softpipe: support for 1D/2D texture arrays
[mesa.git] / src / gallium / drivers / softpipe / sp_tex_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * Texture sampling
31 *
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
35 */
36
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_memory.h"
42 #include "sp_quad.h" /* only for #define QUAD_* tokens */
43 #include "sp_tex_sample.h"
44 #include "sp_tex_tile_cache.h"
45
46
47 /** Set to one to help debug texture sampling */
48 #define DEBUG_TEX 0
49
50
51 /*
52 * Return fractional part of 'f'. Used for computing interpolation weights.
53 * Need to be careful with negative values.
54 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
55 * of improperly weighted linear-filtered textures.
56 * The tests/texwrap.c demo is a good test.
57 */
58 static INLINE float
59 frac(float f)
60 {
61 return f - floorf(f);
62 }
63
64
65
66 /**
67 * Linear interpolation macro
68 */
69 static INLINE float
70 lerp(float a, float v0, float v1)
71 {
72 return v0 + a * (v1 - v0);
73 }
74
75
76 /**
77 * Do 2D/bilinear interpolation of float values.
78 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
79 * a and b are the horizontal and vertical interpolants.
80 * It's important that this function is inlined when compiled with
81 * optimization! If we find that's not true on some systems, convert
82 * to a macro.
83 */
84 static INLINE float
85 lerp_2d(float a, float b,
86 float v00, float v10, float v01, float v11)
87 {
88 const float temp0 = lerp(a, v00, v10);
89 const float temp1 = lerp(a, v01, v11);
90 return lerp(b, temp0, temp1);
91 }
92
93
94 /**
95 * As above, but 3D interpolation of 8 values.
96 */
97 static INLINE float
98 lerp_3d(float a, float b, float c,
99 float v000, float v100, float v010, float v110,
100 float v001, float v101, float v011, float v111)
101 {
102 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
103 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
104 return lerp(c, temp0, temp1);
105 }
106
107
108
109 /**
110 * Compute coord % size for repeat wrap modes.
111 * Note that if coord is negative, coord % size doesn't give the right
112 * value. To avoid that problem we add a large multiple of the size
113 * (rather than using a conditional).
114 */
115 static INLINE int
116 repeat(int coord, unsigned size)
117 {
118 return (coord + size * 1024) % size;
119 }
120
121
122 /**
123 * Apply texture coord wrapping mode and return integer texture indexes
124 * for a vector of four texcoords (S or T or P).
125 * \param wrapMode PIPE_TEX_WRAP_x
126 * \param s the incoming texcoords
127 * \param size the texture image size
128 * \param icoord returns the integer texcoords
129 * \return integer texture index
130 */
131 static void
132 wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4])
133 {
134 uint ch;
135 /* s limited to [0,1) */
136 /* i limited to [0,size-1] */
137 for (ch = 0; ch < 4; ch++) {
138 int i = util_ifloor(s[ch] * size);
139 icoord[ch] = repeat(i, size);
140 }
141 }
142
143
144 static void
145 wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4])
146 {
147 uint ch;
148 /* s limited to [0,1] */
149 /* i limited to [0,size-1] */
150 for (ch = 0; ch < 4; ch++) {
151 if (s[ch] <= 0.0F)
152 icoord[ch] = 0;
153 else if (s[ch] >= 1.0F)
154 icoord[ch] = size - 1;
155 else
156 icoord[ch] = util_ifloor(s[ch] * size);
157 }
158 }
159
160
161 static void
162 wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4])
163 {
164 uint ch;
165 /* s limited to [min,max] */
166 /* i limited to [0, size-1] */
167 const float min = 1.0F / (2.0F * size);
168 const float max = 1.0F - min;
169 for (ch = 0; ch < 4; ch++) {
170 if (s[ch] < min)
171 icoord[ch] = 0;
172 else if (s[ch] > max)
173 icoord[ch] = size - 1;
174 else
175 icoord[ch] = util_ifloor(s[ch] * size);
176 }
177 }
178
179
180 static void
181 wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4])
182 {
183 uint ch;
184 /* s limited to [min,max] */
185 /* i limited to [-1, size] */
186 const float min = -1.0F / (2.0F * size);
187 const float max = 1.0F - min;
188 for (ch = 0; ch < 4; ch++) {
189 if (s[ch] <= min)
190 icoord[ch] = -1;
191 else if (s[ch] >= max)
192 icoord[ch] = size;
193 else
194 icoord[ch] = util_ifloor(s[ch] * size);
195 }
196 }
197
198
199 static void
200 wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4])
201 {
202 uint ch;
203 const float min = 1.0F / (2.0F * size);
204 const float max = 1.0F - min;
205 for (ch = 0; ch < 4; ch++) {
206 const int flr = util_ifloor(s[ch]);
207 float u = frac(s[ch]);
208 if (flr & 1)
209 u = 1.0F - u;
210 if (u < min)
211 icoord[ch] = 0;
212 else if (u > max)
213 icoord[ch] = size - 1;
214 else
215 icoord[ch] = util_ifloor(u * size);
216 }
217 }
218
219
220 static void
221 wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4])
222 {
223 uint ch;
224 for (ch = 0; ch < 4; ch++) {
225 /* s limited to [0,1] */
226 /* i limited to [0,size-1] */
227 const float u = fabsf(s[ch]);
228 if (u <= 0.0F)
229 icoord[ch] = 0;
230 else if (u >= 1.0F)
231 icoord[ch] = size - 1;
232 else
233 icoord[ch] = util_ifloor(u * size);
234 }
235 }
236
237
238 static void
239 wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size,
240 int icoord[4])
241 {
242 uint ch;
243 /* s limited to [min,max] */
244 /* i limited to [0, size-1] */
245 const float min = 1.0F / (2.0F * size);
246 const float max = 1.0F - min;
247 for (ch = 0; ch < 4; ch++) {
248 const float u = fabsf(s[ch]);
249 if (u < min)
250 icoord[ch] = 0;
251 else if (u > max)
252 icoord[ch] = size - 1;
253 else
254 icoord[ch] = util_ifloor(u * size);
255 }
256 }
257
258
259 static void
260 wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size,
261 int icoord[4])
262 {
263 uint ch;
264 /* s limited to [min,max] */
265 /* i limited to [0, size-1] */
266 const float min = -1.0F / (2.0F * size);
267 const float max = 1.0F - min;
268 for (ch = 0; ch < 4; ch++) {
269 const float u = fabsf(s[ch]);
270 if (u < min)
271 icoord[ch] = -1;
272 else if (u > max)
273 icoord[ch] = size;
274 else
275 icoord[ch] = util_ifloor(u * size);
276 }
277 }
278
279
280 /**
281 * Used to compute texel locations for linear sampling for four texcoords.
282 * \param wrapMode PIPE_TEX_WRAP_x
283 * \param s the texcoords
284 * \param size the texture image size
285 * \param icoord0 returns first texture indexes
286 * \param icoord1 returns second texture indexes (usually icoord0 + 1)
287 * \param w returns blend factor/weight between texture indexes
288 * \param icoord returns the computed integer texture coords
289 */
290 static void
291 wrap_linear_repeat(const float s[4], unsigned size,
292 int icoord0[4], int icoord1[4], float w[4])
293 {
294 uint ch;
295 for (ch = 0; ch < 4; ch++) {
296 float u = s[ch] * size - 0.5F;
297 icoord0[ch] = repeat(util_ifloor(u), size);
298 icoord1[ch] = repeat(icoord0[ch] + 1, size);
299 w[ch] = frac(u);
300 }
301 }
302
303
304 static void
305 wrap_linear_clamp(const float s[4], unsigned size,
306 int icoord0[4], int icoord1[4], float w[4])
307 {
308 uint ch;
309 for (ch = 0; ch < 4; ch++) {
310 float u = CLAMP(s[ch], 0.0F, 1.0F);
311 u = u * size - 0.5f;
312 icoord0[ch] = util_ifloor(u);
313 icoord1[ch] = icoord0[ch] + 1;
314 w[ch] = frac(u);
315 }
316 }
317
318
319 static void
320 wrap_linear_clamp_to_edge(const float s[4], unsigned size,
321 int icoord0[4], int icoord1[4], float w[4])
322 {
323 uint ch;
324 for (ch = 0; ch < 4; ch++) {
325 float u = CLAMP(s[ch], 0.0F, 1.0F);
326 u = u * size - 0.5f;
327 icoord0[ch] = util_ifloor(u);
328 icoord1[ch] = icoord0[ch] + 1;
329 if (icoord0[ch] < 0)
330 icoord0[ch] = 0;
331 if (icoord1[ch] >= (int) size)
332 icoord1[ch] = size - 1;
333 w[ch] = frac(u);
334 }
335 }
336
337
338 static void
339 wrap_linear_clamp_to_border(const float s[4], unsigned size,
340 int icoord0[4], int icoord1[4], float w[4])
341 {
342 const float min = -1.0F / (2.0F * size);
343 const float max = 1.0F - min;
344 uint ch;
345 for (ch = 0; ch < 4; ch++) {
346 float u = CLAMP(s[ch], min, max);
347 u = u * size - 0.5f;
348 icoord0[ch] = util_ifloor(u);
349 icoord1[ch] = icoord0[ch] + 1;
350 w[ch] = frac(u);
351 }
352 }
353
354
355 static void
356 wrap_linear_mirror_repeat(const float s[4], unsigned size,
357 int icoord0[4], int icoord1[4], float w[4])
358 {
359 uint ch;
360 for (ch = 0; ch < 4; ch++) {
361 const int flr = util_ifloor(s[ch]);
362 float u = frac(s[ch]);
363 if (flr & 1)
364 u = 1.0F - u;
365 u = u * size - 0.5F;
366 icoord0[ch] = util_ifloor(u);
367 icoord1[ch] = icoord0[ch] + 1;
368 if (icoord0[ch] < 0)
369 icoord0[ch] = 0;
370 if (icoord1[ch] >= (int) size)
371 icoord1[ch] = size - 1;
372 w[ch] = frac(u);
373 }
374 }
375
376
377 static void
378 wrap_linear_mirror_clamp(const float s[4], unsigned size,
379 int icoord0[4], int icoord1[4], float w[4])
380 {
381 uint ch;
382 for (ch = 0; ch < 4; ch++) {
383 float u = fabsf(s[ch]);
384 if (u >= 1.0F)
385 u = (float) size;
386 else
387 u *= size;
388 u -= 0.5F;
389 icoord0[ch] = util_ifloor(u);
390 icoord1[ch] = icoord0[ch] + 1;
391 w[ch] = frac(u);
392 }
393 }
394
395
396 static void
397 wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size,
398 int icoord0[4], int icoord1[4], float w[4])
399 {
400 uint ch;
401 for (ch = 0; ch < 4; ch++) {
402 float u = fabsf(s[ch]);
403 if (u >= 1.0F)
404 u = (float) size;
405 else
406 u *= size;
407 u -= 0.5F;
408 icoord0[ch] = util_ifloor(u);
409 icoord1[ch] = icoord0[ch] + 1;
410 if (icoord0[ch] < 0)
411 icoord0[ch] = 0;
412 if (icoord1[ch] >= (int) size)
413 icoord1[ch] = size - 1;
414 w[ch] = frac(u);
415 }
416 }
417
418
419 static void
420 wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size,
421 int icoord0[4], int icoord1[4], float w[4])
422 {
423 const float min = -1.0F / (2.0F * size);
424 const float max = 1.0F - min;
425 uint ch;
426 for (ch = 0; ch < 4; ch++) {
427 float u = fabsf(s[ch]);
428 if (u <= min)
429 u = min * size;
430 else if (u >= max)
431 u = max * size;
432 else
433 u *= size;
434 u -= 0.5F;
435 icoord0[ch] = util_ifloor(u);
436 icoord1[ch] = icoord0[ch] + 1;
437 w[ch] = frac(u);
438 }
439 }
440
441
442 /**
443 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
444 */
445 static void
446 wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4])
447 {
448 uint ch;
449 for (ch = 0; ch < 4; ch++) {
450 int i = util_ifloor(s[ch]);
451 icoord[ch]= CLAMP(i, 0, (int) size-1);
452 }
453 }
454
455
456 /**
457 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
458 */
459 static void
460 wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size,
461 int icoord[4])
462 {
463 uint ch;
464 for (ch = 0; ch < 4; ch++) {
465 icoord[ch]= util_ifloor( CLAMP(s[ch], -0.5F, (float) size + 0.5F) );
466 }
467 }
468
469
470 /**
471 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
472 */
473 static void
474 wrap_nearest_unorm_clamp_to_edge(const float s[4], unsigned size,
475 int icoord[4])
476 {
477 uint ch;
478 for (ch = 0; ch < 4; ch++) {
479 icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) );
480 }
481 }
482
483
484 /**
485 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
486 */
487 static void
488 wrap_linear_unorm_clamp(const float s[4], unsigned size,
489 int icoord0[4], int icoord1[4], float w[4])
490 {
491 uint ch;
492 for (ch = 0; ch < 4; ch++) {
493 /* Not exactly what the spec says, but it matches NVIDIA output */
494 float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f);
495 icoord0[ch] = util_ifloor(u);
496 icoord1[ch] = icoord0[ch] + 1;
497 w[ch] = frac(u);
498 }
499 }
500
501
502 /**
503 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
504 */
505 static void
506 wrap_linear_unorm_clamp_to_border(const float s[4], unsigned size,
507 int icoord0[4], int icoord1[4], float w[4])
508 {
509 uint ch;
510 for (ch = 0; ch < 4; ch++) {
511 float u = CLAMP(s[ch], -0.5F, (float) size + 0.5F);
512 u -= 0.5F;
513 icoord0[ch] = util_ifloor(u);
514 icoord1[ch] = icoord0[ch] + 1;
515 if (icoord1[ch] > (int) size - 1)
516 icoord1[ch] = size - 1;
517 w[ch] = frac(u);
518 }
519 }
520
521
522 /**
523 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
524 */
525 static void
526 wrap_linear_unorm_clamp_to_edge(const float s[4], unsigned size,
527 int icoord0[4], int icoord1[4], float w[4])
528 {
529 uint ch;
530 for (ch = 0; ch < 4; ch++) {
531 float u = CLAMP(s[ch], +0.5F, (float) size - 0.5F);
532 u -= 0.5F;
533 icoord0[ch] = util_ifloor(u);
534 icoord1[ch] = icoord0[ch] + 1;
535 if (icoord1[ch] > (int) size - 1)
536 icoord1[ch] = size - 1;
537 w[ch] = frac(u);
538 }
539 }
540
541
542 /**
543 * Do coordinate to array index conversion. For array textures.
544 */
545 static INLINE void
546 wrap_array_layer(const float coord[4], unsigned size, int layer[4])
547 {
548 uint ch;
549 for (ch = 0; ch < 4; ch++) {
550 int c = util_ifloor(coord[ch] + 0.5F);
551 layer[ch] = CLAMP(c, 0, size - 1);
552 }
553 }
554
555
556 /**
557 * Examine the quad's texture coordinates to compute the partial
558 * derivatives w.r.t X and Y, then compute lambda (level of detail).
559 */
560 static float
561 compute_lambda_1d(const struct sp_sampler_variant *samp,
562 const float s[QUAD_SIZE],
563 const float t[QUAD_SIZE],
564 const float p[QUAD_SIZE])
565 {
566 const struct pipe_resource *texture = samp->view->texture;
567 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
568 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
569 float rho = MAX2(dsdx, dsdy) * texture->width0;
570
571 return util_fast_log2(rho);
572 }
573
574
575 static float
576 compute_lambda_2d(const struct sp_sampler_variant *samp,
577 const float s[QUAD_SIZE],
578 const float t[QUAD_SIZE],
579 const float p[QUAD_SIZE])
580 {
581 const struct pipe_resource *texture = samp->view->texture;
582 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
583 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
584 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
585 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
586 float maxx = MAX2(dsdx, dsdy) * texture->width0;
587 float maxy = MAX2(dtdx, dtdy) * texture->height0;
588 float rho = MAX2(maxx, maxy);
589
590 return util_fast_log2(rho);
591 }
592
593
594 static float
595 compute_lambda_3d(const struct sp_sampler_variant *samp,
596 const float s[QUAD_SIZE],
597 const float t[QUAD_SIZE],
598 const float p[QUAD_SIZE])
599 {
600 const struct pipe_resource *texture = samp->view->texture;
601 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
602 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
603 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
604 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
605 float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
606 float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
607 float maxx = MAX2(dsdx, dsdy) * texture->width0;
608 float maxy = MAX2(dtdx, dtdy) * texture->height0;
609 float maxz = MAX2(dpdx, dpdy) * texture->depth0;
610 float rho;
611
612 rho = MAX2(maxx, maxy);
613 rho = MAX2(rho, maxz);
614
615 return util_fast_log2(rho);
616 }
617
618
619 /**
620 * Compute lambda for a vertex texture sampler.
621 * Since there aren't derivatives to use, just return 0.
622 */
623 static float
624 compute_lambda_vert(const struct sp_sampler_variant *samp,
625 const float s[QUAD_SIZE],
626 const float t[QUAD_SIZE],
627 const float p[QUAD_SIZE])
628 {
629 return 0.0f;
630 }
631
632
633
634 /**
635 * Get a texel from a texture, using the texture tile cache.
636 *
637 * \param addr the template tex address containing cube, z, face info.
638 * \param x the x coord of texel within 2D image
639 * \param y the y coord of texel within 2D image
640 * \param rgba the quad to put the texel/color into
641 *
642 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
643 * sp_get_cached_tile_tex() function. Also, get 4 texels instead of 1...
644 */
645
646
647
648
649 static INLINE const float *
650 get_texel_2d_no_border(const struct sp_sampler_variant *samp,
651 union tex_tile_address addr, int x, int y)
652 {
653 const struct softpipe_tex_cached_tile *tile;
654
655 addr.bits.x = x / TILE_SIZE;
656 addr.bits.y = y / TILE_SIZE;
657 y %= TILE_SIZE;
658 x %= TILE_SIZE;
659
660 tile = sp_get_cached_tile_tex(samp->cache, addr);
661
662 return &tile->data.color[y][x][0];
663 }
664
665
666 static INLINE const float *
667 get_texel_2d(const struct sp_sampler_variant *samp,
668 union tex_tile_address addr, int x, int y)
669 {
670 const struct pipe_resource *texture = samp->view->texture;
671 unsigned level = addr.bits.level;
672
673 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
674 y < 0 || y >= (int) u_minify(texture->height0, level)) {
675 return samp->sampler->border_color;
676 }
677 else {
678 return get_texel_2d_no_border( samp, addr, x, y );
679 }
680 }
681
682
683 /* Gather a quad of adjacent texels within a tile:
684 */
685 static INLINE void
686 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_variant *samp,
687 union tex_tile_address addr,
688 unsigned x, unsigned y,
689 const float *out[4])
690 {
691 const struct softpipe_tex_cached_tile *tile;
692
693 addr.bits.x = x / TILE_SIZE;
694 addr.bits.y = y / TILE_SIZE;
695 y %= TILE_SIZE;
696 x %= TILE_SIZE;
697
698 tile = sp_get_cached_tile_tex(samp->cache, addr);
699
700 out[0] = &tile->data.color[y ][x ][0];
701 out[1] = &tile->data.color[y ][x+1][0];
702 out[2] = &tile->data.color[y+1][x ][0];
703 out[3] = &tile->data.color[y+1][x+1][0];
704 }
705
706
707 /* Gather a quad of potentially non-adjacent texels:
708 */
709 static INLINE void
710 get_texel_quad_2d_no_border(const struct sp_sampler_variant *samp,
711 union tex_tile_address addr,
712 int x0, int y0,
713 int x1, int y1,
714 const float *out[4])
715 {
716 out[0] = get_texel_2d_no_border( samp, addr, x0, y0 );
717 out[1] = get_texel_2d_no_border( samp, addr, x1, y0 );
718 out[2] = get_texel_2d_no_border( samp, addr, x0, y1 );
719 out[3] = get_texel_2d_no_border( samp, addr, x1, y1 );
720 }
721
722 /* Can involve a lot of unnecessary checks for border color:
723 */
724 static INLINE void
725 get_texel_quad_2d(const struct sp_sampler_variant *samp,
726 union tex_tile_address addr,
727 int x0, int y0,
728 int x1, int y1,
729 const float *out[4])
730 {
731 out[0] = get_texel_2d( samp, addr, x0, y0 );
732 out[1] = get_texel_2d( samp, addr, x1, y0 );
733 out[3] = get_texel_2d( samp, addr, x1, y1 );
734 out[2] = get_texel_2d( samp, addr, x0, y1 );
735 }
736
737
738
739 /* 3d variants:
740 */
741 static INLINE const float *
742 get_texel_3d_no_border(const struct sp_sampler_variant *samp,
743 union tex_tile_address addr, int x, int y, int z)
744 {
745 const struct softpipe_tex_cached_tile *tile;
746
747 addr.bits.x = x / TILE_SIZE;
748 addr.bits.y = y / TILE_SIZE;
749 addr.bits.z = z;
750 y %= TILE_SIZE;
751 x %= TILE_SIZE;
752
753 tile = sp_get_cached_tile_tex(samp->cache, addr);
754
755 return &tile->data.color[y][x][0];
756 }
757
758
759 static INLINE const float *
760 get_texel_3d(const struct sp_sampler_variant *samp,
761 union tex_tile_address addr, int x, int y, int z)
762 {
763 const struct pipe_resource *texture = samp->view->texture;
764 unsigned level = addr.bits.level;
765
766 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
767 y < 0 || y >= (int) u_minify(texture->height0, level) ||
768 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
769 return samp->sampler->border_color;
770 }
771 else {
772 return get_texel_3d_no_border( samp, addr, x, y, z );
773 }
774 }
775
776
777 /**
778 * Given the logbase2 of a mipmap's base level size and a mipmap level,
779 * return the size (in texels) of that mipmap level.
780 * For example, if level[0].width = 256 then base_pot will be 8.
781 * If level = 2, then we'll return 64 (the width at level=2).
782 * Return 1 if level > base_pot.
783 */
784 static INLINE unsigned
785 pot_level_size(unsigned base_pot, unsigned level)
786 {
787 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
788 }
789
790
791 static void
792 print_sample(const char *function, float rgba[NUM_CHANNELS][QUAD_SIZE])
793 {
794 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
795 function,
796 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
797 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
798 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
799 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
800 }
801
802
803 /* Some image-filter fastpaths:
804 */
805 static INLINE void
806 img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
807 const float s[QUAD_SIZE],
808 const float t[QUAD_SIZE],
809 const float p[QUAD_SIZE],
810 const float c0[QUAD_SIZE],
811 enum tgsi_sampler_control control,
812 float rgba[NUM_CHANNELS][QUAD_SIZE])
813 {
814 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
815 unsigned j;
816 unsigned level = samp->level;
817 unsigned xpot = pot_level_size(samp->xpot, level);
818 unsigned ypot = pot_level_size(samp->ypot, level);
819 unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */
820 unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */
821 union tex_tile_address addr;
822
823 addr.value = 0;
824 addr.bits.level = samp->level;
825
826 for (j = 0; j < QUAD_SIZE; j++) {
827 int c;
828
829 float u = s[j] * xpot - 0.5F;
830 float v = t[j] * ypot - 0.5F;
831
832 int uflr = util_ifloor(u);
833 int vflr = util_ifloor(v);
834
835 float xw = u - (float)uflr;
836 float yw = v - (float)vflr;
837
838 int x0 = uflr & (xpot - 1);
839 int y0 = vflr & (ypot - 1);
840
841 const float *tx[4];
842
843 /* Can we fetch all four at once:
844 */
845 if (x0 < xmax && y0 < ymax) {
846 get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx);
847 }
848 else {
849 unsigned x1 = (x0 + 1) & (xpot - 1);
850 unsigned y1 = (y0 + 1) & (ypot - 1);
851 get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx);
852 }
853
854 /* interpolate R, G, B, A */
855 for (c = 0; c < 4; c++) {
856 rgba[c][j] = lerp_2d(xw, yw,
857 tx[0][c], tx[1][c],
858 tx[2][c], tx[3][c]);
859 }
860 }
861
862 if (DEBUG_TEX) {
863 print_sample(__FUNCTION__, rgba);
864 }
865 }
866
867
868 static INLINE void
869 img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
870 const float s[QUAD_SIZE],
871 const float t[QUAD_SIZE],
872 const float p[QUAD_SIZE],
873 const float c0[QUAD_SIZE],
874 enum tgsi_sampler_control control,
875 float rgba[NUM_CHANNELS][QUAD_SIZE])
876 {
877 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
878 unsigned j;
879 unsigned level = samp->level;
880 unsigned xpot = pot_level_size(samp->xpot, level);
881 unsigned ypot = pot_level_size(samp->ypot, level);
882 union tex_tile_address addr;
883
884 addr.value = 0;
885 addr.bits.level = samp->level;
886
887 for (j = 0; j < QUAD_SIZE; j++) {
888 int c;
889
890 float u = s[j] * xpot;
891 float v = t[j] * ypot;
892
893 int uflr = util_ifloor(u);
894 int vflr = util_ifloor(v);
895
896 int x0 = uflr & (xpot - 1);
897 int y0 = vflr & (ypot - 1);
898
899 const float *out = get_texel_2d_no_border(samp, addr, x0, y0);
900
901 for (c = 0; c < 4; c++) {
902 rgba[c][j] = out[c];
903 }
904 }
905
906 if (DEBUG_TEX) {
907 print_sample(__FUNCTION__, rgba);
908 }
909 }
910
911
912 static INLINE void
913 img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
914 const float s[QUAD_SIZE],
915 const float t[QUAD_SIZE],
916 const float p[QUAD_SIZE],
917 const float c0[QUAD_SIZE],
918 enum tgsi_sampler_control control,
919 float rgba[NUM_CHANNELS][QUAD_SIZE])
920 {
921 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
922 unsigned j;
923 unsigned level = samp->level;
924 unsigned xpot = pot_level_size(samp->xpot, level);
925 unsigned ypot = pot_level_size(samp->ypot, level);
926 union tex_tile_address addr;
927
928 addr.value = 0;
929 addr.bits.level = samp->level;
930
931 for (j = 0; j < QUAD_SIZE; j++) {
932 int c;
933
934 float u = s[j] * xpot;
935 float v = t[j] * ypot;
936
937 int x0, y0;
938 const float *out;
939
940 x0 = util_ifloor(u);
941 if (x0 < 0)
942 x0 = 0;
943 else if (x0 > xpot - 1)
944 x0 = xpot - 1;
945
946 y0 = util_ifloor(v);
947 if (y0 < 0)
948 y0 = 0;
949 else if (y0 > ypot - 1)
950 y0 = ypot - 1;
951
952 out = get_texel_2d_no_border(samp, addr, x0, y0);
953
954 for (c = 0; c < 4; c++) {
955 rgba[c][j] = out[c];
956 }
957 }
958
959 if (DEBUG_TEX) {
960 print_sample(__FUNCTION__, rgba);
961 }
962 }
963
964
965 static void
966 img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler,
967 const float s[QUAD_SIZE],
968 const float t[QUAD_SIZE],
969 const float p[QUAD_SIZE],
970 const float c0[QUAD_SIZE],
971 enum tgsi_sampler_control control,
972 float rgba[NUM_CHANNELS][QUAD_SIZE])
973 {
974 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
975 const struct pipe_resource *texture = samp->view->texture;
976 unsigned level0, j;
977 int width;
978 int x[4];
979 union tex_tile_address addr;
980
981 level0 = samp->level;
982 width = u_minify(texture->width0, level0);
983
984 assert(width > 0);
985
986 addr.value = 0;
987 addr.bits.level = samp->level;
988
989 samp->nearest_texcoord_s(s, width, x);
990
991 for (j = 0; j < QUAD_SIZE; j++) {
992 const float *out = get_texel_2d(samp, addr, x[j], 0);
993 int c;
994 for (c = 0; c < 4; c++) {
995 rgba[c][j] = out[c];
996 }
997 }
998
999 if (DEBUG_TEX) {
1000 print_sample(__FUNCTION__, rgba);
1001 }
1002 }
1003
1004
1005 static void
1006 img_filter_1d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1007 const float s[QUAD_SIZE],
1008 const float t[QUAD_SIZE],
1009 const float p[QUAD_SIZE],
1010 const float c0[QUAD_SIZE],
1011 enum tgsi_sampler_control control,
1012 float rgba[NUM_CHANNELS][QUAD_SIZE])
1013 {
1014 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1015 const struct pipe_resource *texture = samp->view->texture;
1016 unsigned level0, j;
1017 int width;
1018 int x[4], layer[4];
1019 union tex_tile_address addr;
1020
1021 level0 = samp->level;
1022 width = u_minify(texture->width0, level0);
1023
1024 assert(width > 0);
1025
1026 addr.value = 0;
1027 addr.bits.level = samp->level;
1028
1029 samp->nearest_texcoord_s(s, width, x);
1030 wrap_array_layer(t, texture->height0, layer);
1031
1032 for (j = 0; j < QUAD_SIZE; j++) {
1033 const float *out = get_texel_2d(samp, addr, x[j], layer[j]);
1034 int c;
1035 for (c = 0; c < 4; c++) {
1036 rgba[c][j] = out[c];
1037 }
1038 }
1039
1040 if (DEBUG_TEX) {
1041 print_sample(__FUNCTION__, rgba);
1042 }
1043 }
1044
1045
1046 static void
1047 img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler,
1048 const float s[QUAD_SIZE],
1049 const float t[QUAD_SIZE],
1050 const float p[QUAD_SIZE],
1051 const float c0[QUAD_SIZE],
1052 enum tgsi_sampler_control control,
1053 float rgba[NUM_CHANNELS][QUAD_SIZE])
1054 {
1055 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1056 const struct pipe_resource *texture = samp->view->texture;
1057 unsigned level0, j;
1058 int width, height;
1059 int x[4], y[4];
1060 union tex_tile_address addr;
1061
1062
1063 level0 = samp->level;
1064 width = u_minify(texture->width0, level0);
1065 height = u_minify(texture->height0, level0);
1066
1067 assert(width > 0);
1068 assert(height > 0);
1069
1070 addr.value = 0;
1071 addr.bits.level = samp->level;
1072
1073 samp->nearest_texcoord_s(s, width, x);
1074 samp->nearest_texcoord_t(t, height, y);
1075
1076 for (j = 0; j < QUAD_SIZE; j++) {
1077 const float *out = get_texel_2d(samp, addr, x[j], y[j]);
1078 int c;
1079 for (c = 0; c < 4; c++) {
1080 rgba[c][j] = out[c];
1081 }
1082 }
1083
1084 if (DEBUG_TEX) {
1085 print_sample(__FUNCTION__, rgba);
1086 }
1087 }
1088
1089
1090 static void
1091 img_filter_2d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1092 const float s[QUAD_SIZE],
1093 const float t[QUAD_SIZE],
1094 const float p[QUAD_SIZE],
1095 const float c0[QUAD_SIZE],
1096 enum tgsi_sampler_control control,
1097 float rgba[NUM_CHANNELS][QUAD_SIZE])
1098 {
1099 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1100 const struct pipe_resource *texture = samp->view->texture;
1101 unsigned level0, j;
1102 int width, height;
1103 int x[4], y[4], layer[4];
1104 union tex_tile_address addr;
1105
1106 level0 = samp->level;
1107 width = u_minify(texture->width0, level0);
1108 height = u_minify(texture->height0, level0);
1109
1110 assert(width > 0);
1111 assert(height > 0);
1112
1113 addr.value = 0;
1114 addr.bits.level = samp->level;
1115
1116 samp->nearest_texcoord_s(s, width, x);
1117 samp->nearest_texcoord_t(t, height, y);
1118 wrap_array_layer(p, texture->depth0, layer);
1119
1120 for (j = 0; j < QUAD_SIZE; j++) {
1121 const float *out = get_texel_3d(samp, addr, x[j], y[j], layer[j]);
1122 int c;
1123 for (c = 0; c < 4; c++) {
1124 rgba[c][j] = out[c];
1125 }
1126 }
1127
1128 if (DEBUG_TEX) {
1129 print_sample(__FUNCTION__, rgba);
1130 }
1131 }
1132
1133
1134 static INLINE union tex_tile_address
1135 face(union tex_tile_address addr, unsigned face )
1136 {
1137 addr.bits.face = face;
1138 return addr;
1139 }
1140
1141
1142 static void
1143 img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler,
1144 const float s[QUAD_SIZE],
1145 const float t[QUAD_SIZE],
1146 const float p[QUAD_SIZE],
1147 const float c0[QUAD_SIZE],
1148 enum tgsi_sampler_control control,
1149 float rgba[NUM_CHANNELS][QUAD_SIZE])
1150 {
1151 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1152 const struct pipe_resource *texture = samp->view->texture;
1153 const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1154 unsigned level0, j;
1155 int width, height;
1156 int x[4], y[4];
1157 union tex_tile_address addr;
1158
1159 level0 = samp->level;
1160 width = u_minify(texture->width0, level0);
1161 height = u_minify(texture->height0, level0);
1162
1163 assert(width > 0);
1164 assert(height > 0);
1165
1166 addr.value = 0;
1167 addr.bits.level = samp->level;
1168
1169 samp->nearest_texcoord_s(s, width, x);
1170 samp->nearest_texcoord_t(t, height, y);
1171
1172 for (j = 0; j < QUAD_SIZE; j++) {
1173 const float *out = get_texel_2d(samp, face(addr, faces[j]), x[j], y[j]);
1174 int c;
1175 for (c = 0; c < 4; c++) {
1176 rgba[c][j] = out[c];
1177 }
1178 }
1179
1180 if (DEBUG_TEX) {
1181 print_sample(__FUNCTION__, rgba);
1182 }
1183 }
1184
1185
1186 static void
1187 img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler,
1188 const float s[QUAD_SIZE],
1189 const float t[QUAD_SIZE],
1190 const float p[QUAD_SIZE],
1191 const float c0[QUAD_SIZE],
1192 enum tgsi_sampler_control control,
1193 float rgba[NUM_CHANNELS][QUAD_SIZE])
1194 {
1195 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1196 const struct pipe_resource *texture = samp->view->texture;
1197 unsigned level0, j;
1198 int width, height, depth;
1199 int x[4], y[4], z[4];
1200 union tex_tile_address addr;
1201
1202 level0 = samp->level;
1203 width = u_minify(texture->width0, level0);
1204 height = u_minify(texture->height0, level0);
1205 depth = u_minify(texture->depth0, level0);
1206
1207 assert(width > 0);
1208 assert(height > 0);
1209 assert(depth > 0);
1210
1211 samp->nearest_texcoord_s(s, width, x);
1212 samp->nearest_texcoord_t(t, height, y);
1213 samp->nearest_texcoord_p(p, depth, z);
1214
1215 addr.value = 0;
1216 addr.bits.level = samp->level;
1217
1218 for (j = 0; j < QUAD_SIZE; j++) {
1219 const float *out = get_texel_3d(samp, addr, x[j], y[j], z[j]);
1220 int c;
1221 for (c = 0; c < 4; c++) {
1222 rgba[c][j] = out[c];
1223 }
1224 }
1225 }
1226
1227
1228 static void
1229 img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler,
1230 const float s[QUAD_SIZE],
1231 const float t[QUAD_SIZE],
1232 const float p[QUAD_SIZE],
1233 const float c0[QUAD_SIZE],
1234 enum tgsi_sampler_control control,
1235 float rgba[NUM_CHANNELS][QUAD_SIZE])
1236 {
1237 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1238 const struct pipe_resource *texture = samp->view->texture;
1239 unsigned level0, j;
1240 int width;
1241 int x0[4], x1[4];
1242 float xw[4]; /* weights */
1243 union tex_tile_address addr;
1244
1245 level0 = samp->level;
1246 width = u_minify(texture->width0, level0);
1247
1248 assert(width > 0);
1249
1250 addr.value = 0;
1251 addr.bits.level = samp->level;
1252
1253 samp->linear_texcoord_s(s, width, x0, x1, xw);
1254
1255 for (j = 0; j < QUAD_SIZE; j++) {
1256 const float *tx0 = get_texel_2d(samp, addr, x0[j], 0);
1257 const float *tx1 = get_texel_2d(samp, addr, x1[j], 0);
1258 int c;
1259
1260 /* interpolate R, G, B, A */
1261 for (c = 0; c < 4; c++) {
1262 rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1263 }
1264 }
1265 }
1266
1267
1268 static void
1269 img_filter_1d_array_linear(struct tgsi_sampler *tgsi_sampler,
1270 const float s[QUAD_SIZE],
1271 const float t[QUAD_SIZE],
1272 const float p[QUAD_SIZE],
1273 const float c0[QUAD_SIZE],
1274 enum tgsi_sampler_control control,
1275 float rgba[NUM_CHANNELS][QUAD_SIZE])
1276 {
1277 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1278 const struct pipe_resource *texture = samp->view->texture;
1279 unsigned level0, j;
1280 int width;
1281 int x0[4], x1[4], layer[4];
1282 float xw[4]; /* weights */
1283 union tex_tile_address addr;
1284
1285 level0 = samp->level;
1286 width = u_minify(texture->width0, level0);
1287
1288 assert(width > 0);
1289
1290 addr.value = 0;
1291 addr.bits.level = samp->level;
1292
1293 samp->linear_texcoord_s(s, width, x0, x1, xw);
1294 wrap_array_layer(t, texture->height0, layer);
1295
1296 for (j = 0; j < QUAD_SIZE; j++) {
1297 const float *tx0 = get_texel_2d(samp, addr, x0[j], layer[j]);
1298 const float *tx1 = get_texel_2d(samp, addr, x1[j], layer[j]);
1299 int c;
1300
1301 /* interpolate R, G, B, A */
1302 for (c = 0; c < 4; c++) {
1303 rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1304 }
1305 }
1306 }
1307
1308
1309 static void
1310 img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler,
1311 const float s[QUAD_SIZE],
1312 const float t[QUAD_SIZE],
1313 const float p[QUAD_SIZE],
1314 const float c0[QUAD_SIZE],
1315 enum tgsi_sampler_control control,
1316 float rgba[NUM_CHANNELS][QUAD_SIZE])
1317 {
1318 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1319 const struct pipe_resource *texture = samp->view->texture;
1320 unsigned level0, j;
1321 int width, height;
1322 int x0[4], y0[4], x1[4], y1[4];
1323 float xw[4], yw[4]; /* weights */
1324 union tex_tile_address addr;
1325
1326 level0 = samp->level;
1327 width = u_minify(texture->width0, level0);
1328 height = u_minify(texture->height0, level0);
1329
1330 assert(width > 0);
1331 assert(height > 0);
1332
1333 addr.value = 0;
1334 addr.bits.level = samp->level;
1335
1336 samp->linear_texcoord_s(s, width, x0, x1, xw);
1337 samp->linear_texcoord_t(t, height, y0, y1, yw);
1338
1339 for (j = 0; j < QUAD_SIZE; j++) {
1340 const float *tx0 = get_texel_2d(samp, addr, x0[j], y0[j]);
1341 const float *tx1 = get_texel_2d(samp, addr, x1[j], y0[j]);
1342 const float *tx2 = get_texel_2d(samp, addr, x0[j], y1[j]);
1343 const float *tx3 = get_texel_2d(samp, addr, x1[j], y1[j]);
1344 int c;
1345
1346 /* interpolate R, G, B, A */
1347 for (c = 0; c < 4; c++) {
1348 rgba[c][j] = lerp_2d(xw[j], yw[j],
1349 tx0[c], tx1[c],
1350 tx2[c], tx3[c]);
1351 }
1352 }
1353 }
1354
1355
1356 static void
1357 img_filter_2d_array_linear(struct tgsi_sampler *tgsi_sampler,
1358 const float s[QUAD_SIZE],
1359 const float t[QUAD_SIZE],
1360 const float p[QUAD_SIZE],
1361 const float c0[QUAD_SIZE],
1362 enum tgsi_sampler_control control,
1363 float rgba[NUM_CHANNELS][QUAD_SIZE])
1364 {
1365 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1366 const struct pipe_resource *texture = samp->view->texture;
1367 unsigned level0, j;
1368 int width, height;
1369 int x0[4], y0[4], x1[4], y1[4], layer[4];
1370 float xw[4], yw[4]; /* weights */
1371 union tex_tile_address addr;
1372
1373 level0 = samp->level;
1374 width = u_minify(texture->width0, level0);
1375 height = u_minify(texture->height0, level0);
1376
1377 assert(width > 0);
1378 assert(height > 0);
1379
1380 addr.value = 0;
1381 addr.bits.level = samp->level;
1382
1383 samp->linear_texcoord_s(s, width, x0, x1, xw);
1384 samp->linear_texcoord_t(t, height, y0, y1, yw);
1385 wrap_array_layer(p, texture->depth0, layer);
1386
1387 for (j = 0; j < QUAD_SIZE; j++) {
1388 const float *tx0 = get_texel_3d(samp, addr, x0[j], y0[j], layer[j]);
1389 const float *tx1 = get_texel_3d(samp, addr, x1[j], y0[j], layer[j]);
1390 const float *tx2 = get_texel_3d(samp, addr, x0[j], y1[j], layer[j]);
1391 const float *tx3 = get_texel_3d(samp, addr, x1[j], y1[j], layer[j]);
1392 int c;
1393
1394 /* interpolate R, G, B, A */
1395 for (c = 0; c < 4; c++) {
1396 rgba[c][j] = lerp_2d(xw[j], yw[j],
1397 tx0[c], tx1[c],
1398 tx2[c], tx3[c]);
1399 }
1400 }
1401 }
1402
1403
1404 static void
1405 img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler,
1406 const float s[QUAD_SIZE],
1407 const float t[QUAD_SIZE],
1408 const float p[QUAD_SIZE],
1409 const float c0[QUAD_SIZE],
1410 enum tgsi_sampler_control control,
1411 float rgba[NUM_CHANNELS][QUAD_SIZE])
1412 {
1413 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1414 const struct pipe_resource *texture = samp->view->texture;
1415 const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1416 unsigned level0, j;
1417 int width, height;
1418 int x0[4], y0[4], x1[4], y1[4];
1419 float xw[4], yw[4]; /* weights */
1420 union tex_tile_address addr;
1421
1422 level0 = samp->level;
1423 width = u_minify(texture->width0, level0);
1424 height = u_minify(texture->height0, level0);
1425
1426 assert(width > 0);
1427 assert(height > 0);
1428
1429 addr.value = 0;
1430 addr.bits.level = samp->level;
1431
1432 samp->linear_texcoord_s(s, width, x0, x1, xw);
1433 samp->linear_texcoord_t(t, height, y0, y1, yw);
1434
1435 for (j = 0; j < QUAD_SIZE; j++) {
1436 union tex_tile_address addrj = face(addr, faces[j]);
1437 const float *tx0 = get_texel_2d(samp, addrj, x0[j], y0[j]);
1438 const float *tx1 = get_texel_2d(samp, addrj, x1[j], y0[j]);
1439 const float *tx2 = get_texel_2d(samp, addrj, x0[j], y1[j]);
1440 const float *tx3 = get_texel_2d(samp, addrj, x1[j], y1[j]);
1441 int c;
1442
1443 /* interpolate R, G, B, A */
1444 for (c = 0; c < 4; c++) {
1445 rgba[c][j] = lerp_2d(xw[j], yw[j],
1446 tx0[c], tx1[c],
1447 tx2[c], tx3[c]);
1448 }
1449 }
1450 }
1451
1452
1453 static void
1454 img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler,
1455 const float s[QUAD_SIZE],
1456 const float t[QUAD_SIZE],
1457 const float p[QUAD_SIZE],
1458 const float c0[QUAD_SIZE],
1459 enum tgsi_sampler_control control,
1460 float rgba[NUM_CHANNELS][QUAD_SIZE])
1461 {
1462 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1463 const struct pipe_resource *texture = samp->view->texture;
1464 unsigned level0, j;
1465 int width, height, depth;
1466 int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4];
1467 float xw[4], yw[4], zw[4]; /* interpolation weights */
1468 union tex_tile_address addr;
1469
1470 level0 = samp->level;
1471 width = u_minify(texture->width0, level0);
1472 height = u_minify(texture->height0, level0);
1473 depth = u_minify(texture->depth0, level0);
1474
1475 addr.value = 0;
1476 addr.bits.level = level0;
1477
1478 assert(width > 0);
1479 assert(height > 0);
1480 assert(depth > 0);
1481
1482 samp->linear_texcoord_s(s, width, x0, x1, xw);
1483 samp->linear_texcoord_t(t, height, y0, y1, yw);
1484 samp->linear_texcoord_p(p, depth, z0, z1, zw);
1485
1486 for (j = 0; j < QUAD_SIZE; j++) {
1487 int c;
1488
1489 const float *tx00 = get_texel_3d(samp, addr, x0[j], y0[j], z0[j]);
1490 const float *tx01 = get_texel_3d(samp, addr, x1[j], y0[j], z0[j]);
1491 const float *tx02 = get_texel_3d(samp, addr, x0[j], y1[j], z0[j]);
1492 const float *tx03 = get_texel_3d(samp, addr, x1[j], y1[j], z0[j]);
1493
1494 const float *tx10 = get_texel_3d(samp, addr, x0[j], y0[j], z1[j]);
1495 const float *tx11 = get_texel_3d(samp, addr, x1[j], y0[j], z1[j]);
1496 const float *tx12 = get_texel_3d(samp, addr, x0[j], y1[j], z1[j]);
1497 const float *tx13 = get_texel_3d(samp, addr, x1[j], y1[j], z1[j]);
1498
1499 /* interpolate R, G, B, A */
1500 for (c = 0; c < 4; c++) {
1501 rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j],
1502 tx00[c], tx01[c],
1503 tx02[c], tx03[c],
1504 tx10[c], tx11[c],
1505 tx12[c], tx13[c]);
1506 }
1507 }
1508 }
1509
1510
1511 /* Calculate level of detail for every fragment.
1512 * Note that lambda has already been biased by global LOD bias.
1513 */
1514 static INLINE void
1515 compute_lod(const struct pipe_sampler_state *sampler,
1516 const float biased_lambda,
1517 const float lodbias[QUAD_SIZE],
1518 float lod[QUAD_SIZE])
1519 {
1520 uint i;
1521
1522 for (i = 0; i < QUAD_SIZE; i++) {
1523 lod[i] = biased_lambda + lodbias[i];
1524 lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod);
1525 }
1526 }
1527
1528
1529 static void
1530 mip_filter_linear(struct tgsi_sampler *tgsi_sampler,
1531 const float s[QUAD_SIZE],
1532 const float t[QUAD_SIZE],
1533 const float p[QUAD_SIZE],
1534 const float c0[QUAD_SIZE],
1535 enum tgsi_sampler_control control,
1536 float rgba[NUM_CHANNELS][QUAD_SIZE])
1537 {
1538 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1539 const struct pipe_resource *texture = samp->view->texture;
1540 int level0;
1541 float lambda;
1542 float lod[QUAD_SIZE];
1543
1544 if (control == tgsi_sampler_lod_bias) {
1545 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1546 compute_lod(samp->sampler, lambda, c0, lod);
1547 } else {
1548 assert(control == tgsi_sampler_lod_explicit);
1549
1550 memcpy(lod, c0, sizeof(lod));
1551 }
1552
1553 /* XXX: Take into account all lod values.
1554 */
1555 lambda = lod[0];
1556 level0 = (int)lambda;
1557
1558 if (lambda < 0.0) {
1559 samp->level = 0;
1560 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1561 }
1562 else if (level0 >= texture->last_level) {
1563 samp->level = texture->last_level;
1564 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1565 }
1566 else {
1567 float levelBlend = lambda - level0;
1568 float rgba0[4][4];
1569 float rgba1[4][4];
1570 int c,j;
1571
1572 samp->level = level0;
1573 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
1574
1575 samp->level = level0+1;
1576 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
1577
1578 for (j = 0; j < QUAD_SIZE; j++) {
1579 for (c = 0; c < 4; c++) {
1580 rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
1581 }
1582 }
1583 }
1584
1585 if (DEBUG_TEX) {
1586 print_sample(__FUNCTION__, rgba);
1587 }
1588 }
1589
1590
1591 /**
1592 * Compute nearest mipmap level from texcoords.
1593 * Then sample the texture level for four elements of a quad.
1594 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
1595 */
1596 static void
1597 mip_filter_nearest(struct tgsi_sampler *tgsi_sampler,
1598 const float s[QUAD_SIZE],
1599 const float t[QUAD_SIZE],
1600 const float p[QUAD_SIZE],
1601 const float c0[QUAD_SIZE],
1602 enum tgsi_sampler_control control,
1603 float rgba[NUM_CHANNELS][QUAD_SIZE])
1604 {
1605 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1606 const struct pipe_resource *texture = samp->view->texture;
1607 float lambda;
1608 float lod[QUAD_SIZE];
1609
1610 if (control == tgsi_sampler_lod_bias) {
1611 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1612 compute_lod(samp->sampler, lambda, c0, lod);
1613 } else {
1614 assert(control == tgsi_sampler_lod_explicit);
1615
1616 memcpy(lod, c0, sizeof(lod));
1617 }
1618
1619 /* XXX: Take into account all lod values.
1620 */
1621 lambda = lod[0];
1622
1623 if (lambda < 0.0) {
1624 samp->level = 0;
1625 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1626 }
1627 else {
1628 samp->level = (int)(lambda + 0.5) ;
1629 samp->level = MIN2(samp->level, (int)texture->last_level);
1630 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1631 }
1632
1633 if (DEBUG_TEX) {
1634 print_sample(__FUNCTION__, rgba);
1635 }
1636 }
1637
1638
1639 static void
1640 mip_filter_none(struct tgsi_sampler *tgsi_sampler,
1641 const float s[QUAD_SIZE],
1642 const float t[QUAD_SIZE],
1643 const float p[QUAD_SIZE],
1644 const float c0[QUAD_SIZE],
1645 enum tgsi_sampler_control control,
1646 float rgba[NUM_CHANNELS][QUAD_SIZE])
1647 {
1648 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1649 float lambda;
1650 float lod[QUAD_SIZE];
1651
1652 if (control == tgsi_sampler_lod_bias) {
1653 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1654 compute_lod(samp->sampler, lambda, c0, lod);
1655 } else {
1656 assert(control == tgsi_sampler_lod_explicit);
1657
1658 memcpy(lod, c0, sizeof(lod));
1659 }
1660
1661 /* XXX: Take into account all lod values.
1662 */
1663 lambda = lod[0];
1664
1665 if (lambda < 0.0) {
1666 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1667 }
1668 else {
1669 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1670 }
1671 }
1672
1673
1674
1675 /**
1676 * Specialized version of mip_filter_linear with hard-wired calls to
1677 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
1678 */
1679 static void
1680 mip_filter_linear_2d_linear_repeat_POT(
1681 struct tgsi_sampler *tgsi_sampler,
1682 const float s[QUAD_SIZE],
1683 const float t[QUAD_SIZE],
1684 const float p[QUAD_SIZE],
1685 const float c0[QUAD_SIZE],
1686 enum tgsi_sampler_control control,
1687 float rgba[NUM_CHANNELS][QUAD_SIZE])
1688 {
1689 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1690 const struct pipe_resource *texture = samp->view->texture;
1691 int level0;
1692 float lambda;
1693 float lod[QUAD_SIZE];
1694
1695 if (control == tgsi_sampler_lod_bias) {
1696 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1697 compute_lod(samp->sampler, lambda, c0, lod);
1698 } else {
1699 assert(control == tgsi_sampler_lod_explicit);
1700
1701 memcpy(lod, c0, sizeof(lod));
1702 }
1703
1704 /* XXX: Take into account all lod values.
1705 */
1706 lambda = lod[0];
1707 level0 = (int)lambda;
1708
1709 /* Catches both negative and large values of level0:
1710 */
1711 if ((unsigned)level0 >= texture->last_level) {
1712 if (level0 < 0)
1713 samp->level = 0;
1714 else
1715 samp->level = texture->last_level;
1716
1717 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1718 }
1719 else {
1720 float levelBlend = lambda - level0;
1721 float rgba0[4][4];
1722 float rgba1[4][4];
1723 int c,j;
1724
1725 samp->level = level0;
1726 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
1727
1728 samp->level = level0+1;
1729 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
1730
1731 for (j = 0; j < QUAD_SIZE; j++) {
1732 for (c = 0; c < 4; c++) {
1733 rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
1734 }
1735 }
1736 }
1737
1738 if (DEBUG_TEX) {
1739 print_sample(__FUNCTION__, rgba);
1740 }
1741 }
1742
1743
1744
1745 /**
1746 * Do shadow/depth comparisons.
1747 */
1748 static void
1749 sample_compare(struct tgsi_sampler *tgsi_sampler,
1750 const float s[QUAD_SIZE],
1751 const float t[QUAD_SIZE],
1752 const float p[QUAD_SIZE],
1753 const float c0[QUAD_SIZE],
1754 enum tgsi_sampler_control control,
1755 float rgba[NUM_CHANNELS][QUAD_SIZE])
1756 {
1757 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1758 const struct pipe_sampler_state *sampler = samp->sampler;
1759 int j, k0, k1, k2, k3;
1760 float val;
1761
1762 samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba);
1763
1764 /**
1765 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
1766 * When we sampled the depth texture, the depth value was put into all
1767 * RGBA channels. We look at the red channel here.
1768 */
1769
1770 /* compare four texcoords vs. four texture samples */
1771 switch (sampler->compare_func) {
1772 case PIPE_FUNC_LESS:
1773 k0 = p[0] < rgba[0][0];
1774 k1 = p[1] < rgba[0][1];
1775 k2 = p[2] < rgba[0][2];
1776 k3 = p[3] < rgba[0][3];
1777 break;
1778 case PIPE_FUNC_LEQUAL:
1779 k0 = p[0] <= rgba[0][0];
1780 k1 = p[1] <= rgba[0][1];
1781 k2 = p[2] <= rgba[0][2];
1782 k3 = p[3] <= rgba[0][3];
1783 break;
1784 case PIPE_FUNC_GREATER:
1785 k0 = p[0] > rgba[0][0];
1786 k1 = p[1] > rgba[0][1];
1787 k2 = p[2] > rgba[0][2];
1788 k3 = p[3] > rgba[0][3];
1789 break;
1790 case PIPE_FUNC_GEQUAL:
1791 k0 = p[0] >= rgba[0][0];
1792 k1 = p[1] >= rgba[0][1];
1793 k2 = p[2] >= rgba[0][2];
1794 k3 = p[3] >= rgba[0][3];
1795 break;
1796 case PIPE_FUNC_EQUAL:
1797 k0 = p[0] == rgba[0][0];
1798 k1 = p[1] == rgba[0][1];
1799 k2 = p[2] == rgba[0][2];
1800 k3 = p[3] == rgba[0][3];
1801 break;
1802 case PIPE_FUNC_NOTEQUAL:
1803 k0 = p[0] != rgba[0][0];
1804 k1 = p[1] != rgba[0][1];
1805 k2 = p[2] != rgba[0][2];
1806 k3 = p[3] != rgba[0][3];
1807 break;
1808 case PIPE_FUNC_ALWAYS:
1809 k0 = k1 = k2 = k3 = 1;
1810 break;
1811 case PIPE_FUNC_NEVER:
1812 k0 = k1 = k2 = k3 = 0;
1813 break;
1814 default:
1815 k0 = k1 = k2 = k3 = 0;
1816 assert(0);
1817 break;
1818 }
1819
1820 /* convert four pass/fail values to an intensity in [0,1] */
1821 val = 0.25F * (k0 + k1 + k2 + k3);
1822
1823 /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
1824 for (j = 0; j < 4; j++) {
1825 rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
1826 rgba[3][j] = 1.0F;
1827 }
1828 }
1829
1830
1831 /**
1832 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
1833 * Put face info into the sampler faces[] array.
1834 */
1835 static void
1836 sample_cube(struct tgsi_sampler *tgsi_sampler,
1837 const float s[QUAD_SIZE],
1838 const float t[QUAD_SIZE],
1839 const float p[QUAD_SIZE],
1840 const float c0[QUAD_SIZE],
1841 enum tgsi_sampler_control control,
1842 float rgba[NUM_CHANNELS][QUAD_SIZE])
1843 {
1844 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1845 unsigned j;
1846 float ssss[4], tttt[4];
1847
1848 /*
1849 major axis
1850 direction target sc tc ma
1851 ---------- ------------------------------- --- --- ---
1852 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
1853 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
1854 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
1855 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
1856 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
1857 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
1858 */
1859
1860 /* Choose the cube face and compute new s/t coords for the 2D face.
1861 *
1862 * Use the same cube face for all four pixels in the quad.
1863 *
1864 * This isn't ideal, but if we want to use a different cube face
1865 * per pixel in the quad, we'd have to also compute the per-face
1866 * LOD here too. That's because the four post-face-selection
1867 * texcoords are no longer related to each other (they're
1868 * per-face!) so we can't use subtraction to compute the partial
1869 * deriviates to compute the LOD. Doing so (near cube edges
1870 * anyway) gives us pretty much random values.
1871 */
1872 {
1873 /* use the average of the four pixel's texcoords to choose the face */
1874 const float rx = 0.25 * (s[0] + s[1] + s[2] + s[3]);
1875 const float ry = 0.25 * (t[0] + t[1] + t[2] + t[3]);
1876 const float rz = 0.25 * (p[0] + p[1] + p[2] + p[3]);
1877 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
1878
1879 if (arx >= ary && arx >= arz) {
1880 float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
1881 uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
1882 for (j = 0; j < QUAD_SIZE; j++) {
1883 const float ima = -0.5F / fabsf(s[j]);
1884 ssss[j] = sign * p[j] * ima + 0.5F;
1885 tttt[j] = t[j] * ima + 0.5F;
1886 samp->faces[j] = face;
1887 }
1888 }
1889 else if (ary >= arx && ary >= arz) {
1890 float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
1891 uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
1892 for (j = 0; j < QUAD_SIZE; j++) {
1893 const float ima = -0.5F / fabsf(t[j]);
1894 ssss[j] = -s[j] * ima + 0.5F;
1895 tttt[j] = sign * -p[j] * ima + 0.5F;
1896 samp->faces[j] = face;
1897 }
1898 }
1899 else {
1900 float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
1901 uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
1902 for (j = 0; j < QUAD_SIZE; j++) {
1903 const float ima = -0.5 / fabsf(p[j]);
1904 ssss[j] = sign * -s[j] * ima + 0.5F;
1905 tttt[j] = t[j] * ima + 0.5F;
1906 samp->faces[j] = face;
1907 }
1908 }
1909 }
1910
1911 /* In our little pipeline, the compare stage is next. If compare
1912 * is not active, this will point somewhere deeper into the
1913 * pipeline, eg. to mip_filter or even img_filter.
1914 */
1915 samp->compare(tgsi_sampler, ssss, tttt, NULL, c0, control, rgba);
1916 }
1917
1918
1919 static void
1920 sample_swizzle(struct tgsi_sampler *tgsi_sampler,
1921 const float s[QUAD_SIZE],
1922 const float t[QUAD_SIZE],
1923 const float p[QUAD_SIZE],
1924 const float c0[QUAD_SIZE],
1925 enum tgsi_sampler_control control,
1926 float rgba[NUM_CHANNELS][QUAD_SIZE])
1927 {
1928 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1929 float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
1930 const unsigned swizzle_r = samp->key.bits.swizzle_r;
1931 const unsigned swizzle_g = samp->key.bits.swizzle_g;
1932 const unsigned swizzle_b = samp->key.bits.swizzle_b;
1933 const unsigned swizzle_a = samp->key.bits.swizzle_a;
1934 unsigned j;
1935
1936 samp->sample_target(tgsi_sampler, s, t, p, c0, control, rgba_temp);
1937
1938 switch (swizzle_r) {
1939 case PIPE_SWIZZLE_ZERO:
1940 for (j = 0; j < 4; j++)
1941 rgba[0][j] = 0.0f;
1942 break;
1943 case PIPE_SWIZZLE_ONE:
1944 for (j = 0; j < 4; j++)
1945 rgba[0][j] = 1.0f;
1946 break;
1947 default:
1948 assert(swizzle_r < 4);
1949 for (j = 0; j < 4; j++)
1950 rgba[0][j] = rgba_temp[swizzle_r][j];
1951 }
1952
1953 switch (swizzle_g) {
1954 case PIPE_SWIZZLE_ZERO:
1955 for (j = 0; j < 4; j++)
1956 rgba[1][j] = 0.0f;
1957 break;
1958 case PIPE_SWIZZLE_ONE:
1959 for (j = 0; j < 4; j++)
1960 rgba[1][j] = 1.0f;
1961 break;
1962 default:
1963 assert(swizzle_g < 4);
1964 for (j = 0; j < 4; j++)
1965 rgba[1][j] = rgba_temp[swizzle_g][j];
1966 }
1967
1968 switch (swizzle_b) {
1969 case PIPE_SWIZZLE_ZERO:
1970 for (j = 0; j < 4; j++)
1971 rgba[2][j] = 0.0f;
1972 break;
1973 case PIPE_SWIZZLE_ONE:
1974 for (j = 0; j < 4; j++)
1975 rgba[2][j] = 1.0f;
1976 break;
1977 default:
1978 assert(swizzle_b < 4);
1979 for (j = 0; j < 4; j++)
1980 rgba[2][j] = rgba_temp[swizzle_b][j];
1981 }
1982
1983 switch (swizzle_a) {
1984 case PIPE_SWIZZLE_ZERO:
1985 for (j = 0; j < 4; j++)
1986 rgba[3][j] = 0.0f;
1987 break;
1988 case PIPE_SWIZZLE_ONE:
1989 for (j = 0; j < 4; j++)
1990 rgba[3][j] = 1.0f;
1991 break;
1992 default:
1993 assert(swizzle_a < 4);
1994 for (j = 0; j < 4; j++)
1995 rgba[3][j] = rgba_temp[swizzle_a][j];
1996 }
1997 }
1998
1999
2000 static wrap_nearest_func
2001 get_nearest_unorm_wrap(unsigned mode)
2002 {
2003 switch (mode) {
2004 case PIPE_TEX_WRAP_CLAMP:
2005 return wrap_nearest_unorm_clamp;
2006 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2007 return wrap_nearest_unorm_clamp_to_edge;
2008 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2009 return wrap_nearest_unorm_clamp_to_border;
2010 default:
2011 assert(0);
2012 return wrap_nearest_unorm_clamp;
2013 }
2014 }
2015
2016
2017 static wrap_nearest_func
2018 get_nearest_wrap(unsigned mode)
2019 {
2020 switch (mode) {
2021 case PIPE_TEX_WRAP_REPEAT:
2022 return wrap_nearest_repeat;
2023 case PIPE_TEX_WRAP_CLAMP:
2024 return wrap_nearest_clamp;
2025 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2026 return wrap_nearest_clamp_to_edge;
2027 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2028 return wrap_nearest_clamp_to_border;
2029 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2030 return wrap_nearest_mirror_repeat;
2031 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2032 return wrap_nearest_mirror_clamp;
2033 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2034 return wrap_nearest_mirror_clamp_to_edge;
2035 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2036 return wrap_nearest_mirror_clamp_to_border;
2037 default:
2038 assert(0);
2039 return wrap_nearest_repeat;
2040 }
2041 }
2042
2043
2044 static wrap_linear_func
2045 get_linear_unorm_wrap(unsigned mode)
2046 {
2047 switch (mode) {
2048 case PIPE_TEX_WRAP_CLAMP:
2049 return wrap_linear_unorm_clamp;
2050 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2051 return wrap_linear_unorm_clamp_to_edge;
2052 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2053 return wrap_linear_unorm_clamp_to_border;
2054 default:
2055 assert(0);
2056 return wrap_linear_unorm_clamp;
2057 }
2058 }
2059
2060
2061 static wrap_linear_func
2062 get_linear_wrap(unsigned mode)
2063 {
2064 switch (mode) {
2065 case PIPE_TEX_WRAP_REPEAT:
2066 return wrap_linear_repeat;
2067 case PIPE_TEX_WRAP_CLAMP:
2068 return wrap_linear_clamp;
2069 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2070 return wrap_linear_clamp_to_edge;
2071 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2072 return wrap_linear_clamp_to_border;
2073 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2074 return wrap_linear_mirror_repeat;
2075 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2076 return wrap_linear_mirror_clamp;
2077 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2078 return wrap_linear_mirror_clamp_to_edge;
2079 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2080 return wrap_linear_mirror_clamp_to_border;
2081 default:
2082 assert(0);
2083 return wrap_linear_repeat;
2084 }
2085 }
2086
2087
2088 static compute_lambda_func
2089 get_lambda_func(const union sp_sampler_key key)
2090 {
2091 if (key.bits.processor == TGSI_PROCESSOR_VERTEX)
2092 return compute_lambda_vert;
2093
2094 switch (key.bits.target) {
2095 case PIPE_TEXTURE_1D:
2096 case PIPE_TEXTURE_1D_ARRAY:
2097 return compute_lambda_1d;
2098 case PIPE_TEXTURE_2D:
2099 case PIPE_TEXTURE_2D_ARRAY:
2100 case PIPE_TEXTURE_RECT:
2101 case PIPE_TEXTURE_CUBE:
2102 return compute_lambda_2d;
2103 case PIPE_TEXTURE_3D:
2104 return compute_lambda_3d;
2105 default:
2106 assert(0);
2107 return compute_lambda_1d;
2108 }
2109 }
2110
2111
2112 static filter_func
2113 get_img_filter(const union sp_sampler_key key,
2114 unsigned filter,
2115 const struct pipe_sampler_state *sampler)
2116 {
2117 switch (key.bits.target) {
2118 case PIPE_TEXTURE_1D:
2119 if (filter == PIPE_TEX_FILTER_NEAREST)
2120 return img_filter_1d_nearest;
2121 else
2122 return img_filter_1d_linear;
2123 break;
2124 case PIPE_TEXTURE_1D_ARRAY:
2125 if (filter == PIPE_TEX_FILTER_NEAREST)
2126 return img_filter_1d_array_nearest;
2127 else
2128 return img_filter_1d_array_linear;
2129 break;
2130 case PIPE_TEXTURE_2D:
2131 case PIPE_TEXTURE_RECT:
2132 /* Try for fast path:
2133 */
2134 if (key.bits.is_pot &&
2135 sampler->wrap_s == sampler->wrap_t &&
2136 sampler->normalized_coords)
2137 {
2138 switch (sampler->wrap_s) {
2139 case PIPE_TEX_WRAP_REPEAT:
2140 switch (filter) {
2141 case PIPE_TEX_FILTER_NEAREST:
2142 return img_filter_2d_nearest_repeat_POT;
2143 case PIPE_TEX_FILTER_LINEAR:
2144 return img_filter_2d_linear_repeat_POT;
2145 default:
2146 break;
2147 }
2148 break;
2149 case PIPE_TEX_WRAP_CLAMP:
2150 switch (filter) {
2151 case PIPE_TEX_FILTER_NEAREST:
2152 return img_filter_2d_nearest_clamp_POT;
2153 default:
2154 break;
2155 }
2156 }
2157 }
2158 /* Otherwise use default versions:
2159 */
2160 if (filter == PIPE_TEX_FILTER_NEAREST)
2161 return img_filter_2d_nearest;
2162 else
2163 return img_filter_2d_linear;
2164 break;
2165 case PIPE_TEXTURE_2D_ARRAY:
2166 if (filter == PIPE_TEX_FILTER_NEAREST)
2167 return img_filter_2d_array_nearest;
2168 else
2169 return img_filter_2d_array_linear;
2170 break;
2171 case PIPE_TEXTURE_CUBE:
2172 if (filter == PIPE_TEX_FILTER_NEAREST)
2173 return img_filter_cube_nearest;
2174 else
2175 return img_filter_cube_linear;
2176 break;
2177 case PIPE_TEXTURE_3D:
2178 if (filter == PIPE_TEX_FILTER_NEAREST)
2179 return img_filter_3d_nearest;
2180 else
2181 return img_filter_3d_linear;
2182 break;
2183 default:
2184 assert(0);
2185 return img_filter_1d_nearest;
2186 }
2187 }
2188
2189
2190 /**
2191 * Bind the given texture object and texture cache to the sampler variant.
2192 */
2193 void
2194 sp_sampler_variant_bind_view( struct sp_sampler_variant *samp,
2195 struct softpipe_tex_tile_cache *tex_cache,
2196 const struct pipe_sampler_view *view )
2197 {
2198 const struct pipe_sampler_state *sampler = samp->sampler;
2199 const struct pipe_resource *texture = view->texture;
2200
2201 samp->view = view;
2202 samp->cache = tex_cache;
2203 samp->xpot = util_unsigned_logbase2( texture->width0 );
2204 samp->ypot = util_unsigned_logbase2( texture->height0 );
2205 samp->level = CLAMP((int) sampler->min_lod, 0, (int) texture->last_level);
2206 }
2207
2208
2209 void
2210 sp_sampler_variant_destroy( struct sp_sampler_variant *samp )
2211 {
2212 FREE(samp);
2213 }
2214
2215
2216 /**
2217 * Create a sampler variant for a given set of non-orthogonal state.
2218 */
2219 struct sp_sampler_variant *
2220 sp_create_sampler_variant( const struct pipe_sampler_state *sampler,
2221 const union sp_sampler_key key )
2222 {
2223 struct sp_sampler_variant *samp = CALLOC_STRUCT(sp_sampler_variant);
2224 if (!samp)
2225 return NULL;
2226
2227 samp->sampler = sampler;
2228 samp->key = key;
2229
2230 /* Note that (for instance) linear_texcoord_s and
2231 * nearest_texcoord_s may be active at the same time, if the
2232 * sampler min_img_filter differs from its mag_img_filter.
2233 */
2234 if (sampler->normalized_coords) {
2235 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
2236 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
2237 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
2238
2239 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
2240 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
2241 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
2242 }
2243 else {
2244 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
2245 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
2246 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
2247
2248 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
2249 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
2250 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
2251 }
2252
2253 samp->compute_lambda = get_lambda_func( key );
2254
2255 samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler);
2256 samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler);
2257
2258 switch (sampler->min_mip_filter) {
2259 case PIPE_TEX_MIPFILTER_NONE:
2260 if (sampler->min_img_filter == sampler->mag_img_filter)
2261 samp->mip_filter = samp->min_img_filter;
2262 else
2263 samp->mip_filter = mip_filter_none;
2264 break;
2265
2266 case PIPE_TEX_MIPFILTER_NEAREST:
2267 samp->mip_filter = mip_filter_nearest;
2268 break;
2269
2270 case PIPE_TEX_MIPFILTER_LINEAR:
2271 if (key.bits.is_pot &&
2272 sampler->min_img_filter == sampler->mag_img_filter &&
2273 sampler->normalized_coords &&
2274 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
2275 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
2276 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR)
2277 {
2278 samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
2279 }
2280 else
2281 {
2282 samp->mip_filter = mip_filter_linear;
2283 }
2284 break;
2285 }
2286
2287 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
2288 samp->compare = sample_compare;
2289 }
2290 else {
2291 /* Skip compare operation by promoting the mip_filter function
2292 * pointer:
2293 */
2294 samp->compare = samp->mip_filter;
2295 }
2296
2297 if (key.bits.target == PIPE_TEXTURE_CUBE) {
2298 samp->sample_target = sample_cube;
2299 }
2300 else {
2301 samp->faces[0] = 0;
2302 samp->faces[1] = 0;
2303 samp->faces[2] = 0;
2304 samp->faces[3] = 0;
2305
2306 /* Skip cube face determination by promoting the compare
2307 * function pointer:
2308 */
2309 samp->sample_target = samp->compare;
2310 }
2311
2312 if (key.bits.swizzle_r != PIPE_SWIZZLE_RED ||
2313 key.bits.swizzle_g != PIPE_SWIZZLE_GREEN ||
2314 key.bits.swizzle_b != PIPE_SWIZZLE_BLUE ||
2315 key.bits.swizzle_a != PIPE_SWIZZLE_ALPHA) {
2316 samp->base.get_samples = sample_swizzle;
2317 }
2318 else {
2319 samp->base.get_samples = samp->sample_target;
2320 }
2321
2322 return samp;
2323 }