softpipe: silence some MSVC warnings
[mesa.git] / src / gallium / drivers / softpipe / sp_tex_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * Texture sampling
31 *
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
35 */
36
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_format.h"
42 #include "util/u_memory.h"
43 #include "util/u_inlines.h"
44 #include "sp_quad.h" /* only for #define QUAD_* tokens */
45 #include "sp_tex_sample.h"
46 #include "sp_texture.h"
47 #include "sp_tex_tile_cache.h"
48
49
50 /** Set to one to help debug texture sampling */
51 #define DEBUG_TEX 0
52
53
54 /*
55 * Return fractional part of 'f'. Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61 static INLINE float
62 frac(float f)
63 {
64 return f - floorf(f);
65 }
66
67
68
69 /**
70 * Linear interpolation macro
71 */
72 static INLINE float
73 lerp(float a, float v0, float v1)
74 {
75 return v0 + a * (v1 - v0);
76 }
77
78
79 /**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization! If we find that's not true on some systems, convert
85 * to a macro.
86 */
87 static INLINE float
88 lerp_2d(float a, float b,
89 float v00, float v10, float v01, float v11)
90 {
91 const float temp0 = lerp(a, v00, v10);
92 const float temp1 = lerp(a, v01, v11);
93 return lerp(b, temp0, temp1);
94 }
95
96
97 /**
98 * As above, but 3D interpolation of 8 values.
99 */
100 static INLINE float
101 lerp_3d(float a, float b, float c,
102 float v000, float v100, float v010, float v110,
103 float v001, float v101, float v011, float v111)
104 {
105 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107 return lerp(c, temp0, temp1);
108 }
109
110
111
112 /**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value. To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118 static INLINE int
119 repeat(int coord, unsigned size)
120 {
121 return (coord + size * 1024) % size;
122 }
123
124
125 /**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode PIPE_TEX_WRAP_x
129 * \param s the incoming texcoords
130 * \param size the texture image size
131 * \param icoord returns the integer texcoords
132 */
133 static void
134 wrap_nearest_repeat(float s, unsigned size, int *icoord)
135 {
136 /* s limited to [0,1) */
137 /* i limited to [0,size-1] */
138 int i = util_ifloor(s * size);
139 *icoord = repeat(i, size);
140 }
141
142
143 static void
144 wrap_nearest_clamp(float s, unsigned size, int *icoord)
145 {
146 /* s limited to [0,1] */
147 /* i limited to [0,size-1] */
148 if (s <= 0.0F)
149 *icoord = 0;
150 else if (s >= 1.0F)
151 *icoord = size - 1;
152 else
153 *icoord = util_ifloor(s * size);
154 }
155
156
157 static void
158 wrap_nearest_clamp_to_edge(float s, unsigned size, int *icoord)
159 {
160 /* s limited to [min,max] */
161 /* i limited to [0, size-1] */
162 const float min = 1.0F / (2.0F * size);
163 const float max = 1.0F - min;
164 if (s < min)
165 *icoord = 0;
166 else if (s > max)
167 *icoord = size - 1;
168 else
169 *icoord = util_ifloor(s * size);
170 }
171
172
173 static void
174 wrap_nearest_clamp_to_border(float s, unsigned size, int *icoord)
175 {
176 /* s limited to [min,max] */
177 /* i limited to [-1, size] */
178 const float min = -1.0F / (2.0F * size);
179 const float max = 1.0F - min;
180 if (s <= min)
181 *icoord = -1;
182 else if (s >= max)
183 *icoord = size;
184 else
185 *icoord = util_ifloor(s * size);
186 }
187
188
189 static void
190 wrap_nearest_mirror_repeat(float s, unsigned size, int *icoord)
191 {
192 const float min = 1.0F / (2.0F * size);
193 const float max = 1.0F - min;
194 const int flr = util_ifloor(s);
195 float u = frac(s);
196 if (flr & 1)
197 u = 1.0F - u;
198 if (u < min)
199 *icoord = 0;
200 else if (u > max)
201 *icoord = size - 1;
202 else
203 *icoord = util_ifloor(u * size);
204 }
205
206
207 static void
208 wrap_nearest_mirror_clamp(float s, unsigned size, int *icoord)
209 {
210 /* s limited to [0,1] */
211 /* i limited to [0,size-1] */
212 const float u = fabsf(s);
213 if (u <= 0.0F)
214 *icoord = 0;
215 else if (u >= 1.0F)
216 *icoord = size - 1;
217 else
218 *icoord = util_ifloor(u * size);
219 }
220
221
222 static void
223 wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int *icoord)
224 {
225 /* s limited to [min,max] */
226 /* i limited to [0, size-1] */
227 const float min = 1.0F / (2.0F * size);
228 const float max = 1.0F - min;
229 const float u = fabsf(s);
230 if (u < min)
231 *icoord = 0;
232 else if (u > max)
233 *icoord = size - 1;
234 else
235 *icoord = util_ifloor(u * size);
236 }
237
238
239 static void
240 wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int *icoord)
241 {
242 /* s limited to [min,max] */
243 /* i limited to [0, size-1] */
244 const float min = -1.0F / (2.0F * size);
245 const float max = 1.0F - min;
246 const float u = fabsf(s);
247 if (u < min)
248 *icoord = -1;
249 else if (u > max)
250 *icoord = size;
251 else
252 *icoord = util_ifloor(u * size);
253 }
254
255
256 /**
257 * Used to compute texel locations for linear sampling
258 * \param wrapMode PIPE_TEX_WRAP_x
259 * \param s the texcoord
260 * \param size the texture image size
261 * \param icoord0 returns first texture index
262 * \param icoord1 returns second texture index (usually icoord0 + 1)
263 * \param w returns blend factor/weight between texture indices
264 * \param icoord returns the computed integer texture coord
265 */
266 static void
267 wrap_linear_repeat(float s, unsigned size,
268 int *icoord0, int *icoord1, float *w)
269 {
270 float u = s * size - 0.5F;
271 *icoord0 = repeat(util_ifloor(u), size);
272 *icoord1 = repeat(*icoord0 + 1, size);
273 *w = frac(u);
274 }
275
276
277 static void
278 wrap_linear_clamp(float s, unsigned size,
279 int *icoord0, int *icoord1, float *w)
280 {
281 float u = CLAMP(s, 0.0F, 1.0F);
282 u = u * size - 0.5f;
283 *icoord0 = util_ifloor(u);
284 *icoord1 = *icoord0 + 1;
285 *w = frac(u);
286 }
287
288
289 static void
290 wrap_linear_clamp_to_edge(float s, unsigned size,
291 int *icoord0, int *icoord1, float *w)
292 {
293 float u = CLAMP(s, 0.0F, 1.0F);
294 u = u * size - 0.5f;
295 *icoord0 = util_ifloor(u);
296 *icoord1 = *icoord0 + 1;
297 if (*icoord0 < 0)
298 *icoord0 = 0;
299 if (*icoord1 >= (int) size)
300 *icoord1 = size - 1;
301 *w = frac(u);
302 }
303
304
305 static void
306 wrap_linear_clamp_to_border(float s, unsigned size,
307 int *icoord0, int *icoord1, float *w)
308 {
309 const float min = -1.0F / (2.0F * size);
310 const float max = 1.0F - min;
311 float u = CLAMP(s, min, max);
312 u = u * size - 0.5f;
313 *icoord0 = util_ifloor(u);
314 *icoord1 = *icoord0 + 1;
315 *w = frac(u);
316 }
317
318
319 static void
320 wrap_linear_mirror_repeat(float s, unsigned size,
321 int *icoord0, int *icoord1, float *w)
322 {
323 const int flr = util_ifloor(s);
324 float u = frac(s);
325 if (flr & 1)
326 u = 1.0F - u;
327 u = u * size - 0.5F;
328 *icoord0 = util_ifloor(u);
329 *icoord1 = *icoord0 + 1;
330 if (*icoord0 < 0)
331 *icoord0 = 0;
332 if (*icoord1 >= (int) size)
333 *icoord1 = size - 1;
334 *w = frac(u);
335 }
336
337
338 static void
339 wrap_linear_mirror_clamp(float s, unsigned size,
340 int *icoord0, int *icoord1, float *w)
341 {
342 float u = fabsf(s);
343 if (u >= 1.0F)
344 u = (float) size;
345 else
346 u *= size;
347 u -= 0.5F;
348 *icoord0 = util_ifloor(u);
349 *icoord1 = *icoord0 + 1;
350 *w = frac(u);
351 }
352
353
354 static void
355 wrap_linear_mirror_clamp_to_edge(float s, unsigned size,
356 int *icoord0, int *icoord1, float *w)
357 {
358 float u = fabsf(s);
359 if (u >= 1.0F)
360 u = (float) size;
361 else
362 u *= size;
363 u -= 0.5F;
364 *icoord0 = util_ifloor(u);
365 *icoord1 = *icoord0 + 1;
366 if (*icoord0 < 0)
367 *icoord0 = 0;
368 if (*icoord1 >= (int) size)
369 *icoord1 = size - 1;
370 *w = frac(u);
371 }
372
373
374 static void
375 wrap_linear_mirror_clamp_to_border(float s, unsigned size,
376 int *icoord0, int *icoord1, float *w)
377 {
378 const float min = -1.0F / (2.0F * size);
379 const float max = 1.0F - min;
380 float u = fabsf(s);
381 if (u <= min)
382 u = min * size;
383 else if (u >= max)
384 u = max * size;
385 else
386 u *= size;
387 u -= 0.5F;
388 *icoord0 = util_ifloor(u);
389 *icoord1 = *icoord0 + 1;
390 *w = frac(u);
391 }
392
393
394 /**
395 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
396 */
397 static void
398 wrap_nearest_unorm_clamp(float s, unsigned size, int *icoord)
399 {
400 int i = util_ifloor(s);
401 *icoord = CLAMP(i, 0, (int) size-1);
402 }
403
404
405 /**
406 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
407 */
408 static void
409 wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int *icoord)
410 {
411 *icoord = util_ifloor( CLAMP(s, -0.5F, (float) size + 0.5F) );
412 }
413
414
415 /**
416 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
417 */
418 static void
419 wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int *icoord)
420 {
421 *icoord = util_ifloor( CLAMP(s, 0.5F, (float) size - 0.5F) );
422 }
423
424
425 /**
426 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
427 */
428 static void
429 wrap_linear_unorm_clamp(float s, unsigned size,
430 int *icoord0, int *icoord1, float *w)
431 {
432 /* Not exactly what the spec says, but it matches NVIDIA output */
433 float u = CLAMP(s - 0.5F, 0.0f, (float) size - 1.0f);
434 *icoord0 = util_ifloor(u);
435 *icoord1 = *icoord0 + 1;
436 *w = frac(u);
437 }
438
439
440 /**
441 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
442 */
443 static void
444 wrap_linear_unorm_clamp_to_border(float s, unsigned size,
445 int *icoord0, int *icoord1, float *w)
446 {
447 float u = CLAMP(s, -0.5F, (float) size + 0.5F);
448 u -= 0.5F;
449 *icoord0 = util_ifloor(u);
450 *icoord1 = *icoord0 + 1;
451 if (*icoord1 > (int) size - 1)
452 *icoord1 = size - 1;
453 *w = frac(u);
454 }
455
456
457 /**
458 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
459 */
460 static void
461 wrap_linear_unorm_clamp_to_edge(float s, unsigned size,
462 int *icoord0, int *icoord1, float *w)
463 {
464 float u = CLAMP(s, +0.5F, (float) size - 0.5F);
465 u -= 0.5F;
466 *icoord0 = util_ifloor(u);
467 *icoord1 = *icoord0 + 1;
468 if (*icoord1 > (int) size - 1)
469 *icoord1 = size - 1;
470 *w = frac(u);
471 }
472
473
474 /**
475 * Do coordinate to array index conversion. For array textures.
476 */
477 static INLINE void
478 wrap_array_layer(float coord, unsigned size, int *layer)
479 {
480 int c = util_ifloor(coord + 0.5F);
481 *layer = CLAMP(c, 0, (int) size - 1);
482 }
483
484
485 /**
486 * Examine the quad's texture coordinates to compute the partial
487 * derivatives w.r.t X and Y, then compute lambda (level of detail).
488 */
489 static float
490 compute_lambda_1d(const struct sp_sampler_view *sview,
491 const float s[TGSI_QUAD_SIZE],
492 const float t[TGSI_QUAD_SIZE],
493 const float p[TGSI_QUAD_SIZE])
494 {
495 const struct pipe_resource *texture = sview->base.texture;
496 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
497 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
498 float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
499
500 return util_fast_log2(rho);
501 }
502
503
504 static float
505 compute_lambda_2d(const struct sp_sampler_view *sview,
506 const float s[TGSI_QUAD_SIZE],
507 const float t[TGSI_QUAD_SIZE],
508 const float p[TGSI_QUAD_SIZE])
509 {
510 const struct pipe_resource *texture = sview->base.texture;
511 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
512 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
513 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
514 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
515 float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
516 float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
517 float rho = MAX2(maxx, maxy);
518
519 return util_fast_log2(rho);
520 }
521
522
523 static float
524 compute_lambda_3d(const struct sp_sampler_view *sview,
525 const float s[TGSI_QUAD_SIZE],
526 const float t[TGSI_QUAD_SIZE],
527 const float p[TGSI_QUAD_SIZE])
528 {
529 const struct pipe_resource *texture = sview->base.texture;
530 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
531 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
532 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
533 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
534 float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
535 float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
536 float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
537 float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
538 float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
539 float rho;
540
541 rho = MAX2(maxx, maxy);
542 rho = MAX2(rho, maxz);
543
544 return util_fast_log2(rho);
545 }
546
547
548 /**
549 * Compute lambda for a vertex texture sampler.
550 * Since there aren't derivatives to use, just return 0.
551 */
552 static float
553 compute_lambda_vert(const struct sp_sampler_view *sview,
554 const float s[TGSI_QUAD_SIZE],
555 const float t[TGSI_QUAD_SIZE],
556 const float p[TGSI_QUAD_SIZE])
557 {
558 return 0.0f;
559 }
560
561
562
563 /**
564 * Get a texel from a texture, using the texture tile cache.
565 *
566 * \param addr the template tex address containing cube, z, face info.
567 * \param x the x coord of texel within 2D image
568 * \param y the y coord of texel within 2D image
569 * \param rgba the quad to put the texel/color into
570 *
571 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
572 * sp_get_cached_tile_tex() function.
573 */
574
575
576
577
578 static INLINE const float *
579 get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
580 union tex_tile_address addr, int x, int y)
581 {
582 const struct softpipe_tex_cached_tile *tile;
583 addr.bits.x = x / TEX_TILE_SIZE;
584 addr.bits.y = y / TEX_TILE_SIZE;
585 y %= TEX_TILE_SIZE;
586 x %= TEX_TILE_SIZE;
587
588 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
589
590 return &tile->data.color[y][x][0];
591 }
592
593
594 static INLINE const float *
595 get_texel_2d(const struct sp_sampler_view *sp_sview,
596 const struct sp_sampler *sp_samp,
597 union tex_tile_address addr, int x, int y)
598 {
599 const struct pipe_resource *texture = sp_sview->base.texture;
600 unsigned level = addr.bits.level;
601
602 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
603 y < 0 || y >= (int) u_minify(texture->height0, level)) {
604 return sp_samp->base.border_color.f;
605 }
606 else {
607 return get_texel_2d_no_border( sp_sview, addr, x, y );
608 }
609 }
610
611 /*
612 * seamless cubemap neighbour array.
613 * this array is used to find the adjacent face in each of 4 directions,
614 * left, right, up, down. (or -x, +x, -y, +y).
615 */
616 static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
617 /* pos X first then neg X is Z different, Y the same */
618 /* PIPE_TEX_FACE_POS_X,*/
619 { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
620 PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
621 /* PIPE_TEX_FACE_NEG_X */
622 { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
623 PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
624
625 /* pos Y first then neg Y is X different, X the same */
626 /* PIPE_TEX_FACE_POS_Y */
627 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
628 PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
629
630 /* PIPE_TEX_FACE_NEG_Y */
631 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
632 PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
633
634 /* pos Z first then neg Y is X different, X the same */
635 /* PIPE_TEX_FACE_POS_Z */
636 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
637 PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
638
639 /* PIPE_TEX_FACE_NEG_Z */
640 { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
641 PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y }
642 };
643
644 static INLINE unsigned
645 get_next_face(unsigned face, int x, int y)
646 {
647 int idx = 0;
648
649 if (x == 0 && y == 0)
650 return face;
651 if (x == -1)
652 idx = 0;
653 else if (x == 1)
654 idx = 1;
655 else if (y == -1)
656 idx = 2;
657 else if (y == 1)
658 idx = 3;
659
660 return face_array[face][idx];
661 }
662
663 static INLINE const float *
664 get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
665 union tex_tile_address addr, int x, int y,
666 float *corner)
667 {
668 const struct pipe_resource *texture = sp_sview->base.texture;
669 unsigned level = addr.bits.level;
670 unsigned face = addr.bits.face;
671 int new_x, new_y;
672 int max_x, max_y;
673 int c;
674
675 max_x = (int) u_minify(texture->width0, level);
676 max_y = (int) u_minify(texture->height0, level);
677 new_x = x;
678 new_y = y;
679
680 /* the corner case */
681 if ((x < 0 || x >= max_x) &&
682 (y < 0 || y >= max_y)) {
683 const float *c1, *c2, *c3;
684 int fx = x < 0 ? 0 : max_x - 1;
685 int fy = y < 0 ? 0 : max_y - 1;
686 c1 = get_texel_2d_no_border( sp_sview, addr, fx, fy);
687 addr.bits.face = get_next_face(face, (x < 0) ? -1 : 1, 0);
688 c2 = get_texel_2d_no_border( sp_sview, addr, (x < 0) ? max_x - 1 : 0, fy);
689 addr.bits.face = get_next_face(face, 0, (y < 0) ? -1 : 1);
690 c3 = get_texel_2d_no_border( sp_sview, addr, fx, (y < 0) ? max_y - 1 : 0);
691 for (c = 0; c < TGSI_QUAD_SIZE; c++)
692 corner[c] = CLAMP((c1[c] + c2[c] + c3[c]), 0.0F, 1.0F) / 3;
693
694 return corner;
695 }
696 /* change the face */
697 if (x < 0) {
698 new_x = max_x - 1;
699 face = get_next_face(face, -1, 0);
700 } else if (x >= max_x) {
701 new_x = 0;
702 face = get_next_face(face, 1, 0);
703 } else if (y < 0) {
704 new_y = max_y - 1;
705 face = get_next_face(face, 0, -1);
706 } else if (y >= max_y) {
707 new_y = 0;
708 face = get_next_face(face, 0, 1);
709 }
710
711 addr.bits.face = face;
712 return get_texel_2d_no_border( sp_sview, addr, new_x, new_y );
713 }
714
715 /* Gather a quad of adjacent texels within a tile:
716 */
717 static INLINE void
718 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
719 union tex_tile_address addr,
720 unsigned x, unsigned y,
721 const float *out[4])
722 {
723 const struct softpipe_tex_cached_tile *tile;
724
725 addr.bits.x = x / TEX_TILE_SIZE;
726 addr.bits.y = y / TEX_TILE_SIZE;
727 y %= TEX_TILE_SIZE;
728 x %= TEX_TILE_SIZE;
729
730 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
731
732 out[0] = &tile->data.color[y ][x ][0];
733 out[1] = &tile->data.color[y ][x+1][0];
734 out[2] = &tile->data.color[y+1][x ][0];
735 out[3] = &tile->data.color[y+1][x+1][0];
736 }
737
738
739 /* Gather a quad of potentially non-adjacent texels:
740 */
741 static INLINE void
742 get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
743 union tex_tile_address addr,
744 int x0, int y0,
745 int x1, int y1,
746 const float *out[4])
747 {
748 out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
749 out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
750 out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
751 out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
752 }
753
754 /* Can involve a lot of unnecessary checks for border color:
755 */
756 static INLINE void
757 get_texel_quad_2d(const struct sp_sampler_view *sp_sview,
758 const struct sp_sampler *sp_samp,
759 union tex_tile_address addr,
760 int x0, int y0,
761 int x1, int y1,
762 const float *out[4])
763 {
764 out[0] = get_texel_2d( sp_sview, sp_samp, addr, x0, y0 );
765 out[1] = get_texel_2d( sp_sview, sp_samp, addr, x1, y0 );
766 out[3] = get_texel_2d( sp_sview, sp_samp, addr, x1, y1 );
767 out[2] = get_texel_2d( sp_sview, sp_samp, addr, x0, y1 );
768 }
769
770
771
772 /* 3d variants:
773 */
774 static INLINE const float *
775 get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
776 union tex_tile_address addr, int x, int y, int z)
777 {
778 const struct softpipe_tex_cached_tile *tile;
779
780 addr.bits.x = x / TEX_TILE_SIZE;
781 addr.bits.y = y / TEX_TILE_SIZE;
782 addr.bits.z = z;
783 y %= TEX_TILE_SIZE;
784 x %= TEX_TILE_SIZE;
785
786 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
787
788 return &tile->data.color[y][x][0];
789 }
790
791
792 static INLINE const float *
793 get_texel_3d(const struct sp_sampler_view *sp_sview,
794 const struct sp_sampler *sp_samp,
795 union tex_tile_address addr, int x, int y, int z)
796 {
797 const struct pipe_resource *texture = sp_sview->base.texture;
798 unsigned level = addr.bits.level;
799
800 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
801 y < 0 || y >= (int) u_minify(texture->height0, level) ||
802 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
803 return sp_samp->base.border_color.f;
804 }
805 else {
806 return get_texel_3d_no_border( sp_sview, addr, x, y, z );
807 }
808 }
809
810
811 /* Get texel pointer for 1D array texture */
812 static INLINE const float *
813 get_texel_1d_array(const struct sp_sampler_view *sp_sview,
814 const struct sp_sampler *sp_samp,
815 union tex_tile_address addr, int x, int y)
816 {
817 const struct pipe_resource *texture = sp_sview->base.texture;
818 unsigned level = addr.bits.level;
819
820 if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
821 return sp_samp->base.border_color.f;
822 }
823 else {
824 return get_texel_2d_no_border(sp_sview, addr, x, y);
825 }
826 }
827
828
829 /* Get texel pointer for 2D array texture */
830 static INLINE const float *
831 get_texel_2d_array(const struct sp_sampler_view *sp_sview,
832 const struct sp_sampler *sp_samp,
833 union tex_tile_address addr, int x, int y, int layer)
834 {
835 const struct pipe_resource *texture = sp_sview->base.texture;
836 unsigned level = addr.bits.level;
837
838 assert(layer < (int) texture->array_size);
839 assert(layer >= 0);
840
841 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
842 y < 0 || y >= (int) u_minify(texture->height0, level)) {
843 return sp_samp->base.border_color.f;
844 }
845 else {
846 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
847 }
848 }
849
850
851 /* Get texel pointer for cube array texture */
852 static INLINE const float *
853 get_texel_cube_array(const struct sp_sampler_view *sp_sview,
854 const struct sp_sampler *sp_samp,
855 union tex_tile_address addr, int x, int y, int layer)
856 {
857 const struct pipe_resource *texture = sp_sview->base.texture;
858 unsigned level = addr.bits.level;
859
860 assert(layer < (int) texture->array_size);
861 assert(layer >= 0);
862
863 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
864 y < 0 || y >= (int) u_minify(texture->height0, level)) {
865 return sp_samp->base.border_color.f;
866 }
867 else {
868 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
869 }
870 }
871 /**
872 * Given the logbase2 of a mipmap's base level size and a mipmap level,
873 * return the size (in texels) of that mipmap level.
874 * For example, if level[0].width = 256 then base_pot will be 8.
875 * If level = 2, then we'll return 64 (the width at level=2).
876 * Return 1 if level > base_pot.
877 */
878 static INLINE unsigned
879 pot_level_size(unsigned base_pot, unsigned level)
880 {
881 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
882 }
883
884
885 static void
886 print_sample(const char *function, const float *rgba)
887 {
888 debug_printf("%s %g %g %g %g\n",
889 function,
890 rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
891 }
892
893
894 static void
895 print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
896 {
897 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
898 function,
899 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
900 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
901 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
902 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
903 }
904
905
906 /* Some image-filter fastpaths:
907 */
908 static INLINE void
909 img_filter_2d_linear_repeat_POT(struct sp_sampler_view *sp_sview,
910 struct sp_sampler *sp_samp,
911 float s,
912 float t,
913 float p,
914 unsigned level,
915 unsigned face_id,
916 float *rgba)
917 {
918 unsigned xpot = pot_level_size(sp_sview->xpot, level);
919 unsigned ypot = pot_level_size(sp_sview->ypot, level);
920 int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
921 int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
922 union tex_tile_address addr;
923 int c;
924
925 float u = s * xpot - 0.5F;
926 float v = t * ypot - 0.5F;
927
928 int uflr = util_ifloor(u);
929 int vflr = util_ifloor(v);
930
931 float xw = u - (float)uflr;
932 float yw = v - (float)vflr;
933
934 int x0 = uflr & (xpot - 1);
935 int y0 = vflr & (ypot - 1);
936
937 const float *tx[4];
938
939 addr.value = 0;
940 addr.bits.level = level;
941
942 /* Can we fetch all four at once:
943 */
944 if (x0 < xmax && y0 < ymax) {
945 get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
946 }
947 else {
948 unsigned x1 = (x0 + 1) & (xpot - 1);
949 unsigned y1 = (y0 + 1) & (ypot - 1);
950 get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
951 }
952
953 /* interpolate R, G, B, A */
954 for (c = 0; c < TGSI_QUAD_SIZE; c++) {
955 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
956 tx[0][c], tx[1][c],
957 tx[2][c], tx[3][c]);
958 }
959
960 if (DEBUG_TEX) {
961 print_sample(__FUNCTION__, rgba);
962 }
963 }
964
965
966 static INLINE void
967 img_filter_2d_nearest_repeat_POT(struct sp_sampler_view *sp_sview,
968 struct sp_sampler *sp_samp,
969 float s,
970 float t,
971 float p,
972 unsigned level,
973 unsigned face_id,
974 float rgba[TGSI_QUAD_SIZE])
975 {
976 unsigned xpot = pot_level_size(sp_sview->xpot, level);
977 unsigned ypot = pot_level_size(sp_sview->ypot, level);
978 const float *out;
979 union tex_tile_address addr;
980 int c;
981
982 float u = s * xpot;
983 float v = t * ypot;
984
985 int uflr = util_ifloor(u);
986 int vflr = util_ifloor(v);
987
988 int x0 = uflr & (xpot - 1);
989 int y0 = vflr & (ypot - 1);
990
991 addr.value = 0;
992 addr.bits.level = level;
993
994 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
995 for (c = 0; c < TGSI_QUAD_SIZE; c++)
996 rgba[TGSI_NUM_CHANNELS*c] = out[c];
997
998 if (DEBUG_TEX) {
999 print_sample(__FUNCTION__, rgba);
1000 }
1001 }
1002
1003
1004 static INLINE void
1005 img_filter_2d_nearest_clamp_POT(struct sp_sampler_view *sp_sview,
1006 struct sp_sampler *sp_samp,
1007 float s,
1008 float t,
1009 float p,
1010 unsigned level,
1011 unsigned face_id,
1012 float rgba[TGSI_QUAD_SIZE])
1013 {
1014 unsigned xpot = pot_level_size(sp_sview->xpot, level);
1015 unsigned ypot = pot_level_size(sp_sview->ypot, level);
1016 union tex_tile_address addr;
1017 int c;
1018
1019 float u = s * xpot;
1020 float v = t * ypot;
1021
1022 int x0, y0;
1023 const float *out;
1024
1025 addr.value = 0;
1026 addr.bits.level = level;
1027
1028 x0 = util_ifloor(u);
1029 if (x0 < 0)
1030 x0 = 0;
1031 else if (x0 > (int) xpot - 1)
1032 x0 = xpot - 1;
1033
1034 y0 = util_ifloor(v);
1035 if (y0 < 0)
1036 y0 = 0;
1037 else if (y0 > (int) ypot - 1)
1038 y0 = ypot - 1;
1039
1040 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1041 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1042 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1043
1044 if (DEBUG_TEX) {
1045 print_sample(__FUNCTION__, rgba);
1046 }
1047 }
1048
1049
1050 static void
1051 img_filter_1d_nearest(struct sp_sampler_view *sp_sview,
1052 struct sp_sampler *sp_samp,
1053 float s,
1054 float t,
1055 float p,
1056 unsigned level,
1057 unsigned face_id,
1058 float rgba[TGSI_QUAD_SIZE])
1059 {
1060 const struct pipe_resource *texture = sp_sview->base.texture;
1061 int width;
1062 int x;
1063 union tex_tile_address addr;
1064 const float *out;
1065 int c;
1066
1067 width = u_minify(texture->width0, level);
1068
1069 assert(width > 0);
1070
1071 addr.value = 0;
1072 addr.bits.level = level;
1073
1074 sp_samp->nearest_texcoord_s(s, width, &x);
1075
1076 out = get_texel_2d(sp_sview, sp_samp, addr, x, 0);
1077 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1078 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1079
1080 if (DEBUG_TEX) {
1081 print_sample(__FUNCTION__, rgba);
1082 }
1083 }
1084
1085
1086 static void
1087 img_filter_1d_array_nearest(struct sp_sampler_view *sp_sview,
1088 struct sp_sampler *sp_samp,
1089 float s,
1090 float t,
1091 float p,
1092 unsigned level,
1093 unsigned face_id,
1094 float *rgba)
1095 {
1096 const struct pipe_resource *texture = sp_sview->base.texture;
1097 int width;
1098 int x, layer;
1099 union tex_tile_address addr;
1100 const float *out;
1101 int c;
1102
1103 width = u_minify(texture->width0, level);
1104
1105 assert(width > 0);
1106
1107 addr.value = 0;
1108 addr.bits.level = level;
1109
1110 sp_samp->nearest_texcoord_s(s, width, &x);
1111 wrap_array_layer(t, texture->array_size, &layer);
1112
1113 out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1114 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1115 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1116
1117 if (DEBUG_TEX) {
1118 print_sample(__FUNCTION__, rgba);
1119 }
1120 }
1121
1122
1123 static void
1124 img_filter_2d_nearest(struct sp_sampler_view *sp_sview,
1125 struct sp_sampler *sp_samp,
1126 float s,
1127 float t,
1128 float p,
1129 unsigned level,
1130 unsigned face_id,
1131 float *rgba)
1132 {
1133 const struct pipe_resource *texture = sp_sview->base.texture;
1134 int width, height;
1135 int x, y;
1136 union tex_tile_address addr;
1137 const float *out;
1138 int c;
1139
1140 width = u_minify(texture->width0, level);
1141 height = u_minify(texture->height0, level);
1142
1143 assert(width > 0);
1144 assert(height > 0);
1145
1146 addr.value = 0;
1147 addr.bits.level = level;
1148
1149 sp_samp->nearest_texcoord_s(s, width, &x);
1150 sp_samp->nearest_texcoord_t(t, height, &y);
1151
1152 out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1153 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1154 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1155
1156 if (DEBUG_TEX) {
1157 print_sample(__FUNCTION__, rgba);
1158 }
1159 }
1160
1161
1162 static void
1163 img_filter_2d_array_nearest(struct sp_sampler_view *sp_sview,
1164 struct sp_sampler *sp_samp,
1165 float s,
1166 float t,
1167 float p,
1168 unsigned level,
1169 unsigned face_id,
1170 float *rgba)
1171 {
1172 const struct pipe_resource *texture = sp_sview->base.texture;
1173 int width, height;
1174 int x, y, layer;
1175 union tex_tile_address addr;
1176 const float *out;
1177 int c;
1178
1179 width = u_minify(texture->width0, level);
1180 height = u_minify(texture->height0, level);
1181
1182 assert(width > 0);
1183 assert(height > 0);
1184
1185 addr.value = 0;
1186 addr.bits.level = level;
1187
1188 sp_samp->nearest_texcoord_s(s, width, &x);
1189 sp_samp->nearest_texcoord_t(t, height, &y);
1190 wrap_array_layer(p, texture->array_size, &layer);
1191
1192 out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1193 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1194 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1195
1196 if (DEBUG_TEX) {
1197 print_sample(__FUNCTION__, rgba);
1198 }
1199 }
1200
1201
1202 static INLINE union tex_tile_address
1203 face(union tex_tile_address addr, unsigned face )
1204 {
1205 addr.bits.face = face;
1206 return addr;
1207 }
1208
1209
1210 static void
1211 img_filter_cube_nearest(struct sp_sampler_view *sp_sview,
1212 struct sp_sampler *sp_samp,
1213 float s,
1214 float t,
1215 float p,
1216 unsigned level,
1217 unsigned face_id,
1218 float *rgba)
1219 {
1220 const struct pipe_resource *texture = sp_sview->base.texture;
1221 int width, height;
1222 int x, y;
1223 union tex_tile_address addr;
1224 const float *out;
1225 int c;
1226
1227 width = u_minify(texture->width0, level);
1228 height = u_minify(texture->height0, level);
1229
1230 assert(width > 0);
1231 assert(height > 0);
1232
1233 addr.value = 0;
1234 addr.bits.level = level;
1235
1236 /*
1237 * If NEAREST filtering is done within a miplevel, always apply wrap
1238 * mode CLAMP_TO_EDGE.
1239 */
1240 if (sp_samp->base.seamless_cube_map) {
1241 wrap_nearest_clamp_to_edge(s, width, &x);
1242 wrap_nearest_clamp_to_edge(t, height, &y);
1243 } else {
1244 sp_samp->nearest_texcoord_s(s, width, &x);
1245 sp_samp->nearest_texcoord_t(t, height, &y);
1246 }
1247
1248 out = get_texel_2d(sp_sview, sp_samp, face(addr, face_id), x, y);
1249 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1250 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1251
1252 if (DEBUG_TEX) {
1253 print_sample(__FUNCTION__, rgba);
1254 }
1255 }
1256
1257 static void
1258 img_filter_cube_array_nearest(struct sp_sampler_view *sp_sview,
1259 struct sp_sampler *sp_samp,
1260 float s,
1261 float t,
1262 float p,
1263 unsigned level,
1264 unsigned face_id,
1265 float *rgba)
1266 {
1267 const struct pipe_resource *texture = sp_sview->base.texture;
1268 int width, height;
1269 int x, y, layer;
1270 union tex_tile_address addr;
1271 const float *out;
1272 int c;
1273
1274 width = u_minify(texture->width0, level);
1275 height = u_minify(texture->height0, level);
1276
1277 assert(width > 0);
1278 assert(height > 0);
1279
1280 addr.value = 0;
1281 addr.bits.level = level;
1282
1283 sp_samp->nearest_texcoord_s(s, width, &x);
1284 sp_samp->nearest_texcoord_t(t, height, &y);
1285 wrap_array_layer(p, texture->array_size, &layer);
1286
1287 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layer * 6 + face_id);
1288 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1289 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1290
1291 if (DEBUG_TEX) {
1292 print_sample(__FUNCTION__, rgba);
1293 }
1294 }
1295
1296 static void
1297 img_filter_3d_nearest(struct sp_sampler_view *sp_sview,
1298 struct sp_sampler *sp_samp,
1299 float s,
1300 float t,
1301 float p,
1302 unsigned level,
1303 unsigned face_id,
1304 float *rgba)
1305 {
1306 const struct pipe_resource *texture = sp_sview->base.texture;
1307 int width, height, depth;
1308 int x, y, z;
1309 union tex_tile_address addr;
1310 const float *out;
1311 int c;
1312
1313 width = u_minify(texture->width0, level);
1314 height = u_minify(texture->height0, level);
1315 depth = u_minify(texture->depth0, level);
1316
1317 assert(width > 0);
1318 assert(height > 0);
1319 assert(depth > 0);
1320
1321 sp_samp->nearest_texcoord_s(s, width, &x);
1322 sp_samp->nearest_texcoord_t(t, height, &y);
1323 sp_samp->nearest_texcoord_p(p, depth, &z);
1324
1325 addr.value = 0;
1326 addr.bits.level = level;
1327
1328 out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1329 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1330 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1331 }
1332
1333
1334 static void
1335 img_filter_1d_linear(struct sp_sampler_view *sp_sview,
1336 struct sp_sampler *sp_samp,
1337 float s,
1338 float t,
1339 float p,
1340 unsigned level,
1341 unsigned face_id,
1342 float *rgba)
1343 {
1344 const struct pipe_resource *texture = sp_sview->base.texture;
1345 int width;
1346 int x0, x1;
1347 float xw; /* weights */
1348 union tex_tile_address addr;
1349 const float *tx0, *tx1;
1350 int c;
1351
1352 width = u_minify(texture->width0, level);
1353
1354 assert(width > 0);
1355
1356 addr.value = 0;
1357 addr.bits.level = level;
1358
1359 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1360
1361 tx0 = get_texel_2d(sp_sview, sp_samp, addr, x0, 0);
1362 tx1 = get_texel_2d(sp_sview, sp_samp, addr, x1, 0);
1363
1364 /* interpolate R, G, B, A */
1365 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1366 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1367 }
1368
1369
1370 static void
1371 img_filter_1d_array_linear(struct sp_sampler_view *sp_sview,
1372 struct sp_sampler *sp_samp,
1373 float s,
1374 float t,
1375 float p,
1376 unsigned level,
1377 unsigned face_id,
1378 float *rgba)
1379 {
1380 const struct pipe_resource *texture = sp_sview->base.texture;
1381 int width;
1382 int x0, x1, layer;
1383 float xw; /* weights */
1384 union tex_tile_address addr;
1385 const float *tx0, *tx1;
1386 int c;
1387
1388 width = u_minify(texture->width0, level);
1389
1390 assert(width > 0);
1391
1392 addr.value = 0;
1393 addr.bits.level = level;
1394
1395 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1396 wrap_array_layer(t, texture->array_size, &layer);
1397
1398 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1399 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1400
1401 /* interpolate R, G, B, A */
1402 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1403 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1404 }
1405
1406
1407 static void
1408 img_filter_2d_linear(struct sp_sampler_view *sp_sview,
1409 struct sp_sampler *sp_samp,
1410 float s,
1411 float t,
1412 float p,
1413 unsigned level,
1414 unsigned face_id,
1415 float *rgba)
1416 {
1417 const struct pipe_resource *texture = sp_sview->base.texture;
1418 int width, height;
1419 int x0, y0, x1, y1;
1420 float xw, yw; /* weights */
1421 union tex_tile_address addr;
1422 const float *tx0, *tx1, *tx2, *tx3;
1423 int c;
1424
1425 width = u_minify(texture->width0, level);
1426 height = u_minify(texture->height0, level);
1427
1428 assert(width > 0);
1429 assert(height > 0);
1430
1431 addr.value = 0;
1432 addr.bits.level = level;
1433
1434 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1435 sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1436
1437 tx0 = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1438 tx1 = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1439 tx2 = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1440 tx3 = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1441
1442 /* interpolate R, G, B, A */
1443 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1444 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1445 tx0[c], tx1[c],
1446 tx2[c], tx3[c]);
1447 }
1448
1449
1450 static void
1451 img_filter_2d_array_linear(struct sp_sampler_view *sp_sview,
1452 struct sp_sampler *sp_samp,
1453 float s,
1454 float t,
1455 float p,
1456 unsigned level,
1457 unsigned face_id,
1458 float *rgba)
1459 {
1460 const struct pipe_resource *texture = sp_sview->base.texture;
1461 int width, height;
1462 int x0, y0, x1, y1, layer;
1463 float xw, yw; /* weights */
1464 union tex_tile_address addr;
1465 const float *tx0, *tx1, *tx2, *tx3;
1466 int c;
1467
1468 width = u_minify(texture->width0, level);
1469 height = u_minify(texture->height0, level);
1470
1471 assert(width > 0);
1472 assert(height > 0);
1473
1474 addr.value = 0;
1475 addr.bits.level = level;
1476
1477 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1478 sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1479 wrap_array_layer(p, texture->array_size, &layer);
1480
1481 tx0 = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1482 tx1 = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1483 tx2 = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1484 tx3 = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1485
1486 /* interpolate R, G, B, A */
1487 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1488 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1489 tx0[c], tx1[c],
1490 tx2[c], tx3[c]);
1491 }
1492
1493
1494 static void
1495 img_filter_cube_linear(struct sp_sampler_view *sp_sview,
1496 struct sp_sampler *sp_samp,
1497 float s,
1498 float t,
1499 float p,
1500 unsigned level,
1501 unsigned face_id,
1502 float *rgba)
1503 {
1504 const struct pipe_resource *texture = sp_sview->base.texture;
1505 int width, height;
1506 int x0, y0, x1, y1;
1507 float xw, yw; /* weights */
1508 union tex_tile_address addr, addrj;
1509 const float *tx0, *tx1, *tx2, *tx3;
1510 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1511 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1512 int c;
1513
1514 width = u_minify(texture->width0, level);
1515 height = u_minify(texture->height0, level);
1516
1517 assert(width > 0);
1518 assert(height > 0);
1519
1520 addr.value = 0;
1521 addr.bits.level = level;
1522
1523 /*
1524 * For seamless if LINEAR filtering is done within a miplevel,
1525 * always apply wrap mode CLAMP_TO_BORDER.
1526 */
1527 if (sp_samp->base.seamless_cube_map) {
1528 wrap_linear_clamp_to_border(s, width, &x0, &x1, &xw);
1529 wrap_linear_clamp_to_border(t, height, &y0, &y1, &yw);
1530 } else {
1531 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1532 sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1533 }
1534
1535 addrj = face(addr, face_id);
1536
1537 if (sp_samp->base.seamless_cube_map) {
1538 tx0 = get_texel_cube_seamless(sp_sview, addrj, x0, y0, corner0);
1539 tx1 = get_texel_cube_seamless(sp_sview, addrj, x1, y0, corner1);
1540 tx2 = get_texel_cube_seamless(sp_sview, addrj, x0, y1, corner2);
1541 tx3 = get_texel_cube_seamless(sp_sview, addrj, x1, y1, corner3);
1542 } else {
1543 tx0 = get_texel_2d(sp_sview, sp_samp, addrj, x0, y0);
1544 tx1 = get_texel_2d(sp_sview, sp_samp, addrj, x1, y0);
1545 tx2 = get_texel_2d(sp_sview, sp_samp, addrj, x0, y1);
1546 tx3 = get_texel_2d(sp_sview, sp_samp, addrj, x1, y1);
1547 }
1548 /* interpolate R, G, B, A */
1549 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1550 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1551 tx0[c], tx1[c],
1552 tx2[c], tx3[c]);
1553 }
1554
1555
1556 static void
1557 img_filter_cube_array_linear(struct sp_sampler_view *sp_sview,
1558 struct sp_sampler *sp_samp,
1559 float s,
1560 float t,
1561 float p,
1562 unsigned level,
1563 unsigned face_id,
1564 float *rgba)
1565 {
1566 const struct pipe_resource *texture = sp_sview->base.texture;
1567 int width, height;
1568 int x0, y0, x1, y1, layer;
1569 float xw, yw; /* weights */
1570 union tex_tile_address addr;
1571 const float *tx0, *tx1, *tx2, *tx3;
1572 int c;
1573
1574 width = u_minify(texture->width0, level);
1575 height = u_minify(texture->height0, level);
1576
1577 assert(width > 0);
1578 assert(height > 0);
1579
1580 addr.value = 0;
1581 addr.bits.level = level;
1582
1583 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1584 sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1585 wrap_array_layer(p, texture->array_size, &layer);
1586
1587 tx0 = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer * 6 + face_id);
1588 tx1 = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer * 6 + face_id);
1589 tx2 = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer * 6 + face_id);
1590 tx3 = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer * 6 + face_id);
1591
1592 /* interpolate R, G, B, A */
1593 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1594 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1595 tx0[c], tx1[c],
1596 tx2[c], tx3[c]);
1597 }
1598
1599 static void
1600 img_filter_3d_linear(struct sp_sampler_view *sp_sview,
1601 struct sp_sampler *sp_samp,
1602 float s,
1603 float t,
1604 float p,
1605 unsigned level,
1606 unsigned face_id,
1607 float *rgba)
1608 {
1609 const struct pipe_resource *texture = sp_sview->base.texture;
1610 int width, height, depth;
1611 int x0, x1, y0, y1, z0, z1;
1612 float xw, yw, zw; /* interpolation weights */
1613 union tex_tile_address addr;
1614 const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1615 int c;
1616
1617 width = u_minify(texture->width0, level);
1618 height = u_minify(texture->height0, level);
1619 depth = u_minify(texture->depth0, level);
1620
1621 addr.value = 0;
1622 addr.bits.level = level;
1623
1624 assert(width > 0);
1625 assert(height > 0);
1626 assert(depth > 0);
1627
1628 sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1629 sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1630 sp_samp->linear_texcoord_p(p, depth, &z0, &z1, &zw);
1631
1632
1633 tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1634 tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1635 tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1636 tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1637
1638 tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1639 tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1640 tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1641 tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1642
1643 /* interpolate R, G, B, A */
1644 for (c = 0; c < TGSI_QUAD_SIZE; c++)
1645 rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
1646 tx00[c], tx01[c],
1647 tx02[c], tx03[c],
1648 tx10[c], tx11[c],
1649 tx12[c], tx13[c]);
1650 }
1651
1652
1653 /* Calculate level of detail for every fragment,
1654 * with lambda already computed.
1655 * Note that lambda has already been biased by global LOD bias.
1656 * \param biased_lambda per-quad lambda.
1657 * \param lod_in per-fragment lod_bias or explicit_lod.
1658 * \param lod returns the per-fragment lod.
1659 */
1660 static INLINE void
1661 compute_lod(const struct pipe_sampler_state *sampler,
1662 enum tgsi_sampler_control control,
1663 const float biased_lambda,
1664 const float lod_in[TGSI_QUAD_SIZE],
1665 float lod[TGSI_QUAD_SIZE])
1666 {
1667 float min_lod = sampler->min_lod;
1668 float max_lod = sampler->max_lod;
1669 uint i;
1670
1671 switch (control) {
1672 case tgsi_sampler_lod_none:
1673 case tgsi_sampler_lod_zero:
1674 /* XXX FIXME */
1675 case tgsi_sampler_derivs_explicit:
1676 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1677 break;
1678 case tgsi_sampler_lod_bias:
1679 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1680 lod[i] = biased_lambda + lod_in[i];
1681 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1682 }
1683 break;
1684 case tgsi_sampler_lod_explicit:
1685 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1686 lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1687 }
1688 break;
1689 default:
1690 assert(0);
1691 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1692 }
1693 }
1694
1695
1696 /* Calculate level of detail for every fragment.
1697 * \param lod_in per-fragment lod_bias or explicit_lod.
1698 * \param lod results per-fragment lod.
1699 */
1700 static INLINE void
1701 compute_lambda_lod(struct sp_sampler_view *sp_sview,
1702 struct sp_sampler *sp_samp,
1703 const float s[TGSI_QUAD_SIZE],
1704 const float t[TGSI_QUAD_SIZE],
1705 const float p[TGSI_QUAD_SIZE],
1706 const float lod_in[TGSI_QUAD_SIZE],
1707 enum tgsi_sampler_control control,
1708 float lod[TGSI_QUAD_SIZE])
1709 {
1710 const struct pipe_sampler_state *sampler = &sp_samp->base;
1711 float lod_bias = sampler->lod_bias;
1712 float min_lod = sampler->min_lod;
1713 float max_lod = sampler->max_lod;
1714 float lambda;
1715 uint i;
1716
1717 switch (control) {
1718 case tgsi_sampler_lod_none:
1719 /* XXX FIXME */
1720 case tgsi_sampler_derivs_explicit:
1721 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1722 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(lambda, min_lod, max_lod);
1723 break;
1724 case tgsi_sampler_lod_bias:
1725 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1726 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1727 lod[i] = lambda + lod_in[i];
1728 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1729 }
1730 break;
1731 case tgsi_sampler_lod_explicit:
1732 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1733 lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1734 }
1735 break;
1736 case tgsi_sampler_lod_zero:
1737 /* this is all static state in the sampler really need clamp here? */
1738 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(lod_bias, min_lod, max_lod);
1739 break;
1740 default:
1741 assert(0);
1742 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1743 }
1744 }
1745
1746
1747 static void
1748 mip_filter_linear(struct sp_sampler_view *sp_sview,
1749 struct sp_sampler *sp_samp,
1750 img_filter_func min_filter,
1751 img_filter_func mag_filter,
1752 const float s[TGSI_QUAD_SIZE],
1753 const float t[TGSI_QUAD_SIZE],
1754 const float p[TGSI_QUAD_SIZE],
1755 const float c0[TGSI_QUAD_SIZE],
1756 const float lod_in[TGSI_QUAD_SIZE],
1757 enum tgsi_sampler_control control,
1758 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1759 {
1760 const struct pipe_resource *texture = sp_sview->base.texture;
1761 int j;
1762 float lod[TGSI_QUAD_SIZE];
1763
1764 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1765
1766 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1767 int level0 = sp_sview->base.u.tex.first_level + (int)lod[j];
1768
1769 if (lod[j] < 0.0)
1770 mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1771 sp_sview->base.u.tex.first_level,
1772 sp_sview->faces[j], &rgba[0][j]);
1773
1774 else if (level0 >= (int) texture->last_level)
1775 min_filter(sp_sview, sp_samp, s[j], t[j], p[j], texture->last_level,
1776 sp_sview->faces[j], &rgba[0][j]);
1777
1778 else {
1779 float levelBlend = frac(lod[j]);
1780 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1781 int c;
1782
1783 min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level0,
1784 sp_sview->faces[j], &rgbax[0][0]);
1785 min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level0+1,
1786 sp_sview->faces[j], &rgbax[0][1]);
1787
1788 for (c = 0; c < 4; c++) {
1789 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
1790 }
1791 }
1792 }
1793
1794 if (DEBUG_TEX) {
1795 print_sample_4(__FUNCTION__, rgba);
1796 }
1797 }
1798
1799
1800 /**
1801 * Compute nearest mipmap level from texcoords.
1802 * Then sample the texture level for four elements of a quad.
1803 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
1804 */
1805 static void
1806 mip_filter_nearest(struct sp_sampler_view *sp_sview,
1807 struct sp_sampler *sp_samp,
1808 img_filter_func min_filter,
1809 img_filter_func mag_filter,
1810 const float s[TGSI_QUAD_SIZE],
1811 const float t[TGSI_QUAD_SIZE],
1812 const float p[TGSI_QUAD_SIZE],
1813 const float c0[TGSI_QUAD_SIZE],
1814 const float lod_in[TGSI_QUAD_SIZE],
1815 enum tgsi_sampler_control control,
1816 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1817 {
1818 const struct pipe_resource *texture = sp_sview->base.texture;
1819 float lod[TGSI_QUAD_SIZE];
1820 int j;
1821
1822 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1823
1824 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1825 if (lod[j] < 0.0)
1826 mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1827 sp_sview->base.u.tex.first_level,
1828 sp_sview->faces[j], &rgba[0][j]);
1829 else {
1830 int level = sp_sview->base.u.tex.first_level + (int)(lod[j] + 0.5F);
1831 level = MIN2(level, (int)texture->last_level);
1832 min_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1833 level, sp_sview->faces[j], &rgba[0][j]);
1834 }
1835 }
1836
1837 if (DEBUG_TEX) {
1838 print_sample_4(__FUNCTION__, rgba);
1839 }
1840 }
1841
1842
1843 static void
1844 mip_filter_none(struct sp_sampler_view *sp_sview,
1845 struct sp_sampler *sp_samp,
1846 img_filter_func min_filter,
1847 img_filter_func mag_filter,
1848 const float s[TGSI_QUAD_SIZE],
1849 const float t[TGSI_QUAD_SIZE],
1850 const float p[TGSI_QUAD_SIZE],
1851 const float c0[TGSI_QUAD_SIZE],
1852 const float lod_in[TGSI_QUAD_SIZE],
1853 enum tgsi_sampler_control control,
1854 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1855 {
1856 float lod[TGSI_QUAD_SIZE];
1857 int j;
1858
1859 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1860
1861 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1862 if (lod[j] < 0.0) {
1863 mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1864 sp_sview->base.u.tex.first_level,
1865 sp_sview->faces[j], &rgba[0][j]);
1866 }
1867 else {
1868 min_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1869 sp_sview->base.u.tex.first_level,
1870 sp_sview->faces[j], &rgba[0][j]);
1871 }
1872 }
1873 }
1874
1875
1876 static void
1877 mip_filter_none_no_filter_select(struct sp_sampler_view *sp_sview,
1878 struct sp_sampler *sp_samp,
1879 img_filter_func min_filter,
1880 img_filter_func mag_filter,
1881 const float s[TGSI_QUAD_SIZE],
1882 const float t[TGSI_QUAD_SIZE],
1883 const float p[TGSI_QUAD_SIZE],
1884 const float c0[TGSI_QUAD_SIZE],
1885 const float lod_in[TGSI_QUAD_SIZE],
1886 enum tgsi_sampler_control control,
1887 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1888 {
1889 int j;
1890
1891 for (j = 0; j < TGSI_QUAD_SIZE; j++)
1892 mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1893 sp_sview->base.u.tex.first_level,
1894 sp_sview->faces[j], &rgba[0][j]);
1895 }
1896
1897
1898 /* For anisotropic filtering */
1899 #define WEIGHT_LUT_SIZE 1024
1900
1901 static float *weightLut = NULL;
1902
1903 /**
1904 * Creates the look-up table used to speed-up EWA sampling
1905 */
1906 static void
1907 create_filter_table(void)
1908 {
1909 unsigned i;
1910 if (!weightLut) {
1911 weightLut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
1912
1913 for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
1914 float alpha = 2;
1915 float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
1916 float weight = (float) exp(-alpha * r2);
1917 weightLut[i] = weight;
1918 }
1919 }
1920 }
1921
1922
1923 /**
1924 * Elliptical weighted average (EWA) filter for producing high quality
1925 * anisotropic filtered results.
1926 * Based on the Higher Quality Elliptical Weighted Average Filter
1927 * published by Paul S. Heckbert in his Master's Thesis
1928 * "Fundamentals of Texture Mapping and Image Warping" (1989)
1929 */
1930 static void
1931 img_filter_2d_ewa(struct sp_sampler_view *sp_sview,
1932 struct sp_sampler *sp_samp,
1933 img_filter_func min_filter,
1934 img_filter_func mag_filter,
1935 const float s[TGSI_QUAD_SIZE],
1936 const float t[TGSI_QUAD_SIZE],
1937 const float p[TGSI_QUAD_SIZE],
1938 unsigned level,
1939 const float dudx, const float dvdx,
1940 const float dudy, const float dvdy,
1941 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1942 {
1943 const struct pipe_resource *texture = sp_sview->base.texture;
1944
1945 // ??? Won't the image filters blow up if level is negative?
1946 unsigned level0 = level > 0 ? level : 0;
1947 float scaling = 1.0f / (1 << level0);
1948 int width = u_minify(texture->width0, level0);
1949 int height = u_minify(texture->height0, level0);
1950
1951 float ux = dudx * scaling;
1952 float vx = dvdx * scaling;
1953 float uy = dudy * scaling;
1954 float vy = dvdy * scaling;
1955
1956 /* compute ellipse coefficients to bound the region:
1957 * A*x*x + B*x*y + C*y*y = F.
1958 */
1959 float A = vx*vx+vy*vy+1;
1960 float B = -2*(ux*vx+uy*vy);
1961 float C = ux*ux+uy*uy+1;
1962 float F = A*C-B*B/4.0f;
1963
1964 /* check if it is an ellipse */
1965 /* ASSERT(F > 0.0); */
1966
1967 /* Compute the ellipse's (u,v) bounding box in texture space */
1968 float d = -B*B+4.0f*C*A;
1969 float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */
1970 float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
1971
1972 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1973 float s_buffer[TGSI_QUAD_SIZE];
1974 float t_buffer[TGSI_QUAD_SIZE];
1975 float weight_buffer[TGSI_QUAD_SIZE];
1976 unsigned buffer_next;
1977 int j;
1978 float den; /* = 0.0F; */
1979 float ddq;
1980 float U; /* = u0 - tex_u; */
1981 int v;
1982
1983 /* Scale ellipse formula to directly index the Filter Lookup Table.
1984 * i.e. scale so that F = WEIGHT_LUT_SIZE-1
1985 */
1986 double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
1987 A *= formScale;
1988 B *= formScale;
1989 C *= formScale;
1990 /* F *= formScale; */ /* no need to scale F as we don't use it below here */
1991
1992 /* For each quad, the du and dx values are the same and so the ellipse is
1993 * also the same. Note that texel/image access can only be performed using
1994 * a quad, i.e. it is not possible to get the pixel value for a single
1995 * tex coord. In order to have a better performance, the access is buffered
1996 * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
1997 * full, then the pixel values are read from the image.
1998 */
1999 ddq = 2 * A;
2000
2001 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2002 /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2003 * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2004 * value, q, is less than F, we're inside the ellipse
2005 */
2006 float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2007 float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2008
2009 int u0 = (int) floorf(tex_u - box_u);
2010 int u1 = (int) ceilf(tex_u + box_u);
2011 int v0 = (int) floorf(tex_v - box_v);
2012 int v1 = (int) ceilf(tex_v + box_v);
2013
2014 float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2015 buffer_next = 0;
2016 den = 0;
2017 U = u0 - tex_u;
2018 for (v = v0; v <= v1; ++v) {
2019 float V = v - tex_v;
2020 float dq = A * (2 * U + 1) + B * V;
2021 float q = (C * V + B * U) * V + A * U * U;
2022
2023 int u;
2024 for (u = u0; u <= u1; ++u) {
2025 /* Note that the ellipse has been pre-scaled so F =
2026 * WEIGHT_LUT_SIZE - 1
2027 */
2028 if (q < WEIGHT_LUT_SIZE) {
2029 /* as a LUT is used, q must never be negative;
2030 * should not happen, though
2031 */
2032 const int qClamped = q >= 0.0F ? q : 0;
2033 float weight = weightLut[qClamped];
2034
2035 weight_buffer[buffer_next] = weight;
2036 s_buffer[buffer_next] = u / ((float) width);
2037 t_buffer[buffer_next] = v / ((float) height);
2038
2039 buffer_next++;
2040 if (buffer_next == TGSI_QUAD_SIZE) {
2041 /* 4 texel coords are in the buffer -> read it now */
2042 unsigned jj;
2043 /* it is assumed that samp->min_img_filter is set to
2044 * img_filter_2d_nearest or one of the
2045 * accelerated img_filter_2d_nearest_XXX functions.
2046 */
2047 for (jj = 0; jj < buffer_next; jj++) {
2048 min_filter(sp_sview, sp_samp, s_buffer[jj], t_buffer[jj], p[jj],
2049 level, sp_sview->faces[j], &rgba_temp[0][jj]);
2050 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2051 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2052 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2053 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2054 }
2055
2056 buffer_next = 0;
2057 }
2058
2059 den += weight;
2060 }
2061 q += dq;
2062 dq += ddq;
2063 }
2064 }
2065
2066 /* if the tex coord buffer contains unread values, we will read
2067 * them now.
2068 */
2069 if (buffer_next > 0) {
2070 unsigned jj;
2071 /* it is assumed that samp->min_img_filter is set to
2072 * img_filter_2d_nearest or one of the
2073 * accelerated img_filter_2d_nearest_XXX functions.
2074 */
2075 for (jj = 0; jj < buffer_next; jj++) {
2076 min_filter(sp_sview, sp_samp, s_buffer[jj], t_buffer[jj], p[jj],
2077 level, sp_sview->faces[j], &rgba_temp[0][jj]);
2078 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2079 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2080 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2081 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2082 }
2083 }
2084
2085 if (den <= 0.0F) {
2086 /* Reaching this place would mean that no pixels intersected
2087 * the ellipse. This should never happen because the filter
2088 * we use always intersects at least one pixel.
2089 */
2090
2091 /*rgba[0]=0;
2092 rgba[1]=0;
2093 rgba[2]=0;
2094 rgba[3]=0;*/
2095 /* not enough pixels in resampling, resort to direct interpolation */
2096 min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level,
2097 sp_sview->faces[j], &rgba_temp[0][j]);
2098 den = 1;
2099 num[0] = rgba_temp[0][j];
2100 num[1] = rgba_temp[1][j];
2101 num[2] = rgba_temp[2][j];
2102 num[3] = rgba_temp[3][j];
2103 }
2104
2105 rgba[0][j] = num[0] / den;
2106 rgba[1][j] = num[1] / den;
2107 rgba[2][j] = num[2] / den;
2108 rgba[3][j] = num[3] / den;
2109 }
2110 }
2111
2112
2113 /**
2114 * Sample 2D texture using an anisotropic filter.
2115 */
2116 static void
2117 mip_filter_linear_aniso(struct sp_sampler_view *sp_sview,
2118 struct sp_sampler *sp_samp,
2119 img_filter_func min_filter,
2120 img_filter_func mag_filter,
2121 const float s[TGSI_QUAD_SIZE],
2122 const float t[TGSI_QUAD_SIZE],
2123 const float p[TGSI_QUAD_SIZE],
2124 const float c0[TGSI_QUAD_SIZE],
2125 const float lod_in[TGSI_QUAD_SIZE],
2126 enum tgsi_sampler_control control,
2127 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2128 {
2129 const struct pipe_resource *texture = sp_sview->base.texture;
2130 int level0;
2131 float lambda;
2132 float lod[TGSI_QUAD_SIZE];
2133
2134 float s_to_u = u_minify(texture->width0, sp_sview->base.u.tex.first_level);
2135 float t_to_v = u_minify(texture->height0, sp_sview->base.u.tex.first_level);
2136 float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2137 float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2138 float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2139 float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2140
2141 if (control == tgsi_sampler_lod_bias ||
2142 control == tgsi_sampler_lod_none ||
2143 /* XXX FIXME */
2144 control == tgsi_sampler_derivs_explicit) {
2145 /* note: instead of working with Px and Py, we will use the
2146 * squared length instead, to avoid sqrt.
2147 */
2148 float Px2 = dudx * dudx + dvdx * dvdx;
2149 float Py2 = dudy * dudy + dvdy * dvdy;
2150
2151 float Pmax2;
2152 float Pmin2;
2153 float e;
2154 const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2155
2156 if (Px2 < Py2) {
2157 Pmax2 = Py2;
2158 Pmin2 = Px2;
2159 }
2160 else {
2161 Pmax2 = Px2;
2162 Pmin2 = Py2;
2163 }
2164
2165 /* if the eccentricity of the ellipse is too big, scale up the shorter
2166 * of the two vectors to limit the maximum amount of work per pixel
2167 */
2168 e = Pmax2 / Pmin2;
2169 if (e > maxEccentricity) {
2170 /* float s=e / maxEccentricity;
2171 minor[0] *= s;
2172 minor[1] *= s;
2173 Pmin2 *= s; */
2174 Pmin2 = Pmax2 / maxEccentricity;
2175 }
2176
2177 /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2178 * this since 0.5*log(x) = log(sqrt(x))
2179 */
2180 lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2181 compute_lod(&sp_samp->base, control, lambda, lod_in, lod);
2182 }
2183 else {
2184 assert(control == tgsi_sampler_lod_explicit ||
2185 control == tgsi_sampler_lod_zero);
2186 compute_lod(&sp_samp->base, control, sp_samp->base.lod_bias, lod_in, lod);
2187 }
2188
2189 /* XXX: Take into account all lod values.
2190 */
2191 lambda = lod[0];
2192 level0 = sp_sview->base.u.tex.first_level + (int)lambda;
2193
2194 /* If the ellipse covers the whole image, we can
2195 * simply return the average of the whole image.
2196 */
2197 if (level0 >= (int) texture->last_level) {
2198 int j;
2199 for (j = 0; j < TGSI_QUAD_SIZE; j++)
2200 min_filter(sp_sview, sp_samp, s[j], t[j], p[j], texture->last_level,
2201 sp_sview->faces[j], &rgba[0][j]);
2202 }
2203 else {
2204 /* don't bother interpolating between multiple LODs; it doesn't
2205 * seem to be worth the extra running time.
2206 */
2207 img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2208 s, t, p, level0,
2209 dudx, dvdx, dudy, dvdy, rgba);
2210 }
2211
2212 if (DEBUG_TEX) {
2213 print_sample_4(__FUNCTION__, rgba);
2214 }
2215 }
2216
2217
2218 /**
2219 * Specialized version of mip_filter_linear with hard-wired calls to
2220 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2221 */
2222 static void
2223 mip_filter_linear_2d_linear_repeat_POT(
2224 struct sp_sampler_view *sp_sview,
2225 struct sp_sampler *sp_samp,
2226 img_filter_func min_filter,
2227 img_filter_func mag_filter,
2228 const float s[TGSI_QUAD_SIZE],
2229 const float t[TGSI_QUAD_SIZE],
2230 const float p[TGSI_QUAD_SIZE],
2231 const float c0[TGSI_QUAD_SIZE],
2232 const float lod_in[TGSI_QUAD_SIZE],
2233 enum tgsi_sampler_control control,
2234 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2235 {
2236 const struct pipe_resource *texture = sp_sview->base.texture;
2237 int j;
2238 float lod[TGSI_QUAD_SIZE];
2239
2240 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
2241
2242 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2243 int level0 = sp_sview->base.u.tex.first_level + (int)lod[j];
2244
2245 /* Catches both negative and large values of level0:
2246 */
2247 if ((unsigned)level0 >= texture->last_level) {
2248 if (level0 < 0)
2249 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j],
2250 sp_sview->base.u.tex.first_level,
2251 sp_sview->faces[j], &rgba[0][j]);
2252 else
2253 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j],
2254 sp_sview->base.texture->last_level,
2255 sp_sview->faces[j], &rgba[0][j]);
2256
2257 }
2258 else {
2259 float levelBlend = frac(lod[j]);
2260 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2261 int c;
2262
2263 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j], level0,
2264 sp_sview->faces[j], &rgbax[0][0]);
2265 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j], level0+1,
2266 sp_sview->faces[j], &rgbax[0][1]);
2267
2268 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2269 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2270 }
2271 }
2272
2273 if (DEBUG_TEX) {
2274 print_sample_4(__FUNCTION__, rgba);
2275 }
2276 }
2277
2278
2279 /**
2280 * Do shadow/depth comparisons.
2281 */
2282 static void
2283 sample_compare(struct sp_sampler_view *sp_sview,
2284 struct sp_sampler *sp_samp,
2285 const float s[TGSI_QUAD_SIZE],
2286 const float t[TGSI_QUAD_SIZE],
2287 const float p[TGSI_QUAD_SIZE],
2288 const float c0[TGSI_QUAD_SIZE],
2289 const float c1[TGSI_QUAD_SIZE],
2290 enum tgsi_sampler_control control,
2291 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2292 {
2293 const struct pipe_sampler_state *sampler = &sp_samp->base;
2294 int j, k0, k1, k2, k3;
2295 float val;
2296 float pc0, pc1, pc2, pc3;
2297
2298 /**
2299 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2300 * for 2D Array texture we need to use the 'c0' (aka Q).
2301 * When we sampled the depth texture, the depth value was put into all
2302 * RGBA channels. We look at the red channel here.
2303 */
2304
2305 if (sp_sview->base.texture->target == PIPE_TEXTURE_2D_ARRAY ||
2306 sp_sview->base.texture->target == PIPE_TEXTURE_CUBE) {
2307 pc0 = CLAMP(c0[0], 0.0F, 1.0F);
2308 pc1 = CLAMP(c0[1], 0.0F, 1.0F);
2309 pc2 = CLAMP(c0[2], 0.0F, 1.0F);
2310 pc3 = CLAMP(c0[3], 0.0F, 1.0F);
2311 } else if (sp_sview->base.texture->target == PIPE_TEXTURE_CUBE_ARRAY) {
2312 pc0 = CLAMP(c1[0], 0.0F, 1.0F);
2313 pc1 = CLAMP(c1[1], 0.0F, 1.0F);
2314 pc2 = CLAMP(c1[2], 0.0F, 1.0F);
2315 pc3 = CLAMP(c1[3], 0.0F, 1.0F);
2316 } else {
2317 pc0 = CLAMP(p[0], 0.0F, 1.0F);
2318 pc1 = CLAMP(p[1], 0.0F, 1.0F);
2319 pc2 = CLAMP(p[2], 0.0F, 1.0F);
2320 pc3 = CLAMP(p[3], 0.0F, 1.0F);
2321 }
2322 /* compare four texcoords vs. four texture samples */
2323 switch (sampler->compare_func) {
2324 case PIPE_FUNC_LESS:
2325 k0 = pc0 < rgba[0][0];
2326 k1 = pc1 < rgba[0][1];
2327 k2 = pc2 < rgba[0][2];
2328 k3 = pc3 < rgba[0][3];
2329 break;
2330 case PIPE_FUNC_LEQUAL:
2331 k0 = pc0 <= rgba[0][0];
2332 k1 = pc1 <= rgba[0][1];
2333 k2 = pc2 <= rgba[0][2];
2334 k3 = pc3 <= rgba[0][3];
2335 break;
2336 case PIPE_FUNC_GREATER:
2337 k0 = pc0 > rgba[0][0];
2338 k1 = pc1 > rgba[0][1];
2339 k2 = pc2 > rgba[0][2];
2340 k3 = pc3 > rgba[0][3];
2341 break;
2342 case PIPE_FUNC_GEQUAL:
2343 k0 = pc0 >= rgba[0][0];
2344 k1 = pc1 >= rgba[0][1];
2345 k2 = pc2 >= rgba[0][2];
2346 k3 = pc3 >= rgba[0][3];
2347 break;
2348 case PIPE_FUNC_EQUAL:
2349 k0 = pc0 == rgba[0][0];
2350 k1 = pc1 == rgba[0][1];
2351 k2 = pc2 == rgba[0][2];
2352 k3 = pc3 == rgba[0][3];
2353 break;
2354 case PIPE_FUNC_NOTEQUAL:
2355 k0 = pc0 != rgba[0][0];
2356 k1 = pc1 != rgba[0][1];
2357 k2 = pc2 != rgba[0][2];
2358 k3 = pc3 != rgba[0][3];
2359 break;
2360 case PIPE_FUNC_ALWAYS:
2361 k0 = k1 = k2 = k3 = 1;
2362 break;
2363 case PIPE_FUNC_NEVER:
2364 k0 = k1 = k2 = k3 = 0;
2365 break;
2366 default:
2367 k0 = k1 = k2 = k3 = 0;
2368 assert(0);
2369 break;
2370 }
2371
2372 if (sampler->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
2373 /* convert four pass/fail values to an intensity in [0,1] */
2374 /*
2375 * XXX this doesn't actually make much sense.
2376 * We just average the result of four _pixels_ and output the same
2377 * value for all of the four pixels of the quad.
2378 * This really needs to work on the _samples_ i.e. inside the img filter.
2379 */
2380 val = 0.25F * (k0 + k1 + k2 + k3);
2381
2382 /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
2383 for (j = 0; j < 4; j++) {
2384 rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
2385 rgba[3][j] = 1.0F;
2386 }
2387 } else {
2388 for (j = 0; j < 4; j++) {
2389 rgba[0][j] = k0;
2390 rgba[1][j] = k1;
2391 rgba[2][j] = k2;
2392 rgba[3][j] = 1.0F;
2393 }
2394 }
2395 }
2396
2397
2398 static void
2399 do_swizzling(const struct pipe_sampler_view *sview,
2400 float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2401 float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2402 {
2403 int j;
2404 const unsigned swizzle_r = sview->swizzle_r;
2405 const unsigned swizzle_g = sview->swizzle_g;
2406 const unsigned swizzle_b = sview->swizzle_b;
2407 const unsigned swizzle_a = sview->swizzle_a;
2408
2409 switch (swizzle_r) {
2410 case PIPE_SWIZZLE_ZERO:
2411 for (j = 0; j < 4; j++)
2412 out[0][j] = 0.0f;
2413 break;
2414 case PIPE_SWIZZLE_ONE:
2415 for (j = 0; j < 4; j++)
2416 out[0][j] = 1.0f;
2417 break;
2418 default:
2419 assert(swizzle_r < 4);
2420 for (j = 0; j < 4; j++)
2421 out[0][j] = in[swizzle_r][j];
2422 }
2423
2424 switch (swizzle_g) {
2425 case PIPE_SWIZZLE_ZERO:
2426 for (j = 0; j < 4; j++)
2427 out[1][j] = 0.0f;
2428 break;
2429 case PIPE_SWIZZLE_ONE:
2430 for (j = 0; j < 4; j++)
2431 out[1][j] = 1.0f;
2432 break;
2433 default:
2434 assert(swizzle_g < 4);
2435 for (j = 0; j < 4; j++)
2436 out[1][j] = in[swizzle_g][j];
2437 }
2438
2439 switch (swizzle_b) {
2440 case PIPE_SWIZZLE_ZERO:
2441 for (j = 0; j < 4; j++)
2442 out[2][j] = 0.0f;
2443 break;
2444 case PIPE_SWIZZLE_ONE:
2445 for (j = 0; j < 4; j++)
2446 out[2][j] = 1.0f;
2447 break;
2448 default:
2449 assert(swizzle_b < 4);
2450 for (j = 0; j < 4; j++)
2451 out[2][j] = in[swizzle_b][j];
2452 }
2453
2454 switch (swizzle_a) {
2455 case PIPE_SWIZZLE_ZERO:
2456 for (j = 0; j < 4; j++)
2457 out[3][j] = 0.0f;
2458 break;
2459 case PIPE_SWIZZLE_ONE:
2460 for (j = 0; j < 4; j++)
2461 out[3][j] = 1.0f;
2462 break;
2463 default:
2464 assert(swizzle_a < 4);
2465 for (j = 0; j < 4; j++)
2466 out[3][j] = in[swizzle_a][j];
2467 }
2468 }
2469
2470
2471 static wrap_nearest_func
2472 get_nearest_unorm_wrap(unsigned mode)
2473 {
2474 switch (mode) {
2475 case PIPE_TEX_WRAP_CLAMP:
2476 return wrap_nearest_unorm_clamp;
2477 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2478 return wrap_nearest_unorm_clamp_to_edge;
2479 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2480 return wrap_nearest_unorm_clamp_to_border;
2481 default:
2482 assert(0);
2483 return wrap_nearest_unorm_clamp;
2484 }
2485 }
2486
2487
2488 static wrap_nearest_func
2489 get_nearest_wrap(unsigned mode)
2490 {
2491 switch (mode) {
2492 case PIPE_TEX_WRAP_REPEAT:
2493 return wrap_nearest_repeat;
2494 case PIPE_TEX_WRAP_CLAMP:
2495 return wrap_nearest_clamp;
2496 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2497 return wrap_nearest_clamp_to_edge;
2498 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2499 return wrap_nearest_clamp_to_border;
2500 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2501 return wrap_nearest_mirror_repeat;
2502 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2503 return wrap_nearest_mirror_clamp;
2504 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2505 return wrap_nearest_mirror_clamp_to_edge;
2506 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2507 return wrap_nearest_mirror_clamp_to_border;
2508 default:
2509 assert(0);
2510 return wrap_nearest_repeat;
2511 }
2512 }
2513
2514
2515 static wrap_linear_func
2516 get_linear_unorm_wrap(unsigned mode)
2517 {
2518 switch (mode) {
2519 case PIPE_TEX_WRAP_CLAMP:
2520 return wrap_linear_unorm_clamp;
2521 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2522 return wrap_linear_unorm_clamp_to_edge;
2523 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2524 return wrap_linear_unorm_clamp_to_border;
2525 default:
2526 assert(0);
2527 return wrap_linear_unorm_clamp;
2528 }
2529 }
2530
2531
2532 static wrap_linear_func
2533 get_linear_wrap(unsigned mode)
2534 {
2535 switch (mode) {
2536 case PIPE_TEX_WRAP_REPEAT:
2537 return wrap_linear_repeat;
2538 case PIPE_TEX_WRAP_CLAMP:
2539 return wrap_linear_clamp;
2540 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2541 return wrap_linear_clamp_to_edge;
2542 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2543 return wrap_linear_clamp_to_border;
2544 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2545 return wrap_linear_mirror_repeat;
2546 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2547 return wrap_linear_mirror_clamp;
2548 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2549 return wrap_linear_mirror_clamp_to_edge;
2550 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2551 return wrap_linear_mirror_clamp_to_border;
2552 default:
2553 assert(0);
2554 return wrap_linear_repeat;
2555 }
2556 }
2557
2558
2559 /**
2560 * Is swizzling needed for the given state key?
2561 */
2562 static INLINE bool
2563 any_swizzle(const struct pipe_sampler_view *view)
2564 {
2565 return (view->swizzle_r != PIPE_SWIZZLE_RED ||
2566 view->swizzle_g != PIPE_SWIZZLE_GREEN ||
2567 view->swizzle_b != PIPE_SWIZZLE_BLUE ||
2568 view->swizzle_a != PIPE_SWIZZLE_ALPHA);
2569 }
2570
2571
2572 static img_filter_func
2573 get_img_filter(const struct sp_sampler_view *sp_sview,
2574 const struct pipe_sampler_state *sampler,
2575 unsigned filter)
2576 {
2577 switch (sp_sview->base.texture->target) {
2578 case PIPE_BUFFER:
2579 case PIPE_TEXTURE_1D:
2580 if (filter == PIPE_TEX_FILTER_NEAREST)
2581 return img_filter_1d_nearest;
2582 else
2583 return img_filter_1d_linear;
2584 break;
2585 case PIPE_TEXTURE_1D_ARRAY:
2586 if (filter == PIPE_TEX_FILTER_NEAREST)
2587 return img_filter_1d_array_nearest;
2588 else
2589 return img_filter_1d_array_linear;
2590 break;
2591 case PIPE_TEXTURE_2D:
2592 case PIPE_TEXTURE_RECT:
2593 /* Try for fast path:
2594 */
2595 if (sp_sview->pot2d &&
2596 sampler->wrap_s == sampler->wrap_t &&
2597 sampler->normalized_coords)
2598 {
2599 switch (sampler->wrap_s) {
2600 case PIPE_TEX_WRAP_REPEAT:
2601 switch (filter) {
2602 case PIPE_TEX_FILTER_NEAREST:
2603 return img_filter_2d_nearest_repeat_POT;
2604 case PIPE_TEX_FILTER_LINEAR:
2605 return img_filter_2d_linear_repeat_POT;
2606 default:
2607 break;
2608 }
2609 break;
2610 case PIPE_TEX_WRAP_CLAMP:
2611 switch (filter) {
2612 case PIPE_TEX_FILTER_NEAREST:
2613 return img_filter_2d_nearest_clamp_POT;
2614 default:
2615 break;
2616 }
2617 }
2618 }
2619 /* Otherwise use default versions:
2620 */
2621 if (filter == PIPE_TEX_FILTER_NEAREST)
2622 return img_filter_2d_nearest;
2623 else
2624 return img_filter_2d_linear;
2625 break;
2626 case PIPE_TEXTURE_2D_ARRAY:
2627 if (filter == PIPE_TEX_FILTER_NEAREST)
2628 return img_filter_2d_array_nearest;
2629 else
2630 return img_filter_2d_array_linear;
2631 break;
2632 case PIPE_TEXTURE_CUBE:
2633 if (filter == PIPE_TEX_FILTER_NEAREST)
2634 return img_filter_cube_nearest;
2635 else
2636 return img_filter_cube_linear;
2637 break;
2638 case PIPE_TEXTURE_CUBE_ARRAY:
2639 if (filter == PIPE_TEX_FILTER_NEAREST)
2640 return img_filter_cube_array_nearest;
2641 else
2642 return img_filter_cube_array_linear;
2643 break;
2644 case PIPE_TEXTURE_3D:
2645 if (filter == PIPE_TEX_FILTER_NEAREST)
2646 return img_filter_3d_nearest;
2647 else
2648 return img_filter_3d_linear;
2649 break;
2650 default:
2651 assert(0);
2652 return img_filter_1d_nearest;
2653 }
2654 }
2655
2656
2657 static void
2658 sample_mip(struct sp_sampler_view *sp_sview,
2659 struct sp_sampler *sp_samp,
2660 const float s[TGSI_QUAD_SIZE],
2661 const float t[TGSI_QUAD_SIZE],
2662 const float p[TGSI_QUAD_SIZE],
2663 const float c0[TGSI_QUAD_SIZE],
2664 const float lod[TGSI_QUAD_SIZE],
2665 enum tgsi_sampler_control control,
2666 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2667 {
2668 mip_filter_func mip_filter;
2669 img_filter_func min_img_filter = NULL;
2670 img_filter_func mag_img_filter = NULL;
2671
2672 if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
2673 mip_filter = mip_filter_linear_2d_linear_repeat_POT;
2674 }
2675 else {
2676 mip_filter = sp_samp->mip_filter;
2677 min_img_filter = get_img_filter(sp_sview, &sp_samp->base, sp_samp->min_img_filter);
2678 if (sp_samp->min_mag_equal) {
2679 mag_img_filter = min_img_filter;
2680 }
2681 else {
2682 mag_img_filter = get_img_filter(sp_sview, &sp_samp->base, sp_samp->base.mag_img_filter);
2683 }
2684 }
2685
2686 mip_filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
2687 s, t, p, c0, lod, control, rgba);
2688
2689 if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
2690 sample_compare(sp_sview, sp_samp, s, t, p, c0, lod, control, rgba);
2691 }
2692
2693 if (sp_sview->need_swizzle) {
2694 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2695 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
2696 do_swizzling(&sp_sview->base, rgba_temp, rgba);
2697 }
2698
2699 }
2700
2701
2702 /**
2703 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
2704 * Put face info into the sampler faces[] array.
2705 */
2706 static void
2707 sample_cube(struct sp_sampler_view *sp_sview,
2708 struct sp_sampler *sp_samp,
2709 const float s[TGSI_QUAD_SIZE],
2710 const float t[TGSI_QUAD_SIZE],
2711 const float p[TGSI_QUAD_SIZE],
2712 const float c0[TGSI_QUAD_SIZE],
2713 const float c1[TGSI_QUAD_SIZE],
2714 enum tgsi_sampler_control control,
2715 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2716 {
2717 unsigned j;
2718 float ssss[4], tttt[4];
2719
2720 /* Not actually used, but the intermediate steps that do the
2721 * dereferencing don't know it.
2722 */
2723 static float pppp[4] = { 0, 0, 0, 0 };
2724
2725 pppp[0] = c0[0];
2726 pppp[1] = c0[1];
2727 pppp[2] = c0[2];
2728 pppp[3] = c0[3];
2729 /*
2730 major axis
2731 direction target sc tc ma
2732 ---------- ------------------------------- --- --- ---
2733 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
2734 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
2735 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
2736 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
2737 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
2738 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
2739 */
2740
2741 /* Choose the cube face and compute new s/t coords for the 2D face.
2742 *
2743 * Use the same cube face for all four pixels in the quad.
2744 *
2745 * This isn't ideal, but if we want to use a different cube face
2746 * per pixel in the quad, we'd have to also compute the per-face
2747 * LOD here too. That's because the four post-face-selection
2748 * texcoords are no longer related to each other (they're
2749 * per-face!) so we can't use subtraction to compute the partial
2750 * deriviates to compute the LOD. Doing so (near cube edges
2751 * anyway) gives us pretty much random values.
2752 */
2753 {
2754 /* use the average of the four pixel's texcoords to choose the face */
2755 const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
2756 const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
2757 const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
2758 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
2759
2760 if (arx >= ary && arx >= arz) {
2761 float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
2762 uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
2763 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2764 const float ima = -0.5F / fabsf(s[j]);
2765 ssss[j] = sign * p[j] * ima + 0.5F;
2766 tttt[j] = t[j] * ima + 0.5F;
2767 sp_sview->faces[j] = face;
2768 }
2769 }
2770 else if (ary >= arx && ary >= arz) {
2771 float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
2772 uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
2773 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2774 const float ima = -0.5F / fabsf(t[j]);
2775 ssss[j] = -s[j] * ima + 0.5F;
2776 tttt[j] = sign * -p[j] * ima + 0.5F;
2777 sp_sview->faces[j] = face;
2778 }
2779 }
2780 else {
2781 float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
2782 uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
2783 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2784 const float ima = -0.5F / fabsf(p[j]);
2785 ssss[j] = sign * -s[j] * ima + 0.5F;
2786 tttt[j] = t[j] * ima + 0.5F;
2787 sp_sview->faces[j] = face;
2788 }
2789 }
2790 }
2791
2792 sample_mip(sp_sview, sp_samp, ssss, tttt, pppp, c0, c1, control, rgba);
2793 }
2794
2795
2796 static void
2797 sp_get_dims(struct sp_sampler_view *sp_sview, int level,
2798 int dims[4])
2799 {
2800 const struct pipe_sampler_view *view = &sp_sview->base;
2801 const struct pipe_resource *texture = view->texture;
2802
2803 /* undefined according to EXT_gpu_program */
2804 level += view->u.tex.first_level;
2805 if (level > view->u.tex.last_level)
2806 return;
2807
2808 dims[0] = u_minify(texture->width0, level);
2809
2810 switch(texture->target) {
2811 case PIPE_TEXTURE_1D_ARRAY:
2812 dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
2813 /* fallthrough */
2814 case PIPE_TEXTURE_1D:
2815 return;
2816 case PIPE_TEXTURE_2D_ARRAY:
2817 dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
2818 /* fallthrough */
2819 case PIPE_TEXTURE_2D:
2820 case PIPE_TEXTURE_CUBE:
2821 case PIPE_TEXTURE_RECT:
2822 dims[1] = u_minify(texture->height0, level);
2823 return;
2824 case PIPE_TEXTURE_3D:
2825 dims[1] = u_minify(texture->height0, level);
2826 dims[2] = u_minify(texture->depth0, level);
2827 return;
2828 case PIPE_TEXTURE_CUBE_ARRAY:
2829 dims[1] = u_minify(texture->height0, level);
2830 dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
2831 break;
2832 case PIPE_BUFFER:
2833 dims[0] /= util_format_get_blocksize(view->format);
2834 return;
2835 default:
2836 assert(!"unexpected texture target in sp_get_dims()");
2837 return;
2838 }
2839 }
2840
2841 /**
2842 * This function is only used for getting unfiltered texels via the
2843 * TXF opcode. The GL spec says that out-of-bounds texel fetches
2844 * produce undefined results. Instead of crashing, lets just clamp
2845 * coords to the texture image size.
2846 */
2847 static void
2848 sp_get_texels(struct sp_sampler_view *sp_sview,
2849 const int v_i[TGSI_QUAD_SIZE],
2850 const int v_j[TGSI_QUAD_SIZE],
2851 const int v_k[TGSI_QUAD_SIZE],
2852 const int lod[TGSI_QUAD_SIZE],
2853 const int8_t offset[3],
2854 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2855 {
2856 union tex_tile_address addr;
2857 const struct pipe_resource *texture = sp_sview->base.texture;
2858 int j, c;
2859 const float *tx;
2860 int width, height, depth;
2861
2862 addr.value = 0;
2863 /* TODO write a better test for LOD */
2864 addr.bits.level = lod[0];
2865
2866 width = u_minify(texture->width0, addr.bits.level);
2867 height = u_minify(texture->height0, addr.bits.level);
2868 depth = u_minify(texture->depth0, addr.bits.level);
2869
2870 switch(texture->target) {
2871 case PIPE_BUFFER:
2872 case PIPE_TEXTURE_1D:
2873 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2874 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2875 tx = get_texel_2d_no_border(sp_sview, addr, x, 0);
2876 for (c = 0; c < 4; c++) {
2877 rgba[c][j] = tx[c];
2878 }
2879 }
2880 break;
2881 case PIPE_TEXTURE_1D_ARRAY:
2882 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2883 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2884 int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer);
2885 tx = get_texel_2d_no_border(sp_sview, addr, x, y);
2886 for (c = 0; c < 4; c++) {
2887 rgba[c][j] = tx[c];
2888 }
2889 }
2890 break;
2891 case PIPE_TEXTURE_2D:
2892 case PIPE_TEXTURE_RECT:
2893 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2894 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2895 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2896 tx = get_texel_2d_no_border(sp_sview, addr, x, y);
2897 for (c = 0; c < 4; c++) {
2898 rgba[c][j] = tx[c];
2899 }
2900 }
2901 break;
2902 case PIPE_TEXTURE_2D_ARRAY:
2903 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2904 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2905 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2906 int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer);
2907 tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
2908 for (c = 0; c < 4; c++) {
2909 rgba[c][j] = tx[c];
2910 }
2911 }
2912 break;
2913 case PIPE_TEXTURE_3D:
2914 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2915 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2916 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2917 int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
2918 tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
2919 for (c = 0; c < 4; c++) {
2920 rgba[c][j] = tx[c];
2921 }
2922 }
2923 break;
2924 case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
2925 default:
2926 assert(!"Unknown or CUBE texture type in TXF processing\n");
2927 break;
2928 }
2929
2930 if (sp_sview->need_swizzle) {
2931 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2932 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
2933 do_swizzling(&sp_sview->base, rgba_temp, rgba);
2934 }
2935 }
2936
2937
2938 void *
2939 softpipe_create_sampler_state(struct pipe_context *pipe,
2940 const struct pipe_sampler_state *sampler)
2941 {
2942 struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
2943
2944 samp->base = *sampler;
2945
2946 /* Note that (for instance) linear_texcoord_s and
2947 * nearest_texcoord_s may be active at the same time, if the
2948 * sampler min_img_filter differs from its mag_img_filter.
2949 */
2950 if (sampler->normalized_coords) {
2951 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
2952 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
2953 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
2954
2955 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
2956 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
2957 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
2958 }
2959 else {
2960 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
2961 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
2962 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
2963
2964 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
2965 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
2966 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
2967 }
2968
2969 samp->min_img_filter = sampler->min_img_filter;
2970
2971 switch (sampler->min_mip_filter) {
2972 case PIPE_TEX_MIPFILTER_NONE:
2973 if (sampler->min_img_filter == sampler->mag_img_filter)
2974 samp->mip_filter = mip_filter_none_no_filter_select;
2975 else
2976 samp->mip_filter = mip_filter_none;
2977 break;
2978
2979 case PIPE_TEX_MIPFILTER_NEAREST:
2980 samp->mip_filter = mip_filter_nearest;
2981 break;
2982
2983 case PIPE_TEX_MIPFILTER_LINEAR:
2984 if (sampler->min_img_filter == sampler->mag_img_filter &&
2985 sampler->normalized_coords &&
2986 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
2987 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
2988 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
2989 sampler->max_anisotropy <= 1) {
2990 samp->min_mag_equal_repeat_linear = TRUE;
2991 }
2992 samp->mip_filter = mip_filter_linear;
2993
2994 /* Anisotropic filtering extension. */
2995 if (sampler->max_anisotropy > 1) {
2996 samp->mip_filter = mip_filter_linear_aniso;
2997
2998 /* Override min_img_filter:
2999 * min_img_filter needs to be set to NEAREST since we need to access
3000 * each texture pixel as it is and weight it later; using linear
3001 * filters will have incorrect results.
3002 * By setting the filter to NEAREST here, we can avoid calling the
3003 * generic img_filter_2d_nearest in the anisotropic filter function,
3004 * making it possible to use one of the accelerated implementations
3005 */
3006 samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3007
3008 /* on first access create the lookup table containing the filter weights. */
3009 if (!weightLut) {
3010 create_filter_table();
3011 }
3012 }
3013 break;
3014 }
3015 if (samp->min_img_filter == sampler->mag_img_filter) {
3016 samp->min_mag_equal = TRUE;
3017 }
3018
3019 return (void *)samp;
3020 }
3021
3022
3023 compute_lambda_func
3024 softpipe_get_lambda_func(const struct pipe_sampler_view *view, unsigned shader)
3025 {
3026 if (shader != PIPE_SHADER_FRAGMENT)
3027 return compute_lambda_vert;
3028
3029 switch (view->texture->target) {
3030 case PIPE_BUFFER:
3031 case PIPE_TEXTURE_1D:
3032 case PIPE_TEXTURE_1D_ARRAY:
3033 return compute_lambda_1d;
3034 case PIPE_TEXTURE_2D:
3035 case PIPE_TEXTURE_2D_ARRAY:
3036 case PIPE_TEXTURE_RECT:
3037 case PIPE_TEXTURE_CUBE:
3038 case PIPE_TEXTURE_CUBE_ARRAY:
3039 return compute_lambda_2d;
3040 case PIPE_TEXTURE_3D:
3041 return compute_lambda_3d;
3042 default:
3043 assert(0);
3044 return compute_lambda_1d;
3045 }
3046 }
3047
3048
3049 struct pipe_sampler_view *
3050 softpipe_create_sampler_view(struct pipe_context *pipe,
3051 struct pipe_resource *resource,
3052 const struct pipe_sampler_view *templ)
3053 {
3054 struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3055 struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3056
3057 if (sview) {
3058 struct pipe_sampler_view *view = &sview->base;
3059 *view = *templ;
3060 view->reference.count = 1;
3061 view->texture = NULL;
3062 pipe_resource_reference(&view->texture, resource);
3063 view->context = pipe;
3064
3065 if (any_swizzle(view)) {
3066 sview->need_swizzle = TRUE;
3067 }
3068
3069 if (resource->target == PIPE_TEXTURE_CUBE ||
3070 resource->target == PIPE_TEXTURE_CUBE_ARRAY)
3071 sview->get_samples = sample_cube;
3072 else {
3073 sview->get_samples = sample_mip;
3074 }
3075 sview->pot2d = spr->pot &&
3076 (resource->target == PIPE_TEXTURE_2D ||
3077 resource->target == PIPE_TEXTURE_RECT);
3078
3079 sview->xpot = util_logbase2( resource->width0 );
3080 sview->ypot = util_logbase2( resource->height0 );
3081 }
3082
3083 return (struct pipe_sampler_view *) sview;
3084 }
3085
3086
3087 static void
3088 sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3089 const unsigned sview_index,
3090 int level, int dims[4])
3091 {
3092 struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3093
3094 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3095 /* TODO should have defined behavior if no texture is bound. */
3096 sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3097 }
3098
3099
3100 static void
3101 sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3102 const unsigned sview_index,
3103 const unsigned sampler_index,
3104 const float s[TGSI_QUAD_SIZE],
3105 const float t[TGSI_QUAD_SIZE],
3106 const float p[TGSI_QUAD_SIZE],
3107 const float c0[TGSI_QUAD_SIZE],
3108 const float lod[TGSI_QUAD_SIZE],
3109 float derivs[3][2][TGSI_QUAD_SIZE],
3110 const int8_t offset[3],
3111 enum tgsi_sampler_control control,
3112 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3113 {
3114 struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3115
3116 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3117 assert(sampler_index < PIPE_MAX_SAMPLERS);
3118 assert(sp_samp->sp_sampler[sampler_index]);
3119 /* FIXME should have defined behavior if no texture is bound. */
3120 assert(sp_samp->sp_sview[sview_index].get_samples);
3121 sp_samp->sp_sview[sview_index].get_samples(&sp_samp->sp_sview[sview_index],
3122 sp_samp->sp_sampler[sampler_index],
3123 s, t, p, c0, lod, control, rgba);
3124 }
3125
3126
3127 static void
3128 sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3129 const unsigned sview_index,
3130 const int i[TGSI_QUAD_SIZE],
3131 const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3132 const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3133 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3134 {
3135 struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3136
3137 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3138 /* FIXME should have defined behavior if no texture is bound. */
3139 assert(sp_samp->sp_sview[sview_index].base.texture);
3140 sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3141 }
3142
3143
3144 struct sp_tgsi_sampler *
3145 sp_create_tgsi_sampler(void)
3146 {
3147 struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3148 if (!samp)
3149 return NULL;
3150
3151 samp->base.get_dims = sp_tgsi_get_dims;
3152 samp->base.get_samples = sp_tgsi_get_samples;
3153 samp->base.get_texel = sp_tgsi_get_texel;
3154
3155 return samp;
3156 }
3157