nir: Use the flrp lowering pass instead of nir_opt_algebraic
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "compiler/nir_types.h"
37 #include "nir/tgsi_to_nir.h"
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41
42 static struct qreg
43 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
44 static void
45 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
46
47 static int
48 type_size(const struct glsl_type *type, bool bindless)
49 {
50 return glsl_count_attribute_slots(type, false);
51 }
52
53 static void
54 resize_qreg_array(struct vc4_compile *c,
55 struct qreg **regs,
56 uint32_t *size,
57 uint32_t decl_size)
58 {
59 if (*size >= decl_size)
60 return;
61
62 uint32_t old_size = *size;
63 *size = MAX2(*size * 2, decl_size);
64 *regs = reralloc(c, *regs, struct qreg, *size);
65 if (!*regs) {
66 fprintf(stderr, "Malloc failure\n");
67 abort();
68 }
69
70 for (uint32_t i = old_size; i < *size; i++)
71 (*regs)[i] = c->undef;
72 }
73
74 static void
75 ntq_emit_thrsw(struct vc4_compile *c)
76 {
77 if (!c->fs_threaded)
78 return;
79
80 /* Always thread switch after each texture operation for now.
81 *
82 * We could do better by batching a bunch of texture fetches up and
83 * then doing one thread switch and collecting all their results
84 * afterward.
85 */
86 qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
87 c->undef, c->undef));
88 c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
89 }
90
91 static struct qreg
92 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
93 {
94 struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
95
96 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
97 uint32_t range = nir_intrinsic_range(intr);
98 indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
99 indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
100 qir_uniform_ui(c, range - 4));
101
102 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
103 indirect_offset,
104 qir_uniform(c, QUNIFORM_UBO0_ADDR,
105 nir_intrinsic_base(intr)));
106
107 c->num_texture_samples++;
108
109 ntq_emit_thrsw(c);
110
111 return qir_TEX_RESULT(c);
112 }
113
114 static struct qreg
115 vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
116 {
117 int buffer_index = nir_src_as_uint(intr->src[0]);
118 assert(buffer_index == 1);
119 assert(c->stage == QSTAGE_FRAG);
120
121 struct qreg offset = ntq_get_src(c, intr->src[1], 0);
122
123 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
124 offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
125 offset = qir_MIN_NOIMM(c, offset,
126 qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
127
128 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
129 offset,
130 qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
131
132 c->num_texture_samples++;
133
134 ntq_emit_thrsw(c);
135
136 return qir_TEX_RESULT(c);
137 }
138
139 nir_ssa_def *
140 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
141 {
142 switch (swiz) {
143 default:
144 case PIPE_SWIZZLE_NONE:
145 fprintf(stderr, "warning: unknown swizzle\n");
146 /* FALLTHROUGH */
147 case PIPE_SWIZZLE_0:
148 return nir_imm_float(b, 0.0);
149 case PIPE_SWIZZLE_1:
150 return nir_imm_float(b, 1.0);
151 case PIPE_SWIZZLE_X:
152 case PIPE_SWIZZLE_Y:
153 case PIPE_SWIZZLE_Z:
154 case PIPE_SWIZZLE_W:
155 return srcs[swiz];
156 }
157 }
158
159 static struct qreg *
160 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
161 {
162 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
163 def->num_components);
164 _mesa_hash_table_insert(c->def_ht, def, qregs);
165 return qregs;
166 }
167
168 /**
169 * This function is responsible for getting QIR results into the associated
170 * storage for a NIR instruction.
171 *
172 * If it's a NIR SSA def, then we just set the associated hash table entry to
173 * the new result.
174 *
175 * If it's a NIR reg, then we need to update the existing qreg assigned to the
176 * NIR destination with the incoming value. To do that without introducing
177 * new MOVs, we require that the incoming qreg either be a uniform, or be
178 * SSA-defined by the previous QIR instruction in the block and rewritable by
179 * this function. That lets us sneak ahead and insert the SF flag beforehand
180 * (knowing that the previous instruction doesn't depend on flags) and rewrite
181 * its destination to be the NIR reg's destination
182 */
183 static void
184 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
185 struct qreg result)
186 {
187 struct qinst *last_inst = NULL;
188 if (!list_empty(&c->cur_block->instructions))
189 last_inst = (struct qinst *)c->cur_block->instructions.prev;
190
191 assert(result.file == QFILE_UNIF ||
192 (result.file == QFILE_TEMP &&
193 last_inst && last_inst == c->defs[result.index]));
194
195 if (dest->is_ssa) {
196 assert(chan < dest->ssa.num_components);
197
198 struct qreg *qregs;
199 struct hash_entry *entry =
200 _mesa_hash_table_search(c->def_ht, &dest->ssa);
201
202 if (entry)
203 qregs = entry->data;
204 else
205 qregs = ntq_init_ssa_def(c, &dest->ssa);
206
207 qregs[chan] = result;
208 } else {
209 nir_register *reg = dest->reg.reg;
210 assert(dest->reg.base_offset == 0);
211 assert(reg->num_array_elems == 0);
212 struct hash_entry *entry =
213 _mesa_hash_table_search(c->def_ht, reg);
214 struct qreg *qregs = entry->data;
215
216 /* Insert a MOV if the source wasn't an SSA def in the
217 * previous instruction.
218 */
219 if (result.file == QFILE_UNIF) {
220 result = qir_MOV(c, result);
221 last_inst = c->defs[result.index];
222 }
223
224 /* We know they're both temps, so just rewrite index. */
225 c->defs[last_inst->dst.index] = NULL;
226 last_inst->dst.index = qregs[chan].index;
227
228 /* If we're in control flow, then make this update of the reg
229 * conditional on the execution mask.
230 */
231 if (c->execute.file != QFILE_NULL) {
232 last_inst->dst.index = qregs[chan].index;
233
234 /* Set the flags to the current exec mask. To insert
235 * the SF, we temporarily remove our SSA instruction.
236 */
237 list_del(&last_inst->link);
238 qir_SF(c, c->execute);
239 list_addtail(&last_inst->link,
240 &c->cur_block->instructions);
241
242 last_inst->cond = QPU_COND_ZS;
243 last_inst->cond_is_exec_mask = true;
244 }
245 }
246 }
247
248 static struct qreg *
249 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
250 {
251 if (dest->is_ssa) {
252 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
253 for (int i = 0; i < dest->ssa.num_components; i++)
254 qregs[i] = c->undef;
255 return qregs;
256 } else {
257 nir_register *reg = dest->reg.reg;
258 assert(dest->reg.base_offset == 0);
259 assert(reg->num_array_elems == 0);
260 struct hash_entry *entry =
261 _mesa_hash_table_search(c->def_ht, reg);
262 return entry->data;
263 }
264 }
265
266 static struct qreg
267 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
268 {
269 struct hash_entry *entry;
270 if (src.is_ssa) {
271 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
272 assert(i < src.ssa->num_components);
273 } else {
274 nir_register *reg = src.reg.reg;
275 entry = _mesa_hash_table_search(c->def_ht, reg);
276 assert(reg->num_array_elems == 0);
277 assert(src.reg.base_offset == 0);
278 assert(i < reg->num_components);
279 }
280
281 struct qreg *qregs = entry->data;
282 return qregs[i];
283 }
284
285 static struct qreg
286 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
287 unsigned src)
288 {
289 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
290 unsigned chan = ffs(instr->dest.write_mask) - 1;
291 struct qreg r = ntq_get_src(c, instr->src[src].src,
292 instr->src[src].swizzle[chan]);
293
294 assert(!instr->src[src].abs);
295 assert(!instr->src[src].negate);
296
297 return r;
298 };
299
300 static inline struct qreg
301 qir_SAT(struct vc4_compile *c, struct qreg val)
302 {
303 return qir_FMAX(c,
304 qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
305 qir_uniform_f(c, 0.0));
306 }
307
308 static struct qreg
309 ntq_rcp(struct vc4_compile *c, struct qreg x)
310 {
311 struct qreg r = qir_RCP(c, x);
312
313 /* Apply a Newton-Raphson step to improve the accuracy. */
314 r = qir_FMUL(c, r, qir_FSUB(c,
315 qir_uniform_f(c, 2.0),
316 qir_FMUL(c, x, r)));
317
318 return r;
319 }
320
321 static struct qreg
322 ntq_rsq(struct vc4_compile *c, struct qreg x)
323 {
324 struct qreg r = qir_RSQ(c, x);
325
326 /* Apply a Newton-Raphson step to improve the accuracy. */
327 r = qir_FMUL(c, r, qir_FSUB(c,
328 qir_uniform_f(c, 1.5),
329 qir_FMUL(c,
330 qir_uniform_f(c, 0.5),
331 qir_FMUL(c, x,
332 qir_FMUL(c, r, r)))));
333
334 return r;
335 }
336
337 static struct qreg
338 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
339 {
340 struct qreg src0_hi = qir_SHR(c, src0,
341 qir_uniform_ui(c, 24));
342 struct qreg src1_hi = qir_SHR(c, src1,
343 qir_uniform_ui(c, 24));
344
345 struct qreg hilo = qir_MUL24(c, src0_hi, src1);
346 struct qreg lohi = qir_MUL24(c, src0, src1_hi);
347 struct qreg lolo = qir_MUL24(c, src0, src1);
348
349 return qir_ADD(c, lolo, qir_SHL(c,
350 qir_ADD(c, hilo, lohi),
351 qir_uniform_ui(c, 24)));
352 }
353
354 static struct qreg
355 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
356 {
357 struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
358 qir_uniform_ui(c, 8)));
359 return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
360 }
361
362 /**
363 * Emits a lowered TXF_MS from an MSAA texture.
364 *
365 * The addressing math has been lowered in NIR, and now we just need to read
366 * it like a UBO.
367 */
368 static void
369 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
370 {
371 uint32_t tile_width = 32;
372 uint32_t tile_height = 32;
373 uint32_t tile_size = (tile_height * tile_width *
374 VC4_MAX_SAMPLES * sizeof(uint32_t));
375
376 unsigned unit = instr->texture_index;
377 uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
378 uint32_t w_tiles = w / tile_width;
379 uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
380 uint32_t h_tiles = h / tile_height;
381 uint32_t size = w_tiles * h_tiles * tile_size;
382
383 struct qreg addr;
384 assert(instr->num_srcs == 1);
385 assert(instr->src[0].src_type == nir_tex_src_coord);
386 addr = ntq_get_src(c, instr->src[0].src, 0);
387
388 /* Perform the clamping required by kernel validation. */
389 addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
390 addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
391
392 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
393 addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
394
395 ntq_emit_thrsw(c);
396
397 struct qreg tex = qir_TEX_RESULT(c);
398 c->num_texture_samples++;
399
400 enum pipe_format format = c->key->tex[unit].format;
401 if (util_format_is_depth_or_stencil(format)) {
402 struct qreg scaled = ntq_scale_depth_texture(c, tex);
403 for (int i = 0; i < 4; i++)
404 ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
405 } else {
406 for (int i = 0; i < 4; i++)
407 ntq_store_dest(c, &instr->dest, i,
408 qir_UNPACK_8_F(c, tex, i));
409 }
410 }
411
412 static void
413 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
414 {
415 struct qreg s, t, r, lod, compare;
416 bool is_txb = false, is_txl = false;
417 unsigned unit = instr->texture_index;
418
419 if (instr->op == nir_texop_txf) {
420 ntq_emit_txf(c, instr);
421 return;
422 }
423
424 for (unsigned i = 0; i < instr->num_srcs; i++) {
425 switch (instr->src[i].src_type) {
426 case nir_tex_src_coord:
427 s = ntq_get_src(c, instr->src[i].src, 0);
428 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
429 t = qir_uniform_f(c, 0.5);
430 else
431 t = ntq_get_src(c, instr->src[i].src, 1);
432 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
433 r = ntq_get_src(c, instr->src[i].src, 2);
434 break;
435 case nir_tex_src_bias:
436 lod = ntq_get_src(c, instr->src[i].src, 0);
437 is_txb = true;
438 break;
439 case nir_tex_src_lod:
440 lod = ntq_get_src(c, instr->src[i].src, 0);
441 is_txl = true;
442 break;
443 case nir_tex_src_comparator:
444 compare = ntq_get_src(c, instr->src[i].src, 0);
445 break;
446 default:
447 unreachable("unknown texture source");
448 }
449 }
450
451 if (c->stage != QSTAGE_FRAG && !is_txl) {
452 /* From the GLSL 1.20 spec:
453 *
454 * "If it is mip-mapped and running on the vertex shader,
455 * then the base texture is used."
456 */
457 is_txl = true;
458 lod = qir_uniform_ui(c, 0);
459 }
460
461 if (c->key->tex[unit].force_first_level) {
462 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
463 is_txl = true;
464 is_txb = false;
465 }
466
467 struct qreg texture_u[] = {
468 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
469 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
470 qir_uniform(c, QUNIFORM_CONSTANT, 0),
471 qir_uniform(c, QUNIFORM_CONSTANT, 0),
472 };
473 uint32_t next_texture_u = 0;
474
475 /* There is no native support for GL texture rectangle coordinates, so
476 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
477 * 1]).
478 */
479 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
480 s = qir_FMUL(c, s,
481 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
482 t = qir_FMUL(c, t,
483 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
484 }
485
486 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
487 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
488 unit | (is_txl << 16));
489 }
490
491 struct qinst *tmu;
492 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
493 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
494 tmu->src[qir_get_tex_uniform_src(tmu)] =
495 texture_u[next_texture_u++];
496 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
497 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
498 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
499 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
500 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
501 qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
502 unit));
503 tmu->src[qir_get_tex_uniform_src(tmu)] =
504 texture_u[next_texture_u++];
505 }
506
507 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
508 s = qir_SAT(c, s);
509 }
510
511 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
512 t = qir_SAT(c, t);
513 }
514
515 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
516 tmu->src[qir_get_tex_uniform_src(tmu)] =
517 texture_u[next_texture_u++];
518
519 if (is_txl || is_txb) {
520 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
521 tmu->src[qir_get_tex_uniform_src(tmu)] =
522 texture_u[next_texture_u++];
523 }
524
525 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
526 tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
527
528 c->num_texture_samples++;
529
530 ntq_emit_thrsw(c);
531
532 struct qreg tex = qir_TEX_RESULT(c);
533
534 enum pipe_format format = c->key->tex[unit].format;
535
536 struct qreg *dest = ntq_get_dest(c, &instr->dest);
537 if (util_format_is_depth_or_stencil(format)) {
538 struct qreg normalized = ntq_scale_depth_texture(c, tex);
539 struct qreg depth_output;
540
541 struct qreg u0 = qir_uniform_f(c, 0.0f);
542 struct qreg u1 = qir_uniform_f(c, 1.0f);
543 if (c->key->tex[unit].compare_mode) {
544 /* From the GL_ARB_shadow spec:
545 *
546 * "Let Dt (D subscript t) be the depth texture
547 * value, in the range [0, 1]. Let R be the
548 * interpolated texture coordinate clamped to the
549 * range [0, 1]."
550 */
551 compare = qir_SAT(c, compare);
552
553 switch (c->key->tex[unit].compare_func) {
554 case PIPE_FUNC_NEVER:
555 depth_output = qir_uniform_f(c, 0.0f);
556 break;
557 case PIPE_FUNC_ALWAYS:
558 depth_output = u1;
559 break;
560 case PIPE_FUNC_EQUAL:
561 qir_SF(c, qir_FSUB(c, compare, normalized));
562 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
563 break;
564 case PIPE_FUNC_NOTEQUAL:
565 qir_SF(c, qir_FSUB(c, compare, normalized));
566 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
567 break;
568 case PIPE_FUNC_GREATER:
569 qir_SF(c, qir_FSUB(c, compare, normalized));
570 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
571 break;
572 case PIPE_FUNC_GEQUAL:
573 qir_SF(c, qir_FSUB(c, normalized, compare));
574 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
575 break;
576 case PIPE_FUNC_LESS:
577 qir_SF(c, qir_FSUB(c, compare, normalized));
578 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
579 break;
580 case PIPE_FUNC_LEQUAL:
581 qir_SF(c, qir_FSUB(c, normalized, compare));
582 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
583 break;
584 }
585 } else {
586 depth_output = normalized;
587 }
588
589 for (int i = 0; i < 4; i++)
590 dest[i] = depth_output;
591 } else {
592 for (int i = 0; i < 4; i++)
593 dest[i] = qir_UNPACK_8_F(c, tex, i);
594 }
595 }
596
597 /**
598 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
599 * to zero).
600 */
601 static struct qreg
602 ntq_ffract(struct vc4_compile *c, struct qreg src)
603 {
604 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
605 struct qreg diff = qir_FSUB(c, src, trunc);
606 qir_SF(c, diff);
607
608 qir_FADD_dest(c, diff,
609 diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
610
611 return qir_MOV(c, diff);
612 }
613
614 /**
615 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
616 * zero).
617 */
618 static struct qreg
619 ntq_ffloor(struct vc4_compile *c, struct qreg src)
620 {
621 struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
622
623 /* This will be < 0 if we truncated and the truncation was of a value
624 * that was < 0 in the first place.
625 */
626 qir_SF(c, qir_FSUB(c, src, result));
627
628 struct qinst *sub = qir_FSUB_dest(c, result,
629 result, qir_uniform_f(c, 1.0));
630 sub->cond = QPU_COND_NS;
631
632 return qir_MOV(c, result);
633 }
634
635 /**
636 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
637 * zero).
638 */
639 static struct qreg
640 ntq_fceil(struct vc4_compile *c, struct qreg src)
641 {
642 struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
643
644 /* This will be < 0 if we truncated and the truncation was of a value
645 * that was > 0 in the first place.
646 */
647 qir_SF(c, qir_FSUB(c, result, src));
648
649 qir_FADD_dest(c, result,
650 result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
651
652 return qir_MOV(c, result);
653 }
654
655 static struct qreg
656 ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
657 {
658 /* Since we're using a Taylor approximation, we want to have a small
659 * number of coefficients and take advantage of sin/cos repeating
660 * every 2pi. We keep our x as close to 0 as we can, since the series
661 * will be less accurate as |x| increases. (Also, be careful of
662 * shifting the input x value to be tricky with sin/cos relations,
663 * because getting accurate values for x==0 is very important for SDL
664 * rendering)
665 */
666 struct qreg scaled_x =
667 qir_FMUL(c, x,
668 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
669 /* Note: FTOI truncates toward 0. */
670 struct qreg x_frac = qir_FSUB(c, scaled_x,
671 qir_ITOF(c, qir_FTOI(c, scaled_x)));
672 /* Map [0.5, 1] to [-0.5, 0] */
673 qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
674 qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
675 /* Map [-1, -0.5] to [0, 0.5] */
676 qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
677 qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
678
679 return x_frac;
680 }
681
682 static struct qreg
683 ntq_fsin(struct vc4_compile *c, struct qreg src)
684 {
685 float coeff[] = {
686 2.0 * M_PI,
687 -pow(2.0 * M_PI, 3) / (3 * 2 * 1),
688 pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
689 -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
690 pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
691 };
692
693 struct qreg x = ntq_shrink_sincos_input_range(c, src);
694 struct qreg x2 = qir_FMUL(c, x, x);
695 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
696 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
697 x = qir_FMUL(c, x, x2);
698 sum = qir_FADD(c,
699 sum,
700 qir_FMUL(c,
701 x,
702 qir_uniform_f(c, coeff[i])));
703 }
704 return sum;
705 }
706
707 static struct qreg
708 ntq_fcos(struct vc4_compile *c, struct qreg src)
709 {
710 float coeff[] = {
711 1.0f,
712 -pow(2.0 * M_PI, 2) / (2 * 1),
713 pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
714 -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
715 pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
716 -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
717 };
718
719 struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
720 struct qreg sum = qir_uniform_f(c, coeff[0]);
721 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
722 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
723 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
724 if (i != 1)
725 x = qir_FMUL(c, x, x2);
726
727 sum = qir_FADD(c, qir_FMUL(c,
728 x,
729 qir_uniform_f(c, coeff[i])),
730 sum);
731 }
732 return sum;
733 }
734
735 static struct qreg
736 ntq_fsign(struct vc4_compile *c, struct qreg src)
737 {
738 struct qreg t = qir_get_temp(c);
739
740 qir_SF(c, src);
741 qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
742 qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
743 qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
744 return qir_MOV(c, t);
745 }
746
747 static void
748 emit_vertex_input(struct vc4_compile *c, int attr)
749 {
750 enum pipe_format format = c->vs_key->attr_formats[attr];
751 uint32_t attr_size = util_format_get_blocksize(format);
752
753 c->vattr_sizes[attr] = align(attr_size, 4);
754 for (int i = 0; i < align(attr_size, 4) / 4; i++) {
755 c->inputs[attr * 4 + i] =
756 qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
757 c->num_inputs++;
758 }
759 }
760
761 static void
762 emit_fragcoord_input(struct vc4_compile *c, int attr)
763 {
764 c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
765 c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
766 c->inputs[attr * 4 + 2] =
767 qir_FMUL(c,
768 qir_ITOF(c, qir_FRAG_Z(c)),
769 qir_uniform_f(c, 1.0 / 0xffffff));
770 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
771 }
772
773 static struct qreg
774 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
775 uint8_t swizzle)
776 {
777 uint32_t i = c->num_input_slots++;
778 struct qreg vary = {
779 QFILE_VARY,
780 i
781 };
782
783 if (c->num_input_slots >= c->input_slots_array_size) {
784 c->input_slots_array_size =
785 MAX2(4, c->input_slots_array_size * 2);
786
787 c->input_slots = reralloc(c, c->input_slots,
788 struct vc4_varying_slot,
789 c->input_slots_array_size);
790 }
791
792 c->input_slots[i].slot = slot;
793 c->input_slots[i].swizzle = swizzle;
794
795 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
796 }
797
798 static void
799 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
800 {
801 for (int i = 0; i < 4; i++) {
802 c->inputs[attr * 4 + i] =
803 emit_fragment_varying(c, slot, i);
804 c->num_inputs++;
805 }
806 }
807
808 static void
809 add_output(struct vc4_compile *c,
810 uint32_t decl_offset,
811 uint8_t slot,
812 uint8_t swizzle)
813 {
814 uint32_t old_array_size = c->outputs_array_size;
815 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
816 decl_offset + 1);
817
818 if (old_array_size != c->outputs_array_size) {
819 c->output_slots = reralloc(c,
820 c->output_slots,
821 struct vc4_varying_slot,
822 c->outputs_array_size);
823 }
824
825 c->output_slots[decl_offset].slot = slot;
826 c->output_slots[decl_offset].swizzle = swizzle;
827 }
828
829 static bool
830 ntq_src_is_only_ssa_def_user(nir_src *src)
831 {
832 if (!src->is_ssa)
833 return false;
834
835 if (!list_empty(&src->ssa->if_uses))
836 return false;
837
838 return (src->ssa->uses.next == &src->use_link &&
839 src->ssa->uses.next->next == &src->ssa->uses);
840 }
841
842 /**
843 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
844 * bit set.
845 *
846 * However, as an optimization, it tries to find the instructions generating
847 * the sources to be packed and just emit the pack flag there, if possible.
848 */
849 static void
850 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
851 {
852 struct qreg result = qir_get_temp(c);
853 struct nir_alu_instr *vec4 = NULL;
854
855 /* If packing from a vec4 op (as expected), identify it so that we can
856 * peek back at what generated its sources.
857 */
858 if (instr->src[0].src.is_ssa &&
859 instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
860 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
861 nir_op_vec4) {
862 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
863 }
864
865 /* If the pack is replicating the same channel 4 times, use the 8888
866 * pack flag. This is common for blending using the alpha
867 * channel.
868 */
869 if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
870 instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
871 instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
872 struct qreg rep = ntq_get_src(c,
873 instr->src[0].src,
874 instr->src[0].swizzle[0]);
875 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
876 return;
877 }
878
879 for (int i = 0; i < 4; i++) {
880 int swiz = instr->src[0].swizzle[i];
881 struct qreg src;
882 if (vec4) {
883 src = ntq_get_src(c, vec4->src[swiz].src,
884 vec4->src[swiz].swizzle[0]);
885 } else {
886 src = ntq_get_src(c, instr->src[0].src, swiz);
887 }
888
889 if (vec4 &&
890 ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
891 src.file == QFILE_TEMP &&
892 c->defs[src.index] &&
893 qir_is_mul(c->defs[src.index]) &&
894 !c->defs[src.index]->dst.pack) {
895 struct qinst *rewrite = c->defs[src.index];
896 c->defs[src.index] = NULL;
897 rewrite->dst = result;
898 rewrite->dst.pack = QPU_PACK_MUL_8A + i;
899 continue;
900 }
901
902 qir_PACK_8_F(c, result, src, i);
903 }
904
905 ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
906 }
907
908 /** Handles sign-extended bitfield extracts for 16 bits. */
909 static struct qreg
910 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
911 struct qreg bits)
912 {
913 assert(bits.file == QFILE_UNIF &&
914 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
915 c->uniform_data[bits.index] == 16);
916
917 assert(offset.file == QFILE_UNIF &&
918 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
919 int offset_bit = c->uniform_data[offset.index];
920 assert(offset_bit % 16 == 0);
921
922 return qir_UNPACK_16_I(c, base, offset_bit / 16);
923 }
924
925 /** Handles unsigned bitfield extracts for 8 bits. */
926 static struct qreg
927 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
928 struct qreg bits)
929 {
930 assert(bits.file == QFILE_UNIF &&
931 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
932 c->uniform_data[bits.index] == 8);
933
934 assert(offset.file == QFILE_UNIF &&
935 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
936 int offset_bit = c->uniform_data[offset.index];
937 assert(offset_bit % 8 == 0);
938
939 return qir_UNPACK_8_I(c, base, offset_bit / 8);
940 }
941
942 /**
943 * If compare_instr is a valid comparison instruction, emits the
944 * compare_instr's comparison and returns the sel_instr's return value based
945 * on the compare_instr's result.
946 */
947 static bool
948 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
949 nir_alu_instr *compare_instr,
950 nir_alu_instr *sel_instr)
951 {
952 enum qpu_cond cond;
953
954 switch (compare_instr->op) {
955 case nir_op_feq32:
956 case nir_op_ieq32:
957 case nir_op_seq:
958 cond = QPU_COND_ZS;
959 break;
960 case nir_op_fne32:
961 case nir_op_ine32:
962 case nir_op_sne:
963 cond = QPU_COND_ZC;
964 break;
965 case nir_op_fge32:
966 case nir_op_ige32:
967 case nir_op_uge32:
968 case nir_op_sge:
969 cond = QPU_COND_NC;
970 break;
971 case nir_op_flt32:
972 case nir_op_ilt32:
973 case nir_op_slt:
974 cond = QPU_COND_NS;
975 break;
976 default:
977 return false;
978 }
979
980 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
981 struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
982
983 unsigned unsized_type =
984 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
985 if (unsized_type == nir_type_float)
986 qir_SF(c, qir_FSUB(c, src0, src1));
987 else
988 qir_SF(c, qir_SUB(c, src0, src1));
989
990 switch (sel_instr->op) {
991 case nir_op_seq:
992 case nir_op_sne:
993 case nir_op_sge:
994 case nir_op_slt:
995 *dest = qir_SEL(c, cond,
996 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
997 break;
998
999 case nir_op_b32csel:
1000 *dest = qir_SEL(c, cond,
1001 ntq_get_alu_src(c, sel_instr, 1),
1002 ntq_get_alu_src(c, sel_instr, 2));
1003 break;
1004
1005 default:
1006 *dest = qir_SEL(c, cond,
1007 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
1008 break;
1009 }
1010
1011 /* Make the temporary for nir_store_dest(). */
1012 *dest = qir_MOV(c, *dest);
1013
1014 return true;
1015 }
1016
1017 /**
1018 * Attempts to fold a comparison generating a boolean result into the
1019 * condition code for selecting between two values, instead of comparing the
1020 * boolean result against 0 to generate the condition code.
1021 */
1022 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1023 struct qreg *src)
1024 {
1025 if (!instr->src[0].src.is_ssa)
1026 goto out;
1027 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1028 goto out;
1029 nir_alu_instr *compare =
1030 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1031 if (!compare)
1032 goto out;
1033
1034 struct qreg dest;
1035 if (ntq_emit_comparison(c, &dest, compare, instr))
1036 return dest;
1037
1038 out:
1039 qir_SF(c, src[0]);
1040 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1041 }
1042
1043 static struct qreg
1044 ntq_fddx(struct vc4_compile *c, struct qreg src)
1045 {
1046 /* Make sure that we have a bare temp to use for MUL rotation, so it
1047 * can be allocated to an accumulator.
1048 */
1049 if (src.pack || src.file != QFILE_TEMP)
1050 src = qir_MOV(c, src);
1051
1052 struct qreg from_left = qir_ROT_MUL(c, src, 1);
1053 struct qreg from_right = qir_ROT_MUL(c, src, 15);
1054
1055 /* Distinguish left/right pixels of the quad. */
1056 qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1057 qir_uniform_ui(c, 1)));
1058
1059 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1060 qir_FSUB(c, from_right, src),
1061 qir_FSUB(c, src, from_left)));
1062 }
1063
1064 static struct qreg
1065 ntq_fddy(struct vc4_compile *c, struct qreg src)
1066 {
1067 if (src.pack || src.file != QFILE_TEMP)
1068 src = qir_MOV(c, src);
1069
1070 struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1071 struct qreg from_top = qir_ROT_MUL(c, src, 14);
1072
1073 /* Distinguish top/bottom pixels of the quad. */
1074 qir_SF(c, qir_AND(c,
1075 qir_reg(QFILE_QPU_ELEMENT, 0),
1076 qir_uniform_ui(c, 2)));
1077
1078 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1079 qir_FSUB(c, from_top, src),
1080 qir_FSUB(c, src, from_bottom)));
1081 }
1082
1083 static void
1084 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1085 {
1086 /* This should always be lowered to ALU operations for VC4. */
1087 assert(!instr->dest.saturate);
1088
1089 /* Vectors are special in that they have non-scalarized writemasks,
1090 * and just take the first swizzle channel for each argument in order
1091 * into each writemask channel.
1092 */
1093 if (instr->op == nir_op_vec2 ||
1094 instr->op == nir_op_vec3 ||
1095 instr->op == nir_op_vec4) {
1096 struct qreg srcs[4];
1097 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1098 srcs[i] = ntq_get_src(c, instr->src[i].src,
1099 instr->src[i].swizzle[0]);
1100 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1101 ntq_store_dest(c, &instr->dest.dest, i,
1102 qir_MOV(c, srcs[i]));
1103 return;
1104 }
1105
1106 if (instr->op == nir_op_pack_unorm_4x8) {
1107 ntq_emit_pack_unorm_4x8(c, instr);
1108 return;
1109 }
1110
1111 if (instr->op == nir_op_unpack_unorm_4x8) {
1112 struct qreg src = ntq_get_src(c, instr->src[0].src,
1113 instr->src[0].swizzle[0]);
1114 for (int i = 0; i < 4; i++) {
1115 if (instr->dest.write_mask & (1 << i))
1116 ntq_store_dest(c, &instr->dest.dest, i,
1117 qir_UNPACK_8_F(c, src, i));
1118 }
1119 return;
1120 }
1121
1122 /* General case: We can just grab the one used channel per src. */
1123 struct qreg src[nir_op_infos[instr->op].num_inputs];
1124 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1125 src[i] = ntq_get_alu_src(c, instr, i);
1126 }
1127
1128 struct qreg result;
1129
1130 switch (instr->op) {
1131 case nir_op_fmov:
1132 case nir_op_imov:
1133 result = qir_MOV(c, src[0]);
1134 break;
1135 case nir_op_fmul:
1136 result = qir_FMUL(c, src[0], src[1]);
1137 break;
1138 case nir_op_fadd:
1139 result = qir_FADD(c, src[0], src[1]);
1140 break;
1141 case nir_op_fsub:
1142 result = qir_FSUB(c, src[0], src[1]);
1143 break;
1144 case nir_op_fmin:
1145 result = qir_FMIN(c, src[0], src[1]);
1146 break;
1147 case nir_op_fmax:
1148 result = qir_FMAX(c, src[0], src[1]);
1149 break;
1150
1151 case nir_op_f2i32:
1152 case nir_op_f2u32:
1153 result = qir_FTOI(c, src[0]);
1154 break;
1155 case nir_op_i2f32:
1156 case nir_op_u2f32:
1157 result = qir_ITOF(c, src[0]);
1158 break;
1159 case nir_op_b2f32:
1160 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1161 break;
1162 case nir_op_b2i32:
1163 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1164 break;
1165 case nir_op_i2b32:
1166 case nir_op_f2b32:
1167 qir_SF(c, src[0]);
1168 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1169 qir_uniform_ui(c, ~0),
1170 qir_uniform_ui(c, 0)));
1171 break;
1172
1173 case nir_op_iadd:
1174 result = qir_ADD(c, src[0], src[1]);
1175 break;
1176 case nir_op_ushr:
1177 result = qir_SHR(c, src[0], src[1]);
1178 break;
1179 case nir_op_isub:
1180 result = qir_SUB(c, src[0], src[1]);
1181 break;
1182 case nir_op_ishr:
1183 result = qir_ASR(c, src[0], src[1]);
1184 break;
1185 case nir_op_ishl:
1186 result = qir_SHL(c, src[0], src[1]);
1187 break;
1188 case nir_op_imin:
1189 result = qir_MIN(c, src[0], src[1]);
1190 break;
1191 case nir_op_imax:
1192 result = qir_MAX(c, src[0], src[1]);
1193 break;
1194 case nir_op_iand:
1195 result = qir_AND(c, src[0], src[1]);
1196 break;
1197 case nir_op_ior:
1198 result = qir_OR(c, src[0], src[1]);
1199 break;
1200 case nir_op_ixor:
1201 result = qir_XOR(c, src[0], src[1]);
1202 break;
1203 case nir_op_inot:
1204 result = qir_NOT(c, src[0]);
1205 break;
1206
1207 case nir_op_imul:
1208 result = ntq_umul(c, src[0], src[1]);
1209 break;
1210
1211 case nir_op_seq:
1212 case nir_op_sne:
1213 case nir_op_sge:
1214 case nir_op_slt:
1215 case nir_op_feq32:
1216 case nir_op_fne32:
1217 case nir_op_fge32:
1218 case nir_op_flt32:
1219 case nir_op_ieq32:
1220 case nir_op_ine32:
1221 case nir_op_ige32:
1222 case nir_op_uge32:
1223 case nir_op_ilt32:
1224 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1225 fprintf(stderr, "Bad comparison instruction\n");
1226 }
1227 break;
1228
1229 case nir_op_b32csel:
1230 result = ntq_emit_bcsel(c, instr, src);
1231 break;
1232 case nir_op_fcsel:
1233 qir_SF(c, src[0]);
1234 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1235 break;
1236
1237 case nir_op_frcp:
1238 result = ntq_rcp(c, src[0]);
1239 break;
1240 case nir_op_frsq:
1241 result = ntq_rsq(c, src[0]);
1242 break;
1243 case nir_op_fexp2:
1244 result = qir_EXP2(c, src[0]);
1245 break;
1246 case nir_op_flog2:
1247 result = qir_LOG2(c, src[0]);
1248 break;
1249
1250 case nir_op_ftrunc:
1251 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1252 break;
1253 case nir_op_fceil:
1254 result = ntq_fceil(c, src[0]);
1255 break;
1256 case nir_op_ffract:
1257 result = ntq_ffract(c, src[0]);
1258 break;
1259 case nir_op_ffloor:
1260 result = ntq_ffloor(c, src[0]);
1261 break;
1262
1263 case nir_op_fsin:
1264 result = ntq_fsin(c, src[0]);
1265 break;
1266 case nir_op_fcos:
1267 result = ntq_fcos(c, src[0]);
1268 break;
1269
1270 case nir_op_fsign:
1271 result = ntq_fsign(c, src[0]);
1272 break;
1273
1274 case nir_op_fabs:
1275 result = qir_FMAXABS(c, src[0], src[0]);
1276 break;
1277 case nir_op_iabs:
1278 result = qir_MAX(c, src[0],
1279 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1280 break;
1281
1282 case nir_op_ibitfield_extract:
1283 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1284 break;
1285
1286 case nir_op_ubitfield_extract:
1287 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1288 break;
1289
1290 case nir_op_usadd_4x8:
1291 result = qir_V8ADDS(c, src[0], src[1]);
1292 break;
1293
1294 case nir_op_ussub_4x8:
1295 result = qir_V8SUBS(c, src[0], src[1]);
1296 break;
1297
1298 case nir_op_umin_4x8:
1299 result = qir_V8MIN(c, src[0], src[1]);
1300 break;
1301
1302 case nir_op_umax_4x8:
1303 result = qir_V8MAX(c, src[0], src[1]);
1304 break;
1305
1306 case nir_op_umul_unorm_4x8:
1307 result = qir_V8MULD(c, src[0], src[1]);
1308 break;
1309
1310 case nir_op_fddx:
1311 case nir_op_fddx_coarse:
1312 case nir_op_fddx_fine:
1313 result = ntq_fddx(c, src[0]);
1314 break;
1315
1316 case nir_op_fddy:
1317 case nir_op_fddy_coarse:
1318 case nir_op_fddy_fine:
1319 result = ntq_fddy(c, src[0]);
1320 break;
1321
1322 default:
1323 fprintf(stderr, "unknown NIR ALU inst: ");
1324 nir_print_instr(&instr->instr, stderr);
1325 fprintf(stderr, "\n");
1326 abort();
1327 }
1328
1329 /* We have a scalar result, so the instruction should only have a
1330 * single channel written to.
1331 */
1332 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1333 ntq_store_dest(c, &instr->dest.dest,
1334 ffs(instr->dest.write_mask) - 1, result);
1335 }
1336
1337 static void
1338 emit_frag_end(struct vc4_compile *c)
1339 {
1340 struct qreg color;
1341 if (c->output_color_index != -1) {
1342 color = c->outputs[c->output_color_index];
1343 } else {
1344 color = qir_uniform_ui(c, 0);
1345 }
1346
1347 uint32_t discard_cond = QPU_COND_ALWAYS;
1348 if (c->s->info.fs.uses_discard) {
1349 qir_SF(c, c->discard);
1350 discard_cond = QPU_COND_ZS;
1351 }
1352
1353 if (c->fs_key->stencil_enabled) {
1354 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1355 qir_uniform(c, QUNIFORM_STENCIL, 0));
1356 if (c->fs_key->stencil_twoside) {
1357 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1358 qir_uniform(c, QUNIFORM_STENCIL, 1));
1359 }
1360 if (c->fs_key->stencil_full_writemasks) {
1361 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1362 qir_uniform(c, QUNIFORM_STENCIL, 2));
1363 }
1364 }
1365
1366 if (c->output_sample_mask_index != -1) {
1367 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1368 }
1369
1370 if (c->fs_key->depth_enabled) {
1371 if (c->output_position_index != -1) {
1372 qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1373 qir_FMUL(c,
1374 c->outputs[c->output_position_index],
1375 qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1376 } else {
1377 qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1378 qir_FRAG_Z(c))->cond = discard_cond;
1379 }
1380 }
1381
1382 if (!c->msaa_per_sample_output) {
1383 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1384 color)->cond = discard_cond;
1385 } else {
1386 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1387 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1388 c->sample_colors[i])->cond = discard_cond;
1389 }
1390 }
1391 }
1392
1393 static void
1394 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1395 {
1396 struct qreg packed = qir_get_temp(c);
1397
1398 for (int i = 0; i < 2; i++) {
1399 struct qreg scale =
1400 qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1401
1402 struct qreg packed_chan = packed;
1403 packed_chan.pack = QPU_PACK_A_16A + i;
1404
1405 qir_FTOI_dest(c, packed_chan,
1406 qir_FMUL(c,
1407 qir_FMUL(c,
1408 c->outputs[c->output_position_index + i],
1409 scale),
1410 rcp_w));
1411 }
1412
1413 qir_VPM_WRITE(c, packed);
1414 }
1415
1416 static void
1417 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1418 {
1419 struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1420 struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1421
1422 qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1423 c->outputs[c->output_position_index + 2],
1424 zscale),
1425 rcp_w),
1426 zoffset));
1427 }
1428
1429 static void
1430 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1431 {
1432 qir_VPM_WRITE(c, rcp_w);
1433 }
1434
1435 static void
1436 emit_point_size_write(struct vc4_compile *c)
1437 {
1438 struct qreg point_size;
1439
1440 if (c->output_point_size_index != -1)
1441 point_size = c->outputs[c->output_point_size_index];
1442 else
1443 point_size = qir_uniform_f(c, 1.0);
1444
1445 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1446 * BCM21553).
1447 */
1448 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1449
1450 qir_VPM_WRITE(c, point_size);
1451 }
1452
1453 /**
1454 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1455 *
1456 * The simulator insists that there be at least one vertex attribute, so
1457 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1458 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1459 * to consume it here.
1460 */
1461 static void
1462 emit_stub_vpm_read(struct vc4_compile *c)
1463 {
1464 if (c->num_inputs)
1465 return;
1466
1467 c->vattr_sizes[0] = 4;
1468 (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1469 c->num_inputs++;
1470 }
1471
1472 static void
1473 emit_vert_end(struct vc4_compile *c,
1474 struct vc4_varying_slot *fs_inputs,
1475 uint32_t num_fs_inputs)
1476 {
1477 struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1478
1479 emit_stub_vpm_read(c);
1480
1481 emit_scaled_viewport_write(c, rcp_w);
1482 emit_zs_write(c, rcp_w);
1483 emit_rcp_wc_write(c, rcp_w);
1484 if (c->vs_key->per_vertex_point_size)
1485 emit_point_size_write(c);
1486
1487 for (int i = 0; i < num_fs_inputs; i++) {
1488 struct vc4_varying_slot *input = &fs_inputs[i];
1489 int j;
1490
1491 for (j = 0; j < c->num_outputs; j++) {
1492 struct vc4_varying_slot *output =
1493 &c->output_slots[j];
1494
1495 if (input->slot == output->slot &&
1496 input->swizzle == output->swizzle) {
1497 qir_VPM_WRITE(c, c->outputs[j]);
1498 break;
1499 }
1500 }
1501 /* Emit padding if we didn't find a declared VS output for
1502 * this FS input.
1503 */
1504 if (j == c->num_outputs)
1505 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1506 }
1507 }
1508
1509 static void
1510 emit_coord_end(struct vc4_compile *c)
1511 {
1512 struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1513
1514 emit_stub_vpm_read(c);
1515
1516 for (int i = 0; i < 4; i++)
1517 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1518
1519 emit_scaled_viewport_write(c, rcp_w);
1520 emit_zs_write(c, rcp_w);
1521 emit_rcp_wc_write(c, rcp_w);
1522 if (c->vs_key->per_vertex_point_size)
1523 emit_point_size_write(c);
1524 }
1525
1526 static void
1527 vc4_optimize_nir(struct nir_shader *s)
1528 {
1529 bool progress;
1530 unsigned lower_flrp =
1531 (s->options->lower_flrp16 ? 16 : 0) |
1532 (s->options->lower_flrp32 ? 32 : 0) |
1533 (s->options->lower_flrp64 ? 64 : 0);
1534
1535 do {
1536 progress = false;
1537
1538 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1539 NIR_PASS(progress, s, nir_lower_alu_to_scalar);
1540 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1541 NIR_PASS(progress, s, nir_copy_prop);
1542 NIR_PASS(progress, s, nir_opt_remove_phis);
1543 NIR_PASS(progress, s, nir_opt_dce);
1544 NIR_PASS(progress, s, nir_opt_dead_cf);
1545 NIR_PASS(progress, s, nir_opt_cse);
1546 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1547 NIR_PASS(progress, s, nir_opt_algebraic);
1548 NIR_PASS(progress, s, nir_opt_constant_folding);
1549 if (lower_flrp != 0) {
1550 bool lower_flrp_progress;
1551
1552 NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1553 lower_flrp,
1554 false /* always_precise */,
1555 s->options->lower_ffma);
1556 if (lower_flrp_progress) {
1557 NIR_PASS(progress, s, nir_opt_constant_folding);
1558 progress = true;
1559 }
1560
1561 /* Nothing should rematerialize any flrps, so we only
1562 * need to do this lowering once.
1563 */
1564 lower_flrp = 0;
1565 }
1566
1567 NIR_PASS(progress, s, nir_opt_undef);
1568 NIR_PASS(progress, s, nir_opt_loop_unroll,
1569 nir_var_shader_in |
1570 nir_var_shader_out |
1571 nir_var_function_temp);
1572 } while (progress);
1573 }
1574
1575 static int
1576 driver_location_compare(const void *in_a, const void *in_b)
1577 {
1578 const nir_variable *const *a = in_a;
1579 const nir_variable *const *b = in_b;
1580
1581 return (*a)->data.driver_location - (*b)->data.driver_location;
1582 }
1583
1584 static void
1585 ntq_setup_inputs(struct vc4_compile *c)
1586 {
1587 unsigned num_entries = 0;
1588 nir_foreach_variable(var, &c->s->inputs)
1589 num_entries++;
1590
1591 nir_variable *vars[num_entries];
1592
1593 unsigned i = 0;
1594 nir_foreach_variable(var, &c->s->inputs)
1595 vars[i++] = var;
1596
1597 /* Sort the variables so that we emit the input setup in
1598 * driver_location order. This is required for VPM reads, whose data
1599 * is fetched into the VPM in driver_location (TGSI register index)
1600 * order.
1601 */
1602 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1603
1604 for (unsigned i = 0; i < num_entries; i++) {
1605 nir_variable *var = vars[i];
1606 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1607 unsigned loc = var->data.driver_location;
1608
1609 assert(array_len == 1);
1610 (void)array_len;
1611 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1612 (loc + 1) * 4);
1613
1614 if (c->stage == QSTAGE_FRAG) {
1615 if (var->data.location == VARYING_SLOT_POS) {
1616 emit_fragcoord_input(c, loc);
1617 } else if (var->data.location == VARYING_SLOT_PNTC ||
1618 (var->data.location >= VARYING_SLOT_VAR0 &&
1619 (c->fs_key->point_sprite_mask &
1620 (1 << (var->data.location -
1621 VARYING_SLOT_VAR0))))) {
1622 c->inputs[loc * 4 + 0] = c->point_x;
1623 c->inputs[loc * 4 + 1] = c->point_y;
1624 } else {
1625 emit_fragment_input(c, loc, var->data.location);
1626 }
1627 } else {
1628 emit_vertex_input(c, loc);
1629 }
1630 }
1631 }
1632
1633 static void
1634 ntq_setup_outputs(struct vc4_compile *c)
1635 {
1636 nir_foreach_variable(var, &c->s->outputs) {
1637 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1638 unsigned loc = var->data.driver_location * 4;
1639
1640 assert(array_len == 1);
1641 (void)array_len;
1642
1643 for (int i = 0; i < 4; i++)
1644 add_output(c, loc + i, var->data.location, i);
1645
1646 if (c->stage == QSTAGE_FRAG) {
1647 switch (var->data.location) {
1648 case FRAG_RESULT_COLOR:
1649 case FRAG_RESULT_DATA0:
1650 c->output_color_index = loc;
1651 break;
1652 case FRAG_RESULT_DEPTH:
1653 c->output_position_index = loc;
1654 break;
1655 case FRAG_RESULT_SAMPLE_MASK:
1656 c->output_sample_mask_index = loc;
1657 break;
1658 }
1659 } else {
1660 switch (var->data.location) {
1661 case VARYING_SLOT_POS:
1662 c->output_position_index = loc;
1663 break;
1664 case VARYING_SLOT_PSIZ:
1665 c->output_point_size_index = loc;
1666 break;
1667 }
1668 }
1669 }
1670 }
1671
1672 /**
1673 * Sets up the mapping from nir_register to struct qreg *.
1674 *
1675 * Each nir_register gets a struct qreg per 32-bit component being stored.
1676 */
1677 static void
1678 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1679 {
1680 foreach_list_typed(nir_register, nir_reg, node, list) {
1681 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1682 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1683 array_len *
1684 nir_reg->num_components);
1685
1686 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1687
1688 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1689 qregs[i] = qir_get_temp(c);
1690 }
1691 }
1692
1693 static void
1694 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1695 {
1696 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1697 for (int i = 0; i < instr->def.num_components; i++)
1698 qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
1699
1700 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1701 }
1702
1703 static void
1704 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1705 {
1706 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1707
1708 /* QIR needs there to be *some* value, so pick 0 (same as for
1709 * ntq_setup_registers().
1710 */
1711 for (int i = 0; i < instr->def.num_components; i++)
1712 qregs[i] = qir_uniform_ui(c, 0);
1713 }
1714
1715 static void
1716 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1717 {
1718 assert(nir_src_as_uint(instr->src[0]) == 0);
1719
1720 /* Reads of the per-sample color need to be done in
1721 * order.
1722 */
1723 int sample_index = (nir_intrinsic_base(instr) -
1724 VC4_NIR_TLB_COLOR_READ_INPUT);
1725 for (int i = 0; i <= sample_index; i++) {
1726 if (c->color_reads[i].file == QFILE_NULL) {
1727 c->color_reads[i] =
1728 qir_TLB_COLOR_READ(c);
1729 }
1730 }
1731 ntq_store_dest(c, &instr->dest, 0,
1732 qir_MOV(c, c->color_reads[sample_index]));
1733 }
1734
1735 static void
1736 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1737 {
1738 assert(instr->num_components == 1);
1739 assert(nir_src_is_const(instr->src[0]) &&
1740 "vc4 doesn't support indirect inputs");
1741
1742 if (c->stage == QSTAGE_FRAG &&
1743 nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1744 ntq_emit_color_read(c, instr);
1745 return;
1746 }
1747
1748 uint32_t offset = nir_intrinsic_base(instr) +
1749 nir_src_as_uint(instr->src[0]);
1750 int comp = nir_intrinsic_component(instr);
1751 ntq_store_dest(c, &instr->dest, 0,
1752 qir_MOV(c, c->inputs[offset * 4 + comp]));
1753 }
1754
1755 static void
1756 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1757 {
1758 unsigned offset;
1759
1760 switch (instr->intrinsic) {
1761 case nir_intrinsic_load_uniform:
1762 assert(instr->num_components == 1);
1763 if (nir_src_is_const(instr->src[0])) {
1764 offset = nir_intrinsic_base(instr) +
1765 nir_src_as_uint(instr->src[0]);
1766 assert(offset % 4 == 0);
1767 /* We need dwords */
1768 offset = offset / 4;
1769 ntq_store_dest(c, &instr->dest, 0,
1770 qir_uniform(c, QUNIFORM_UNIFORM,
1771 offset));
1772 } else {
1773 ntq_store_dest(c, &instr->dest, 0,
1774 indirect_uniform_load(c, instr));
1775 }
1776 break;
1777
1778 case nir_intrinsic_load_ubo:
1779 assert(instr->num_components == 1);
1780 ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1781 break;
1782
1783 case nir_intrinsic_load_user_clip_plane:
1784 for (int i = 0; i < instr->num_components; i++) {
1785 ntq_store_dest(c, &instr->dest, i,
1786 qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1787 nir_intrinsic_ucp_id(instr) *
1788 4 + i));
1789 }
1790 break;
1791
1792 case nir_intrinsic_load_blend_const_color_r_float:
1793 case nir_intrinsic_load_blend_const_color_g_float:
1794 case nir_intrinsic_load_blend_const_color_b_float:
1795 case nir_intrinsic_load_blend_const_color_a_float:
1796 ntq_store_dest(c, &instr->dest, 0,
1797 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1798 (instr->intrinsic -
1799 nir_intrinsic_load_blend_const_color_r_float),
1800 0));
1801 break;
1802
1803 case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1804 ntq_store_dest(c, &instr->dest, 0,
1805 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1806 0));
1807 break;
1808
1809 case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1810 ntq_store_dest(c, &instr->dest, 0,
1811 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1812 0));
1813 break;
1814
1815 case nir_intrinsic_load_alpha_ref_float:
1816 ntq_store_dest(c, &instr->dest, 0,
1817 qir_uniform(c, QUNIFORM_ALPHA_REF, 0));
1818 break;
1819
1820 case nir_intrinsic_load_sample_mask_in:
1821 ntq_store_dest(c, &instr->dest, 0,
1822 qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1823 break;
1824
1825 case nir_intrinsic_load_front_face:
1826 /* The register contains 0 (front) or 1 (back), and we need to
1827 * turn it into a NIR bool where true means front.
1828 */
1829 ntq_store_dest(c, &instr->dest, 0,
1830 qir_ADD(c,
1831 qir_uniform_ui(c, -1),
1832 qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1833 break;
1834
1835 case nir_intrinsic_load_input:
1836 ntq_emit_load_input(c, instr);
1837 break;
1838
1839 case nir_intrinsic_store_output:
1840 assert(nir_src_is_const(instr->src[1]) &&
1841 "vc4 doesn't support indirect outputs");
1842 offset = nir_intrinsic_base(instr) +
1843 nir_src_as_uint(instr->src[1]);
1844
1845 /* MSAA color outputs are the only case where we have an
1846 * output that's not lowered to being a store of a single 32
1847 * bit value.
1848 */
1849 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1850 assert(offset == c->output_color_index);
1851 for (int i = 0; i < 4; i++) {
1852 c->sample_colors[i] =
1853 qir_MOV(c, ntq_get_src(c, instr->src[0],
1854 i));
1855 }
1856 } else {
1857 offset = offset * 4 + nir_intrinsic_component(instr);
1858 assert(instr->num_components == 1);
1859 c->outputs[offset] =
1860 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1861 c->num_outputs = MAX2(c->num_outputs, offset + 1);
1862 }
1863 break;
1864
1865 case nir_intrinsic_discard:
1866 if (c->execute.file != QFILE_NULL) {
1867 qir_SF(c, c->execute);
1868 qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1869 qir_uniform_ui(c, ~0));
1870 } else {
1871 qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1872 }
1873 break;
1874
1875 case nir_intrinsic_discard_if: {
1876 /* true (~0) if we're discarding */
1877 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1878
1879 if (c->execute.file != QFILE_NULL) {
1880 /* execute == 0 means the channel is active. Invert
1881 * the condition so that we can use zero as "executing
1882 * and discarding."
1883 */
1884 qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1885 qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1886 } else {
1887 qir_OR_dest(c, c->discard, c->discard,
1888 ntq_get_src(c, instr->src[0], 0));
1889 }
1890
1891 break;
1892 }
1893
1894 default:
1895 fprintf(stderr, "Unknown intrinsic: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 break;
1899 }
1900 }
1901
1902 /* Clears (activates) the execute flags for any channels whose jump target
1903 * matches this block.
1904 */
1905 static void
1906 ntq_activate_execute_for_block(struct vc4_compile *c)
1907 {
1908 qir_SF(c, qir_SUB(c,
1909 c->execute,
1910 qir_uniform_ui(c, c->cur_block->index)));
1911 qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1912 }
1913
1914 static void
1915 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1916 {
1917 if (!c->vc4->screen->has_control_flow) {
1918 fprintf(stderr,
1919 "IF statement support requires updated kernel.\n");
1920 return;
1921 }
1922
1923 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1924 bool empty_else_block =
1925 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1926 exec_list_is_empty(&nir_else_block->instr_list));
1927
1928 struct qblock *then_block = qir_new_block(c);
1929 struct qblock *after_block = qir_new_block(c);
1930 struct qblock *else_block;
1931 if (empty_else_block)
1932 else_block = after_block;
1933 else
1934 else_block = qir_new_block(c);
1935
1936 bool was_top_level = false;
1937 if (c->execute.file == QFILE_NULL) {
1938 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1939 was_top_level = true;
1940 }
1941
1942 /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1943 * 0) channels, and then update execute flags for those to point to
1944 * the ELSE block.
1945 */
1946 qir_SF(c, qir_OR(c,
1947 c->execute,
1948 ntq_get_src(c, if_stmt->condition, 0)));
1949 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1950 qir_uniform_ui(c, else_block->index));
1951
1952 /* Jump to ELSE if nothing is active for THEN, otherwise fall
1953 * through.
1954 */
1955 qir_SF(c, c->execute);
1956 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1957 qir_link_blocks(c->cur_block, else_block);
1958 qir_link_blocks(c->cur_block, then_block);
1959
1960 /* Process the THEN block. */
1961 qir_set_emit_block(c, then_block);
1962 ntq_emit_cf_list(c, &if_stmt->then_list);
1963
1964 if (!empty_else_block) {
1965 /* Handle the end of the THEN block. First, all currently
1966 * active channels update their execute flags to point to
1967 * ENDIF
1968 */
1969 qir_SF(c, c->execute);
1970 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1971 qir_uniform_ui(c, after_block->index));
1972
1973 /* If everything points at ENDIF, then jump there immediately. */
1974 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1975 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1976 qir_link_blocks(c->cur_block, after_block);
1977 qir_link_blocks(c->cur_block, else_block);
1978
1979 qir_set_emit_block(c, else_block);
1980 ntq_activate_execute_for_block(c);
1981 ntq_emit_cf_list(c, &if_stmt->else_list);
1982 }
1983
1984 qir_link_blocks(c->cur_block, after_block);
1985
1986 qir_set_emit_block(c, after_block);
1987 if (was_top_level) {
1988 c->execute = c->undef;
1989 c->last_top_block = c->cur_block;
1990 } else {
1991 ntq_activate_execute_for_block(c);
1992 }
1993 }
1994
1995 static void
1996 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1997 {
1998 struct qblock *jump_block;
1999 switch (jump->type) {
2000 case nir_jump_break:
2001 jump_block = c->loop_break_block;
2002 break;
2003 case nir_jump_continue:
2004 jump_block = c->loop_cont_block;
2005 break;
2006 default:
2007 unreachable("Unsupported jump type\n");
2008 }
2009
2010 qir_SF(c, c->execute);
2011 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
2012 qir_uniform_ui(c, jump_block->index));
2013
2014 /* Jump to the destination block if everyone has taken the jump. */
2015 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
2016 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2017 struct qblock *new_block = qir_new_block(c);
2018 qir_link_blocks(c->cur_block, jump_block);
2019 qir_link_blocks(c->cur_block, new_block);
2020 qir_set_emit_block(c, new_block);
2021 }
2022
2023 static void
2024 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2025 {
2026 switch (instr->type) {
2027 case nir_instr_type_alu:
2028 ntq_emit_alu(c, nir_instr_as_alu(instr));
2029 break;
2030
2031 case nir_instr_type_intrinsic:
2032 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2033 break;
2034
2035 case nir_instr_type_load_const:
2036 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2037 break;
2038
2039 case nir_instr_type_ssa_undef:
2040 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2041 break;
2042
2043 case nir_instr_type_tex:
2044 ntq_emit_tex(c, nir_instr_as_tex(instr));
2045 break;
2046
2047 case nir_instr_type_jump:
2048 ntq_emit_jump(c, nir_instr_as_jump(instr));
2049 break;
2050
2051 default:
2052 fprintf(stderr, "Unknown NIR instr type: ");
2053 nir_print_instr(instr, stderr);
2054 fprintf(stderr, "\n");
2055 abort();
2056 }
2057 }
2058
2059 static void
2060 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2061 {
2062 nir_foreach_instr(instr, block) {
2063 ntq_emit_instr(c, instr);
2064 }
2065 }
2066
2067 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2068
2069 static void
2070 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2071 {
2072 if (!c->vc4->screen->has_control_flow) {
2073 fprintf(stderr,
2074 "loop support requires updated kernel.\n");
2075 ntq_emit_cf_list(c, &loop->body);
2076 return;
2077 }
2078
2079 bool was_top_level = false;
2080 if (c->execute.file == QFILE_NULL) {
2081 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2082 was_top_level = true;
2083 }
2084
2085 struct qblock *save_loop_cont_block = c->loop_cont_block;
2086 struct qblock *save_loop_break_block = c->loop_break_block;
2087
2088 c->loop_cont_block = qir_new_block(c);
2089 c->loop_break_block = qir_new_block(c);
2090
2091 qir_link_blocks(c->cur_block, c->loop_cont_block);
2092 qir_set_emit_block(c, c->loop_cont_block);
2093 ntq_activate_execute_for_block(c);
2094
2095 ntq_emit_cf_list(c, &loop->body);
2096
2097 /* If anything had explicitly continued, or is here at the end of the
2098 * loop, then we need to loop again. SF updates are masked by the
2099 * instruction's condition, so we can do the OR of the two conditions
2100 * within SF.
2101 */
2102 qir_SF(c, c->execute);
2103 struct qinst *cont_check =
2104 qir_SUB_dest(c,
2105 c->undef,
2106 c->execute,
2107 qir_uniform_ui(c, c->loop_cont_block->index));
2108 cont_check->cond = QPU_COND_ZC;
2109 cont_check->sf = true;
2110
2111 qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2112 qir_link_blocks(c->cur_block, c->loop_cont_block);
2113 qir_link_blocks(c->cur_block, c->loop_break_block);
2114
2115 qir_set_emit_block(c, c->loop_break_block);
2116 if (was_top_level) {
2117 c->execute = c->undef;
2118 c->last_top_block = c->cur_block;
2119 } else {
2120 ntq_activate_execute_for_block(c);
2121 }
2122
2123 c->loop_break_block = save_loop_break_block;
2124 c->loop_cont_block = save_loop_cont_block;
2125 }
2126
2127 static void
2128 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2129 {
2130 fprintf(stderr, "FUNCTIONS not handled.\n");
2131 abort();
2132 }
2133
2134 static void
2135 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2136 {
2137 foreach_list_typed(nir_cf_node, node, node, list) {
2138 switch (node->type) {
2139 case nir_cf_node_block:
2140 ntq_emit_block(c, nir_cf_node_as_block(node));
2141 break;
2142
2143 case nir_cf_node_if:
2144 ntq_emit_if(c, nir_cf_node_as_if(node));
2145 break;
2146
2147 case nir_cf_node_loop:
2148 ntq_emit_loop(c, nir_cf_node_as_loop(node));
2149 break;
2150
2151 case nir_cf_node_function:
2152 ntq_emit_function(c, nir_cf_node_as_function(node));
2153 break;
2154
2155 default:
2156 fprintf(stderr, "Unknown NIR node type\n");
2157 abort();
2158 }
2159 }
2160 }
2161
2162 static void
2163 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2164 {
2165 ntq_setup_registers(c, &impl->registers);
2166 ntq_emit_cf_list(c, &impl->body);
2167 }
2168
2169 static void
2170 nir_to_qir(struct vc4_compile *c)
2171 {
2172 if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2173 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2174
2175 ntq_setup_inputs(c);
2176 ntq_setup_outputs(c);
2177
2178 /* Find the main function and emit the body. */
2179 nir_foreach_function(function, c->s) {
2180 assert(strcmp(function->name, "main") == 0);
2181 assert(function->impl);
2182 ntq_emit_impl(c, function->impl);
2183 }
2184 }
2185
2186 static const nir_shader_compiler_options nir_options = {
2187 .lower_all_io_to_temps = true,
2188 .lower_extract_byte = true,
2189 .lower_extract_word = true,
2190 .lower_fdiv = true,
2191 .lower_ffma = true,
2192 .lower_flrp32 = true,
2193 .lower_fpow = true,
2194 .lower_fsat = true,
2195 .lower_fsqrt = true,
2196 .lower_ldexp = true,
2197 .lower_negate = true,
2198 .max_unroll_iterations = 32,
2199 };
2200
2201 const void *
2202 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2203 enum pipe_shader_ir ir,
2204 enum pipe_shader_type shader)
2205 {
2206 return &nir_options;
2207 }
2208
2209 static int
2210 count_nir_instrs(nir_shader *nir)
2211 {
2212 int count = 0;
2213 nir_foreach_function(function, nir) {
2214 if (!function->impl)
2215 continue;
2216 nir_foreach_block(block, function->impl) {
2217 nir_foreach_instr(instr, block)
2218 count++;
2219 }
2220 }
2221 return count;
2222 }
2223
2224 static struct vc4_compile *
2225 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2226 struct vc4_key *key, bool fs_threaded)
2227 {
2228 struct vc4_compile *c = qir_compile_init();
2229
2230 c->vc4 = vc4;
2231 c->stage = stage;
2232 c->shader_state = &key->shader_state->base;
2233 c->program_id = key->shader_state->program_id;
2234 c->variant_id =
2235 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2236 c->fs_threaded = fs_threaded;
2237
2238 c->key = key;
2239 switch (stage) {
2240 case QSTAGE_FRAG:
2241 c->fs_key = (struct vc4_fs_key *)key;
2242 if (c->fs_key->is_points) {
2243 c->point_x = emit_fragment_varying(c, ~0, 0);
2244 c->point_y = emit_fragment_varying(c, ~0, 0);
2245 } else if (c->fs_key->is_lines) {
2246 c->line_x = emit_fragment_varying(c, ~0, 0);
2247 }
2248 break;
2249 case QSTAGE_VERT:
2250 c->vs_key = (struct vc4_vs_key *)key;
2251 break;
2252 case QSTAGE_COORD:
2253 c->vs_key = (struct vc4_vs_key *)key;
2254 break;
2255 }
2256
2257 c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2258
2259 if (stage == QSTAGE_FRAG) {
2260 if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) {
2261 NIR_PASS_V(c->s, nir_lower_alpha_test,
2262 c->fs_key->alpha_test_func,
2263 c->fs_key->sample_alpha_to_one &&
2264 c->fs_key->msaa);
2265 }
2266 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2267 }
2268
2269 struct nir_lower_tex_options tex_options = {
2270 /* We would need to implement txs, but we don't want the
2271 * int/float conversions
2272 */
2273 .lower_rect = false,
2274
2275 .lower_txp = ~0,
2276
2277 /* Apply swizzles to all samplers. */
2278 .swizzle_result = ~0,
2279 };
2280
2281 /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2282 * The format swizzling applies before sRGB decode, and
2283 * ARB_texture_swizzle is the last thing before returning the sample.
2284 */
2285 for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2286 enum pipe_format format = c->key->tex[i].format;
2287
2288 if (!format)
2289 continue;
2290
2291 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2292
2293 for (int j = 0; j < 4; j++) {
2294 uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2295
2296 if (arb_swiz <= 3) {
2297 tex_options.swizzles[i][j] =
2298 format_swizzle[arb_swiz];
2299 } else {
2300 tex_options.swizzles[i][j] = arb_swiz;
2301 }
2302 }
2303
2304 if (util_format_is_srgb(format))
2305 tex_options.lower_srgb |= (1 << i);
2306 }
2307
2308 NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2309
2310 if (c->fs_key && c->fs_key->light_twoside)
2311 NIR_PASS_V(c->s, nir_lower_two_sided_color);
2312
2313 if (c->vs_key && c->vs_key->clamp_color)
2314 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
2315
2316 if (c->key->ucp_enables) {
2317 if (stage == QSTAGE_FRAG) {
2318 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
2319 } else {
2320 NIR_PASS_V(c->s, nir_lower_clip_vs,
2321 c->key->ucp_enables, false);
2322 NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2323 nir_var_shader_out);
2324 }
2325 }
2326
2327 /* FS input scalarizing must happen after nir_lower_two_sided_color,
2328 * which only handles a vec4 at a time. Similarly, VS output
2329 * scalarizing must happen after nir_lower_clip_vs.
2330 */
2331 if (c->stage == QSTAGE_FRAG)
2332 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2333 else
2334 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2335
2336 NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2337 NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2338 NIR_PASS_V(c->s, nir_lower_idiv);
2339
2340 vc4_optimize_nir(c->s);
2341
2342 NIR_PASS_V(c->s, nir_lower_bool_to_int32);
2343
2344 NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2345
2346 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2347 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2348 qir_get_stage_name(c->stage),
2349 c->program_id, c->variant_id,
2350 count_nir_instrs(c->s));
2351 }
2352
2353 if (vc4_debug & VC4_DEBUG_NIR) {
2354 fprintf(stderr, "%s prog %d/%d NIR:\n",
2355 qir_get_stage_name(c->stage),
2356 c->program_id, c->variant_id);
2357 nir_print_shader(c->s, stderr);
2358 }
2359
2360 nir_to_qir(c);
2361
2362 switch (stage) {
2363 case QSTAGE_FRAG:
2364 /* FS threading requires that the thread execute
2365 * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2366 * (with no other THRSW afterwards, obviously). If we didn't
2367 * fetch a texture at a top level block, this wouldn't be
2368 * true.
2369 */
2370 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2371 c->failed = true;
2372 return c;
2373 }
2374
2375 emit_frag_end(c);
2376 break;
2377 case QSTAGE_VERT:
2378 emit_vert_end(c,
2379 c->vs_key->fs_inputs->input_slots,
2380 c->vs_key->fs_inputs->num_inputs);
2381 break;
2382 case QSTAGE_COORD:
2383 emit_coord_end(c);
2384 break;
2385 }
2386
2387 if (vc4_debug & VC4_DEBUG_QIR) {
2388 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2389 qir_get_stage_name(c->stage),
2390 c->program_id, c->variant_id);
2391 qir_dump(c);
2392 fprintf(stderr, "\n");
2393 }
2394
2395 qir_optimize(c);
2396 qir_lower_uniforms(c);
2397
2398 qir_schedule_instructions(c);
2399 qir_emit_uniform_stream_resets(c);
2400
2401 if (vc4_debug & VC4_DEBUG_QIR) {
2402 fprintf(stderr, "%s prog %d/%d QIR:\n",
2403 qir_get_stage_name(c->stage),
2404 c->program_id, c->variant_id);
2405 qir_dump(c);
2406 fprintf(stderr, "\n");
2407 }
2408
2409 qir_reorder_uniforms(c);
2410 vc4_generate_code(vc4, c);
2411
2412 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2413 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2414 qir_get_stage_name(c->stage),
2415 c->program_id, c->variant_id,
2416 c->qpu_inst_count);
2417 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2418 qir_get_stage_name(c->stage),
2419 c->program_id, c->variant_id,
2420 c->num_uniforms);
2421 }
2422
2423 ralloc_free(c->s);
2424
2425 return c;
2426 }
2427
2428 static void *
2429 vc4_shader_state_create(struct pipe_context *pctx,
2430 const struct pipe_shader_state *cso)
2431 {
2432 struct vc4_context *vc4 = vc4_context(pctx);
2433 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2434 if (!so)
2435 return NULL;
2436
2437 so->program_id = vc4->next_uncompiled_program_id++;
2438
2439 nir_shader *s;
2440
2441 if (cso->type == PIPE_SHADER_IR_NIR) {
2442 /* The backend takes ownership of the NIR shader on state
2443 * creation.
2444 */
2445 s = cso->ir.nir;
2446 } else {
2447 assert(cso->type == PIPE_SHADER_IR_TGSI);
2448
2449 if (vc4_debug & VC4_DEBUG_TGSI) {
2450 fprintf(stderr, "prog %d TGSI:\n",
2451 so->program_id);
2452 tgsi_dump(cso->tokens, 0);
2453 fprintf(stderr, "\n");
2454 }
2455 s = tgsi_to_nir(cso->tokens, pctx->screen);
2456 }
2457
2458 NIR_PASS_V(s, nir_lower_io, nir_var_all, type_size,
2459 (nir_lower_io_options)0);
2460
2461 NIR_PASS_V(s, nir_lower_regs_to_ssa);
2462 NIR_PASS_V(s, nir_normalize_cubemap_coords);
2463
2464 NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2465
2466 vc4_optimize_nir(s);
2467
2468 NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp);
2469
2470 /* Garbage collect dead instructions */
2471 nir_sweep(s);
2472
2473 so->base.type = PIPE_SHADER_IR_NIR;
2474 so->base.ir.nir = s;
2475
2476 if (vc4_debug & VC4_DEBUG_NIR) {
2477 fprintf(stderr, "%s prog %d NIR:\n",
2478 gl_shader_stage_name(s->info.stage),
2479 so->program_id);
2480 nir_print_shader(s, stderr);
2481 fprintf(stderr, "\n");
2482 }
2483
2484 return so;
2485 }
2486
2487 static void
2488 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2489 struct vc4_compile *c)
2490 {
2491 int count = c->num_uniforms;
2492 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2493
2494 uinfo->count = count;
2495 uinfo->data = ralloc_array(shader, uint32_t, count);
2496 memcpy(uinfo->data, c->uniform_data,
2497 count * sizeof(*uinfo->data));
2498 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2499 memcpy(uinfo->contents, c->uniform_contents,
2500 count * sizeof(*uinfo->contents));
2501 uinfo->num_texture_samples = c->num_texture_samples;
2502
2503 vc4_set_shader_uniform_dirty_flags(shader);
2504 }
2505
2506 static void
2507 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2508 struct vc4_compiled_shader *shader)
2509 {
2510 struct vc4_fs_inputs inputs;
2511
2512 memset(&inputs, 0, sizeof(inputs));
2513 inputs.input_slots = ralloc_array(shader,
2514 struct vc4_varying_slot,
2515 c->num_input_slots);
2516
2517 bool input_live[c->num_input_slots];
2518
2519 memset(input_live, 0, sizeof(input_live));
2520 qir_for_each_inst_inorder(inst, c) {
2521 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2522 if (inst->src[i].file == QFILE_VARY)
2523 input_live[inst->src[i].index] = true;
2524 }
2525 }
2526
2527 for (int i = 0; i < c->num_input_slots; i++) {
2528 struct vc4_varying_slot *slot = &c->input_slots[i];
2529
2530 if (!input_live[i])
2531 continue;
2532
2533 /* Skip non-VS-output inputs. */
2534 if (slot->slot == (uint8_t)~0)
2535 continue;
2536
2537 if (slot->slot == VARYING_SLOT_COL0 ||
2538 slot->slot == VARYING_SLOT_COL1 ||
2539 slot->slot == VARYING_SLOT_BFC0 ||
2540 slot->slot == VARYING_SLOT_BFC1) {
2541 shader->color_inputs |= (1 << inputs.num_inputs);
2542 }
2543
2544 inputs.input_slots[inputs.num_inputs] = *slot;
2545 inputs.num_inputs++;
2546 }
2547 shader->num_inputs = inputs.num_inputs;
2548
2549 /* Add our set of inputs to the set of all inputs seen. This way, we
2550 * can have a single pointer that identifies an FS inputs set,
2551 * allowing VS to avoid recompiling when the FS is recompiled (or a
2552 * new one is bound using separate shader objects) but the inputs
2553 * don't change.
2554 */
2555 struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2556 if (entry) {
2557 shader->fs_inputs = entry->key;
2558 ralloc_free(inputs.input_slots);
2559 } else {
2560 struct vc4_fs_inputs *alloc_inputs;
2561
2562 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2563 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2564 ralloc_steal(alloc_inputs, inputs.input_slots);
2565 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2566
2567 shader->fs_inputs = alloc_inputs;
2568 }
2569 }
2570
2571 static struct vc4_compiled_shader *
2572 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2573 struct vc4_key *key)
2574 {
2575 struct hash_table *ht;
2576 uint32_t key_size;
2577 bool try_threading;
2578
2579 if (stage == QSTAGE_FRAG) {
2580 ht = vc4->fs_cache;
2581 key_size = sizeof(struct vc4_fs_key);
2582 try_threading = vc4->screen->has_threaded_fs;
2583 } else {
2584 ht = vc4->vs_cache;
2585 key_size = sizeof(struct vc4_vs_key);
2586 try_threading = false;
2587 }
2588
2589 struct vc4_compiled_shader *shader;
2590 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2591 if (entry)
2592 return entry->data;
2593
2594 struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2595 /* If the FS failed to compile threaded, fall back to single threaded. */
2596 if (try_threading && c->failed) {
2597 qir_compile_destroy(c);
2598 c = vc4_shader_ntq(vc4, stage, key, false);
2599 }
2600
2601 shader = rzalloc(NULL, struct vc4_compiled_shader);
2602
2603 shader->program_id = vc4->next_compiled_program_id++;
2604 if (stage == QSTAGE_FRAG) {
2605 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2606
2607 /* Note: the temporary clone in c->s has been freed. */
2608 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2609 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2610 shader->disable_early_z = true;
2611 } else {
2612 shader->num_inputs = c->num_inputs;
2613
2614 shader->vattr_offsets[0] = 0;
2615 for (int i = 0; i < 8; i++) {
2616 shader->vattr_offsets[i + 1] =
2617 shader->vattr_offsets[i] + c->vattr_sizes[i];
2618
2619 if (c->vattr_sizes[i])
2620 shader->vattrs_live |= (1 << i);
2621 }
2622 }
2623
2624 shader->failed = c->failed;
2625 if (c->failed) {
2626 shader->failed = true;
2627 } else {
2628 copy_uniform_state_to_shader(shader, c);
2629 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2630 c->qpu_inst_count *
2631 sizeof(uint64_t));
2632 }
2633
2634 shader->fs_threaded = c->fs_threaded;
2635
2636 if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2637 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2638 qir_get_stage_name(c->stage),
2639 c->program_id, c->variant_id,
2640 1 + shader->fs_threaded);
2641 }
2642
2643 qir_compile_destroy(c);
2644
2645 struct vc4_key *dup_key;
2646 dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2647 memcpy(dup_key, key, key_size);
2648 _mesa_hash_table_insert(ht, dup_key, shader);
2649
2650 return shader;
2651 }
2652
2653 static void
2654 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2655 struct vc4_texture_stateobj *texstate)
2656 {
2657 for (int i = 0; i < texstate->num_textures; i++) {
2658 struct pipe_sampler_view *sampler = texstate->textures[i];
2659 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2660 struct pipe_sampler_state *sampler_state =
2661 texstate->samplers[i];
2662
2663 if (!sampler)
2664 continue;
2665
2666 key->tex[i].format = sampler->format;
2667 key->tex[i].swizzle[0] = sampler->swizzle_r;
2668 key->tex[i].swizzle[1] = sampler->swizzle_g;
2669 key->tex[i].swizzle[2] = sampler->swizzle_b;
2670 key->tex[i].swizzle[3] = sampler->swizzle_a;
2671
2672 if (sampler->texture->nr_samples > 1) {
2673 key->tex[i].msaa_width = sampler->texture->width0;
2674 key->tex[i].msaa_height = sampler->texture->height0;
2675 } else if (sampler){
2676 key->tex[i].compare_mode = sampler_state->compare_mode;
2677 key->tex[i].compare_func = sampler_state->compare_func;
2678 key->tex[i].wrap_s = sampler_state->wrap_s;
2679 key->tex[i].wrap_t = sampler_state->wrap_t;
2680 key->tex[i].force_first_level =
2681 vc4_sampler->force_first_level;
2682 }
2683 }
2684
2685 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2686 }
2687
2688 static void
2689 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2690 {
2691 struct vc4_job *job = vc4->job;
2692 struct vc4_fs_key local_key;
2693 struct vc4_fs_key *key = &local_key;
2694
2695 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2696 VC4_DIRTY_BLEND |
2697 VC4_DIRTY_FRAMEBUFFER |
2698 VC4_DIRTY_ZSA |
2699 VC4_DIRTY_RASTERIZER |
2700 VC4_DIRTY_SAMPLE_MASK |
2701 VC4_DIRTY_FRAGTEX |
2702 VC4_DIRTY_UNCOMPILED_FS |
2703 VC4_DIRTY_UBO_1_SIZE))) {
2704 return;
2705 }
2706
2707 memset(key, 0, sizeof(*key));
2708 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2709 key->base.shader_state = vc4->prog.bind_fs;
2710 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2711 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2712 prim_mode <= PIPE_PRIM_LINE_STRIP);
2713 key->blend = vc4->blend->rt[0];
2714 if (vc4->blend->logicop_enable) {
2715 key->logicop_func = vc4->blend->logicop_func;
2716 } else {
2717 key->logicop_func = PIPE_LOGICOP_COPY;
2718 }
2719 if (job->msaa) {
2720 key->msaa = vc4->rasterizer->base.multisample;
2721 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2722 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2723 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2724 }
2725
2726 if (vc4->framebuffer.cbufs[0])
2727 key->color_format = vc4->framebuffer.cbufs[0]->format;
2728
2729 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2730 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2731 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2732 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2733 key->stencil_enabled);
2734 if (vc4->zsa->base.alpha.enabled)
2735 key->alpha_test_func = vc4->zsa->base.alpha.func;
2736 else
2737 key->alpha_test_func = COMPARE_FUNC_ALWAYS;
2738
2739 if (key->is_points) {
2740 key->point_sprite_mask =
2741 vc4->rasterizer->base.sprite_coord_enable;
2742 key->point_coord_upper_left =
2743 (vc4->rasterizer->base.sprite_coord_mode ==
2744 PIPE_SPRITE_COORD_UPPER_LEFT);
2745 }
2746
2747 key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2748 key->light_twoside = vc4->rasterizer->base.light_twoside;
2749
2750 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2751 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2752 if (vc4->prog.fs == old_fs)
2753 return;
2754
2755 vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2756
2757 if (vc4->rasterizer->base.flatshade &&
2758 (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2759 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2760 }
2761
2762 if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2763 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2764 }
2765
2766 static void
2767 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2768 {
2769 struct vc4_vs_key local_key;
2770 struct vc4_vs_key *key = &local_key;
2771
2772 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2773 VC4_DIRTY_RASTERIZER |
2774 VC4_DIRTY_VERTTEX |
2775 VC4_DIRTY_VTXSTATE |
2776 VC4_DIRTY_UNCOMPILED_VS |
2777 VC4_DIRTY_FS_INPUTS))) {
2778 return;
2779 }
2780
2781 memset(key, 0, sizeof(*key));
2782 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2783 key->base.shader_state = vc4->prog.bind_vs;
2784 key->fs_inputs = vc4->prog.fs->fs_inputs;
2785 key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
2786
2787 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2788 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2789
2790 key->per_vertex_point_size =
2791 (prim_mode == PIPE_PRIM_POINTS &&
2792 vc4->rasterizer->base.point_size_per_vertex);
2793
2794 struct vc4_compiled_shader *vs =
2795 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2796 if (vs != vc4->prog.vs) {
2797 vc4->prog.vs = vs;
2798 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2799 }
2800
2801 key->is_coord = true;
2802 /* Coord shaders don't care what the FS inputs are. */
2803 key->fs_inputs = NULL;
2804 struct vc4_compiled_shader *cs =
2805 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2806 if (cs != vc4->prog.cs) {
2807 vc4->prog.cs = cs;
2808 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2809 }
2810 }
2811
2812 bool
2813 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2814 {
2815 vc4_update_compiled_fs(vc4, prim_mode);
2816 vc4_update_compiled_vs(vc4, prim_mode);
2817
2818 return !(vc4->prog.cs->failed ||
2819 vc4->prog.vs->failed ||
2820 vc4->prog.fs->failed);
2821 }
2822
2823 static uint32_t
2824 fs_cache_hash(const void *key)
2825 {
2826 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2827 }
2828
2829 static uint32_t
2830 vs_cache_hash(const void *key)
2831 {
2832 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2833 }
2834
2835 static bool
2836 fs_cache_compare(const void *key1, const void *key2)
2837 {
2838 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2839 }
2840
2841 static bool
2842 vs_cache_compare(const void *key1, const void *key2)
2843 {
2844 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2845 }
2846
2847 static uint32_t
2848 fs_inputs_hash(const void *key)
2849 {
2850 const struct vc4_fs_inputs *inputs = key;
2851
2852 return _mesa_hash_data(inputs->input_slots,
2853 sizeof(*inputs->input_slots) *
2854 inputs->num_inputs);
2855 }
2856
2857 static bool
2858 fs_inputs_compare(const void *key1, const void *key2)
2859 {
2860 const struct vc4_fs_inputs *inputs1 = key1;
2861 const struct vc4_fs_inputs *inputs2 = key2;
2862
2863 return (inputs1->num_inputs == inputs2->num_inputs &&
2864 memcmp(inputs1->input_slots,
2865 inputs2->input_slots,
2866 sizeof(*inputs1->input_slots) *
2867 inputs1->num_inputs) == 0);
2868 }
2869
2870 static void
2871 delete_from_cache_if_matches(struct hash_table *ht,
2872 struct vc4_compiled_shader **last_compile,
2873 struct hash_entry *entry,
2874 struct vc4_uncompiled_shader *so)
2875 {
2876 const struct vc4_key *key = entry->key;
2877
2878 if (key->shader_state == so) {
2879 struct vc4_compiled_shader *shader = entry->data;
2880 _mesa_hash_table_remove(ht, entry);
2881 vc4_bo_unreference(&shader->bo);
2882
2883 if (shader == *last_compile)
2884 *last_compile = NULL;
2885
2886 ralloc_free(shader);
2887 }
2888 }
2889
2890 static void
2891 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2892 {
2893 struct vc4_context *vc4 = vc4_context(pctx);
2894 struct vc4_uncompiled_shader *so = hwcso;
2895
2896 hash_table_foreach(vc4->fs_cache, entry) {
2897 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2898 entry, so);
2899 }
2900 hash_table_foreach(vc4->vs_cache, entry) {
2901 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2902 entry, so);
2903 }
2904
2905 ralloc_free(so->base.ir.nir);
2906 free(so);
2907 }
2908
2909 static void
2910 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2911 {
2912 struct vc4_context *vc4 = vc4_context(pctx);
2913 vc4->prog.bind_fs = hwcso;
2914 vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2915 }
2916
2917 static void
2918 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2919 {
2920 struct vc4_context *vc4 = vc4_context(pctx);
2921 vc4->prog.bind_vs = hwcso;
2922 vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2923 }
2924
2925 void
2926 vc4_program_init(struct pipe_context *pctx)
2927 {
2928 struct vc4_context *vc4 = vc4_context(pctx);
2929
2930 pctx->create_vs_state = vc4_shader_state_create;
2931 pctx->delete_vs_state = vc4_shader_state_delete;
2932
2933 pctx->create_fs_state = vc4_shader_state_create;
2934 pctx->delete_fs_state = vc4_shader_state_delete;
2935
2936 pctx->bind_fs_state = vc4_fp_state_bind;
2937 pctx->bind_vs_state = vc4_vp_state_bind;
2938
2939 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2940 fs_cache_compare);
2941 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2942 vs_cache_compare);
2943 vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2944 fs_inputs_compare);
2945 }
2946
2947 void
2948 vc4_program_fini(struct pipe_context *pctx)
2949 {
2950 struct vc4_context *vc4 = vc4_context(pctx);
2951
2952 hash_table_foreach(vc4->fs_cache, entry) {
2953 struct vc4_compiled_shader *shader = entry->data;
2954 vc4_bo_unreference(&shader->bo);
2955 ralloc_free(shader);
2956 _mesa_hash_table_remove(vc4->fs_cache, entry);
2957 }
2958
2959 hash_table_foreach(vc4->vs_cache, entry) {
2960 struct vc4_compiled_shader *shader = entry->data;
2961 vc4_bo_unreference(&shader->bo);
2962 ralloc_free(shader);
2963 _mesa_hash_table_remove(vc4->vs_cache, entry);
2964 }
2965 }