vc4: Implement live intervals using a CFG.
[mesa.git] / src / gallium / drivers / vc4 / vc4_register_allocate.c
1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25 #include "util/register_allocate.h"
26 #include "vc4_context.h"
27 #include "vc4_qir.h"
28 #include "vc4_qpu.h"
29
30 #define QPU_R(file, index) { QPU_MUX_##file, index }
31
32 static const struct qpu_reg vc4_regs[] = {
33 { QPU_MUX_R0, 0},
34 { QPU_MUX_R1, 0},
35 { QPU_MUX_R2, 0},
36 { QPU_MUX_R3, 0},
37 { QPU_MUX_R4, 0},
38 QPU_R(A, 0),
39 QPU_R(B, 0),
40 QPU_R(A, 1),
41 QPU_R(B, 1),
42 QPU_R(A, 2),
43 QPU_R(B, 2),
44 QPU_R(A, 3),
45 QPU_R(B, 3),
46 QPU_R(A, 4),
47 QPU_R(B, 4),
48 QPU_R(A, 5),
49 QPU_R(B, 5),
50 QPU_R(A, 6),
51 QPU_R(B, 6),
52 QPU_R(A, 7),
53 QPU_R(B, 7),
54 QPU_R(A, 8),
55 QPU_R(B, 8),
56 QPU_R(A, 9),
57 QPU_R(B, 9),
58 QPU_R(A, 10),
59 QPU_R(B, 10),
60 QPU_R(A, 11),
61 QPU_R(B, 11),
62 QPU_R(A, 12),
63 QPU_R(B, 12),
64 QPU_R(A, 13),
65 QPU_R(B, 13),
66 QPU_R(A, 14),
67 QPU_R(B, 14),
68 QPU_R(A, 15),
69 QPU_R(B, 15),
70 QPU_R(A, 16),
71 QPU_R(B, 16),
72 QPU_R(A, 17),
73 QPU_R(B, 17),
74 QPU_R(A, 18),
75 QPU_R(B, 18),
76 QPU_R(A, 19),
77 QPU_R(B, 19),
78 QPU_R(A, 20),
79 QPU_R(B, 20),
80 QPU_R(A, 21),
81 QPU_R(B, 21),
82 QPU_R(A, 22),
83 QPU_R(B, 22),
84 QPU_R(A, 23),
85 QPU_R(B, 23),
86 QPU_R(A, 24),
87 QPU_R(B, 24),
88 QPU_R(A, 25),
89 QPU_R(B, 25),
90 QPU_R(A, 26),
91 QPU_R(B, 26),
92 QPU_R(A, 27),
93 QPU_R(B, 27),
94 QPU_R(A, 28),
95 QPU_R(B, 28),
96 QPU_R(A, 29),
97 QPU_R(B, 29),
98 QPU_R(A, 30),
99 QPU_R(B, 30),
100 QPU_R(A, 31),
101 QPU_R(B, 31),
102 };
103 #define ACC_INDEX 0
104 #define AB_INDEX (ACC_INDEX + 5)
105
106 static void
107 vc4_alloc_reg_set(struct vc4_context *vc4)
108 {
109 assert(vc4_regs[AB_INDEX].addr == 0);
110 assert(vc4_regs[AB_INDEX + 1].addr == 0);
111 STATIC_ASSERT(ARRAY_SIZE(vc4_regs) == AB_INDEX + 64);
112
113 if (vc4->regs)
114 return;
115
116 vc4->regs = ra_alloc_reg_set(vc4, ARRAY_SIZE(vc4_regs), true);
117
118 vc4->reg_class_any = ra_alloc_reg_class(vc4->regs);
119 vc4->reg_class_a_or_b_or_acc = ra_alloc_reg_class(vc4->regs);
120 vc4->reg_class_r4_or_a = ra_alloc_reg_class(vc4->regs);
121 vc4->reg_class_a = ra_alloc_reg_class(vc4->regs);
122 for (uint32_t i = 0; i < ARRAY_SIZE(vc4_regs); i++) {
123 /* Reserve ra31/rb31 for spilling fixup_raddr_conflict() in
124 * vc4_qpu_emit.c
125 */
126 if (vc4_regs[i].addr == 31)
127 continue;
128
129 /* R4 can't be written as a general purpose register. (it's
130 * TMU_NOSWAP as a write address).
131 */
132 if (vc4_regs[i].mux == QPU_MUX_R4) {
133 ra_class_add_reg(vc4->regs, vc4->reg_class_r4_or_a, i);
134 ra_class_add_reg(vc4->regs, vc4->reg_class_any, i);
135 continue;
136 }
137
138 ra_class_add_reg(vc4->regs, vc4->reg_class_any, i);
139 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b_or_acc, i);
140 }
141
142 for (uint32_t i = AB_INDEX; i < AB_INDEX + 64; i += 2) {
143 ra_class_add_reg(vc4->regs, vc4->reg_class_a, i);
144 ra_class_add_reg(vc4->regs, vc4->reg_class_r4_or_a, i);
145 }
146
147 ra_set_finalize(vc4->regs, NULL);
148 }
149
150 struct node_to_temp_map {
151 uint32_t temp;
152 uint32_t priority;
153 };
154
155 static int
156 node_to_temp_priority(const void *in_a, const void *in_b)
157 {
158 const struct node_to_temp_map *a = in_a;
159 const struct node_to_temp_map *b = in_b;
160
161 return a->priority - b->priority;
162 }
163
164 #define CLASS_BIT_A (1 << 0)
165 #define CLASS_BIT_B_OR_ACC (1 << 1)
166 #define CLASS_BIT_R4 (1 << 2)
167
168 /**
169 * Returns a mapping from QFILE_TEMP indices to struct qpu_regs.
170 *
171 * The return value should be freed by the caller.
172 */
173 struct qpu_reg *
174 vc4_register_allocate(struct vc4_context *vc4, struct vc4_compile *c)
175 {
176 struct node_to_temp_map map[c->num_temps];
177 uint32_t temp_to_node[c->num_temps];
178 uint8_t class_bits[c->num_temps];
179 struct qpu_reg *temp_registers = calloc(c->num_temps,
180 sizeof(*temp_registers));
181
182 /* If things aren't ever written (undefined values), just read from
183 * r0.
184 */
185 for (uint32_t i = 0; i < c->num_temps; i++)
186 temp_registers[i] = qpu_rn(0);
187
188 vc4_alloc_reg_set(vc4);
189
190 struct ra_graph *g = ra_alloc_interference_graph(vc4->regs,
191 c->num_temps);
192
193 /* Compute the live ranges so we can figure out interference. */
194 qir_calculate_live_intervals(c);
195
196 for (uint32_t i = 0; i < c->num_temps; i++) {
197 map[i].temp = i;
198 map[i].priority = c->temp_end[i] - c->temp_start[i];
199 }
200 qsort(map, c->num_temps, sizeof(map[0]), node_to_temp_priority);
201 for (uint32_t i = 0; i < c->num_temps; i++) {
202 temp_to_node[map[i].temp] = i;
203 }
204
205 /* Figure out our register classes and preallocated registers. We
206 * start with any temp being able to be in any file, then instructions
207 * incrementally remove bits that the temp definitely can't be in.
208 */
209 memset(class_bits,
210 CLASS_BIT_A | CLASS_BIT_B_OR_ACC | CLASS_BIT_R4,
211 sizeof(class_bits));
212
213 int ip = 0;
214 qir_for_each_inst_inorder(inst, c) {
215 if (qir_writes_r4(inst)) {
216 /* This instruction writes r4 (and optionally moves
217 * its result to a temp), so nothing else can be
218 * stored in r4 across it.
219 */
220 for (int i = 0; i < c->num_temps; i++) {
221 if (c->temp_start[i] < ip && c->temp_end[i] > ip)
222 class_bits[i] &= ~CLASS_BIT_R4;
223 }
224 } else {
225 /* R4 can't be written as a general purpose
226 * register. (it's TMU_NOSWAP as a write address).
227 */
228 if (inst->dst.file == QFILE_TEMP)
229 class_bits[inst->dst.index] &= ~CLASS_BIT_R4;
230 }
231
232 switch (inst->op) {
233 case QOP_FRAG_Z:
234 ra_set_node_reg(g, temp_to_node[inst->dst.index],
235 AB_INDEX + QPU_R_FRAG_PAYLOAD_ZW * 2 + 1);
236 break;
237
238 case QOP_FRAG_W:
239 ra_set_node_reg(g, temp_to_node[inst->dst.index],
240 AB_INDEX + QPU_R_FRAG_PAYLOAD_ZW * 2);
241 break;
242
243 default:
244 break;
245 }
246
247 if (inst->dst.pack && !qir_is_mul(inst)) {
248 /* The non-MUL pack flags require an A-file dst
249 * register.
250 */
251 class_bits[inst->dst.index] &= CLASS_BIT_A;
252 }
253
254 /* Apply restrictions for src unpacks. The integer unpacks
255 * can only be done from regfile A, while float unpacks can be
256 * either A or R4.
257 */
258 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
259 if (inst->src[i].file == QFILE_TEMP &&
260 inst->src[i].pack) {
261 if (qir_is_float_input(inst)) {
262 class_bits[inst->src[i].index] &=
263 CLASS_BIT_A | CLASS_BIT_R4;
264 } else {
265 class_bits[inst->src[i].index] &=
266 CLASS_BIT_A;
267 }
268 }
269 }
270
271 ip++;
272 }
273
274 for (uint32_t i = 0; i < c->num_temps; i++) {
275 int node = temp_to_node[i];
276
277 switch (class_bits[i]) {
278 case CLASS_BIT_A | CLASS_BIT_B_OR_ACC | CLASS_BIT_R4:
279 ra_set_node_class(g, node, vc4->reg_class_any);
280 break;
281 case CLASS_BIT_A | CLASS_BIT_B_OR_ACC:
282 ra_set_node_class(g, node, vc4->reg_class_a_or_b_or_acc);
283 break;
284 case CLASS_BIT_A | CLASS_BIT_R4:
285 ra_set_node_class(g, node, vc4->reg_class_r4_or_a);
286 break;
287 case CLASS_BIT_A:
288 ra_set_node_class(g, node, vc4->reg_class_a);
289 break;
290 default:
291 fprintf(stderr, "temp %d: bad class bits: 0x%x\n",
292 i, class_bits[i]);
293 abort();
294 break;
295 }
296 }
297
298 for (uint32_t i = 0; i < c->num_temps; i++) {
299 for (uint32_t j = i + 1; j < c->num_temps; j++) {
300 if (!(c->temp_start[i] >= c->temp_end[j] ||
301 c->temp_start[j] >= c->temp_end[i])) {
302 ra_add_node_interference(g,
303 temp_to_node[i],
304 temp_to_node[j]);
305 }
306 }
307 }
308
309 bool ok = ra_allocate(g);
310 if (!ok) {
311 fprintf(stderr, "Failed to register allocate:\n");
312 qir_dump(c);
313 abort();
314 }
315
316 for (uint32_t i = 0; i < c->num_temps; i++) {
317 temp_registers[i] = vc4_regs[ra_get_node_reg(g, temp_to_node[i])];
318
319 /* If the value's never used, just write to the NOP register
320 * for clarity in debug output.
321 */
322 if (c->temp_start[i] == c->temp_end[i])
323 temp_registers[i] = qpu_ra(QPU_W_NOP);
324 }
325
326 ralloc_free(g);
327
328 return temp_registers;
329 }