vc4: Optimize CL emits by doing size checks up front.
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "pipe/p_state.h"
27 #include "util/u_format.h"
28 #include "util/u_hash.h"
29 #include "util/u_memory.h"
30 #include "util/u_pack_color.h"
31 #include "util/format_srgb.h"
32 #include "util/ralloc.h"
33 #include "util/hash_table.h"
34 #include "tgsi/tgsi_dump.h"
35 #include "tgsi/tgsi_info.h"
36 #include "tgsi/tgsi_lowering.h"
37
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41 #ifdef USE_VC4_SIMULATOR
42 #include "simpenrose/simpenrose.h"
43 #endif
44
45 struct vc4_key {
46 struct vc4_uncompiled_shader *shader_state;
47 struct {
48 enum pipe_format format;
49 unsigned compare_mode:1;
50 unsigned compare_func:3;
51 unsigned wrap_s:3;
52 unsigned wrap_t:3;
53 uint8_t swizzle[4];
54 } tex[VC4_MAX_TEXTURE_SAMPLERS];
55 uint8_t ucp_enables;
56 };
57
58 struct vc4_fs_key {
59 struct vc4_key base;
60 enum pipe_format color_format;
61 bool depth_enabled;
62 bool stencil_enabled;
63 bool stencil_twoside;
64 bool stencil_full_writemasks;
65 bool is_points;
66 bool is_lines;
67 bool alpha_test;
68 bool point_coord_upper_left;
69 bool light_twoside;
70 uint8_t alpha_test_func;
71 uint8_t logicop_func;
72 uint32_t point_sprite_mask;
73
74 struct pipe_rt_blend_state blend;
75 };
76
77 struct vc4_vs_key {
78 struct vc4_key base;
79
80 /**
81 * This is a proxy for the array of FS input semantics, which is
82 * larger than we would want to put in the key.
83 */
84 uint64_t compiled_fs_id;
85
86 enum pipe_format attr_formats[8];
87 bool is_coord;
88 bool per_vertex_point_size;
89 };
90
91 static void
92 resize_qreg_array(struct vc4_compile *c,
93 struct qreg **regs,
94 uint32_t *size,
95 uint32_t decl_size)
96 {
97 if (*size >= decl_size)
98 return;
99
100 uint32_t old_size = *size;
101 *size = MAX2(*size * 2, decl_size);
102 *regs = reralloc(c, *regs, struct qreg, *size);
103 if (!*regs) {
104 fprintf(stderr, "Malloc failure\n");
105 abort();
106 }
107
108 for (uint32_t i = old_size; i < *size; i++)
109 (*regs)[i] = c->undef;
110 }
111
112 static struct qreg
113 add_uniform(struct vc4_compile *c,
114 enum quniform_contents contents,
115 uint32_t data)
116 {
117 for (int i = 0; i < c->num_uniforms; i++) {
118 if (c->uniform_contents[i] == contents &&
119 c->uniform_data[i] == data) {
120 return (struct qreg) { QFILE_UNIF, i };
121 }
122 }
123
124 uint32_t uniform = c->num_uniforms++;
125 struct qreg u = { QFILE_UNIF, uniform };
126
127 if (uniform >= c->uniform_array_size) {
128 c->uniform_array_size = MAX2(MAX2(16, uniform + 1),
129 c->uniform_array_size * 2);
130
131 c->uniform_data = reralloc(c, c->uniform_data,
132 uint32_t,
133 c->uniform_array_size);
134 c->uniform_contents = reralloc(c, c->uniform_contents,
135 enum quniform_contents,
136 c->uniform_array_size);
137 }
138
139 c->uniform_contents[uniform] = contents;
140 c->uniform_data[uniform] = data;
141
142 return u;
143 }
144
145 static struct qreg
146 get_temp_for_uniform(struct vc4_compile *c, enum quniform_contents contents,
147 uint32_t data)
148 {
149 struct qreg u = add_uniform(c, contents, data);
150 struct qreg t = qir_MOV(c, u);
151 return t;
152 }
153
154 static struct qreg
155 qir_uniform_ui(struct vc4_compile *c, uint32_t ui)
156 {
157 return get_temp_for_uniform(c, QUNIFORM_CONSTANT, ui);
158 }
159
160 static struct qreg
161 qir_uniform_f(struct vc4_compile *c, float f)
162 {
163 return qir_uniform_ui(c, fui(f));
164 }
165
166 static struct qreg
167 indirect_uniform_load(struct vc4_compile *c,
168 struct tgsi_full_src_register *src, int swiz)
169 {
170 struct tgsi_ind_register *indirect = &src->Indirect;
171 struct vc4_compiler_ubo_range *range = &c->ubo_ranges[indirect->ArrayID];
172 if (!range->used) {
173 range->used = true;
174 range->dst_offset = c->next_ubo_dst_offset;
175 c->next_ubo_dst_offset += range->size;
176 c->num_ubo_ranges++;
177 };
178
179 assert(src->Register.Indirect);
180 assert(indirect->File == TGSI_FILE_ADDRESS);
181
182 struct qreg addr_val = c->addr[indirect->Swizzle];
183 struct qreg indirect_offset =
184 qir_ADD(c, addr_val, qir_uniform_ui(c,
185 range->dst_offset +
186 (src->Register.Index * 16)+
187 swiz * 4));
188 indirect_offset = qir_MIN(c, indirect_offset, qir_uniform_ui(c, (range->dst_offset +
189 range->size - 4)));
190
191 qir_TEX_DIRECT(c, indirect_offset, add_uniform(c, QUNIFORM_UBO_ADDR, 0));
192 struct qreg r4 = qir_TEX_RESULT(c);
193 c->num_texture_samples++;
194 return qir_MOV(c, r4);
195 }
196
197 static struct qreg
198 get_src(struct vc4_compile *c, unsigned tgsi_op,
199 struct tgsi_full_src_register *full_src, int i)
200 {
201 struct tgsi_src_register *src = &full_src->Register;
202 struct qreg r = c->undef;
203
204 uint32_t s = i;
205 switch (i) {
206 case TGSI_SWIZZLE_X:
207 s = src->SwizzleX;
208 break;
209 case TGSI_SWIZZLE_Y:
210 s = src->SwizzleY;
211 break;
212 case TGSI_SWIZZLE_Z:
213 s = src->SwizzleZ;
214 break;
215 case TGSI_SWIZZLE_W:
216 s = src->SwizzleW;
217 break;
218 default:
219 abort();
220 }
221
222 switch (src->File) {
223 case TGSI_FILE_NULL:
224 return r;
225 case TGSI_FILE_TEMPORARY:
226 r = c->temps[src->Index * 4 + s];
227 break;
228 case TGSI_FILE_IMMEDIATE:
229 r = c->consts[src->Index * 4 + s];
230 break;
231 case TGSI_FILE_CONSTANT:
232 if (src->Indirect) {
233 r = indirect_uniform_load(c, full_src, s);
234 } else {
235 r = get_temp_for_uniform(c, QUNIFORM_UNIFORM,
236 src->Index * 4 + s);
237 }
238 break;
239 case TGSI_FILE_INPUT:
240 r = c->inputs[src->Index * 4 + s];
241 break;
242 case TGSI_FILE_SAMPLER:
243 case TGSI_FILE_SAMPLER_VIEW:
244 r = c->undef;
245 break;
246 default:
247 fprintf(stderr, "unknown src file %d\n", src->File);
248 abort();
249 }
250
251 if (src->Absolute)
252 r = qir_FMAXABS(c, r, r);
253
254 if (src->Negate) {
255 switch (tgsi_opcode_infer_src_type(tgsi_op)) {
256 case TGSI_TYPE_SIGNED:
257 case TGSI_TYPE_UNSIGNED:
258 r = qir_SUB(c, qir_uniform_ui(c, 0), r);
259 break;
260 default:
261 r = qir_FSUB(c, qir_uniform_f(c, 0.0), r);
262 break;
263 }
264 }
265
266 return r;
267 };
268
269
270 static void
271 update_dst(struct vc4_compile *c, struct tgsi_full_instruction *tgsi_inst,
272 int i, struct qreg val)
273 {
274 struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register;
275
276 assert(!tgsi_dst->Indirect);
277
278 switch (tgsi_dst->File) {
279 case TGSI_FILE_TEMPORARY:
280 c->temps[tgsi_dst->Index * 4 + i] = val;
281 break;
282 case TGSI_FILE_OUTPUT:
283 c->outputs[tgsi_dst->Index * 4 + i] = val;
284 c->num_outputs = MAX2(c->num_outputs,
285 tgsi_dst->Index * 4 + i + 1);
286 break;
287 case TGSI_FILE_ADDRESS:
288 assert(tgsi_dst->Index == 0);
289 c->addr[i] = val;
290 break;
291 default:
292 fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File);
293 abort();
294 }
295 };
296
297 static struct qreg
298 get_swizzled_channel(struct vc4_compile *c,
299 struct qreg *srcs, int swiz)
300 {
301 switch (swiz) {
302 default:
303 case UTIL_FORMAT_SWIZZLE_NONE:
304 fprintf(stderr, "warning: unknown swizzle\n");
305 /* FALLTHROUGH */
306 case UTIL_FORMAT_SWIZZLE_0:
307 return qir_uniform_f(c, 0.0);
308 case UTIL_FORMAT_SWIZZLE_1:
309 return qir_uniform_f(c, 1.0);
310 case UTIL_FORMAT_SWIZZLE_X:
311 case UTIL_FORMAT_SWIZZLE_Y:
312 case UTIL_FORMAT_SWIZZLE_Z:
313 case UTIL_FORMAT_SWIZZLE_W:
314 return srcs[swiz];
315 }
316 }
317
318 static struct qreg
319 tgsi_to_qir_alu(struct vc4_compile *c,
320 struct tgsi_full_instruction *tgsi_inst,
321 enum qop op, struct qreg *src, int i)
322 {
323 struct qreg dst = qir_get_temp(c);
324 qir_emit(c, qir_inst4(op, dst,
325 src[0 * 4 + i],
326 src[1 * 4 + i],
327 src[2 * 4 + i],
328 c->undef));
329 return dst;
330 }
331
332 static struct qreg
333 tgsi_to_qir_scalar(struct vc4_compile *c,
334 struct tgsi_full_instruction *tgsi_inst,
335 enum qop op, struct qreg *src, int i)
336 {
337 struct qreg dst = qir_get_temp(c);
338 qir_emit(c, qir_inst(op, dst,
339 src[0 * 4 + 0],
340 c->undef));
341 return dst;
342 }
343
344 static struct qreg
345 tgsi_to_qir_rcp(struct vc4_compile *c,
346 struct tgsi_full_instruction *tgsi_inst,
347 enum qop op, struct qreg *src, int i)
348 {
349 struct qreg x = src[0 * 4 + 0];
350 struct qreg r = qir_RCP(c, x);
351
352 /* Apply a Newton-Raphson step to improve the accuracy. */
353 r = qir_FMUL(c, r, qir_FSUB(c,
354 qir_uniform_f(c, 2.0),
355 qir_FMUL(c, x, r)));
356
357 return r;
358 }
359
360 static struct qreg
361 tgsi_to_qir_rsq(struct vc4_compile *c,
362 struct tgsi_full_instruction *tgsi_inst,
363 enum qop op, struct qreg *src, int i)
364 {
365 struct qreg x = src[0 * 4 + 0];
366 struct qreg r = qir_RSQ(c, x);
367
368 /* Apply a Newton-Raphson step to improve the accuracy. */
369 r = qir_FMUL(c, r, qir_FSUB(c,
370 qir_uniform_f(c, 1.5),
371 qir_FMUL(c,
372 qir_uniform_f(c, 0.5),
373 qir_FMUL(c, x,
374 qir_FMUL(c, r, r)))));
375
376 return r;
377 }
378
379 static struct qreg
380 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
381 {
382 struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
383 struct qreg high = qir_POW(c,
384 qir_FMUL(c,
385 qir_FADD(c,
386 srgb,
387 qir_uniform_f(c, 0.055)),
388 qir_uniform_f(c, 1.0 / 1.055)),
389 qir_uniform_f(c, 2.4));
390
391 qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
392 return qir_SEL_X_Y_NS(c, low, high);
393 }
394
395 static struct qreg
396 qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
397 {
398 struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
399 struct qreg high = qir_FSUB(c,
400 qir_FMUL(c,
401 qir_uniform_f(c, 1.055),
402 qir_POW(c,
403 linear,
404 qir_uniform_f(c, 0.41666))),
405 qir_uniform_f(c, 0.055));
406
407 qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
408 return qir_SEL_X_Y_NS(c, low, high);
409 }
410
411 static struct qreg
412 tgsi_to_qir_umul(struct vc4_compile *c,
413 struct tgsi_full_instruction *tgsi_inst,
414 enum qop op, struct qreg *src, int i)
415 {
416 struct qreg src0_hi = qir_SHR(c, src[0 * 4 + i],
417 qir_uniform_ui(c, 16));
418 struct qreg src0_lo = qir_AND(c, src[0 * 4 + i],
419 qir_uniform_ui(c, 0xffff));
420 struct qreg src1_hi = qir_SHR(c, src[1 * 4 + i],
421 qir_uniform_ui(c, 16));
422 struct qreg src1_lo = qir_AND(c, src[1 * 4 + i],
423 qir_uniform_ui(c, 0xffff));
424
425 struct qreg hilo = qir_MUL24(c, src0_hi, src1_lo);
426 struct qreg lohi = qir_MUL24(c, src0_lo, src1_hi);
427 struct qreg lolo = qir_MUL24(c, src0_lo, src1_lo);
428
429 return qir_ADD(c, lolo, qir_SHL(c,
430 qir_ADD(c, hilo, lohi),
431 qir_uniform_ui(c, 16)));
432 }
433
434 static struct qreg
435 tgsi_to_qir_umad(struct vc4_compile *c,
436 struct tgsi_full_instruction *tgsi_inst,
437 enum qop op, struct qreg *src, int i)
438 {
439 return qir_ADD(c, tgsi_to_qir_umul(c, NULL, 0, src, i), src[2 * 4 + i]);
440 }
441
442 static struct qreg
443 tgsi_to_qir_idiv(struct vc4_compile *c,
444 struct tgsi_full_instruction *tgsi_inst,
445 enum qop op, struct qreg *src, int i)
446 {
447 return qir_FTOI(c, qir_FMUL(c,
448 qir_ITOF(c, src[0 * 4 + i]),
449 qir_RCP(c, qir_ITOF(c, src[1 * 4 + i]))));
450 }
451
452 static struct qreg
453 tgsi_to_qir_ineg(struct vc4_compile *c,
454 struct tgsi_full_instruction *tgsi_inst,
455 enum qop op, struct qreg *src, int i)
456 {
457 return qir_SUB(c, qir_uniform_ui(c, 0), src[0 * 4 + i]);
458 }
459
460 static struct qreg
461 tgsi_to_qir_seq(struct vc4_compile *c,
462 struct tgsi_full_instruction *tgsi_inst,
463 enum qop op, struct qreg *src, int i)
464 {
465 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
466 return qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
467 }
468
469 static struct qreg
470 tgsi_to_qir_sne(struct vc4_compile *c,
471 struct tgsi_full_instruction *tgsi_inst,
472 enum qop op, struct qreg *src, int i)
473 {
474 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
475 return qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
476 }
477
478 static struct qreg
479 tgsi_to_qir_slt(struct vc4_compile *c,
480 struct tgsi_full_instruction *tgsi_inst,
481 enum qop op, struct qreg *src, int i)
482 {
483 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
484 return qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
485 }
486
487 static struct qreg
488 tgsi_to_qir_sge(struct vc4_compile *c,
489 struct tgsi_full_instruction *tgsi_inst,
490 enum qop op, struct qreg *src, int i)
491 {
492 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
493 return qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
494 }
495
496 static struct qreg
497 tgsi_to_qir_fseq(struct vc4_compile *c,
498 struct tgsi_full_instruction *tgsi_inst,
499 enum qop op, struct qreg *src, int i)
500 {
501 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
502 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
503 }
504
505 static struct qreg
506 tgsi_to_qir_fsne(struct vc4_compile *c,
507 struct tgsi_full_instruction *tgsi_inst,
508 enum qop op, struct qreg *src, int i)
509 {
510 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
511 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
512 }
513
514 static struct qreg
515 tgsi_to_qir_fslt(struct vc4_compile *c,
516 struct tgsi_full_instruction *tgsi_inst,
517 enum qop op, struct qreg *src, int i)
518 {
519 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
520 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
521 }
522
523 static struct qreg
524 tgsi_to_qir_fsge(struct vc4_compile *c,
525 struct tgsi_full_instruction *tgsi_inst,
526 enum qop op, struct qreg *src, int i)
527 {
528 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
529 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
530 }
531
532 static struct qreg
533 tgsi_to_qir_useq(struct vc4_compile *c,
534 struct tgsi_full_instruction *tgsi_inst,
535 enum qop op, struct qreg *src, int i)
536 {
537 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
538 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
539 }
540
541 static struct qreg
542 tgsi_to_qir_usne(struct vc4_compile *c,
543 struct tgsi_full_instruction *tgsi_inst,
544 enum qop op, struct qreg *src, int i)
545 {
546 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
547 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
548 }
549
550 static struct qreg
551 tgsi_to_qir_islt(struct vc4_compile *c,
552 struct tgsi_full_instruction *tgsi_inst,
553 enum qop op, struct qreg *src, int i)
554 {
555 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
556 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
557 }
558
559 static struct qreg
560 tgsi_to_qir_isge(struct vc4_compile *c,
561 struct tgsi_full_instruction *tgsi_inst,
562 enum qop op, struct qreg *src, int i)
563 {
564 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
565 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
566 }
567
568 static struct qreg
569 tgsi_to_qir_cmp(struct vc4_compile *c,
570 struct tgsi_full_instruction *tgsi_inst,
571 enum qop op, struct qreg *src, int i)
572 {
573 qir_SF(c, src[0 * 4 + i]);
574 return qir_SEL_X_Y_NS(c,
575 src[1 * 4 + i],
576 src[2 * 4 + i]);
577 }
578
579 static struct qreg
580 tgsi_to_qir_ucmp(struct vc4_compile *c,
581 struct tgsi_full_instruction *tgsi_inst,
582 enum qop op, struct qreg *src, int i)
583 {
584 qir_SF(c, src[0 * 4 + i]);
585 return qir_SEL_X_Y_ZC(c,
586 src[1 * 4 + i],
587 src[2 * 4 + i]);
588 }
589
590 static struct qreg
591 tgsi_to_qir_mad(struct vc4_compile *c,
592 struct tgsi_full_instruction *tgsi_inst,
593 enum qop op, struct qreg *src, int i)
594 {
595 return qir_FADD(c,
596 qir_FMUL(c,
597 src[0 * 4 + i],
598 src[1 * 4 + i]),
599 src[2 * 4 + i]);
600 }
601
602 static struct qreg
603 tgsi_to_qir_lrp(struct vc4_compile *c,
604 struct tgsi_full_instruction *tgsi_inst,
605 enum qop op, struct qreg *src, int i)
606 {
607 struct qreg src0 = src[0 * 4 + i];
608 struct qreg src1 = src[1 * 4 + i];
609 struct qreg src2 = src[2 * 4 + i];
610
611 /* LRP is:
612 * src0 * src1 + (1 - src0) * src2.
613 * -> src0 * src1 + src2 - src0 * src2
614 * -> src2 + src0 * (src1 - src2)
615 */
616 return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2)));
617
618 }
619
620 static void
621 tgsi_to_qir_tex(struct vc4_compile *c,
622 struct tgsi_full_instruction *tgsi_inst,
623 enum qop op, struct qreg *src)
624 {
625 assert(!tgsi_inst->Instruction.Saturate);
626
627 struct qreg s = src[0 * 4 + 0];
628 struct qreg t = src[0 * 4 + 1];
629 struct qreg r = src[0 * 4 + 2];
630 uint32_t unit = tgsi_inst->Src[1].Register.Index;
631 bool is_txl = tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL;
632
633 struct qreg proj = c->undef;
634 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
635 proj = qir_RCP(c, src[0 * 4 + 3]);
636 s = qir_FMUL(c, s, proj);
637 t = qir_FMUL(c, t, proj);
638 }
639
640 struct qreg texture_u[] = {
641 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
642 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
643 add_uniform(c, QUNIFORM_CONSTANT, 0),
644 add_uniform(c, QUNIFORM_CONSTANT, 0),
645 };
646 uint32_t next_texture_u = 0;
647
648 /* There is no native support for GL texture rectangle coordinates, so
649 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
650 * 1]).
651 */
652 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT ||
653 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
654 s = qir_FMUL(c, s,
655 get_temp_for_uniform(c,
656 QUNIFORM_TEXRECT_SCALE_X,
657 unit));
658 t = qir_FMUL(c, t,
659 get_temp_for_uniform(c,
660 QUNIFORM_TEXRECT_SCALE_Y,
661 unit));
662 }
663
664 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
665 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
666 is_txl) {
667 texture_u[2] = add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
668 unit | (is_txl << 16));
669 }
670
671 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
672 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE) {
673 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
674 struct qreg rcp_ma = qir_RCP(c, ma);
675 s = qir_FMUL(c, s, rcp_ma);
676 t = qir_FMUL(c, t, rcp_ma);
677 r = qir_FMUL(c, r, rcp_ma);
678
679 qir_TEX_R(c, r, texture_u[next_texture_u++]);
680 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
681 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
682 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
683 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
684 qir_TEX_R(c, get_temp_for_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
685 texture_u[next_texture_u++]);
686 }
687
688 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
689 s = qir_FMIN(c, qir_FMAX(c, s, qir_uniform_f(c, 0.0)),
690 qir_uniform_f(c, 1.0));
691 }
692
693 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
694 t = qir_FMIN(c, qir_FMAX(c, t, qir_uniform_f(c, 0.0)),
695 qir_uniform_f(c, 1.0));
696 }
697
698 qir_TEX_T(c, t, texture_u[next_texture_u++]);
699
700 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
701 tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL)
702 qir_TEX_B(c, src[0 * 4 + 3], texture_u[next_texture_u++]);
703
704 qir_TEX_S(c, s, texture_u[next_texture_u++]);
705
706 c->num_texture_samples++;
707 struct qreg r4 = qir_TEX_RESULT(c);
708
709 enum pipe_format format = c->key->tex[unit].format;
710
711 struct qreg unpacked[4];
712 if (util_format_is_depth_or_stencil(format)) {
713 struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
714 qir_uniform_ui(c, 8)));
715 struct qreg normalized = qir_FMUL(c, depthf,
716 qir_uniform_f(c, 1.0f/0xffffff));
717
718 struct qreg depth_output;
719
720 struct qreg one = qir_uniform_f(c, 1.0f);
721 if (c->key->tex[unit].compare_mode) {
722 struct qreg compare = src[0 * 4 + 2];
723
724 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP)
725 compare = qir_FMUL(c, compare, proj);
726
727 switch (c->key->tex[unit].compare_func) {
728 case PIPE_FUNC_NEVER:
729 depth_output = qir_uniform_f(c, 0.0f);
730 break;
731 case PIPE_FUNC_ALWAYS:
732 depth_output = one;
733 break;
734 case PIPE_FUNC_EQUAL:
735 qir_SF(c, qir_FSUB(c, compare, normalized));
736 depth_output = qir_SEL_X_0_ZS(c, one);
737 break;
738 case PIPE_FUNC_NOTEQUAL:
739 qir_SF(c, qir_FSUB(c, compare, normalized));
740 depth_output = qir_SEL_X_0_ZC(c, one);
741 break;
742 case PIPE_FUNC_GREATER:
743 qir_SF(c, qir_FSUB(c, compare, normalized));
744 depth_output = qir_SEL_X_0_NC(c, one);
745 break;
746 case PIPE_FUNC_GEQUAL:
747 qir_SF(c, qir_FSUB(c, normalized, compare));
748 depth_output = qir_SEL_X_0_NS(c, one);
749 break;
750 case PIPE_FUNC_LESS:
751 qir_SF(c, qir_FSUB(c, compare, normalized));
752 depth_output = qir_SEL_X_0_NS(c, one);
753 break;
754 case PIPE_FUNC_LEQUAL:
755 qir_SF(c, qir_FSUB(c, normalized, compare));
756 depth_output = qir_SEL_X_0_NC(c, one);
757 break;
758 }
759 } else {
760 depth_output = normalized;
761 }
762
763 for (int i = 0; i < 4; i++)
764 unpacked[i] = depth_output;
765 } else {
766 for (int i = 0; i < 4; i++)
767 unpacked[i] = qir_R4_UNPACK(c, r4, i);
768 }
769
770 const uint8_t *format_swiz = vc4_get_format_swizzle(format);
771 struct qreg texture_output[4];
772 for (int i = 0; i < 4; i++) {
773 texture_output[i] = get_swizzled_channel(c, unpacked,
774 format_swiz[i]);
775 }
776
777 if (util_format_is_srgb(format)) {
778 for (int i = 0; i < 3; i++)
779 texture_output[i] = qir_srgb_decode(c,
780 texture_output[i]);
781 }
782
783 for (int i = 0; i < 4; i++) {
784 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
785 continue;
786
787 update_dst(c, tgsi_inst, i,
788 get_swizzled_channel(c, texture_output,
789 c->key->tex[unit].swizzle[i]));
790 }
791 }
792
793 static struct qreg
794 tgsi_to_qir_trunc(struct vc4_compile *c,
795 struct tgsi_full_instruction *tgsi_inst,
796 enum qop op, struct qreg *src, int i)
797 {
798 return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
799 }
800
801 /**
802 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
803 * to zero).
804 */
805 static struct qreg
806 tgsi_to_qir_frc(struct vc4_compile *c,
807 struct tgsi_full_instruction *tgsi_inst,
808 enum qop op, struct qreg *src, int i)
809 {
810 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
811 struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc);
812 qir_SF(c, diff);
813 return qir_SEL_X_Y_NS(c,
814 qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
815 diff);
816 }
817
818 /**
819 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
820 * zero).
821 */
822 static struct qreg
823 tgsi_to_qir_flr(struct vc4_compile *c,
824 struct tgsi_full_instruction *tgsi_inst,
825 enum qop op, struct qreg *src, int i)
826 {
827 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
828
829 /* This will be < 0 if we truncated and the truncation was of a value
830 * that was < 0 in the first place.
831 */
832 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], trunc));
833
834 return qir_SEL_X_Y_NS(c,
835 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
836 trunc);
837 }
838
839 /**
840 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
841 * zero).
842 */
843 static struct qreg
844 tgsi_to_qir_ceil(struct vc4_compile *c,
845 struct tgsi_full_instruction *tgsi_inst,
846 enum qop op, struct qreg *src, int i)
847 {
848 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
849
850 /* This will be < 0 if we truncated and the truncation was of a value
851 * that was > 0 in the first place.
852 */
853 qir_SF(c, qir_FSUB(c, trunc, src[0 * 4 + i]));
854
855 return qir_SEL_X_Y_NS(c,
856 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
857 trunc);
858 }
859
860 static struct qreg
861 tgsi_to_qir_abs(struct vc4_compile *c,
862 struct tgsi_full_instruction *tgsi_inst,
863 enum qop op, struct qreg *src, int i)
864 {
865 struct qreg arg = src[0 * 4 + i];
866 return qir_FMAXABS(c, arg, arg);
867 }
868
869 /* Note that this instruction replicates its result from the x channel */
870 static struct qreg
871 tgsi_to_qir_sin(struct vc4_compile *c,
872 struct tgsi_full_instruction *tgsi_inst,
873 enum qop op, struct qreg *src, int i)
874 {
875 float coeff[] = {
876 -2.0 * M_PI,
877 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
878 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
879 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
880 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
881 };
882
883 struct qreg scaled_x =
884 qir_FMUL(c,
885 src[0 * 4 + 0],
886 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
887
888 struct qreg x = qir_FADD(c,
889 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
890 qir_uniform_f(c, -0.5));
891 struct qreg x2 = qir_FMUL(c, x, x);
892 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
893 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
894 x = qir_FMUL(c, x, x2);
895 sum = qir_FADD(c,
896 sum,
897 qir_FMUL(c,
898 x,
899 qir_uniform_f(c, coeff[i])));
900 }
901 return sum;
902 }
903
904 /* Note that this instruction replicates its result from the x channel */
905 static struct qreg
906 tgsi_to_qir_cos(struct vc4_compile *c,
907 struct tgsi_full_instruction *tgsi_inst,
908 enum qop op, struct qreg *src, int i)
909 {
910 float coeff[] = {
911 -1.0f,
912 pow(2.0 * M_PI, 2) / (2 * 1),
913 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
914 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
915 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
916 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
917 };
918
919 struct qreg scaled_x =
920 qir_FMUL(c, src[0 * 4 + 0],
921 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
922 struct qreg x_frac = qir_FADD(c,
923 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
924 qir_uniform_f(c, -0.5));
925
926 struct qreg sum = qir_uniform_f(c, coeff[0]);
927 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
928 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
929 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
930 if (i != 1)
931 x = qir_FMUL(c, x, x2);
932
933 struct qreg mul = qir_FMUL(c,
934 x,
935 qir_uniform_f(c, coeff[i]));
936 if (i == 0)
937 sum = mul;
938 else
939 sum = qir_FADD(c, sum, mul);
940 }
941 return sum;
942 }
943
944 static struct qreg
945 tgsi_to_qir_clamp(struct vc4_compile *c,
946 struct tgsi_full_instruction *tgsi_inst,
947 enum qop op, struct qreg *src, int i)
948 {
949 return qir_FMAX(c, qir_FMIN(c,
950 src[0 * 4 + i],
951 src[2 * 4 + i]),
952 src[1 * 4 + i]);
953 }
954
955 static struct qreg
956 tgsi_to_qir_ssg(struct vc4_compile *c,
957 struct tgsi_full_instruction *tgsi_inst,
958 enum qop op, struct qreg *src, int i)
959 {
960 qir_SF(c, src[0 * 4 + i]);
961 return qir_SEL_X_Y_NC(c,
962 qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
963 qir_uniform_f(c, -1.0));
964 }
965
966 /* Compare to tgsi_to_qir_flr() for the floor logic. */
967 static struct qreg
968 tgsi_to_qir_arl(struct vc4_compile *c,
969 struct tgsi_full_instruction *tgsi_inst,
970 enum qop op, struct qreg *src, int i)
971 {
972 struct qreg trunc = qir_FTOI(c, src[0 * 4 + i]);
973 struct qreg scaled = qir_SHL(c, trunc, qir_uniform_ui(c, 4));
974
975 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], qir_ITOF(c, trunc)));
976
977 return qir_SEL_X_Y_NS(c, qir_SUB(c, scaled, qir_uniform_ui(c, 4)),
978 scaled);
979 }
980
981 static struct qreg
982 tgsi_to_qir_uarl(struct vc4_compile *c,
983 struct tgsi_full_instruction *tgsi_inst,
984 enum qop op, struct qreg *src, int i)
985 {
986 return qir_SHL(c, src[0 * 4 + i], qir_uniform_ui(c, 4));
987 }
988
989 static struct qreg
990 get_channel_from_vpm(struct vc4_compile *c,
991 struct qreg *vpm_reads,
992 uint8_t swiz,
993 const struct util_format_description *desc)
994 {
995 const struct util_format_channel_description *chan =
996 &desc->channel[swiz];
997 struct qreg temp;
998
999 if (swiz > UTIL_FORMAT_SWIZZLE_W)
1000 return get_swizzled_channel(c, vpm_reads, swiz);
1001 else if (chan->size == 32 &&
1002 chan->type == UTIL_FORMAT_TYPE_FLOAT) {
1003 return get_swizzled_channel(c, vpm_reads, swiz);
1004 } else if (chan->size == 32 &&
1005 chan->type == UTIL_FORMAT_TYPE_SIGNED) {
1006 if (chan->normalized) {
1007 return qir_FMUL(c,
1008 qir_ITOF(c, vpm_reads[swiz]),
1009 qir_uniform_f(c,
1010 1.0 / 0x7fffffff));
1011 } else {
1012 return qir_ITOF(c, vpm_reads[swiz]);
1013 }
1014 } else if (chan->size == 8 &&
1015 (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
1016 chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
1017 struct qreg vpm = vpm_reads[0];
1018 if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
1019 temp = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
1020 if (chan->normalized) {
1021 return qir_FSUB(c, qir_FMUL(c,
1022 qir_UNPACK_8_F(c, temp, swiz),
1023 qir_uniform_f(c, 2.0)),
1024 qir_uniform_f(c, 1.0));
1025 } else {
1026 return qir_FADD(c,
1027 qir_ITOF(c,
1028 qir_UNPACK_8_I(c, temp,
1029 swiz)),
1030 qir_uniform_f(c, -128.0));
1031 }
1032 } else {
1033 if (chan->normalized) {
1034 return qir_UNPACK_8_F(c, vpm, swiz);
1035 } else {
1036 return qir_ITOF(c, qir_UNPACK_8_I(c, vpm, swiz));
1037 }
1038 }
1039 } else if (chan->size == 16 &&
1040 (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
1041 chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
1042 struct qreg vpm = vpm_reads[swiz / 2];
1043
1044 /* Note that UNPACK_16F eats a half float, not ints, so we use
1045 * UNPACK_16_I for all of these.
1046 */
1047 if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
1048 temp = qir_ITOF(c, qir_UNPACK_16_I(c, vpm, swiz % 2));
1049 if (chan->normalized) {
1050 return qir_FMUL(c, temp,
1051 qir_uniform_f(c, 1/32768.0f));
1052 } else {
1053 return temp;
1054 }
1055 } else {
1056 /* UNPACK_16I sign-extends, so we have to emit ANDs. */
1057 temp = vpm;
1058 if (swiz == 1 || swiz == 3)
1059 temp = qir_UNPACK_16_I(c, temp, 1);
1060 temp = qir_AND(c, temp, qir_uniform_ui(c, 0xffff));
1061 temp = qir_ITOF(c, temp);
1062
1063 if (chan->normalized) {
1064 return qir_FMUL(c, temp,
1065 qir_uniform_f(c, 1 / 65535.0));
1066 } else {
1067 return temp;
1068 }
1069 }
1070 } else {
1071 return c->undef;
1072 }
1073 }
1074
1075 static void
1076 emit_vertex_input(struct vc4_compile *c, int attr)
1077 {
1078 enum pipe_format format = c->vs_key->attr_formats[attr];
1079 struct qreg vpm_reads[4];
1080
1081 /* Right now, we're setting the VPM offsets to be 16 bytes wide every
1082 * time, so we always read 4 32-bit VPM entries.
1083 */
1084 for (int i = 0; i < 4; i++) {
1085 vpm_reads[i] = qir_get_temp(c);
1086 qir_emit(c, qir_inst(QOP_VPM_READ,
1087 vpm_reads[i],
1088 c->undef,
1089 c->undef));
1090 c->num_inputs++;
1091 }
1092
1093 bool format_warned = false;
1094 const struct util_format_description *desc =
1095 util_format_description(format);
1096
1097 for (int i = 0; i < 4; i++) {
1098 uint8_t swiz = desc->swizzle[i];
1099 struct qreg result = get_channel_from_vpm(c, vpm_reads,
1100 swiz, desc);
1101
1102 if (result.file == QFILE_NULL) {
1103 if (!format_warned) {
1104 fprintf(stderr,
1105 "vtx element %d unsupported type: %s\n",
1106 attr, util_format_name(format));
1107 format_warned = true;
1108 }
1109 result = qir_uniform_f(c, 0.0);
1110 }
1111 c->inputs[attr * 4 + i] = result;
1112 }
1113 }
1114
1115 static void
1116 tgsi_to_qir_kill_if(struct vc4_compile *c, struct qreg *src, int i)
1117 {
1118 if (c->discard.file == QFILE_NULL)
1119 c->discard = qir_uniform_f(c, 0.0);
1120 qir_SF(c, src[0 * 4 + i]);
1121 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
1122 c->discard);
1123 }
1124
1125 static void
1126 emit_fragcoord_input(struct vc4_compile *c, int attr)
1127 {
1128 c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
1129 c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
1130 c->inputs[attr * 4 + 2] =
1131 qir_FMUL(c,
1132 qir_ITOF(c, qir_FRAG_Z(c)),
1133 qir_uniform_f(c, 1.0 / 0xffffff));
1134 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
1135 }
1136
1137 static void
1138 emit_point_coord_input(struct vc4_compile *c, int attr)
1139 {
1140 if (c->point_x.file == QFILE_NULL) {
1141 c->point_x = qir_uniform_f(c, 0.0);
1142 c->point_y = qir_uniform_f(c, 0.0);
1143 }
1144
1145 c->inputs[attr * 4 + 0] = c->point_x;
1146 if (c->fs_key->point_coord_upper_left) {
1147 c->inputs[attr * 4 + 1] = qir_FSUB(c,
1148 qir_uniform_f(c, 1.0),
1149 c->point_y);
1150 } else {
1151 c->inputs[attr * 4 + 1] = c->point_y;
1152 }
1153 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
1154 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
1155 }
1156
1157 static struct qreg
1158 emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
1159 uint8_t index, uint8_t swizzle)
1160 {
1161 uint32_t i = c->num_input_semantics++;
1162 struct qreg vary = {
1163 QFILE_VARY,
1164 i
1165 };
1166
1167 if (c->num_input_semantics >= c->input_semantics_array_size) {
1168 c->input_semantics_array_size =
1169 MAX2(4, c->input_semantics_array_size * 2);
1170
1171 c->input_semantics = reralloc(c, c->input_semantics,
1172 struct vc4_varying_semantic,
1173 c->input_semantics_array_size);
1174 }
1175
1176 c->input_semantics[i].semantic = semantic;
1177 c->input_semantics[i].index = index;
1178 c->input_semantics[i].swizzle = swizzle;
1179
1180 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
1181 }
1182
1183 static void
1184 emit_fragment_input(struct vc4_compile *c, int attr,
1185 struct tgsi_full_declaration *decl)
1186 {
1187 for (int i = 0; i < 4; i++) {
1188 c->inputs[attr * 4 + i] =
1189 emit_fragment_varying(c,
1190 decl->Semantic.Name,
1191 decl->Semantic.Index,
1192 i);
1193 c->num_inputs++;
1194 }
1195 }
1196
1197 static void
1198 emit_face_input(struct vc4_compile *c, int attr)
1199 {
1200 c->inputs[attr * 4 + 0] = qir_FSUB(c,
1201 qir_uniform_f(c, 1.0),
1202 qir_FMUL(c,
1203 qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
1204 qir_uniform_f(c, 2.0)));
1205 c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
1206 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
1207 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
1208 }
1209
1210 static void
1211 add_output(struct vc4_compile *c,
1212 uint32_t decl_offset,
1213 uint8_t semantic_name,
1214 uint8_t semantic_index,
1215 uint8_t semantic_swizzle)
1216 {
1217 uint32_t old_array_size = c->outputs_array_size;
1218 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
1219 decl_offset + 1);
1220
1221 if (old_array_size != c->outputs_array_size) {
1222 c->output_semantics = reralloc(c,
1223 c->output_semantics,
1224 struct vc4_varying_semantic,
1225 c->outputs_array_size);
1226 }
1227
1228 c->output_semantics[decl_offset].semantic = semantic_name;
1229 c->output_semantics[decl_offset].index = semantic_index;
1230 c->output_semantics[decl_offset].swizzle = semantic_swizzle;
1231 }
1232
1233 static void
1234 add_array_info(struct vc4_compile *c, uint32_t array_id,
1235 uint32_t start, uint32_t size)
1236 {
1237 if (array_id >= c->ubo_ranges_array_size) {
1238 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
1239 array_id + 1);
1240 c->ubo_ranges = reralloc(c, c->ubo_ranges,
1241 struct vc4_compiler_ubo_range,
1242 c->ubo_ranges_array_size);
1243 }
1244
1245 c->ubo_ranges[array_id].dst_offset = 0;
1246 c->ubo_ranges[array_id].src_offset = start;
1247 c->ubo_ranges[array_id].size = size;
1248 c->ubo_ranges[array_id].used = false;
1249 }
1250
1251 static void
1252 emit_tgsi_declaration(struct vc4_compile *c,
1253 struct tgsi_full_declaration *decl)
1254 {
1255 switch (decl->Declaration.File) {
1256 case TGSI_FILE_TEMPORARY: {
1257 uint32_t old_size = c->temps_array_size;
1258 resize_qreg_array(c, &c->temps, &c->temps_array_size,
1259 (decl->Range.Last + 1) * 4);
1260
1261 for (int i = old_size; i < c->temps_array_size; i++)
1262 c->temps[i] = qir_uniform_ui(c, 0);
1263 break;
1264 }
1265
1266 case TGSI_FILE_INPUT:
1267 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1268 (decl->Range.Last + 1) * 4);
1269
1270 for (int i = decl->Range.First;
1271 i <= decl->Range.Last;
1272 i++) {
1273 if (c->stage == QSTAGE_FRAG) {
1274 if (decl->Semantic.Name ==
1275 TGSI_SEMANTIC_POSITION) {
1276 emit_fragcoord_input(c, i);
1277 } else if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
1278 emit_face_input(c, i);
1279 } else if (decl->Semantic.Name == TGSI_SEMANTIC_GENERIC &&
1280 (c->fs_key->point_sprite_mask &
1281 (1 << decl->Semantic.Index))) {
1282 emit_point_coord_input(c, i);
1283 } else {
1284 emit_fragment_input(c, i, decl);
1285 }
1286 } else {
1287 emit_vertex_input(c, i);
1288 }
1289 }
1290 break;
1291
1292 case TGSI_FILE_OUTPUT: {
1293 for (int i = 0; i < 4; i++) {
1294 add_output(c,
1295 decl->Range.First * 4 + i,
1296 decl->Semantic.Name,
1297 decl->Semantic.Index,
1298 i);
1299 }
1300
1301 switch (decl->Semantic.Name) {
1302 case TGSI_SEMANTIC_POSITION:
1303 c->output_position_index = decl->Range.First * 4;
1304 break;
1305 case TGSI_SEMANTIC_CLIPVERTEX:
1306 c->output_clipvertex_index = decl->Range.First * 4;
1307 break;
1308 case TGSI_SEMANTIC_COLOR:
1309 c->output_color_index = decl->Range.First * 4;
1310 break;
1311 case TGSI_SEMANTIC_PSIZE:
1312 c->output_point_size_index = decl->Range.First * 4;
1313 break;
1314 }
1315
1316 break;
1317
1318 case TGSI_FILE_CONSTANT:
1319 add_array_info(c,
1320 decl->Array.ArrayID,
1321 decl->Range.First * 16,
1322 (decl->Range.Last -
1323 decl->Range.First + 1) * 16);
1324 break;
1325 }
1326 }
1327 }
1328
1329 static void
1330 emit_tgsi_instruction(struct vc4_compile *c,
1331 struct tgsi_full_instruction *tgsi_inst)
1332 {
1333 static const struct {
1334 enum qop op;
1335 struct qreg (*func)(struct vc4_compile *c,
1336 struct tgsi_full_instruction *tgsi_inst,
1337 enum qop op,
1338 struct qreg *src, int i);
1339 } op_trans[] = {
1340 [TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu },
1341 [TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs },
1342 [TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu },
1343 [TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu },
1344 [TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu },
1345 [TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu },
1346 [TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu },
1347 [TGSI_OPCODE_F2I] = { QOP_FTOI, tgsi_to_qir_alu },
1348 [TGSI_OPCODE_I2F] = { QOP_ITOF, tgsi_to_qir_alu },
1349 [TGSI_OPCODE_UADD] = { QOP_ADD, tgsi_to_qir_alu },
1350 [TGSI_OPCODE_USHR] = { QOP_SHR, tgsi_to_qir_alu },
1351 [TGSI_OPCODE_ISHR] = { QOP_ASR, tgsi_to_qir_alu },
1352 [TGSI_OPCODE_SHL] = { QOP_SHL, tgsi_to_qir_alu },
1353 [TGSI_OPCODE_IMIN] = { QOP_MIN, tgsi_to_qir_alu },
1354 [TGSI_OPCODE_IMAX] = { QOP_MAX, tgsi_to_qir_alu },
1355 [TGSI_OPCODE_AND] = { QOP_AND, tgsi_to_qir_alu },
1356 [TGSI_OPCODE_OR] = { QOP_OR, tgsi_to_qir_alu },
1357 [TGSI_OPCODE_XOR] = { QOP_XOR, tgsi_to_qir_alu },
1358 [TGSI_OPCODE_NOT] = { QOP_NOT, tgsi_to_qir_alu },
1359
1360 [TGSI_OPCODE_UMUL] = { 0, tgsi_to_qir_umul },
1361 [TGSI_OPCODE_UMAD] = { 0, tgsi_to_qir_umad },
1362 [TGSI_OPCODE_IDIV] = { 0, tgsi_to_qir_idiv },
1363 [TGSI_OPCODE_INEG] = { 0, tgsi_to_qir_ineg },
1364
1365 [TGSI_OPCODE_SEQ] = { 0, tgsi_to_qir_seq },
1366 [TGSI_OPCODE_SNE] = { 0, tgsi_to_qir_sne },
1367 [TGSI_OPCODE_SGE] = { 0, tgsi_to_qir_sge },
1368 [TGSI_OPCODE_SLT] = { 0, tgsi_to_qir_slt },
1369 [TGSI_OPCODE_FSEQ] = { 0, tgsi_to_qir_fseq },
1370 [TGSI_OPCODE_FSNE] = { 0, tgsi_to_qir_fsne },
1371 [TGSI_OPCODE_FSGE] = { 0, tgsi_to_qir_fsge },
1372 [TGSI_OPCODE_FSLT] = { 0, tgsi_to_qir_fslt },
1373 [TGSI_OPCODE_USEQ] = { 0, tgsi_to_qir_useq },
1374 [TGSI_OPCODE_USNE] = { 0, tgsi_to_qir_usne },
1375 [TGSI_OPCODE_ISGE] = { 0, tgsi_to_qir_isge },
1376 [TGSI_OPCODE_ISLT] = { 0, tgsi_to_qir_islt },
1377
1378 [TGSI_OPCODE_CMP] = { 0, tgsi_to_qir_cmp },
1379 [TGSI_OPCODE_UCMP] = { 0, tgsi_to_qir_ucmp },
1380 [TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad },
1381 [TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_rcp },
1382 [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_rsq },
1383 [TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_scalar },
1384 [TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_scalar },
1385 [TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp },
1386 [TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc },
1387 [TGSI_OPCODE_CEIL] = { 0, tgsi_to_qir_ceil },
1388 [TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc },
1389 [TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr },
1390 [TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin },
1391 [TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos },
1392 [TGSI_OPCODE_CLAMP] = { 0, tgsi_to_qir_clamp },
1393 [TGSI_OPCODE_SSG] = { 0, tgsi_to_qir_ssg },
1394 [TGSI_OPCODE_ARL] = { 0, tgsi_to_qir_arl },
1395 [TGSI_OPCODE_UARL] = { 0, tgsi_to_qir_uarl },
1396 };
1397 static int asdf = 0;
1398 uint32_t tgsi_op = tgsi_inst->Instruction.Opcode;
1399
1400 if (tgsi_op == TGSI_OPCODE_END)
1401 return;
1402
1403 struct qreg src_regs[12];
1404 for (int s = 0; s < 3; s++) {
1405 for (int i = 0; i < 4; i++) {
1406 src_regs[4 * s + i] =
1407 get_src(c, tgsi_inst->Instruction.Opcode,
1408 &tgsi_inst->Src[s], i);
1409 }
1410 }
1411
1412 switch (tgsi_op) {
1413 case TGSI_OPCODE_TEX:
1414 case TGSI_OPCODE_TXP:
1415 case TGSI_OPCODE_TXB:
1416 case TGSI_OPCODE_TXL:
1417 tgsi_to_qir_tex(c, tgsi_inst,
1418 op_trans[tgsi_op].op, src_regs);
1419 return;
1420 case TGSI_OPCODE_KILL:
1421 c->discard = qir_uniform_f(c, 1.0);
1422 return;
1423 case TGSI_OPCODE_KILL_IF:
1424 for (int i = 0; i < 4; i++)
1425 tgsi_to_qir_kill_if(c, src_regs, i);
1426 return;
1427 default:
1428 break;
1429 }
1430
1431 if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) {
1432 fprintf(stderr, "unknown tgsi inst: ");
1433 tgsi_dump_instruction(tgsi_inst, asdf++);
1434 fprintf(stderr, "\n");
1435 abort();
1436 }
1437
1438 for (int i = 0; i < 4; i++) {
1439 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
1440 continue;
1441
1442 struct qreg result;
1443
1444 result = op_trans[tgsi_op].func(c, tgsi_inst,
1445 op_trans[tgsi_op].op,
1446 src_regs, i);
1447
1448 if (tgsi_inst->Instruction.Saturate) {
1449 float low = (tgsi_inst->Instruction.Saturate ==
1450 TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0);
1451 result = qir_FMAX(c,
1452 qir_FMIN(c,
1453 result,
1454 qir_uniform_f(c, 1.0)),
1455 qir_uniform_f(c, low));
1456 }
1457
1458 update_dst(c, tgsi_inst, i, result);
1459 }
1460 }
1461
1462 static void
1463 parse_tgsi_immediate(struct vc4_compile *c, struct tgsi_full_immediate *imm)
1464 {
1465 for (int i = 0; i < 4; i++) {
1466 unsigned n = c->num_consts++;
1467 resize_qreg_array(c, &c->consts, &c->consts_array_size, n + 1);
1468 c->consts[n] = qir_uniform_ui(c, imm->u[i].Uint);
1469 }
1470 }
1471
1472 static struct qreg
1473 vc4_blend_channel(struct vc4_compile *c,
1474 struct qreg *dst,
1475 struct qreg *src,
1476 struct qreg val,
1477 unsigned factor,
1478 int channel)
1479 {
1480 switch(factor) {
1481 case PIPE_BLENDFACTOR_ONE:
1482 return val;
1483 case PIPE_BLENDFACTOR_SRC_COLOR:
1484 return qir_FMUL(c, val, src[channel]);
1485 case PIPE_BLENDFACTOR_SRC_ALPHA:
1486 return qir_FMUL(c, val, src[3]);
1487 case PIPE_BLENDFACTOR_DST_ALPHA:
1488 return qir_FMUL(c, val, dst[3]);
1489 case PIPE_BLENDFACTOR_DST_COLOR:
1490 return qir_FMUL(c, val, dst[channel]);
1491 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1492 if (channel != 3) {
1493 return qir_FMUL(c,
1494 val,
1495 qir_FMIN(c,
1496 src[3],
1497 qir_FSUB(c,
1498 qir_uniform_f(c, 1.0),
1499 dst[3])));
1500 } else {
1501 return val;
1502 }
1503 case PIPE_BLENDFACTOR_CONST_COLOR:
1504 return qir_FMUL(c, val,
1505 get_temp_for_uniform(c,
1506 QUNIFORM_BLEND_CONST_COLOR,
1507 channel));
1508 case PIPE_BLENDFACTOR_CONST_ALPHA:
1509 return qir_FMUL(c, val,
1510 get_temp_for_uniform(c,
1511 QUNIFORM_BLEND_CONST_COLOR,
1512 3));
1513 case PIPE_BLENDFACTOR_ZERO:
1514 return qir_uniform_f(c, 0.0);
1515 case PIPE_BLENDFACTOR_INV_SRC_COLOR:
1516 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1517 src[channel]));
1518 case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
1519 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1520 src[3]));
1521 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1522 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1523 dst[3]));
1524 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1525 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1526 dst[channel]));
1527 case PIPE_BLENDFACTOR_INV_CONST_COLOR:
1528 return qir_FMUL(c, val,
1529 qir_FSUB(c, qir_uniform_f(c, 1.0),
1530 get_temp_for_uniform(c,
1531 QUNIFORM_BLEND_CONST_COLOR,
1532 channel)));
1533 case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
1534 return qir_FMUL(c, val,
1535 qir_FSUB(c, qir_uniform_f(c, 1.0),
1536 get_temp_for_uniform(c,
1537 QUNIFORM_BLEND_CONST_COLOR,
1538 3)));
1539
1540 default:
1541 case PIPE_BLENDFACTOR_SRC1_COLOR:
1542 case PIPE_BLENDFACTOR_SRC1_ALPHA:
1543 case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
1544 case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
1545 /* Unsupported. */
1546 fprintf(stderr, "Unknown blend factor %d\n", factor);
1547 return val;
1548 }
1549 }
1550
1551 static struct qreg
1552 vc4_blend_func(struct vc4_compile *c,
1553 struct qreg src, struct qreg dst,
1554 unsigned func)
1555 {
1556 switch (func) {
1557 case PIPE_BLEND_ADD:
1558 return qir_FADD(c, src, dst);
1559 case PIPE_BLEND_SUBTRACT:
1560 return qir_FSUB(c, src, dst);
1561 case PIPE_BLEND_REVERSE_SUBTRACT:
1562 return qir_FSUB(c, dst, src);
1563 case PIPE_BLEND_MIN:
1564 return qir_FMIN(c, src, dst);
1565 case PIPE_BLEND_MAX:
1566 return qir_FMAX(c, src, dst);
1567
1568 default:
1569 /* Unsupported. */
1570 fprintf(stderr, "Unknown blend func %d\n", func);
1571 return src;
1572
1573 }
1574 }
1575
1576 /**
1577 * Implements fixed function blending in shader code.
1578 *
1579 * VC4 doesn't have any hardware support for blending. Instead, you read the
1580 * current contents of the destination from the tile buffer after having
1581 * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
1582 * math using your output color and that destination value, and update the
1583 * output color appropriately.
1584 */
1585 static void
1586 vc4_blend(struct vc4_compile *c, struct qreg *result,
1587 struct qreg *dst_color, struct qreg *src_color)
1588 {
1589 struct pipe_rt_blend_state *blend = &c->fs_key->blend;
1590
1591 if (!blend->blend_enable) {
1592 for (int i = 0; i < 4; i++)
1593 result[i] = src_color[i];
1594 return;
1595 }
1596
1597 struct qreg src_blend[4], dst_blend[4];
1598 for (int i = 0; i < 3; i++) {
1599 src_blend[i] = vc4_blend_channel(c,
1600 dst_color, src_color,
1601 src_color[i],
1602 blend->rgb_src_factor, i);
1603 dst_blend[i] = vc4_blend_channel(c,
1604 dst_color, src_color,
1605 dst_color[i],
1606 blend->rgb_dst_factor, i);
1607 }
1608 src_blend[3] = vc4_blend_channel(c,
1609 dst_color, src_color,
1610 src_color[3],
1611 blend->alpha_src_factor, 3);
1612 dst_blend[3] = vc4_blend_channel(c,
1613 dst_color, src_color,
1614 dst_color[3],
1615 blend->alpha_dst_factor, 3);
1616
1617 for (int i = 0; i < 3; i++) {
1618 result[i] = vc4_blend_func(c,
1619 src_blend[i], dst_blend[i],
1620 blend->rgb_func);
1621 }
1622 result[3] = vc4_blend_func(c,
1623 src_blend[3], dst_blend[3],
1624 blend->alpha_func);
1625 }
1626
1627 static void
1628 clip_distance_discard(struct vc4_compile *c)
1629 {
1630 for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
1631 if (!(c->key->ucp_enables & (1 << i)))
1632 continue;
1633
1634 struct qreg dist = emit_fragment_varying(c,
1635 TGSI_SEMANTIC_CLIPDIST,
1636 i,
1637 TGSI_SWIZZLE_X);
1638
1639 qir_SF(c, dist);
1640
1641 if (c->discard.file == QFILE_NULL)
1642 c->discard = qir_uniform_f(c, 0.0);
1643
1644 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
1645 c->discard);
1646 }
1647 }
1648
1649 static void
1650 alpha_test_discard(struct vc4_compile *c)
1651 {
1652 struct qreg src_alpha;
1653 struct qreg alpha_ref = get_temp_for_uniform(c, QUNIFORM_ALPHA_REF, 0);
1654
1655 if (!c->fs_key->alpha_test)
1656 return;
1657
1658 if (c->output_color_index != -1)
1659 src_alpha = c->outputs[c->output_color_index + 3];
1660 else
1661 src_alpha = qir_uniform_f(c, 1.0);
1662
1663 if (c->discard.file == QFILE_NULL)
1664 c->discard = qir_uniform_f(c, 0.0);
1665
1666 switch (c->fs_key->alpha_test_func) {
1667 case PIPE_FUNC_NEVER:
1668 c->discard = qir_uniform_f(c, 1.0);
1669 break;
1670 case PIPE_FUNC_ALWAYS:
1671 break;
1672 case PIPE_FUNC_EQUAL:
1673 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1674 c->discard = qir_SEL_X_Y_ZS(c, c->discard,
1675 qir_uniform_f(c, 1.0));
1676 break;
1677 case PIPE_FUNC_NOTEQUAL:
1678 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1679 c->discard = qir_SEL_X_Y_ZC(c, c->discard,
1680 qir_uniform_f(c, 1.0));
1681 break;
1682 case PIPE_FUNC_GREATER:
1683 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1684 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1685 qir_uniform_f(c, 1.0));
1686 break;
1687 case PIPE_FUNC_GEQUAL:
1688 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1689 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1690 qir_uniform_f(c, 1.0));
1691 break;
1692 case PIPE_FUNC_LESS:
1693 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1694 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1695 qir_uniform_f(c, 1.0));
1696 break;
1697 case PIPE_FUNC_LEQUAL:
1698 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1699 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1700 qir_uniform_f(c, 1.0));
1701 break;
1702 }
1703 }
1704
1705 static struct qreg
1706 vc4_logicop(struct vc4_compile *c, struct qreg src, struct qreg dst)
1707 {
1708 switch (c->fs_key->logicop_func) {
1709 case PIPE_LOGICOP_CLEAR:
1710 return qir_uniform_f(c, 0.0);
1711 case PIPE_LOGICOP_NOR:
1712 return qir_NOT(c, qir_OR(c, src, dst));
1713 case PIPE_LOGICOP_AND_INVERTED:
1714 return qir_AND(c, qir_NOT(c, src), dst);
1715 case PIPE_LOGICOP_COPY_INVERTED:
1716 return qir_NOT(c, src);
1717 case PIPE_LOGICOP_AND_REVERSE:
1718 return qir_AND(c, src, qir_NOT(c, dst));
1719 case PIPE_LOGICOP_INVERT:
1720 return qir_NOT(c, dst);
1721 case PIPE_LOGICOP_XOR:
1722 return qir_XOR(c, src, dst);
1723 case PIPE_LOGICOP_NAND:
1724 return qir_NOT(c, qir_AND(c, src, dst));
1725 case PIPE_LOGICOP_AND:
1726 return qir_AND(c, src, dst);
1727 case PIPE_LOGICOP_EQUIV:
1728 return qir_NOT(c, qir_XOR(c, src, dst));
1729 case PIPE_LOGICOP_NOOP:
1730 return dst;
1731 case PIPE_LOGICOP_OR_INVERTED:
1732 return qir_OR(c, qir_NOT(c, src), dst);
1733 case PIPE_LOGICOP_OR_REVERSE:
1734 return qir_OR(c, src, qir_NOT(c, dst));
1735 case PIPE_LOGICOP_OR:
1736 return qir_OR(c, src, dst);
1737 case PIPE_LOGICOP_SET:
1738 return qir_uniform_ui(c, ~0);
1739 case PIPE_LOGICOP_COPY:
1740 default:
1741 return src;
1742 }
1743 }
1744
1745 static void
1746 emit_frag_end(struct vc4_compile *c)
1747 {
1748 clip_distance_discard(c);
1749 alpha_test_discard(c);
1750
1751 enum pipe_format color_format = c->fs_key->color_format;
1752 const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
1753 struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
1754 struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1755 struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1756 struct qreg packed_dst_color = c->undef;
1757
1758 if (c->fs_key->blend.blend_enable ||
1759 c->fs_key->blend.colormask != 0xf ||
1760 c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1761 struct qreg r4 = qir_TLB_COLOR_READ(c);
1762 for (int i = 0; i < 4; i++)
1763 tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
1764 for (int i = 0; i < 4; i++) {
1765 dst_color[i] = get_swizzled_channel(c,
1766 tlb_read_color,
1767 format_swiz[i]);
1768 if (util_format_is_srgb(color_format) && i != 3) {
1769 linear_dst_color[i] =
1770 qir_srgb_decode(c, dst_color[i]);
1771 } else {
1772 linear_dst_color[i] = dst_color[i];
1773 }
1774 }
1775
1776 /* Save the packed value for logic ops. Can't reuse r4
1777 * becuase other things might smash it (like sRGB)
1778 */
1779 packed_dst_color = qir_MOV(c, r4);
1780 }
1781
1782 struct qreg blend_color[4];
1783 struct qreg undef_array[4] = {
1784 c->undef, c->undef, c->undef, c->undef
1785 };
1786 vc4_blend(c, blend_color, linear_dst_color,
1787 (c->output_color_index != -1 ?
1788 c->outputs + c->output_color_index :
1789 undef_array));
1790
1791 if (util_format_is_srgb(color_format)) {
1792 for (int i = 0; i < 3; i++)
1793 blend_color[i] = qir_srgb_encode(c, blend_color[i]);
1794 }
1795
1796 /* If the bit isn't set in the color mask, then just return the
1797 * original dst color, instead.
1798 */
1799 for (int i = 0; i < 4; i++) {
1800 if (!(c->fs_key->blend.colormask & (1 << i))) {
1801 blend_color[i] = dst_color[i];
1802 }
1803 }
1804
1805 /* Debug: Sometimes you're getting a black output and just want to see
1806 * if the FS is getting executed at all. Spam magenta into the color
1807 * output.
1808 */
1809 if (0) {
1810 blend_color[0] = qir_uniform_f(c, 1.0);
1811 blend_color[1] = qir_uniform_f(c, 0.0);
1812 blend_color[2] = qir_uniform_f(c, 1.0);
1813 blend_color[3] = qir_uniform_f(c, 0.5);
1814 }
1815
1816 struct qreg swizzled_outputs[4];
1817 for (int i = 0; i < 4; i++) {
1818 swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
1819 format_swiz[i]);
1820 }
1821
1822 if (c->discard.file != QFILE_NULL)
1823 qir_TLB_DISCARD_SETUP(c, c->discard);
1824
1825 if (c->fs_key->stencil_enabled) {
1826 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 0));
1827 if (c->fs_key->stencil_twoside) {
1828 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 1));
1829 }
1830 if (c->fs_key->stencil_full_writemasks) {
1831 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 2));
1832 }
1833 }
1834
1835 if (c->fs_key->depth_enabled) {
1836 struct qreg z;
1837 if (c->output_position_index != -1) {
1838 z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1839 qir_uniform_f(c, 0xffffff)));
1840 } else {
1841 z = qir_FRAG_Z(c);
1842 }
1843 qir_TLB_Z_WRITE(c, z);
1844 }
1845
1846 bool color_written = false;
1847 for (int i = 0; i < 4; i++) {
1848 if (swizzled_outputs[i].file != QFILE_NULL)
1849 color_written = true;
1850 }
1851
1852 struct qreg packed_color;
1853 if (color_written) {
1854 /* Fill in any undefined colors. The simulator will assertion
1855 * fail if we read something that wasn't written, and I don't
1856 * know what hardware does.
1857 */
1858 for (int i = 0; i < 4; i++) {
1859 if (swizzled_outputs[i].file == QFILE_NULL)
1860 swizzled_outputs[i] = qir_uniform_f(c, 0.0);
1861 }
1862 packed_color = qir_get_temp(c);
1863 qir_emit(c, qir_inst4(QOP_PACK_COLORS, packed_color,
1864 swizzled_outputs[0],
1865 swizzled_outputs[1],
1866 swizzled_outputs[2],
1867 swizzled_outputs[3]));
1868 } else {
1869 packed_color = qir_uniform_ui(c, 0);
1870 }
1871
1872
1873 if (c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1874 packed_color = vc4_logicop(c, packed_color, packed_dst_color);
1875 }
1876
1877 qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
1878 packed_color, c->undef));
1879 }
1880
1881 static void
1882 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1883 {
1884 struct qreg xyi[2];
1885
1886 for (int i = 0; i < 2; i++) {
1887 struct qreg scale =
1888 add_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1889
1890 xyi[i] = qir_FTOI(c, qir_FMUL(c,
1891 qir_FMUL(c,
1892 c->outputs[c->output_position_index + i],
1893 scale),
1894 rcp_w));
1895 }
1896
1897 qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
1898 }
1899
1900 static void
1901 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1902 {
1903 struct qreg zscale = add_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1904 struct qreg zoffset = add_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1905
1906 qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c,
1907 c->outputs[c->output_position_index + 2],
1908 zscale),
1909 zoffset),
1910 rcp_w));
1911 }
1912
1913 static void
1914 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1915 {
1916 qir_VPM_WRITE(c, rcp_w);
1917 }
1918
1919 static void
1920 emit_point_size_write(struct vc4_compile *c)
1921 {
1922 struct qreg point_size;
1923
1924 if (c->output_point_size_index)
1925 point_size = c->outputs[c->output_point_size_index + 3];
1926 else
1927 point_size = qir_uniform_f(c, 1.0);
1928
1929 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1930 * BCM21553).
1931 */
1932 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1933
1934 qir_VPM_WRITE(c, point_size);
1935 }
1936
1937 /**
1938 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1939 *
1940 * The simulator insists that there be at least one vertex attribute, so
1941 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1942 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1943 * to consume it here.
1944 */
1945 static void
1946 emit_stub_vpm_read(struct vc4_compile *c)
1947 {
1948 if (c->num_inputs)
1949 return;
1950
1951 for (int i = 0; i < 4; i++) {
1952 qir_emit(c, qir_inst(QOP_VPM_READ,
1953 qir_get_temp(c),
1954 c->undef,
1955 c->undef));
1956 c->num_inputs++;
1957 }
1958 }
1959
1960 static void
1961 emit_ucp_clipdistance(struct vc4_compile *c)
1962 {
1963 unsigned cv;
1964 if (c->output_clipvertex_index != -1)
1965 cv = c->output_clipvertex_index;
1966 else if (c->output_position_index != -1)
1967 cv = c->output_position_index;
1968 else
1969 return;
1970
1971 for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
1972 if (!(c->key->ucp_enables & (1 << plane)))
1973 continue;
1974
1975 /* Pick the next outputs[] that hasn't been written to, since
1976 * there are no other program writes left to be processed at
1977 * this point. If something had been declared but not written
1978 * (like a w component), we'll just smash over the top of it.
1979 */
1980 uint32_t output_index = c->num_outputs++;
1981 add_output(c, output_index,
1982 TGSI_SEMANTIC_CLIPDIST,
1983 plane,
1984 TGSI_SWIZZLE_X);
1985
1986
1987 struct qreg dist = qir_uniform_f(c, 0.0);
1988 for (int i = 0; i < 4; i++) {
1989 struct qreg pos_chan = c->outputs[cv + i];
1990 struct qreg ucp =
1991 add_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1992 plane * 4 + i);
1993 dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp));
1994 }
1995
1996 c->outputs[output_index] = dist;
1997 }
1998 }
1999
2000 static void
2001 emit_vert_end(struct vc4_compile *c,
2002 struct vc4_varying_semantic *fs_inputs,
2003 uint32_t num_fs_inputs)
2004 {
2005 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
2006
2007 emit_stub_vpm_read(c);
2008 emit_ucp_clipdistance(c);
2009
2010 emit_scaled_viewport_write(c, rcp_w);
2011 emit_zs_write(c, rcp_w);
2012 emit_rcp_wc_write(c, rcp_w);
2013 if (c->vs_key->per_vertex_point_size)
2014 emit_point_size_write(c);
2015
2016 for (int i = 0; i < num_fs_inputs; i++) {
2017 struct vc4_varying_semantic *input = &fs_inputs[i];
2018 int j;
2019
2020 for (j = 0; j < c->num_outputs; j++) {
2021 struct vc4_varying_semantic *output =
2022 &c->output_semantics[j];
2023
2024 if (input->semantic == output->semantic &&
2025 input->index == output->index &&
2026 input->swizzle == output->swizzle) {
2027 qir_VPM_WRITE(c, c->outputs[j]);
2028 break;
2029 }
2030 }
2031 /* Emit padding if we didn't find a declared VS output for
2032 * this FS input.
2033 */
2034 if (j == c->num_outputs)
2035 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
2036 }
2037 }
2038
2039 static void
2040 emit_coord_end(struct vc4_compile *c)
2041 {
2042 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
2043
2044 emit_stub_vpm_read(c);
2045
2046 for (int i = 0; i < 4; i++)
2047 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
2048
2049 emit_scaled_viewport_write(c, rcp_w);
2050 emit_zs_write(c, rcp_w);
2051 emit_rcp_wc_write(c, rcp_w);
2052 if (c->vs_key->per_vertex_point_size)
2053 emit_point_size_write(c);
2054 }
2055
2056 static struct vc4_compile *
2057 vc4_shader_tgsi_to_qir(struct vc4_context *vc4, enum qstage stage,
2058 struct vc4_key *key)
2059 {
2060 struct vc4_compile *c = qir_compile_init();
2061 int ret;
2062
2063 c->stage = stage;
2064 for (int i = 0; i < 4; i++)
2065 c->addr[i] = qir_uniform_f(c, 0.0);
2066
2067 c->shader_state = &key->shader_state->base;
2068 c->program_id = key->shader_state->program_id;
2069 c->variant_id = key->shader_state->compiled_variant_count++;
2070
2071 c->key = key;
2072 switch (stage) {
2073 case QSTAGE_FRAG:
2074 c->fs_key = (struct vc4_fs_key *)key;
2075 if (c->fs_key->is_points) {
2076 c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
2077 c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
2078 } else if (c->fs_key->is_lines) {
2079 c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
2080 }
2081 break;
2082 case QSTAGE_VERT:
2083 c->vs_key = (struct vc4_vs_key *)key;
2084 break;
2085 case QSTAGE_COORD:
2086 c->vs_key = (struct vc4_vs_key *)key;
2087 break;
2088 }
2089
2090 const struct tgsi_token *tokens = key->shader_state->base.tokens;
2091 if (c->fs_key && c->fs_key->light_twoside) {
2092 if (!key->shader_state->twoside_tokens) {
2093 const struct tgsi_lowering_config lowering_config = {
2094 .color_two_side = true,
2095 };
2096 struct tgsi_shader_info info;
2097 key->shader_state->twoside_tokens =
2098 tgsi_transform_lowering(&lowering_config,
2099 key->shader_state->base.tokens,
2100 &info);
2101
2102 /* If no transformation occurred, then NULL is
2103 * returned and we just use our original tokens.
2104 */
2105 if (!key->shader_state->twoside_tokens) {
2106 key->shader_state->twoside_tokens =
2107 key->shader_state->base.tokens;
2108 }
2109 }
2110 tokens = key->shader_state->twoside_tokens;
2111 }
2112
2113 ret = tgsi_parse_init(&c->parser, tokens);
2114 assert(ret == TGSI_PARSE_OK);
2115
2116 if (vc4_debug & VC4_DEBUG_TGSI) {
2117 fprintf(stderr, "%s prog %d/%d TGSI:\n",
2118 qir_get_stage_name(c->stage),
2119 c->program_id, c->variant_id);
2120 tgsi_dump(tokens, 0);
2121 }
2122
2123 while (!tgsi_parse_end_of_tokens(&c->parser)) {
2124 tgsi_parse_token(&c->parser);
2125
2126 switch (c->parser.FullToken.Token.Type) {
2127 case TGSI_TOKEN_TYPE_DECLARATION:
2128 emit_tgsi_declaration(c,
2129 &c->parser.FullToken.FullDeclaration);
2130 break;
2131
2132 case TGSI_TOKEN_TYPE_INSTRUCTION:
2133 emit_tgsi_instruction(c,
2134 &c->parser.FullToken.FullInstruction);
2135 break;
2136
2137 case TGSI_TOKEN_TYPE_IMMEDIATE:
2138 parse_tgsi_immediate(c,
2139 &c->parser.FullToken.FullImmediate);
2140 break;
2141 }
2142 }
2143
2144 switch (stage) {
2145 case QSTAGE_FRAG:
2146 emit_frag_end(c);
2147 break;
2148 case QSTAGE_VERT:
2149 emit_vert_end(c,
2150 vc4->prog.fs->input_semantics,
2151 vc4->prog.fs->num_inputs);
2152 break;
2153 case QSTAGE_COORD:
2154 emit_coord_end(c);
2155 break;
2156 }
2157
2158 tgsi_parse_free(&c->parser);
2159
2160 qir_optimize(c);
2161
2162 if (vc4_debug & VC4_DEBUG_QIR) {
2163 fprintf(stderr, "%s prog %d/%d QIR:\n",
2164 qir_get_stage_name(c->stage),
2165 c->program_id, c->variant_id);
2166 qir_dump(c);
2167 }
2168 qir_reorder_uniforms(c);
2169 vc4_generate_code(vc4, c);
2170
2171 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2172 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2173 qir_get_stage_name(c->stage),
2174 c->program_id, c->variant_id,
2175 c->qpu_inst_count);
2176 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2177 qir_get_stage_name(c->stage),
2178 c->program_id, c->variant_id,
2179 c->num_uniforms);
2180 }
2181
2182 return c;
2183 }
2184
2185 static void *
2186 vc4_shader_state_create(struct pipe_context *pctx,
2187 const struct pipe_shader_state *cso)
2188 {
2189 struct vc4_context *vc4 = vc4_context(pctx);
2190 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2191 if (!so)
2192 return NULL;
2193
2194 const struct tgsi_lowering_config lowering_config = {
2195 .lower_DST = true,
2196 .lower_XPD = true,
2197 .lower_SCS = true,
2198 .lower_POW = true,
2199 .lower_LIT = true,
2200 .lower_EXP = true,
2201 .lower_LOG = true,
2202 .lower_DP4 = true,
2203 .lower_DP3 = true,
2204 .lower_DPH = true,
2205 .lower_DP2 = true,
2206 .lower_DP2A = true,
2207 };
2208
2209 struct tgsi_shader_info info;
2210 so->base.tokens = tgsi_transform_lowering(&lowering_config, cso->tokens, &info);
2211 if (!so->base.tokens)
2212 so->base.tokens = tgsi_dup_tokens(cso->tokens);
2213 so->program_id = vc4->next_uncompiled_program_id++;
2214
2215 return so;
2216 }
2217
2218 static void
2219 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2220 struct vc4_compile *c)
2221 {
2222 int count = c->num_uniforms;
2223 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2224
2225 uinfo->count = count;
2226 uinfo->data = ralloc_array(shader, uint32_t, count);
2227 memcpy(uinfo->data, c->uniform_data,
2228 count * sizeof(*uinfo->data));
2229 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2230 memcpy(uinfo->contents, c->uniform_contents,
2231 count * sizeof(*uinfo->contents));
2232 uinfo->num_texture_samples = c->num_texture_samples;
2233 }
2234
2235 static struct vc4_compiled_shader *
2236 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2237 struct vc4_key *key)
2238 {
2239 struct hash_table *ht;
2240 uint32_t key_size;
2241 if (stage == QSTAGE_FRAG) {
2242 ht = vc4->fs_cache;
2243 key_size = sizeof(struct vc4_fs_key);
2244 } else {
2245 ht = vc4->vs_cache;
2246 key_size = sizeof(struct vc4_vs_key);
2247 }
2248
2249 struct vc4_compiled_shader *shader;
2250 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2251 if (entry)
2252 return entry->data;
2253
2254 struct vc4_compile *c = vc4_shader_tgsi_to_qir(vc4, stage, key);
2255 shader = rzalloc(NULL, struct vc4_compiled_shader);
2256
2257 shader->program_id = vc4->next_compiled_program_id++;
2258 if (stage == QSTAGE_FRAG) {
2259 bool input_live[c->num_input_semantics];
2260 struct simple_node *node;
2261
2262 memset(input_live, 0, sizeof(input_live));
2263 foreach(node, &c->instructions) {
2264 struct qinst *inst = (struct qinst *)node;
2265 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2266 if (inst->src[i].file == QFILE_VARY)
2267 input_live[inst->src[i].index] = true;
2268 }
2269 }
2270
2271 shader->input_semantics = ralloc_array(shader,
2272 struct vc4_varying_semantic,
2273 c->num_input_semantics);
2274
2275 for (int i = 0; i < c->num_input_semantics; i++) {
2276 struct vc4_varying_semantic *sem = &c->input_semantics[i];
2277
2278 if (!input_live[i])
2279 continue;
2280
2281 /* Skip non-VS-output inputs. */
2282 if (sem->semantic == (uint8_t)~0)
2283 continue;
2284
2285 if (sem->semantic == TGSI_SEMANTIC_COLOR ||
2286 sem->semantic == TGSI_SEMANTIC_BCOLOR) {
2287 shader->color_inputs |= (1 << shader->num_inputs);
2288 }
2289
2290 shader->input_semantics[shader->num_inputs] = *sem;
2291 shader->num_inputs++;
2292 }
2293 } else {
2294 shader->num_inputs = c->num_inputs;
2295 }
2296
2297 copy_uniform_state_to_shader(shader, c);
2298 shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
2299 c->qpu_inst_count * sizeof(uint64_t),
2300 "code");
2301
2302 /* Copy the compiler UBO range state to the compiled shader, dropping
2303 * out arrays that were never referenced by an indirect load.
2304 *
2305 * (Note that QIR dead code elimination of an array access still
2306 * leaves that array alive, though)
2307 */
2308 if (c->num_ubo_ranges) {
2309 shader->num_ubo_ranges = c->num_ubo_ranges;
2310 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2311 c->num_ubo_ranges);
2312 uint32_t j = 0;
2313 for (int i = 0; i < c->ubo_ranges_array_size; i++) {
2314 struct vc4_compiler_ubo_range *range =
2315 &c->ubo_ranges[i];
2316 if (!range->used)
2317 continue;
2318
2319 shader->ubo_ranges[j].dst_offset = range->dst_offset;
2320 shader->ubo_ranges[j].src_offset = range->src_offset;
2321 shader->ubo_ranges[j].size = range->size;
2322 shader->ubo_size += c->ubo_ranges[i].size;
2323 j++;
2324 }
2325 }
2326
2327 qir_compile_destroy(c);
2328
2329 struct vc4_key *dup_key;
2330 dup_key = ralloc_size(shader, key_size);
2331 memcpy(dup_key, key, key_size);
2332 _mesa_hash_table_insert(ht, dup_key, shader);
2333
2334 return shader;
2335 }
2336
2337 static void
2338 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2339 struct vc4_texture_stateobj *texstate)
2340 {
2341 for (int i = 0; i < texstate->num_textures; i++) {
2342 struct pipe_sampler_view *sampler = texstate->textures[i];
2343 struct pipe_sampler_state *sampler_state =
2344 texstate->samplers[i];
2345
2346 if (sampler) {
2347 key->tex[i].format = sampler->format;
2348 key->tex[i].swizzle[0] = sampler->swizzle_r;
2349 key->tex[i].swizzle[1] = sampler->swizzle_g;
2350 key->tex[i].swizzle[2] = sampler->swizzle_b;
2351 key->tex[i].swizzle[3] = sampler->swizzle_a;
2352 key->tex[i].compare_mode = sampler_state->compare_mode;
2353 key->tex[i].compare_func = sampler_state->compare_func;
2354 key->tex[i].wrap_s = sampler_state->wrap_s;
2355 key->tex[i].wrap_t = sampler_state->wrap_t;
2356 }
2357 }
2358
2359 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2360 }
2361
2362 static void
2363 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2364 {
2365 struct vc4_fs_key local_key;
2366 struct vc4_fs_key *key = &local_key;
2367
2368 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2369 VC4_DIRTY_BLEND |
2370 VC4_DIRTY_FRAMEBUFFER |
2371 VC4_DIRTY_ZSA |
2372 VC4_DIRTY_RASTERIZER |
2373 VC4_DIRTY_FRAGTEX |
2374 VC4_DIRTY_TEXSTATE |
2375 VC4_DIRTY_PROG))) {
2376 return;
2377 }
2378
2379 memset(key, 0, sizeof(*key));
2380 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2381 key->base.shader_state = vc4->prog.bind_fs;
2382 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2383 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2384 prim_mode <= PIPE_PRIM_LINE_STRIP);
2385 key->blend = vc4->blend->rt[0];
2386 if (vc4->blend->logicop_enable) {
2387 key->logicop_func = vc4->blend->logicop_func;
2388 } else {
2389 key->logicop_func = PIPE_LOGICOP_COPY;
2390 }
2391 if (vc4->framebuffer.cbufs[0])
2392 key->color_format = vc4->framebuffer.cbufs[0]->format;
2393
2394 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2395 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2396 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2397 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2398 key->stencil_enabled);
2399 if (vc4->zsa->base.alpha.enabled) {
2400 key->alpha_test = true;
2401 key->alpha_test_func = vc4->zsa->base.alpha.func;
2402 }
2403
2404 if (key->is_points) {
2405 key->point_sprite_mask =
2406 vc4->rasterizer->base.sprite_coord_enable;
2407 key->point_coord_upper_left =
2408 (vc4->rasterizer->base.sprite_coord_mode ==
2409 PIPE_SPRITE_COORD_UPPER_LEFT);
2410 }
2411
2412 key->light_twoside = vc4->rasterizer->base.light_twoside;
2413
2414 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2415 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2416 if (vc4->prog.fs == old_fs)
2417 return;
2418
2419 if (vc4->rasterizer->base.flatshade &&
2420 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2421 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2422 }
2423 }
2424
2425 static void
2426 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2427 {
2428 struct vc4_vs_key local_key;
2429 struct vc4_vs_key *key = &local_key;
2430
2431 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2432 VC4_DIRTY_RASTERIZER |
2433 VC4_DIRTY_VERTTEX |
2434 VC4_DIRTY_TEXSTATE |
2435 VC4_DIRTY_VTXSTATE |
2436 VC4_DIRTY_PROG))) {
2437 return;
2438 }
2439
2440 memset(key, 0, sizeof(*key));
2441 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2442 key->base.shader_state = vc4->prog.bind_vs;
2443 key->compiled_fs_id = vc4->prog.fs->program_id;
2444
2445 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2446 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2447
2448 key->per_vertex_point_size =
2449 (prim_mode == PIPE_PRIM_POINTS &&
2450 vc4->rasterizer->base.point_size_per_vertex);
2451
2452 vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2453 key->is_coord = true;
2454 vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2455 }
2456
2457 void
2458 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2459 {
2460 vc4_update_compiled_fs(vc4, prim_mode);
2461 vc4_update_compiled_vs(vc4, prim_mode);
2462 }
2463
2464 static uint32_t
2465 fs_cache_hash(const void *key)
2466 {
2467 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2468 }
2469
2470 static uint32_t
2471 vs_cache_hash(const void *key)
2472 {
2473 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2474 }
2475
2476 static bool
2477 fs_cache_compare(const void *key1, const void *key2)
2478 {
2479 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2480 }
2481
2482 static bool
2483 vs_cache_compare(const void *key1, const void *key2)
2484 {
2485 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2486 }
2487
2488 static void
2489 delete_from_cache_if_matches(struct hash_table *ht,
2490 struct hash_entry *entry,
2491 struct vc4_uncompiled_shader *so)
2492 {
2493 struct vc4_key *key = entry->data;
2494
2495 if (key->shader_state == so) {
2496 struct vc4_compiled_shader *shader = entry->data;
2497 _mesa_hash_table_remove(ht, entry);
2498 vc4_bo_unreference(&shader->bo);
2499 ralloc_free(shader);
2500 }
2501 }
2502
2503 static void
2504 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2505 {
2506 struct vc4_context *vc4 = vc4_context(pctx);
2507 struct vc4_uncompiled_shader *so = hwcso;
2508
2509 struct hash_entry *entry;
2510 hash_table_foreach(vc4->fs_cache, entry)
2511 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2512 hash_table_foreach(vc4->vs_cache, entry)
2513 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2514
2515 if (so->twoside_tokens != so->base.tokens)
2516 free((void *)so->twoside_tokens);
2517 free((void *)so->base.tokens);
2518 free(so);
2519 }
2520
2521 static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
2522 {
2523 switch (p_wrap) {
2524 case PIPE_TEX_WRAP_REPEAT:
2525 return 0;
2526 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2527 return 1;
2528 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2529 return 2;
2530 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2531 return 3;
2532 case PIPE_TEX_WRAP_CLAMP:
2533 return (using_nearest ? 1 : 3);
2534 default:
2535 fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
2536 assert(!"not reached");
2537 return 0;
2538 }
2539 }
2540
2541 static void
2542 write_texture_p0(struct vc4_context *vc4,
2543 struct vc4_texture_stateobj *texstate,
2544 uint32_t unit)
2545 {
2546 struct pipe_sampler_view *texture = texstate->textures[unit];
2547 struct vc4_resource *rsc = vc4_resource(texture->texture);
2548
2549 cl_reloc(vc4, &vc4->uniforms, rsc->bo,
2550 VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
2551 VC4_SET_FIELD(texture->u.tex.last_level -
2552 texture->u.tex.first_level, VC4_TEX_P0_MIPLVLS) |
2553 VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
2554 VC4_TEX_P0_CMMODE) |
2555 VC4_SET_FIELD(rsc->vc4_format & 7, VC4_TEX_P0_TYPE));
2556 }
2557
2558 static void
2559 write_texture_p1(struct vc4_context *vc4,
2560 struct vc4_texture_stateobj *texstate,
2561 uint32_t unit)
2562 {
2563 struct pipe_sampler_view *texture = texstate->textures[unit];
2564 struct vc4_resource *rsc = vc4_resource(texture->texture);
2565 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2566 static const uint8_t minfilter_map[6] = {
2567 VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
2568 VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
2569 VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
2570 VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
2571 VC4_TEX_P1_MINFILT_NEAREST,
2572 VC4_TEX_P1_MINFILT_LINEAR,
2573 };
2574 static const uint32_t magfilter_map[] = {
2575 [PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
2576 [PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
2577 };
2578
2579 bool either_nearest =
2580 (sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
2581 sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);
2582
2583 cl_u32(&vc4->uniforms,
2584 VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
2585 VC4_SET_FIELD(texture->texture->height0 & 2047,
2586 VC4_TEX_P1_HEIGHT) |
2587 VC4_SET_FIELD(texture->texture->width0 & 2047,
2588 VC4_TEX_P1_WIDTH) |
2589 VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
2590 VC4_TEX_P1_MAGFILT) |
2591 VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
2592 sampler->min_img_filter],
2593 VC4_TEX_P1_MINFILT) |
2594 VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
2595 VC4_TEX_P1_WRAP_S) |
2596 VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
2597 VC4_TEX_P1_WRAP_T));
2598 }
2599
2600 static void
2601 write_texture_p2(struct vc4_context *vc4,
2602 struct vc4_texture_stateobj *texstate,
2603 uint32_t data)
2604 {
2605 uint32_t unit = data & 0xffff;
2606 struct pipe_sampler_view *texture = texstate->textures[unit];
2607 struct vc4_resource *rsc = vc4_resource(texture->texture);
2608
2609 cl_u32(&vc4->uniforms,
2610 VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
2611 VC4_TEX_P2_PTYPE) |
2612 VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
2613 VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
2614 }
2615
2616
2617 #define SWIZ(x,y,z,w) { \
2618 UTIL_FORMAT_SWIZZLE_##x, \
2619 UTIL_FORMAT_SWIZZLE_##y, \
2620 UTIL_FORMAT_SWIZZLE_##z, \
2621 UTIL_FORMAT_SWIZZLE_##w \
2622 }
2623
2624 static void
2625 write_texture_border_color(struct vc4_context *vc4,
2626 struct vc4_texture_stateobj *texstate,
2627 uint32_t unit)
2628 {
2629 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2630 struct pipe_sampler_view *texture = texstate->textures[unit];
2631 struct vc4_resource *rsc = vc4_resource(texture->texture);
2632 union util_color uc;
2633
2634 const struct util_format_description *tex_format_desc =
2635 util_format_description(texture->format);
2636
2637 float border_color[4];
2638 for (int i = 0; i < 4; i++)
2639 border_color[i] = sampler->border_color.f[i];
2640 if (util_format_is_srgb(texture->format)) {
2641 for (int i = 0; i < 3; i++)
2642 border_color[i] =
2643 util_format_linear_to_srgb_float(border_color[i]);
2644 }
2645
2646 /* Turn the border color into the layout of channels that it would
2647 * have when stored as texture contents.
2648 */
2649 float storage_color[4];
2650 util_format_unswizzle_4f(storage_color,
2651 border_color,
2652 tex_format_desc->swizzle);
2653
2654 /* Now, pack so that when the vc4_format-sampled texture contents are
2655 * replaced with our border color, the vc4_get_format_swizzle()
2656 * swizzling will get the right channels.
2657 */
2658 if (util_format_is_depth_or_stencil(texture->format)) {
2659 uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
2660 sampler->border_color.f[0]) << 8;
2661 } else {
2662 switch (rsc->vc4_format) {
2663 default:
2664 case VC4_TEXTURE_TYPE_RGBA8888:
2665 util_pack_color(storage_color,
2666 PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
2667 break;
2668 case VC4_TEXTURE_TYPE_RGBA4444:
2669 util_pack_color(storage_color,
2670 PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
2671 break;
2672 case VC4_TEXTURE_TYPE_RGB565:
2673 util_pack_color(storage_color,
2674 PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
2675 break;
2676 case VC4_TEXTURE_TYPE_ALPHA:
2677 uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
2678 break;
2679 case VC4_TEXTURE_TYPE_LUMALPHA:
2680 uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
2681 (float_to_ubyte(storage_color[0]) << 0));
2682 break;
2683 }
2684 }
2685
2686 cl_u32(&vc4->uniforms, uc.ui[0]);
2687 }
2688
2689 static uint32_t
2690 get_texrect_scale(struct vc4_texture_stateobj *texstate,
2691 enum quniform_contents contents,
2692 uint32_t data)
2693 {
2694 struct pipe_sampler_view *texture = texstate->textures[data];
2695 uint32_t dim;
2696
2697 if (contents == QUNIFORM_TEXRECT_SCALE_X)
2698 dim = texture->texture->width0;
2699 else
2700 dim = texture->texture->height0;
2701
2702 return fui(1.0f / dim);
2703 }
2704
2705 static struct vc4_bo *
2706 vc4_upload_ubo(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2707 const uint32_t *gallium_uniforms)
2708 {
2709 if (!shader->ubo_size)
2710 return NULL;
2711
2712 struct vc4_bo *ubo = vc4_bo_alloc(vc4->screen, shader->ubo_size, "ubo");
2713 uint32_t *data = vc4_bo_map(ubo);
2714 for (uint32_t i = 0; i < shader->num_ubo_ranges; i++) {
2715 memcpy(data + shader->ubo_ranges[i].dst_offset,
2716 gallium_uniforms + shader->ubo_ranges[i].src_offset,
2717 shader->ubo_ranges[i].size);
2718 }
2719
2720 return ubo;
2721 }
2722
2723 void
2724 vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2725 struct vc4_constbuf_stateobj *cb,
2726 struct vc4_texture_stateobj *texstate)
2727 {
2728 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2729 const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
2730 struct vc4_bo *ubo = vc4_upload_ubo(vc4, shader, gallium_uniforms);
2731
2732 cl_ensure_space(&vc4->uniforms, (uinfo->count +
2733 uinfo->num_texture_samples) * 4);
2734
2735 cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
2736
2737 for (int i = 0; i < uinfo->count; i++) {
2738
2739 switch (uinfo->contents[i]) {
2740 case QUNIFORM_CONSTANT:
2741 cl_u32(&vc4->uniforms, uinfo->data[i]);
2742 break;
2743 case QUNIFORM_UNIFORM:
2744 cl_u32(&vc4->uniforms,
2745 gallium_uniforms[uinfo->data[i]]);
2746 break;
2747 case QUNIFORM_VIEWPORT_X_SCALE:
2748 cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
2749 break;
2750 case QUNIFORM_VIEWPORT_Y_SCALE:
2751 cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
2752 break;
2753
2754 case QUNIFORM_VIEWPORT_Z_OFFSET:
2755 cl_f(&vc4->uniforms, vc4->viewport.translate[2]);
2756 break;
2757 case QUNIFORM_VIEWPORT_Z_SCALE:
2758 cl_f(&vc4->uniforms, vc4->viewport.scale[2]);
2759 break;
2760
2761 case QUNIFORM_USER_CLIP_PLANE:
2762 cl_f(&vc4->uniforms,
2763 vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
2764 break;
2765
2766 case QUNIFORM_TEXTURE_CONFIG_P0:
2767 write_texture_p0(vc4, texstate, uinfo->data[i]);
2768 break;
2769
2770 case QUNIFORM_TEXTURE_CONFIG_P1:
2771 write_texture_p1(vc4, texstate, uinfo->data[i]);
2772 break;
2773
2774 case QUNIFORM_TEXTURE_CONFIG_P2:
2775 write_texture_p2(vc4, texstate, uinfo->data[i]);
2776 break;
2777
2778 case QUNIFORM_UBO_ADDR:
2779 cl_reloc(vc4, &vc4->uniforms, ubo, 0);
2780 break;
2781
2782 case QUNIFORM_TEXTURE_BORDER_COLOR:
2783 write_texture_border_color(vc4, texstate, uinfo->data[i]);
2784 break;
2785
2786 case QUNIFORM_TEXRECT_SCALE_X:
2787 case QUNIFORM_TEXRECT_SCALE_Y:
2788 cl_u32(&vc4->uniforms,
2789 get_texrect_scale(texstate,
2790 uinfo->contents[i],
2791 uinfo->data[i]));
2792 break;
2793
2794 case QUNIFORM_BLEND_CONST_COLOR:
2795 cl_f(&vc4->uniforms,
2796 vc4->blend_color.color[uinfo->data[i]]);
2797 break;
2798
2799 case QUNIFORM_STENCIL:
2800 cl_u32(&vc4->uniforms,
2801 vc4->zsa->stencil_uniforms[uinfo->data[i]] |
2802 (uinfo->data[i] <= 1 ?
2803 (vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
2804 0));
2805 break;
2806
2807 case QUNIFORM_ALPHA_REF:
2808 cl_f(&vc4->uniforms, vc4->zsa->base.alpha.ref_value);
2809 break;
2810 }
2811 #if 0
2812 uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
2813 fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
2814 shader, i, written_val, uif(written_val));
2815 #endif
2816 }
2817 }
2818
2819 static void
2820 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2821 {
2822 struct vc4_context *vc4 = vc4_context(pctx);
2823 vc4->prog.bind_fs = hwcso;
2824 vc4->prog.dirty |= VC4_SHADER_DIRTY_FP;
2825 vc4->dirty |= VC4_DIRTY_PROG;
2826 }
2827
2828 static void
2829 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2830 {
2831 struct vc4_context *vc4 = vc4_context(pctx);
2832 vc4->prog.bind_vs = hwcso;
2833 vc4->prog.dirty |= VC4_SHADER_DIRTY_VP;
2834 vc4->dirty |= VC4_DIRTY_PROG;
2835 }
2836
2837 void
2838 vc4_program_init(struct pipe_context *pctx)
2839 {
2840 struct vc4_context *vc4 = vc4_context(pctx);
2841
2842 pctx->create_vs_state = vc4_shader_state_create;
2843 pctx->delete_vs_state = vc4_shader_state_delete;
2844
2845 pctx->create_fs_state = vc4_shader_state_create;
2846 pctx->delete_fs_state = vc4_shader_state_delete;
2847
2848 pctx->bind_fs_state = vc4_fp_state_bind;
2849 pctx->bind_vs_state = vc4_vp_state_bind;
2850
2851 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2852 fs_cache_compare);
2853 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2854 vs_cache_compare);
2855 }
2856
2857 void
2858 vc4_program_fini(struct pipe_context *pctx)
2859 {
2860 struct vc4_context *vc4 = vc4_context(pctx);
2861
2862 struct hash_entry *entry;
2863 hash_table_foreach(vc4->fs_cache, entry) {
2864 struct vc4_compiled_shader *shader = entry->data;
2865 vc4_bo_unreference(&shader->bo);
2866 ralloc_free(shader);
2867 _mesa_hash_table_remove(vc4->fs_cache, entry);
2868 }
2869
2870 hash_table_foreach(vc4->vs_cache, entry) {
2871 struct vc4_compiled_shader *shader = entry->data;
2872 vc4_bo_unreference(&shader->bo);
2873 ralloc_free(shader);
2874 _mesa_hash_table_remove(vc4->vs_cache, entry);
2875 }
2876 }