radeonsi: remove redundant si_shader_selector::max_gs_stream
[mesa.git] / src / gallium / drivers / radeonsi / si_state_viewport.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_build_pm4.h"
26 #include "util/u_upload_mgr.h"
27 #include "util/u_viewport.h"
28
29 #define SI_MAX_SCISSOR 16384
30
31 void si_update_ngg_small_prim_precision(struct si_context *ctx)
32 {
33 if (!ctx->screen->use_ngg_culling)
34 return;
35
36 /* Set VS_STATE.SMALL_PRIM_PRECISION for NGG culling. */
37 unsigned num_samples = ctx->framebuffer.nr_samples;
38 unsigned quant_mode = ctx->viewports.as_scissor[0].quant_mode;
39 float precision;
40
41 if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
42 precision = num_samples / 4096.0;
43 else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
44 precision = num_samples / 1024.0;
45 else
46 precision = num_samples / 256.0;
47
48 ctx->current_vs_state &= C_VS_STATE_SMALL_PRIM_PRECISION;
49 ctx->current_vs_state |= S_VS_STATE_SMALL_PRIM_PRECISION(fui(precision) >> 23);
50 }
51
52 void si_get_small_prim_cull_info(struct si_context *sctx, struct si_small_prim_cull_info *out)
53 {
54 /* This is needed by the small primitive culling, because it's done
55 * in screen space.
56 */
57 struct si_small_prim_cull_info info;
58 unsigned num_samples = sctx->framebuffer.nr_samples;
59 assert(num_samples >= 1);
60
61 info.scale[0] = sctx->viewports.states[0].scale[0];
62 info.scale[1] = sctx->viewports.states[0].scale[1];
63 info.translate[0] = sctx->viewports.states[0].translate[0];
64 info.translate[1] = sctx->viewports.states[0].translate[1];
65
66 /* The viewport shouldn't flip the X axis for the small prim culling to work. */
67 assert(-info.scale[0] + info.translate[0] <= info.scale[0] + info.translate[0]);
68
69 /* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
70 * This is because the viewport transformation inverts the clip space
71 * bounding box, so min becomes max, which breaks small primitive
72 * culling.
73 */
74 if (sctx->viewports.y_inverted) {
75 info.scale[1] = -info.scale[1];
76 info.translate[1] = -info.translate[1];
77 }
78
79 /* Scale the framebuffer up, so that samples become pixels and small
80 * primitive culling is the same for all sample counts.
81 * This only works with the standard DX sample positions, because
82 * the samples are evenly spaced on both X and Y axes.
83 */
84 for (unsigned i = 0; i < 2; i++) {
85 info.scale[i] *= num_samples;
86 info.translate[i] *= num_samples;
87 }
88 *out = info;
89 }
90
91 static void si_set_scissor_states(struct pipe_context *pctx, unsigned start_slot,
92 unsigned num_scissors, const struct pipe_scissor_state *state)
93 {
94 struct si_context *ctx = (struct si_context *)pctx;
95 int i;
96
97 for (i = 0; i < num_scissors; i++)
98 ctx->scissors[start_slot + i] = state[i];
99
100 if (!ctx->queued.named.rasterizer->scissor_enable)
101 return;
102
103 si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
104 }
105
106 /* Since the guard band disables clipping, we have to clip per-pixel
107 * using a scissor.
108 */
109 static void si_get_scissor_from_viewport(struct si_context *ctx,
110 const struct pipe_viewport_state *vp,
111 struct si_signed_scissor *scissor)
112 {
113 float tmp, minx, miny, maxx, maxy;
114
115 /* Convert (-1, -1) and (1, 1) from clip space into window space. */
116 minx = -vp->scale[0] + vp->translate[0];
117 miny = -vp->scale[1] + vp->translate[1];
118 maxx = vp->scale[0] + vp->translate[0];
119 maxy = vp->scale[1] + vp->translate[1];
120
121 /* Handle inverted viewports. */
122 if (minx > maxx) {
123 tmp = minx;
124 minx = maxx;
125 maxx = tmp;
126 }
127 if (miny > maxy) {
128 tmp = miny;
129 miny = maxy;
130 maxy = tmp;
131 }
132
133 /* Convert to integer and round up the max bounds. */
134 scissor->minx = minx;
135 scissor->miny = miny;
136 scissor->maxx = ceilf(maxx);
137 scissor->maxy = ceilf(maxy);
138 }
139
140 static void si_clamp_scissor(struct si_context *ctx, struct pipe_scissor_state *out,
141 struct si_signed_scissor *scissor)
142 {
143 out->minx = CLAMP(scissor->minx, 0, SI_MAX_SCISSOR);
144 out->miny = CLAMP(scissor->miny, 0, SI_MAX_SCISSOR);
145 out->maxx = CLAMP(scissor->maxx, 0, SI_MAX_SCISSOR);
146 out->maxy = CLAMP(scissor->maxy, 0, SI_MAX_SCISSOR);
147 }
148
149 static void si_clip_scissor(struct pipe_scissor_state *out, struct pipe_scissor_state *clip)
150 {
151 out->minx = MAX2(out->minx, clip->minx);
152 out->miny = MAX2(out->miny, clip->miny);
153 out->maxx = MIN2(out->maxx, clip->maxx);
154 out->maxy = MIN2(out->maxy, clip->maxy);
155 }
156
157 static void si_scissor_make_union(struct si_signed_scissor *out, struct si_signed_scissor *in)
158 {
159 out->minx = MIN2(out->minx, in->minx);
160 out->miny = MIN2(out->miny, in->miny);
161 out->maxx = MAX2(out->maxx, in->maxx);
162 out->maxy = MAX2(out->maxy, in->maxy);
163 out->quant_mode = MIN2(out->quant_mode, in->quant_mode);
164 }
165
166 static void si_emit_one_scissor(struct si_context *ctx, struct radeon_cmdbuf *cs,
167 struct si_signed_scissor *vp_scissor,
168 struct pipe_scissor_state *scissor)
169 {
170 struct pipe_scissor_state final;
171
172 if (ctx->vs_disables_clipping_viewport) {
173 final.minx = final.miny = 0;
174 final.maxx = final.maxy = SI_MAX_SCISSOR;
175 } else {
176 si_clamp_scissor(ctx, &final, vp_scissor);
177 }
178
179 if (scissor)
180 si_clip_scissor(&final, scissor);
181
182 /* Workaround for a hw bug on GFX6 that occurs when PA_SU_HARDWARE_-
183 * SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0.
184 */
185 if (ctx->chip_class == GFX6 && (final.maxx == 0 || final.maxy == 0)) {
186 radeon_emit(cs, S_028250_TL_X(1) | S_028250_TL_Y(1) | S_028250_WINDOW_OFFSET_DISABLE(1));
187 radeon_emit(cs, S_028254_BR_X(1) | S_028254_BR_Y(1));
188 return;
189 }
190
191 radeon_emit(cs, S_028250_TL_X(final.minx) | S_028250_TL_Y(final.miny) |
192 S_028250_WINDOW_OFFSET_DISABLE(1));
193 radeon_emit(cs, S_028254_BR_X(final.maxx) | S_028254_BR_Y(final.maxy));
194 }
195
196 #define MAX_PA_SU_HARDWARE_SCREEN_OFFSET 8176
197
198 static void si_emit_guardband(struct si_context *ctx)
199 {
200 const struct si_state_rasterizer *rs = ctx->queued.named.rasterizer;
201 struct si_signed_scissor vp_as_scissor;
202 struct pipe_viewport_state vp;
203 float left, top, right, bottom, max_range, guardband_x, guardband_y;
204 float discard_x, discard_y;
205
206 if (ctx->vs_writes_viewport_index) {
207 /* Shaders can draw to any viewport. Make a union of all
208 * viewports. */
209 vp_as_scissor = ctx->viewports.as_scissor[0];
210 for (unsigned i = 1; i < SI_MAX_VIEWPORTS; i++) {
211 si_scissor_make_union(&vp_as_scissor, &ctx->viewports.as_scissor[i]);
212 }
213 } else {
214 vp_as_scissor = ctx->viewports.as_scissor[0];
215 }
216
217 /* Blits don't set the viewport state. The vertex shader determines
218 * the viewport size by scaling the coordinates, so we don't know
219 * how large the viewport is. Assume the worst case.
220 */
221 if (ctx->vs_disables_clipping_viewport)
222 vp_as_scissor.quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
223
224 /* Determine the optimal hardware screen offset to center the viewport
225 * within the viewport range in order to maximize the guardband size.
226 */
227 int hw_screen_offset_x = (vp_as_scissor.maxx + vp_as_scissor.minx) / 2;
228 int hw_screen_offset_y = (vp_as_scissor.maxy + vp_as_scissor.miny) / 2;
229
230 /* GFX6-GFX7 need to align the offset to an ubertile consisting of all SEs. */
231 const unsigned hw_screen_offset_alignment =
232 ctx->chip_class >= GFX8 ? 16 : MAX2(ctx->screen->se_tile_repeat, 16);
233
234 /* Indexed by quantization modes */
235 static int max_viewport_size[] = {65535, 16383, 4095};
236
237 /* Ensure that the whole viewport stays representable in
238 * absolute coordinates.
239 * See comment in si_set_viewport_states.
240 */
241 assert(vp_as_scissor.maxx <= max_viewport_size[vp_as_scissor.quant_mode] &&
242 vp_as_scissor.maxy <= max_viewport_size[vp_as_scissor.quant_mode]);
243
244 hw_screen_offset_x = CLAMP(hw_screen_offset_x, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
245 hw_screen_offset_y = CLAMP(hw_screen_offset_y, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
246
247 /* Align the screen offset by dropping the low bits. */
248 hw_screen_offset_x &= ~(hw_screen_offset_alignment - 1);
249 hw_screen_offset_y &= ~(hw_screen_offset_alignment - 1);
250
251 /* Apply the offset to center the viewport and maximize the guardband. */
252 vp_as_scissor.minx -= hw_screen_offset_x;
253 vp_as_scissor.maxx -= hw_screen_offset_x;
254 vp_as_scissor.miny -= hw_screen_offset_y;
255 vp_as_scissor.maxy -= hw_screen_offset_y;
256
257 /* Reconstruct the viewport transformation from the scissor. */
258 vp.translate[0] = (vp_as_scissor.minx + vp_as_scissor.maxx) / 2.0;
259 vp.translate[1] = (vp_as_scissor.miny + vp_as_scissor.maxy) / 2.0;
260 vp.scale[0] = vp_as_scissor.maxx - vp.translate[0];
261 vp.scale[1] = vp_as_scissor.maxy - vp.translate[1];
262
263 /* Treat a 0x0 viewport as 1x1 to prevent division by zero. */
264 if (vp_as_scissor.minx == vp_as_scissor.maxx)
265 vp.scale[0] = 0.5;
266 if (vp_as_scissor.miny == vp_as_scissor.maxy)
267 vp.scale[1] = 0.5;
268
269 /* Find the biggest guard band that is inside the supported viewport
270 * range. The guard band is specified as a horizontal and vertical
271 * distance from (0,0) in clip space.
272 *
273 * This is done by applying the inverse viewport transformation
274 * on the viewport limits to get those limits in clip space.
275 *
276 * The viewport range is [-max_viewport_size/2, max_viewport_size/2].
277 */
278 assert(vp_as_scissor.quant_mode < ARRAY_SIZE(max_viewport_size));
279 max_range = max_viewport_size[vp_as_scissor.quant_mode] / 2;
280 left = (-max_range - vp.translate[0]) / vp.scale[0];
281 right = (max_range - vp.translate[0]) / vp.scale[0];
282 top = (-max_range - vp.translate[1]) / vp.scale[1];
283 bottom = (max_range - vp.translate[1]) / vp.scale[1];
284
285 assert(left <= -1 && top <= -1 && right >= 1 && bottom >= 1);
286
287 guardband_x = MIN2(-left, right);
288 guardband_y = MIN2(-top, bottom);
289
290 discard_x = 1.0;
291 discard_y = 1.0;
292
293 if (unlikely(util_prim_is_points_or_lines(ctx->current_rast_prim))) {
294 /* When rendering wide points or lines, we need to be more
295 * conservative about when to discard them entirely. */
296 float pixels;
297
298 if (ctx->current_rast_prim == PIPE_PRIM_POINTS)
299 pixels = rs->max_point_size;
300 else
301 pixels = rs->line_width;
302
303 /* Add half the point size / line width */
304 discard_x += pixels / (2.0 * vp.scale[0]);
305 discard_y += pixels / (2.0 * vp.scale[1]);
306
307 /* Discard primitives that would lie entirely outside the clip
308 * region. */
309 discard_x = MIN2(discard_x, guardband_x);
310 discard_y = MIN2(discard_y, guardband_y);
311 }
312
313 /* If any of the GB registers is updated, all of them must be updated.
314 * R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, R_028BEC_PA_CL_GB_VERT_DISC_ADJ
315 * R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ
316 */
317 unsigned initial_cdw = ctx->gfx_cs->current.cdw;
318 radeon_opt_set_context_reg4(ctx, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ,
319 SI_TRACKED_PA_CL_GB_VERT_CLIP_ADJ, fui(guardband_y), fui(discard_y),
320 fui(guardband_x), fui(discard_x));
321 radeon_opt_set_context_reg(ctx, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET,
322 SI_TRACKED_PA_SU_HARDWARE_SCREEN_OFFSET,
323 S_028234_HW_SCREEN_OFFSET_X(hw_screen_offset_x >> 4) |
324 S_028234_HW_SCREEN_OFFSET_Y(hw_screen_offset_y >> 4));
325 radeon_opt_set_context_reg(
326 ctx, R_028BE4_PA_SU_VTX_CNTL, SI_TRACKED_PA_SU_VTX_CNTL,
327 S_028BE4_PIX_CENTER(rs->half_pixel_center) |
328 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH + vp_as_scissor.quant_mode));
329 if (initial_cdw != ctx->gfx_cs->current.cdw)
330 ctx->context_roll = true;
331
332 si_update_ngg_small_prim_precision(ctx);
333 }
334
335 static void si_emit_scissors(struct si_context *ctx)
336 {
337 struct radeon_cmdbuf *cs = ctx->gfx_cs;
338 struct pipe_scissor_state *states = ctx->scissors;
339 bool scissor_enabled = ctx->queued.named.rasterizer->scissor_enable;
340
341 /* The simple case: Only 1 viewport is active. */
342 if (!ctx->vs_writes_viewport_index) {
343 struct si_signed_scissor *vp = &ctx->viewports.as_scissor[0];
344
345 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, 2);
346 si_emit_one_scissor(ctx, cs, vp, scissor_enabled ? &states[0] : NULL);
347 return;
348 }
349
350 /* All registers in the array need to be updated if any of them is changed.
351 * This is a hardware requirement.
352 */
353 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, SI_MAX_VIEWPORTS * 2);
354 for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
355 si_emit_one_scissor(ctx, cs, &ctx->viewports.as_scissor[i],
356 scissor_enabled ? &states[i] : NULL);
357 }
358 }
359
360 static void si_set_viewport_states(struct pipe_context *pctx, unsigned start_slot,
361 unsigned num_viewports, const struct pipe_viewport_state *state)
362 {
363 struct si_context *ctx = (struct si_context *)pctx;
364 int i;
365
366 for (i = 0; i < num_viewports; i++) {
367 unsigned index = start_slot + i;
368 struct si_signed_scissor *scissor = &ctx->viewports.as_scissor[index];
369
370 ctx->viewports.states[index] = state[i];
371
372 si_get_scissor_from_viewport(ctx, &state[i], scissor);
373
374 unsigned w = scissor->maxx - scissor->minx;
375 unsigned h = scissor->maxy - scissor->miny;
376 unsigned max_extent = MAX2(w, h);
377
378 int max_corner = MAX2(scissor->maxx, scissor->maxy);
379
380 unsigned center_x = (scissor->maxx + scissor->minx) / 2;
381 unsigned center_y = (scissor->maxy + scissor->miny) / 2;
382 unsigned max_center = MAX2(center_x, center_y);
383
384 /* PA_SU_HARDWARE_SCREEN_OFFSET can't center viewports whose
385 * center start farther than MAX_PA_SU_HARDWARE_SCREEN_OFFSET.
386 * (for example, a 1x1 viewport in the lower right corner of
387 * 16Kx16K) Such viewports need a greater guardband, so they
388 * have to use a worse quantization mode.
389 */
390 unsigned distance_off_center = MAX2(0, (int)max_center - MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
391 max_extent += distance_off_center;
392
393 /* Determine the best quantization mode (subpixel precision),
394 * but also leave enough space for the guardband.
395 *
396 * Note that primitive binning requires QUANT_MODE == 16_8 on Vega10
397 * and Raven1 for line and rectangle primitive types to work correctly.
398 * Always use 16_8 if primitive binning is possible to occur.
399 */
400 if ((ctx->family == CHIP_VEGA10 || ctx->family == CHIP_RAVEN) && ctx->screen->dpbb_allowed)
401 max_extent = 16384; /* Use QUANT_MODE == 16_8. */
402
403 /* Another constraint is that all coordinates in the viewport
404 * are representable in fixed point with respect to the
405 * surface origin.
406 *
407 * It means that PA_SU_HARDWARE_SCREEN_OFFSET can't be given
408 * an offset that would make the upper corner of the viewport
409 * greater than the maximum representable number post
410 * quantization, ie 2^quant_bits.
411 *
412 * This does not matter for 14.10 and 16.8 formats since the
413 * offset is already limited at 8k, but it means we can't use
414 * 12.12 if we are drawing to some pixels outside the lower
415 * 4k x 4k of the render target.
416 */
417
418 if (max_extent <= 1024 && max_corner < 4096) /* 4K scanline area for guardband */
419 scissor->quant_mode = SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH;
420 else if (max_extent <= 4096) /* 16K scanline area for guardband */
421 scissor->quant_mode = SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH;
422 else /* 64K scanline area for guardband */
423 scissor->quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
424 }
425
426 if (start_slot == 0) {
427 ctx->viewports.y_inverted =
428 -state->scale[1] + state->translate[1] > state->scale[1] + state->translate[1];
429 }
430
431 si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
432 si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
433 si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
434 }
435
436 static void si_emit_one_viewport(struct si_context *ctx, struct pipe_viewport_state *state)
437 {
438 struct radeon_cmdbuf *cs = ctx->gfx_cs;
439
440 radeon_emit(cs, fui(state->scale[0]));
441 radeon_emit(cs, fui(state->translate[0]));
442 radeon_emit(cs, fui(state->scale[1]));
443 radeon_emit(cs, fui(state->translate[1]));
444 radeon_emit(cs, fui(state->scale[2]));
445 radeon_emit(cs, fui(state->translate[2]));
446 }
447
448 static void si_emit_viewports(struct si_context *ctx)
449 {
450 struct radeon_cmdbuf *cs = ctx->gfx_cs;
451 struct pipe_viewport_state *states = ctx->viewports.states;
452
453 if (ctx->screen->use_ngg_culling) {
454 /* Set the viewport info for small primitive culling. */
455 struct si_small_prim_cull_info info;
456 si_get_small_prim_cull_info(ctx, &info);
457
458 if (memcmp(&info, &ctx->last_small_prim_cull_info, sizeof(info))) {
459 unsigned offset = 0;
460
461 /* Align to 256, because the address is shifted by 8 bits. */
462 u_upload_data(ctx->b.const_uploader, 0, sizeof(info), 256, &info, &offset,
463 (struct pipe_resource **)&ctx->small_prim_cull_info_buf);
464
465 ctx->small_prim_cull_info_address = ctx->small_prim_cull_info_buf->gpu_address + offset;
466 ctx->last_small_prim_cull_info = info;
467 ctx->small_prim_cull_info_dirty = true;
468 }
469
470 if (ctx->small_prim_cull_info_dirty) {
471 /* This will end up in SGPR6 as (value << 8), shifted by the hw. */
472 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, ctx->small_prim_cull_info_buf,
473 RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
474 radeon_set_sh_reg(ctx->gfx_cs, R_00B220_SPI_SHADER_PGM_LO_GS,
475 ctx->small_prim_cull_info_address >> 8);
476 ctx->small_prim_cull_info_dirty = false;
477 }
478 }
479
480 /* The simple case: Only 1 viewport is active. */
481 if (!ctx->vs_writes_viewport_index) {
482 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE, 6);
483 si_emit_one_viewport(ctx, &states[0]);
484 return;
485 }
486
487 /* All registers in the array need to be updated if any of them is changed.
488 * This is a hardware requirement.
489 */
490 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE + 0, SI_MAX_VIEWPORTS * 6);
491 for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++)
492 si_emit_one_viewport(ctx, &states[i]);
493 }
494
495 static inline void si_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
496 bool window_space_position, float *zmin, float *zmax)
497 {
498 if (window_space_position) {
499 *zmin = 0;
500 *zmax = 1;
501 return;
502 }
503 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
504 }
505
506 static void si_emit_depth_ranges(struct si_context *ctx)
507 {
508 struct radeon_cmdbuf *cs = ctx->gfx_cs;
509 struct pipe_viewport_state *states = ctx->viewports.states;
510 bool clip_halfz = ctx->queued.named.rasterizer->clip_halfz;
511 bool window_space = ctx->vs_disables_clipping_viewport;
512 float zmin, zmax;
513
514 /* The simple case: Only 1 viewport is active. */
515 if (!ctx->vs_writes_viewport_index) {
516 si_viewport_zmin_zmax(&states[0], clip_halfz, window_space, &zmin, &zmax);
517
518 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, 2);
519 radeon_emit(cs, fui(zmin));
520 radeon_emit(cs, fui(zmax));
521 return;
522 }
523
524 /* All registers in the array need to be updated if any of them is changed.
525 * This is a hardware requirement.
526 */
527 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, SI_MAX_VIEWPORTS * 2);
528 for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
529 si_viewport_zmin_zmax(&states[i], clip_halfz, window_space, &zmin, &zmax);
530 radeon_emit(cs, fui(zmin));
531 radeon_emit(cs, fui(zmax));
532 }
533 }
534
535 static void si_emit_viewport_states(struct si_context *ctx)
536 {
537 si_emit_viewports(ctx);
538 si_emit_depth_ranges(ctx);
539 }
540
541 /**
542 * This reacts to 2 state changes:
543 * - VS.writes_viewport_index
544 * - VS output position in window space (enable/disable)
545 *
546 * Normally, we only emit 1 viewport and 1 scissor if no shader is using
547 * the VIEWPORT_INDEX output, and emitting the other viewports and scissors
548 * is delayed. When a shader with VIEWPORT_INDEX appears, this should be
549 * called to emit the rest.
550 */
551 void si_update_vs_viewport_state(struct si_context *ctx)
552 {
553 struct si_shader_info *info = si_get_vs_info(ctx);
554 bool vs_window_space;
555
556 if (!info)
557 return;
558
559 /* When the VS disables clipping and viewport transformation. */
560 vs_window_space = info->stage == MESA_SHADER_VERTEX && info->base.vs.window_space_position;
561
562 if (ctx->vs_disables_clipping_viewport != vs_window_space) {
563 ctx->vs_disables_clipping_viewport = vs_window_space;
564 si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
565 si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
566 }
567
568 /* Viewport index handling. */
569 if (ctx->vs_writes_viewport_index == info->writes_viewport_index)
570 return;
571
572 /* This changes how the guardband is computed. */
573 ctx->vs_writes_viewport_index = info->writes_viewport_index;
574 si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
575
576 /* Emit scissors and viewports that were enabled by having
577 * the ViewportIndex output.
578 */
579 if (info->writes_viewport_index) {
580 si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
581 si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
582 }
583 }
584
585 static void si_emit_window_rectangles(struct si_context *sctx)
586 {
587 /* There are four clipping rectangles. Their corner coordinates are inclusive.
588 * Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
589 * on whether the pixel is inside cliprects 0-3, respectively. For example,
590 * if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
591 * the number 3 (binary 0011).
592 *
593 * If CLIPRECT_RULE & (1 << number), the pixel is rasterized.
594 */
595 struct radeon_cmdbuf *cs = sctx->gfx_cs;
596 static const unsigned outside[4] = {
597 /* outside rectangle 0 */
598 V_02820C_OUT | V_02820C_IN_1 | V_02820C_IN_2 | V_02820C_IN_21 | V_02820C_IN_3 |
599 V_02820C_IN_31 | V_02820C_IN_32 | V_02820C_IN_321,
600 /* outside rectangles 0, 1 */
601 V_02820C_OUT | V_02820C_IN_2 | V_02820C_IN_3 | V_02820C_IN_32,
602 /* outside rectangles 0, 1, 2 */
603 V_02820C_OUT | V_02820C_IN_3,
604 /* outside rectangles 0, 1, 2, 3 */
605 V_02820C_OUT,
606 };
607 const unsigned disabled = 0xffff; /* all inside and outside cases */
608 unsigned num_rectangles = sctx->num_window_rectangles;
609 struct pipe_scissor_state *rects = sctx->window_rectangles;
610 unsigned rule;
611
612 assert(num_rectangles <= 4);
613
614 if (num_rectangles == 0)
615 rule = disabled;
616 else if (sctx->window_rectangles_include)
617 rule = ~outside[num_rectangles - 1];
618 else
619 rule = outside[num_rectangles - 1];
620
621 radeon_opt_set_context_reg(sctx, R_02820C_PA_SC_CLIPRECT_RULE, SI_TRACKED_PA_SC_CLIPRECT_RULE,
622 rule);
623 if (num_rectangles == 0)
624 return;
625
626 radeon_set_context_reg_seq(cs, R_028210_PA_SC_CLIPRECT_0_TL, num_rectangles * 2);
627 for (unsigned i = 0; i < num_rectangles; i++) {
628 radeon_emit(cs, S_028210_TL_X(rects[i].minx) | S_028210_TL_Y(rects[i].miny));
629 radeon_emit(cs, S_028214_BR_X(rects[i].maxx) | S_028214_BR_Y(rects[i].maxy));
630 }
631 }
632
633 static void si_set_window_rectangles(struct pipe_context *ctx, bool include,
634 unsigned num_rectangles,
635 const struct pipe_scissor_state *rects)
636 {
637 struct si_context *sctx = (struct si_context *)ctx;
638
639 sctx->num_window_rectangles = num_rectangles;
640 sctx->window_rectangles_include = include;
641 if (num_rectangles) {
642 memcpy(sctx->window_rectangles, rects, sizeof(*rects) * num_rectangles);
643 }
644
645 si_mark_atom_dirty(sctx, &sctx->atoms.s.window_rectangles);
646 }
647
648 void si_init_viewport_functions(struct si_context *ctx)
649 {
650 ctx->atoms.s.guardband.emit = si_emit_guardband;
651 ctx->atoms.s.scissors.emit = si_emit_scissors;
652 ctx->atoms.s.viewports.emit = si_emit_viewport_states;
653 ctx->atoms.s.window_rectangles.emit = si_emit_window_rectangles;
654
655 ctx->b.set_scissor_states = si_set_scissor_states;
656 ctx->b.set_viewport_states = si_set_viewport_states;
657 ctx->b.set_window_rectangles = si_set_window_rectangles;
658
659 for (unsigned i = 0; i < 16; i++)
660 ctx->viewports.as_scissor[i].quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
661 }