size * sel->gs_max_out_vertices;
2646
2647 sel->max_gs_stream = 0;
2648 for (i = 0; i < sel->so.num_outputs; i++)
2649 sel->max_gs_stream = MAX2(sel->max_gs_stream, sel->so.output[i].stream);
2650
2651 sel->gs_input_verts_per_prim =
2652 u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2653
2654 /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tesselation so
2655 * we can't split workgroups. Disable ngg if any of the following conditions is true:
2656 * - num_invocations * gs_max_out_vertices > 256
2657 * - LDS usage is too high
2658 */
2659 sel->tess_turns_off_ngg = sscreen->info.chip_class >= GFX10 &&
2660 (sel->gs_num_invocations * sel->gs_max_out_vertices > 256 ||
2661 sel->gs_num_invocations * sel->gs_max_out_vertices *
2662 (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
2663 break;
2664
2665 case MESA_SHADER_TESS_CTRL:
2666 /* Always reserve space for these. */
2667 sel->patch_outputs_written |=
2668 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2669 (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2670 /* fall through */
2671 case MESA_SHADER_VERTEX:
2672 case MESA_SHADER_TESS_EVAL:
2673 for (i = 0; i < sel->info.num_outputs; i++) {
2674 unsigned name = sel->info.output_semantic_name[i];
2675 unsigned index = sel->info.output_semantic_index[i];
2676
2677 switch (name) {
2678 case TGSI_SEMANTIC_TESSINNER:
2679 case TGSI_SEMANTIC_TESSOUTER:
2680 case TGSI_SEMANTIC_PATCH:
2681 sel->patch_outputs_written |= 1ull << si_shader_io_get_unique_index_patch(name, index);
2682 break;
2683
2684 case TGSI_SEMANTIC_GENERIC:
2685 /* don't process indices the function can't handle */
2686 if (index >= SI_MAX_IO_GENERIC)
2687 break;
2688 /* fall through */
2689 default:
2690 sel->outputs_written |= 1ull << si_shader_io_get_unique_index(name, index, false);
2691 sel->outputs_written_before_ps |= 1ull
2692 << si_shader_io_get_unique_index(name, index, true);
2693 break;
2694 case TGSI_SEMANTIC_EDGEFLAG:
2695 break;
2696 }
2697 }
2698 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2699 sel->lshs_vertex_stride = sel->esgs_itemsize;
2700
2701 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2702 * will start on a different bank. (except for the maximum 32*16).
2703 */
2704 if (sel->lshs_vertex_stride < 32 * 16)
2705 sel->lshs_vertex_stride += 4;
2706
2707 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2708 * conflicts, i.e. each vertex will start at a different bank.
2709 */
2710 if (sctx->chip_class >= GFX9)
2711 sel->esgs_itemsize += 4;
2712
2713 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2714
2715 /* Only for TES: */
2716 if (sel->info.properties[TGSI_PROPERTY_TES_POINT_MODE])
2717 sel->rast_prim = PIPE_PRIM_POINTS;
2718 else if (sel->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
2719 sel->rast_prim = PIPE_PRIM_LINE_STRIP;
2720 else
2721 sel->rast_prim = PIPE_PRIM_TRIANGLES;
2722 break;
2723
2724 case MESA_SHADER_FRAGMENT:
2725 for (i = 0; i < sel->info.num_inputs; i++) {
2726 unsigned name = sel->info.input_semantic_name[i];
2727 unsigned index = sel->info.input_semantic_index[i];
2728
2729 switch (name) {
2730 case TGSI_SEMANTIC_GENERIC:
2731 /* don't process indices the function can't handle */
2732 if (index >= SI_MAX_IO_GENERIC)
2733 break;
2734 /* fall through */
2735 default:
2736 sel->inputs_read |= 1ull << si_shader_io_get_unique_index(name, index, true);
2737 break;
2738 case TGSI_SEMANTIC_PCOORD: /* ignore this */
2739 break;
2740 }
2741 }
2742
2743 for (i = 0; i < 8; i++)
2744 if (sel->info.colors_written & (1 << i))
2745 sel->colors_written_4bit |= 0xf << (4 * i);
2746
2747 for (i = 0; i < sel->info.num_inputs; i++) {
2748 if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2749 int index = sel->info.input_semantic_index[i];
2750 sel->color_attr_index[index] = i;
2751 }
2752 }
2753 break;
2754 default:;
2755 }
2756
2757 sel->ngg_culling_allowed =
2758 sscreen->info.chip_class >= GFX10 &&
2759 sscreen->info.has_dedicated_vram &&
2760 sscreen->use_ngg_culling &&
2761 (sel->info.stage == MESA_SHADER_VERTEX ||
2762 (sel->info.stage == MESA_SHADER_TESS_EVAL &&
2763 (sscreen->always_use_ngg_culling_all ||
2764 sscreen->always_use_ngg_culling_tess))) &&
2765 sel->info.writes_position &&
2766 !sel->info.writes_viewport_index && /* cull only against viewport 0 */
2767 !sel->info.writes_memory && !sel->so.num_outputs &&
2768 !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] &&
2769 !sel->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
2770
2771 /* PA_CL_VS_OUT_CNTL */
2772 if (sctx->chip_class <= GFX9)
2773 sel->pa_cl_vs_out_cntl = si_get_vs_out_cntl(sel, false);
2774
2775 sel->clipdist_mask = sel->info.writes_clipvertex ? SIX_BITS : sel->info.clipdist_writemask;
2776 sel->culldist_mask = sel->info.culldist_writemask << sel->info.num_written_clipdistance;
2777
2778 /* DB_SHADER_CONTROL */
2779 sel->db_shader_control = S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2780 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2781 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2782 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2783
2784 switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2785 case TGSI_FS_DEPTH_LAYOUT_GREATER:
2786 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2787 break;
2788 case TGSI_FS_DEPTH_LAYOUT_LESS:
2789 sel->db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2790 break;
2791 }
2792
2793 /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2794 *
2795 * | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2796 * --|-----------|------------|------------|--------------------|-------------------|-------------
2797 * 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
2798 * 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
2799 * 2 | false | true | n/a | LateZ | 1 | 0
2800 * 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
2801 * 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
2802 *
2803 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2804 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2805 *
2806 * Don't use ReZ without profiling !!!
2807 *
2808 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2809 * shaders.
2810 */
2811 if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2812 /* Cases 3, 4. */
2813 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2814 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2815 S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2816 } else if (sel->info.writes_memory) {
2817 /* Case 2. */
2818 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) | S_02880C_EXEC_ON_HIER_FAIL(1);
2819 } else {
2820 /* Case 1. */
2821 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2822 }
2823
2824 if (sel->info.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE])
2825 sel->db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2826
2827 (void)simple_mtx_init(&sel->mutex, mtx_plain);
2828
2829 si_schedule_initial_compile(sctx, sel->info.stage, &sel->ready, &sel->compiler_ctx_state,
2830 sel, si_init_shader_selector_async);
2831 return sel;
2832 }
2833
2834 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
2835 {
2836 struct si_context *sctx = (struct si_context *)ctx;
2837 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2838 bool cache_hit;
2839 struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
2840 ctx, &sscreen->live_shader_cache, state, &cache_hit);
2841
2842 if (sel && cache_hit && sctx->debug.debug_message) {
2843 if (sel->main_shader_part)
2844 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug);
2845 if (sel->main_shader_part_ls)
2846 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug);
2847 if (sel->main_shader_part_es)
2848 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
2849 if (sel->main_shader_part_ngg)
2850 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug);
2851 if (sel->main_shader_part_ngg_es)
2852 si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug);
2853 }
2854 return sel;
2855 }
2856
2857 static void si_update_streamout_state(struct si_context *sctx)
2858 {
2859 struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2860
2861 if (!shader_with_so)
2862 return;
2863
2864 sctx->streamout.enabled_stream_buffers_mask = shader_with_so->enabled_streamout_buffer_mask;
2865 sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2866 }
2867
2868 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
2869 struct si_shader *old_hw_vs_variant,
2870 struct si_shader_selector *next_hw_vs,
2871 struct si_shader *next_hw_vs_variant)
2872 {
2873 if (next_hw_vs &&
2874 (!old_hw_vs ||
2875 old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2876 next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2877 old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2878 old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2879 old_hw_vs->culldist_mask != next_hw_vs->culldist_mask || !old_hw_vs_variant ||
2880 !next_hw_vs_variant ||
2881 old_hw_vs_variant->key.opt.clip_disable != next_hw_vs_variant->key.opt.clip_disable))
2882 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2883 }
2884
2885 static void si_update_common_shader_state(struct si_context *sctx)
2886 {
2887 sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->vs_shader.cso) ||
2888 si_shader_uses_bindless_samplers(sctx->gs_shader.cso) ||
2889 si_shader_uses_bindless_samplers(sctx->ps_shader.cso) ||
2890 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2891 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2892 sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->vs_shader.cso) ||
2893 si_shader_uses_bindless_images(sctx->gs_shader.cso) ||
2894 si_shader_uses_bindless_images(sctx->ps_shader.cso) ||
2895 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2896 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2897 sctx->do_update_shaders = true;
2898 }
2899
2900 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2901 {
2902 struct si_context *sctx = (struct si_context *)ctx;
2903 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2904 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2905 struct si_shader_selector *sel = state;
2906
2907 if (sctx->vs_shader.cso == sel)
2908 return;
2909
2910 sctx->vs_shader.cso = sel;
2911 sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2912 sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] : 0;
2913
2914 if (si_update_ngg(sctx))
2915 si_shader_change_notify(sctx);
2916
2917 si_update_common_shader_state(sctx);
2918 si_update_vs_viewport_state(sctx);
2919 si_set_active_descriptors_for_shader(sctx, sel);
2920 si_update_streamout_state(sctx);
2921 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2922 si_get_vs_state(sctx));
2923 }
2924
2925 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2926 {
2927 sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2928 (sctx->tes_shader.cso && sctx->tes_shader.cso->info.uses_primid) ||
2929 (sctx->tcs_shader.cso && sctx->tcs_shader.cso->info.uses_primid) ||
2930 (sctx->gs_shader.cso && sctx->gs_shader.cso->info.uses_primid) ||
2931 (sctx->ps_shader.cso && !sctx->gs_shader.cso && sctx->ps_shader.cso->info.uses_primid);
2932 }
2933
2934 bool si_update_ngg(struct si_context *sctx)
2935 {
2936 if (!sctx->screen->use_ngg) {
2937 assert(!sctx->ngg);
2938 return false;
2939 }
2940
2941 bool new_ngg = true;
2942
2943 if (sctx->gs_shader.cso && sctx->tes_shader.cso && sctx->gs_shader.cso->tess_turns_off_ngg) {
2944 new_ngg = false;
2945 } else if (!sctx->screen->use_ngg_streamout) {
2946 struct si_shader_selector *last = si_get_vs(sctx)->cso;
2947
2948 if ((last && last->so.num_outputs) || sctx->streamout.prims_gen_query_enabled)
2949 new_ngg = false;
2950 }
2951
2952 if (new_ngg != sctx->ngg) {
2953 /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
2954 * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
2955 * pointers are set.
2956 */
2957 if (sctx->chip_class == GFX10 && !new_ngg)
2958 sctx->flags |= SI_CONTEXT_VGT_FLUSH;
2959
2960 sctx->ngg = new_ngg;
2961 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2962 return true;
2963 }
2964 return false;
2965 }
2966
2967 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2968 {
2969 struct si_context *sctx = (struct si_context *)ctx;
2970 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2971 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2972 struct si_shader_selector *sel = state;
2973 bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2974 bool ngg_changed;
2975
2976 if (sctx->gs_shader.cso == sel)
2977 return;
2978
2979 sctx->gs_shader.cso = sel;
2980 sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2981 sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2982
2983 si_update_common_shader_state(sctx);
2984 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
2985
2986 ngg_changed = si_update_ngg(sctx);
2987 if (ngg_changed || enable_changed)
2988 si_shader_change_notify(sctx);
2989 if (enable_changed) {
2990 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2991 si_update_tess_uses_prim_id(sctx);
2992 }
2993 si_update_vs_viewport_state(sctx);
2994 si_set_active_descriptors_for_shader(sctx, sel);
2995 si_update_streamout_state(sctx);
2996 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
2997 si_get_vs_state(sctx));
2998 }
2999
3000 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3001 {
3002 struct si_context *sctx = (struct si_context *)ctx;
3003 struct si_shader_selector *sel = state;
3004 bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
3005
3006 if (sctx->tcs_shader.cso == sel)
3007 return;
3008
3009 sctx->tcs_shader.cso = sel;
3010 sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
3011 si_update_tess_uses_prim_id(sctx);
3012
3013 si_update_common_shader_state(sctx);
3014
3015 if (enable_changed)
3016 sctx->last_tcs = NULL; /* invalidate derived tess state */
3017
3018 si_set_active_descriptors_for_shader(sctx, sel);
3019 }
3020
3021 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3022 {
3023 struct si_context *sctx = (struct si_context *)ctx;
3024 struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3025 struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
3026 struct si_shader_selector *sel = state;
3027 bool enable_changed = !!sctx->tes_shader.cso != !!sel;
3028
3029 if (sctx->tes_shader.cso == sel)
3030 return;
3031
3032 sctx->tes_shader.cso = sel;
3033 sctx->tes_shader.current = sel ? sel->first_variant : NULL;
3034 sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3035 si_update_tess_uses_prim_id(sctx);
3036
3037 si_update_common_shader_state(sctx);
3038 sctx->last_gs_out_prim = -1; /* reset this so that it gets updated */
3039
3040 bool ngg_changed = si_update_ngg(sctx);
3041 if (ngg_changed || enable_changed)
3042 si_shader_change_notify(sctx);
3043 if (enable_changed)
3044 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3045 si_update_vs_viewport_state(sctx);
3046 si_set_active_descriptors_for_shader(sctx, sel);
3047 si_update_streamout_state(sctx);
3048 si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, si_get_vs(sctx)->cso,
3049 si_get_vs_state(sctx));
3050 }
3051
3052 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3053 {
3054 struct si_context *sctx = (struct si_context *)ctx;
3055 struct si_shader_selector *old_sel = sctx->ps_shader.cso;
3056 struct si_shader_selector *sel = state;
3057
3058 /* skip if supplied shader is one already in use */
3059 if (old_sel == sel)
3060 return;
3061
3062 sctx->ps_shader.cso = sel;
3063 sctx->ps_shader.current = sel ? sel->first_variant : NULL;
3064
3065 si_update_common_shader_state(sctx);
3066 if (sel) {
3067 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3068 si_update_tess_uses_prim_id(sctx);
3069
3070 if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3071 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3072
3073 if (sctx->screen->has_out_of_order_rast &&
3074 (!old_sel || old_sel->info.writes_memory != sel->info.writes_memory ||
3075 old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
3076 sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
3077 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3078 }
3079 si_set_active_descriptors_for_shader(sctx, sel);
3080 si_update_ps_colorbuf0_slot(sctx);
3081 }
3082
3083 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3084 {
3085 if (shader->is_optimized) {
3086 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority, &shader->ready);
3087 }
3088
3089 util_queue_fence_destroy(&shader->ready);
3090
3091 if (shader->pm4) {
3092 /* If destroyed shaders were not unbound, the next compiled
3093 * shader variant could get the same pointer address and so
3094 * binding it to the same shader stage would be considered
3095 * a no-op, causing random behavior.
3096 */
3097 switch (shader->selector->info.stage) {
3098 case MESA_SHADER_VERTEX:
3099 if (shader->key.as_ls) {
3100 assert(sctx->chip_class <= GFX8);
3101 si_pm4_delete_state(sctx, ls, shader->pm4);
3102 } else if (shader->key.as_es) {
3103 assert(sctx->chip_class <= GFX8);
3104 si_pm4_delete_state(sctx, es, shader->pm4);
3105 } else if (shader->key.as_ngg) {
3106 si_pm4_delete_state(sctx, gs, shader->pm4);
3107 } else {
3108 si_pm4_delete_state(sctx, vs, shader->pm4);
3109 }
3110 break;
3111 case MESA_SHADER_TESS_CTRL:
3112 si_pm4_delete_state(sctx, hs, shader->pm4);
3113 break;
3114 case MESA_SHADER_TESS_EVAL:
3115 if (shader->key.as_es) {
3116 assert(sctx->chip_class <= GFX8);
3117 si_pm4_delete_state(sctx, es, shader->pm4);
3118 } else if (shader->key.as_ngg) {
3119 si_pm4_delete_state(sctx, gs, shader->pm4);
3120 } else {
3121 si_pm4_delete_state(sctx, vs, shader->pm4);
3122 }
3123 break;
3124 case MESA_SHADER_GEOMETRY:
3125 if (shader->is_gs_copy_shader)
3126 si_pm4_delete_state(sctx, vs, shader->pm4);
3127 else
3128 si_pm4_delete_state(sctx, gs, shader->pm4);
3129 break;
3130 case MESA_SHADER_FRAGMENT:
3131 si_pm4_delete_state(sctx, ps, shader->pm4);
3132 break;
3133 default:;
3134 }
3135 }
3136
3137 si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3138 si_shader_destroy(shader);
3139 free(shader);
3140 }
3141
3142 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
3143 {
3144 struct si_context *sctx = (struct si_context *)ctx;
3145 struct si_shader_selector *sel = (struct si_shader_selector *)cso;
3146 struct si_shader *p = sel->first_variant, *c;
3147 struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
3148 [MESA_SHADER_VERTEX] = &sctx->vs_shader,
3149 [MESA_SHADER_TESS_CTRL] = &sctx->tcs_shader,
3150 [MESA_SHADER_TESS_EVAL] = &sctx->tes_shader,
3151 [MESA_SHADER_GEOMETRY] = &sctx->gs_shader,
3152 [MESA_SHADER_FRAGMENT] = &sctx->ps_shader,
3153 };
3154
3155 util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3156
3157 if (current_shader[sel->info.stage]->cso == sel) {
3158 current_shader[sel->info.stage]->cso = NULL;
3159 current_shader[sel->info.stage]->current = NULL;
3160 }
3161
3162 while (p) {
3163 c = p->next_variant;
3164 si_delete_shader(sctx, p);
3165 p = c;
3166 }
3167
3168 if (sel->main_shader_part)
3169 si_delete_shader(sctx, sel->main_shader_part);
3170 if (sel->main_shader_part_ls)
3171 si_delete_shader(sctx, sel->main_shader_part_ls);
3172 if (sel->main_shader_part_es)
3173 si_delete_shader(sctx, sel->main_shader_part_es);
3174 if (sel->main_shader_part_ngg)
3175 si_delete_shader(sctx, sel->main_shader_part_ngg);
3176 if (sel->gs_copy_shader)
3177 si_delete_shader(sctx, sel->gs_copy_shader);
3178
3179 util_queue_fence_destroy(&sel->ready);
3180 simple_mtx_destroy(&sel->mutex);
3181 ralloc_free(sel->nir);
3182 free(sel->nir_binary);
3183 free(sel);
3184 }
3185
3186 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3187 {
3188 struct si_context *sctx = (struct si_context *)ctx;
3189 struct si_shader_selector *sel = (struct si_shader_selector *)state;
3190
3191 si_shader_selector_reference(sctx, &sel, NULL);
3192 }
3193
3194 static unsigned si_get_ps_input_cntl(struct si_context *sctx, struct si_shader *vs, unsigned name,
3195 unsigned index, unsigned interpolate)
3196 {
3197 struct si_shader_info *vsinfo = &vs->selector->info;
3198 unsigned j, offset, ps_input_cntl = 0;
3199
3200 if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
3201 (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade) || name == TGSI_SEMANTIC_PRIMID)
3202 ps_input_cntl |= S_028644_FLAT_SHADE(1);
3203
3204 if (name == TGSI_SEMANTIC_PCOORD ||
3205 (name == TGSI_SEMANTIC_TEXCOORD && sctx->sprite_coord_enable & (1 << index))) {
3206 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
3207 }
3208
3209 for (j = 0; j < vsinfo->num_outputs; j++) {
3210 if (name == vsinfo->output_semantic_name[j] && index == vsinfo->output_semantic_index[j]) {
3211 offset = vs->info.vs_output_param_offset[j];
3212
3213 if (offset <= AC_EXP_PARAM_OFFSET_31) {
3214 /* The input is loaded from parameter memory. */
3215 ps_input_cntl |= S_028644_OFFSET(offset);
3216 } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3217 if (offset == AC_EXP_PARAM_UNDEFINED) {
3218 /* This can happen with depth-only rendering. */
3219 offset = 0;
3220 } else {
3221 /* The input is a DEFAULT_VAL constant. */
3222 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
3223 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
3224 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
3225 }
3226
3227 ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
3228 }
3229 break;
3230 }
3231 }
3232
3233 if (j == vsinfo->num_outputs && name == TGSI_SEMANTIC_PRIMID)
3234 /* PrimID is written after the last output when HW VS is used. */
3235 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
3236 else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
3237 /* No corresponding output found, load defaults into input.
3238 * Don't set any other bits.
3239 * (FLAT_SHADE=1 completely changes behavior) */
3240 ps_input_cntl = S_028644_OFFSET(0x20);
3241 /* D3D 9 behaviour. GL is undefined */
3242 if (name == TGSI_SEMANTIC_COLOR && index == 0)
3243 ps_input_cntl |= S_028644_DEFAULT_VAL(3);
3244 }
3245 return ps_input_cntl;
3246 }
3247
3248 static void si_emit_spi_map(struct si_context *sctx)
3249 {
3250 struct si_shader *ps = sctx->ps_shader.current;
3251 struct si_shader *vs = si_get_vs_state(sctx);
3252 struct si_shader_info *psinfo = ps ? &ps->selector->info : NULL;
3253 unsigned i, num_interp, num_written = 0;
3254 unsigned spi_ps_input_cntl[32];
3255
3256 if (!ps || !ps->selector->info.num_inputs)
3257 return;
3258
3259 num_interp = si_get_ps_num_interp(ps);
3260 assert(num_interp > 0);
3261
3262 for (i = 0; i < psinfo->num_inputs; i++) {
3263 unsigned name = psinfo->input_semantic_name[i];
3264 unsigned index = psinfo->input_semantic_index[i];
3265 unsigned interpolate = psinfo->input_interpolate[i];
3266
3267 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name, index, interpolate);
3268 }
3269
3270 if (ps->key.part.ps.prolog.color_two_side) {
3271 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
3272
3273 for (i = 0; i < 2; i++) {
3274 if (!(psinfo->colors_read & (0xf << (i * 4))))
3275 continue;
3276
3277 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, bcol, i,
3278 psinfo->color_interpolate[i]);
3279 }
3280 }
3281 assert(num_interp == num_written);
3282
3283 /* R_028644_SPI_PS_INPUT_CNTL_0 */
3284 /* Dota 2: Only ~16% of SPI map updates set different values. */
3285 /* Talos: Only ~9% of SPI map updates set different values. */
3286 unsigned initial_cdw = sctx->gfx_cs->current.cdw;
3287 radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
3288 sctx->tracked_regs.spi_ps_input_cntl, num_interp);
3289
3290 if (initial_cdw != sctx->gfx_cs->current.cdw)
3291 sctx->context_roll = true;
3292 }
3293
3294 /**
3295 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3296 */
3297 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx)
3298 {
3299 /* We shouldn't get here if registers are shadowed. */
3300 assert(!sctx->shadowed_regs);
3301
3302 if (sctx->cs_preamble_has_vgt_flush)
3303 return;
3304
3305 /* Done by Vulkan before VGT_FLUSH. */
3306 si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3307 si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3308
3309 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3310 si_pm4_cmd_add(sctx->cs_preamble_state, PKT3(PKT3_EVENT_WRITE, 0, 0));
3311 si_pm4_cmd_add(sctx->cs_preamble_state, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3312 sctx->cs_preamble_has_vgt_flush = true;
3313 }
3314
3315 /**
3316 * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3317 */
3318 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
3319 {
3320 /* This is required before VGT_FLUSH. */
3321 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3322 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3323
3324 /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3325 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3326 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3327 }
3328
3329 /* Initialize state related to ESGS / GSVS ring buffers */
3330 static bool si_update_gs_ring_buffers(struct si_context *sctx)
3331 {
3332 struct si_shader_selector *es =
3333 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
3334 struct si_shader_selector *gs = sctx->gs_shader.cso;
3335 struct si_pm4_state *pm4;
3336
3337 /* Chip constants. */
3338 unsigned num_se = sctx->screen->info.max_se;
3339 unsigned wave_size = 64;
3340 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3341 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3342 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3343 */
3344 unsigned gs_vertex_reuse = (sctx->chip_class >= GFX8 ? 32 : 16) * num_se;
3345 unsigned alignment = 256 * num_se;
3346 /* The maximum size is 63.999 MB per SE. */
3347 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3348
3349 /* Calculate the minimum size. */
3350 unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse * wave_size, alignment);
3351
3352 /* These are recommended sizes, not minimum sizes. */
3353 unsigned esgs_ring_size =
3354 max_gs_waves * 2 * wave_size * es->esgs_itemsize * gs->gs_input_verts_per_prim;
3355 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->max_gsvs_emit_size;
3356
3357 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3358 esgs_ring_size = align(esgs_ring_size, alignment);
3359 gsvs_ring_size = align(gsvs_ring_size, alignment);
3360
3361 esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3362 gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3363
3364 /* Some rings don't have to be allocated if shaders don't use them.
3365 * (e.g. no varyings between ES and GS or GS and VS)
3366 *
3367 * GFX9 doesn't have the ESGS ring.
3368 */
3369 bool update_esgs = sctx->chip_class <= GFX8 && esgs_ring_size &&
3370 (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
3371 bool update_gsvs =
3372 gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
3373
3374 if (!update_esgs && !update_gsvs)
3375 return true;
3376
3377 if (update_esgs) {
3378 pipe_resource_reference(&sctx->esgs_ring, NULL);
3379 sctx->esgs_ring =
3380 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3381 esgs_ring_size, sctx->screen->info.pte_fragment_size);
3382 if (!sctx->esgs_ring)
3383 return false;
3384 }
3385
3386 if (update_gsvs) {
3387 pipe_resource_reference(&sctx->gsvs_ring, NULL);
3388 sctx->gsvs_ring =
3389 pipe_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
3390 gsvs_ring_size, sctx->screen->info.pte_fragment_size);
3391 if (!sctx->gsvs_ring)
3392 return false;
3393 }
3394
3395 /* Set ring bindings. */
3396 if (sctx->esgs_ring) {
3397 assert(sctx->chip_class <= GFX8);
3398 si_set_ring_buffer(sctx, SI_ES_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, true,
3399 true, 4, 64, 0);
3400 si_set_ring_buffer(sctx, SI_GS_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
3401 false, 0, 0, 0);
3402 }
3403 if (sctx->gsvs_ring) {
3404 si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
3405 false, 0, 0, 0);
3406 }
3407
3408 if (sctx->shadowed_regs) {
3409 /* These registers will be shadowed, so set them only once. */
3410 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3411
3412 assert(sctx->chip_class >= GFX7);
3413
3414 si_emit_vgt_flush(cs);
3415
3416 /* Set the GS registers. */
3417 if (sctx->esgs_ring) {
3418 assert(sctx->chip_class <= GFX8);
3419 radeon_set_uconfig_reg(cs, R_030900_VGT_ESGS_RING_SIZE,
3420 sctx->esgs_ring->width0 / 256);
3421 }
3422 if (sctx->gsvs_ring) {
3423 radeon_set_uconfig_reg(cs, R_030904_VGT_GSVS_RING_SIZE,
3424 sctx->gsvs_ring->width0 / 256);
3425 }
3426 return true;
3427 }
3428
3429 /* The codepath without register shadowing. */
3430 /* Create the "cs_preamble_gs_rings" state. */
3431 pm4 = CALLOC_STRUCT(si_pm4_state);
3432 if (!pm4)
3433 return false;
3434
3435 if (sctx->chip_class >= GFX7) {
3436 if (sctx->esgs_ring) {
3437 assert(sctx->chip_class <= GFX8);
3438 si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3439 }
3440 if (sctx->gsvs_ring)
3441 si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3442 } else {
3443 if (sctx->esgs_ring)
3444 si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE, sctx->esgs_ring->width0 / 256);
3445 if (sctx->gsvs_ring)
3446 si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE, sctx->gsvs_ring->width0 / 256);
3447 }
3448
3449 /* Set the state. */
3450 if (sctx->cs_preamble_gs_rings)
3451 si_pm4_free_state(sctx, sctx->cs_preamble_gs_rings, ~0);
3452 sctx->cs_preamble_gs_rings = pm4;
3453
3454 si_cs_preamble_add_vgt_flush(sctx);
3455
3456 /* Flush the context to re-emit both cs_preamble states. */
3457 sctx->initial_gfx_cs_size = 0; /* force flush */
3458 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3459
3460 return true;
3461 }
3462
3463 static void si_shader_lock(struct si_shader *shader)
3464 {
3465 simple_mtx_lock(&shader->selector->mutex);
3466 if (shader->previous_stage_sel) {
3467 assert(shader->previous_stage_sel != shader->selector);
3468 simple_mtx_lock(&shader->previous_stage_sel->mutex);
3469 }
3470 }
3471
3472 static void si_shader_unlock(struct si_shader *shader)
3473 {
3474 if (shader->previous_stage_sel)
3475 simple_mtx_unlock(&shader->previous_stage_sel->mutex);
3476 simple_mtx_unlock(&shader->selector->mutex);
3477 }
3478
3479 /**
3480 * @returns 1 if \p sel has been updated to use a new scratch buffer
3481 * 0 if not
3482 * < 0 if there was a failure
3483 */
3484 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
3485 {
3486 uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
3487
3488 if (!shader)
3489 return 0;
3490
3491 /* This shader doesn't need a scratch buffer */
3492 if (shader->config.scratch_bytes_per_wave == 0)
3493 return 0;
3494
3495 /* Prevent race conditions when updating:
3496 * - si_shader::scratch_bo
3497 * - si_shader::binary::code
3498 * - si_shader::previous_stage::binary::code.
3499 */
3500 si_shader_lock(shader);
3501
3502 /* This shader is already configured to use the current
3503 * scratch buffer. */
3504 if (shader->scratch_bo == sctx->scratch_buffer) {
3505 si_shader_unlock(shader);
3506 return 0;
3507 }
3508
3509 assert(sctx->scratch_buffer);
3510
3511 /* Replace the shader bo with a new bo that has the relocs applied. */
3512 if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
3513 si_shader_unlock(shader);
3514 return -1;
3515 }
3516
3517 /* Update the shader state to use the new shader bo. */
3518 si_shader_init_pm4_state(sctx->screen, shader);
3519
3520 si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
3521
3522 si_shader_unlock(shader);
3523 return 1;
3524 }
3525
3526 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
3527 {
3528 return shader ? shader->config.scratch_bytes_per_wave : 0;
3529 }
3530
3531 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
3532 {
3533 if (!sctx->tes_shader.cso)
3534 return NULL; /* tessellation disabled */
3535
3536 return sctx->tcs_shader.cso ? sctx->tcs_shader.current : sctx->fixed_func_tcs_shader.current;
3537 }
3538
3539 static bool si_update_scratch_relocs(struct si_context *sctx)
3540 {
3541 struct si_shader *tcs = si_get_tcs_current(sctx);
3542 int r;
3543
3544 /* Update the shaders, so that they are using the latest scratch.
3545 * The scratch buffer may have been changed since these shaders were
3546 * last used, so we still need to try to update them, even if they
3547 * require scratch buffers smaller than the current size.
3548 */
3549 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
3550 if (r < 0)
3551 return false;
3552 if (r == 1)
3553 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3554
3555 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
3556 if (r < 0)
3557 return false;
3558 if (r == 1)
3559 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3560
3561 r = si_update_scratch_buffer(sctx, tcs);
3562 if (r < 0)
3563 return false;
3564 if (r == 1)
3565 si_pm4_bind_state(sctx, hs, tcs->pm4);
3566
3567 /* VS can be bound as LS, ES, or VS. */
3568 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
3569 if (r < 0)
3570 return false;
3571 if (r == 1) {
3572 if (sctx->vs_shader.current->key.as_ls)
3573 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3574 else if (sctx->vs_shader.current->key.as_es)
3575 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3576 else if (sctx->vs_shader.current->key.as_ngg)
3577 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3578 else
3579 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3580 }
3581
3582 /* TES can be bound as ES or VS. */
3583 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
3584 if (r < 0)
3585 return false;
3586 if (r == 1) {
3587 if (sctx->tes_shader.current->key.as_es)
3588 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3589 else if (sctx->tes_shader.current->key.as_ngg)
3590 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3591 else
3592 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3593 }
3594
3595 return true;
3596 }
3597
3598 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3599 {
3600 /* SPI_TMPRING_SIZE.WAVESIZE must be constant for each scratch buffer.
3601 * There are 2 cases to handle:
3602 *
3603 * - If the current needed size is less than the maximum seen size,
3604 * use the maximum seen size, so that WAVESIZE remains the same.
3605 *
3606 * - If the current needed size is greater than the maximum seen size,
3607 * the scratch buffer is reallocated, so we can increase WAVESIZE.
3608 *
3609 * Shaders that set SCRATCH_EN=0 don't allocate scratch space.
3610 * Otherwise, the number of waves that can use scratch is
3611 * SPI_TMPRING_SIZE.WAVES.
3612 */
3613 unsigned bytes = 0;
3614
3615 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
3616 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
3617 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
3618
3619 if (sctx->tes_shader.cso) {
3620 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
3621 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(si_get_tcs_current(sctx)));
3622 }
3623
3624 sctx->max_seen_scratch_bytes_per_wave = MAX2(sctx->max_seen_scratch_bytes_per_wave, bytes);
3625
3626 unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave * sctx->scratch_waves;
3627 unsigned spi_tmpring_size;
3628
3629 if (scratch_needed_size > 0) {
3630 if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
3631 /* Create a bigger scratch buffer */
3632 si_resource_reference(&sctx->scratch_buffer, NULL);
3633
3634 sctx->scratch_buffer = si_aligned_buffer_create(
3635 &sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT, scratch_needed_size,
3636 sctx->screen->info.pte_fragment_size);
3637 if (!sctx->scratch_buffer)
3638 return false;
3639
3640 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3641 si_context_add_resource_size(sctx, &sctx->scratch_buffer->b.b);
3642 }
3643
3644 if (!si_update_scratch_relocs(sctx))
3645 return false;
3646 }
3647
3648 /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3649 assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3650 "scratch size should already be aligned correctly.");
3651
3652 spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3653 S_0286E8_WAVESIZE(sctx->max_seen_scratch_bytes_per_wave >> 10);
3654 if (spi_tmpring_size != sctx->spi_tmpring_size) {
3655 sctx->spi_tmpring_size = spi_tmpring_size;
3656 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3657 }
3658 return true;
3659 }
3660
3661 static void si_init_tess_factor_ring(struct si_context *sctx)
3662 {
3663 assert(!sctx->tess_rings);
3664 assert(((sctx->screen->tess_factor_ring_size / 4) & C_030938_SIZE) == 0);
3665
3666 /* The address must be aligned to 2^19, because the shader only
3667 * receives the high 13 bits.
3668 */
3669 sctx->tess_rings = pipe_aligned_buffer_create(
3670 sctx->b.screen, SI_RESOURCE_FLAG_32BIT, PIPE_USAGE_DEFAULT,
3671 sctx->screen->tess_offchip_ring_size + sctx->screen->tess_factor_ring_size, 1 << 19);
3672 if (!sctx->tess_rings)
3673 return;
3674
3675 uint64_t factor_va =
3676 si_resource(sctx->tess_rings)->gpu_address + sctx->screen->tess_offchip_ring_size;
3677
3678 if (sctx->shadowed_regs) {
3679 /* These registers will be shadowed, so set them only once. */
3680 struct radeon_cmdbuf *cs = sctx->gfx_cs;
3681
3682 assert(sctx->chip_class >= GFX7);
3683
3684 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(sctx->tess_rings),
3685 RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3686 si_emit_vgt_flush(cs);
3687
3688 /* Set tessellation registers. */
3689 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
3690 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3691 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3692 if (sctx->chip_class >= GFX10) {
3693 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3694 S_030984_BASE_HI(factor_va >> 40));
3695 } else if (sctx->chip_class == GFX9) {
3696 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
3697 S_030944_BASE_HI(factor_va >> 40));
3698 }
3699 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM,
3700 sctx->screen->vgt_hs_offchip_param);
3701 return;
3702 }
3703
3704 /* The codepath without register shadowing. */
3705 si_cs_preamble_add_vgt_flush(sctx);
3706
3707 /* Append these registers to the init config state. */
3708 if (sctx->chip_class >= GFX7) {
3709 si_pm4_set_reg(sctx->cs_preamble_state, R_030938_VGT_TF_RING_SIZE,
3710 S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3711 si_pm4_set_reg(sctx->cs_preamble_state, R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
3712 if (sctx->chip_class >= GFX10)
3713 si_pm4_set_reg(sctx->cs_preamble_state, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3714 S_030984_BASE_HI(factor_va >> 40));
3715 else if (sctx->chip_class == GFX9)
3716 si_pm4_set_reg(sctx->cs_preamble_state, R_030944_VGT_TF_MEMORY_BASE_HI,
3717 S_030944_BASE_HI(factor_va >> 40));
3718 si_pm4_set_reg(sctx->cs_preamble_state, R_03093C_VGT_HS_OFFCHIP_PARAM,
3719 sctx->screen->vgt_hs_offchip_param);
3720 } else {
3721 si_pm4_set_reg(sctx->cs_preamble_state, R_008988_VGT_TF_RING_SIZE,
3722 S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3723 si_pm4_set_reg(sctx->cs_preamble_state, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
3724 si_pm4_set_reg(sctx->cs_preamble_state, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3725 sctx->screen->vgt_hs_offchip_param);
3726 }
3727
3728 /* Flush the context to re-emit the cs_preamble state.
3729 * This is done only once in a lifetime of a context.
3730 */
3731 sctx->initial_gfx_cs_size = 0; /* force flush */
3732 si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3733 }
3734
3735 static struct si_pm4_state *si_build_vgt_shader_config(struct si_screen *screen,
3736 union si_vgt_stages_key key)
3737 {
3738 struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
3739 uint32_t stages = 0;
3740
3741 if (key.u.tess) {
3742 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3743
3744 if (key.u.gs)
3745 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
3746 else if (key.u.ngg)
3747 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
3748 else
3749 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3750 } else if (key.u.gs) {
3751 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
3752 } else if (key.u.ngg) {
3753 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
3754 }
3755
3756 if (key.u.ngg) {
3757 stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_GS_FAST_LAUNCH(key.u.ngg_gs_fast_launch) |
3758 S_028B54_NGG_WAVE_ID_EN(key.u.streamout) |
3759 S_028B54_PRIMGEN_PASSTHRU_EN(key.u.ngg_passthrough);
3760 } else if (key.u.gs)
3761 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3762
3763 if (screen->info.chip_class >= GFX9)
3764 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3765
3766 if (screen->info.chip_class >= GFX10 &&
3767 /* GS fast launch hangs with Wave64, so always use Wave32. */
3768 (screen->ge_wave_size == 32 || (key.u.ngg && key.u.ngg_gs_fast_launch))) {
3769 stages |= S_028B54_HS_W32_EN(1) |
3770 S_028B54_GS_W32_EN(key.u.ngg) | /* legacy GS only supports Wave64 */
3771 S_028B54_VS_W32_EN(1);
3772 }
3773
3774 si_pm4_set_reg(pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3775 return pm4;
3776 }
3777
3778 static void si_update_vgt_shader_config(struct si_context *sctx, union si_vgt_stages_key key)
3779 {
3780 struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index];
3781
3782 if (unlikely(!*pm4))
3783 *pm4 = si_build_vgt_shader_config(sctx->screen, key);
3784 si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3785 }
3786
3787 bool si_update_shaders(struct si_context *sctx)
3788 {
3789 struct pipe_context *ctx = (struct pipe_context *)sctx;
3790 struct si_compiler_ctx_state compiler_state;
3791 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3792 struct si_shader *old_vs = si_get_vs_state(sctx);
3793 bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3794 struct si_shader *old_ps = sctx->ps_shader.current;
3795 union si_vgt_stages_key key;
3796 unsigned old_spi_shader_col_format =
3797 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3798 int r;
3799
3800 if (!sctx->compiler.passes)
3801 si_init_compiler(sctx->screen, &sctx->compiler);
3802
3803 compiler_state.compiler = &sctx->compiler;
3804 compiler_state.debug = sctx->debug;
3805 compiler_state.is_debug_context = sctx->is_debug;
3806
3807 key.index = 0;
3808
3809 if (sctx->tes_shader.cso)
3810 key.u.tess = 1;
3811 if (sctx->gs_shader.cso)
3812 key.u.gs = 1;
3813
3814 if (sctx->ngg) {
3815 key.u.ngg = 1;
3816 key.u.streamout = !!si_get_vs(sctx)->cso->so.num_outputs;
3817 }
3818
3819 /* Update TCS and TES. */
3820 if (sctx->tes_shader.cso) {
3821 if (!sctx->tess_rings) {
3822 si_init_tess_factor_ring(sctx);
3823 if (!sctx->tess_rings)
3824 return false;
3825 }
3826
3827 if (sctx->tcs_shader.cso) {
3828 r = si_shader_select(ctx, &sctx->tcs_shader, key, &compiler_state);
3829 if (r)
3830 return false;
3831 si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3832 } else {
3833 if (!sctx->fixed_func_tcs_shader.cso) {
3834 sctx->fixed_func_tcs_shader.cso = si_create_fixed_func_tcs(sctx);
3835 if (!sctx->fixed_func_tcs_shader.cso)
3836 return false;
3837 }
3838
3839 r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader, key, &compiler_state);
3840 if (r)
3841 return false;
3842 si_pm4_bind_state(sctx, hs, sctx->fixed_func_tcs_shader.current->pm4);
3843 }
3844
3845 if (!sctx->gs_shader.cso || sctx->chip_class <= GFX8) {
3846 r = si_shader_select(ctx, &sctx->tes_shader, key, &compiler_state);
3847 if (r)
3848 return false;
3849
3850 if (sctx->gs_shader.cso) {
3851 /* TES as ES */
3852 assert(sctx->chip_class <= GFX8);
3853 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3854 } else if (key.u.ngg) {
3855 si_pm4_bind_state(sctx, gs, sctx->tes_shader.current->pm4);
3856 } else {
3857 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3858 }
3859 }
3860 } else {
3861 if (sctx->chip_class <= GFX8)
3862 si_pm4_bind_state(sctx, ls, NULL);
3863 si_pm4_bind_state(sctx, hs, NULL);
3864 }
3865
3866 /* Update GS. */
3867 if (sctx->gs_shader.cso) {
3868 r = si_shader_select(ctx, &sctx->gs_shader, key, &compiler_state);
3869 if (r)
3870 return false;
3871 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3872 if (!key.u.ngg) {
3873 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3874
3875 if (!si_update_gs_ring_buffers(sctx))
3876 return false;
3877 } else {
3878 si_pm4_bind_state(sctx, vs, NULL);
3879 }
3880 } else {
3881 if (!key.u.ngg) {
3882 si_pm4_bind_state(sctx, gs, NULL);
3883 if (sctx->chip_class <= GFX8)
3884 si_pm4_bind_state(sctx, es, NULL);
3885 }
3886 }
3887
3888 /* Update VS. */
3889 if ((!key.u.tess && !key.u.gs) || sctx->chip_class <= GFX8) {
3890 r = si_shader_select(ctx, &sctx->vs_shader, key, &compiler_state);
3891 if (r)
3892 return false;
3893
3894 if (!key.u.tess && !key.u.gs) {
3895 if (key.u.ngg) {
3896 si_pm4_bind_state(sctx, gs, sctx->vs_shader.current->pm4);
3897 si_pm4_bind_state(sctx, vs, NULL);
3898 } else {
3899 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3900 }
3901 } else if (sctx->tes_shader.cso) {
3902 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3903 } else {
3904 assert(sctx->gs_shader.cso);
3905 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3906 }
3907 }
3908
3909 /* This must be done after the shader variant is selected. */
3910 if (sctx->ngg) {
3911 struct si_shader *vs = si_get_vs(sctx)->current;
3912
3913 key.u.ngg_passthrough = gfx10_is_ngg_passthrough(vs);
3914 key.u.ngg_gs_fast_launch = !!(vs->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL);
3915 }
3916
3917 si_update_vgt_shader_config(sctx, key);
3918
3919 if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3920 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3921
3922 if (sctx->ps_shader.cso) {
3923 unsigned db_shader_control;
3924
3925 r = si_shader_select(ctx, &sctx->ps_shader, key, &compiler_state);
3926 if (r)
3927 return false;
3928 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3929
3930 db_shader_control = sctx->ps_shader.cso->db_shader_control |
3931 S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3932
3933 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3934 (key.u.ngg && si_pm4_state_changed(sctx, gs)) ||
3935 sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3936 sctx->flatshade != rs->flatshade) {
3937 sctx->sprite_coord_enable = rs->sprite_coord_enable;
3938 sctx->flatshade = rs->flatshade;
3939 si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3940 }
3941
3942 if (sctx->screen->info.rbplus_allowed && si_pm4_state_changed(sctx, ps) &&
3943 (!old_ps || old_spi_shader_col_format !=
3944 sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3945 si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3946
3947 if (sctx->ps_db_shader_control != db_shader_control) {
3948 sctx->ps_db_shader_control = db_shader_control;
3949 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3950 if (sctx->screen->dpbb_allowed)
3951 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3952 }
3953
3954 if (sctx->smoothing_enabled !=
3955 sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3956 sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3957 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3958
3959 if (sctx->chip_class == GFX6)
3960 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3961
3962 if (sctx->framebuffer.nr_samples <= 1)
3963 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3964 }
3965 }
3966
3967 if (si_pm4_state_enabled_and_changed(sctx, ls) || si_pm4_state_enabled_and_changed(sctx, hs) ||
3968 si_pm4_state_enabled_and_changed(sctx, es) || si_pm4_state_enabled_and_changed(sctx, gs) ||
3969 si_pm4_state_enabled_and_changed(sctx, vs) || si_pm4_state_enabled_and_changed(sctx, ps)) {
3970 if (!si_update_spi_tmpring_size(sctx))
3971 return false;
3972 }
3973
3974 if (sctx->chip_class >= GFX7) {
3975 if (si_pm4_state_enabled_and_changed(sctx, ls))
3976 sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3977 else if (!sctx->queued.named.ls)
3978 sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3979
3980 if (si_pm4_state_enabled_and_changed(sctx, hs))
3981 sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3982 else if (!sctx->queued.named.hs)
3983 sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3984
3985 if (si_pm4_state_enabled_and_changed(sctx, es))
3986 sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3987 else if (!sctx->queued.named.es)
3988 sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3989
3990 if (si_pm4_state_enabled_and_changed(sctx, gs))
3991 sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3992 else if (!sctx->queued.named.gs)
3993 sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3994
3995 if (si_pm4_state_enabled_and_changed(sctx, vs))
3996 sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3997 else if (!sctx->queued.named.vs)
3998 sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3999
4000 if (si_pm4_state_enabled_and_changed(sctx, ps))
4001 sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
4002 else if (!sctx->queued.named.ps)
4003 sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
4004 }
4005
4006 sctx->do_update_shaders = false;
4007 return true;
4008 }
4009
4010 static void si_emit_scratch_state(struct si_context *sctx)
4011 {
4012 struct radeon_cmdbuf *cs = sctx->gfx_cs;
4013
4014 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4015
4016 if (sctx->scratch_buffer) {
4017 radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->scratch_buffer, RADEON_USAGE_READWRITE,
4018 RADEON_PRIO_SCRATCH_BUFFER);
4019 }
4020 }
4021
4022 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
4023 {
4024 util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
4025 si_destroy_shader_selector);
4026 }
4027
4028 void si_init_shader_functions(struct si_context *sctx)
4029 {
4030 sctx->atoms.s.spi_map.emit = si_emit_spi_map;
4031 sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
4032
4033 sctx->b.create_vs_state = si_create_shader;
4034 sctx->b.create_tcs_state = si_create_shader;
4035 sctx->b.create_tes_state = si_create_shader;
4036 sctx->b.create_gs_state = si_create_shader;
4037 sctx->b.create_fs_state = si_create_shader;
4038
4039 sctx->b.bind_vs_state = si_bind_vs_shader;
4040 sctx->b.bind_tcs_state = si_bind_tcs_shader;
4041 sctx->b.bind_tes_state = si_bind_tes_shader;
4042 sctx->b.bind_gs_state = si_bind_gs_shader;
4043 sctx->b.bind_fs_state = si_bind_ps_shader;
4044
4045 sctx->b.delete_vs_state = si_delete_shader_selector;
4046 sctx->b.delete_tcs_state = si_delete_shader_selector;
4047 sctx->b.delete_tes_state = si_delete_shader_selector;
4048 sctx->b.delete_gs_state = si_delete_shader_selector;
4049 sctx->b.delete_fs_state = si_delete_shader_selector;
4050 }