gallium: rename 'state tracker' to 'frontend'
[mesa.git] / src / gallium / frontends / nine / nine_ff.c
1
2 /* FF is big and ugly so feel free to write lines as long as you like.
3 * Aieeeeeeeee !
4 *
5 * Let me make that clearer:
6 * Aieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ! !! !!!
7 */
8
9 #include "device9.h"
10 #include "basetexture9.h"
11 #include "vertexdeclaration9.h"
12 #include "vertexshader9.h"
13 #include "pixelshader9.h"
14 #include "nine_ff.h"
15 #include "nine_defines.h"
16 #include "nine_helpers.h"
17 #include "nine_pipe.h"
18 #include "nine_dump.h"
19
20 #include "pipe/p_context.h"
21 #include "tgsi/tgsi_ureg.h"
22 #include "tgsi/tgsi_dump.h"
23 #include "util/u_box.h"
24 #include "util/u_hash_table.h"
25 #include "util/u_upload_mgr.h"
26
27 #define DBG_CHANNEL DBG_FF
28
29 #define NINE_FF_NUM_VS_CONST 196
30 #define NINE_FF_NUM_PS_CONST 24
31
32 struct fvec4
33 {
34 float x, y, z, w;
35 };
36
37 struct nine_ff_vs_key
38 {
39 union {
40 struct {
41 uint32_t position_t : 1;
42 uint32_t lighting : 1;
43 uint32_t darkness : 1; /* lighting enabled but no active lights */
44 uint32_t localviewer : 1;
45 uint32_t vertexpointsize : 1;
46 uint32_t pointscale : 1;
47 uint32_t vertexblend : 3;
48 uint32_t vertexblend_indexed : 1;
49 uint32_t vertextween : 1;
50 uint32_t mtl_diffuse : 2; /* 0 = material, 1 = color1, 2 = color2 */
51 uint32_t mtl_ambient : 2;
52 uint32_t mtl_specular : 2;
53 uint32_t mtl_emissive : 2;
54 uint32_t fog_mode : 2;
55 uint32_t fog_range : 1;
56 uint32_t color0in_one : 1;
57 uint32_t color1in_zero : 1;
58 uint32_t has_normal : 1;
59 uint32_t fog : 1;
60 uint32_t normalizenormals : 1;
61 uint32_t ucp : 1;
62 uint32_t pad1 : 4;
63 uint32_t tc_dim_input: 16; /* 8 * 2 bits */
64 uint32_t pad2 : 16;
65 uint32_t tc_dim_output: 24; /* 8 * 3 bits */
66 uint32_t pad3 : 8;
67 uint32_t tc_gen : 24; /* 8 * 3 bits */
68 uint32_t pad4 : 8;
69 uint32_t tc_idx : 24;
70 uint32_t pad5 : 8;
71 uint32_t passthrough;
72 };
73 uint64_t value64[3]; /* don't forget to resize VertexShader9.ff_key */
74 uint32_t value32[6];
75 };
76 };
77
78 /* Texture stage state:
79 *
80 * COLOROP D3DTOP 5 bit
81 * ALPHAOP D3DTOP 5 bit
82 * COLORARG0 D3DTA 3 bit
83 * COLORARG1 D3DTA 3 bit
84 * COLORARG2 D3DTA 3 bit
85 * ALPHAARG0 D3DTA 3 bit
86 * ALPHAARG1 D3DTA 3 bit
87 * ALPHAARG2 D3DTA 3 bit
88 * RESULTARG D3DTA 1 bit (CURRENT:0 or TEMP:1)
89 * TEXCOORDINDEX 0 - 7 3 bit
90 * ===========================
91 * 32 bit per stage
92 */
93 struct nine_ff_ps_key
94 {
95 union {
96 struct {
97 struct {
98 uint32_t colorop : 5;
99 uint32_t alphaop : 5;
100 uint32_t colorarg0 : 3;
101 uint32_t colorarg1 : 3;
102 uint32_t colorarg2 : 3;
103 uint32_t alphaarg0 : 3;
104 uint32_t alphaarg1 : 3;
105 uint32_t alphaarg2 : 3;
106 uint32_t resultarg : 1; /* CURRENT:0 or TEMP:1 */
107 uint32_t textarget : 2; /* 1D/2D/3D/CUBE */
108 uint32_t pad : 1;
109 /* that's 32 bit exactly */
110 } ts[8];
111 uint32_t projected : 16;
112 uint32_t fog : 1; /* for vFog coming from VS */
113 uint32_t fog_mode : 2;
114 uint32_t fog_source : 1; /* 0: Z, 1: W */
115 uint32_t specular : 1;
116 uint32_t pad1 : 11; /* 9 32-bit words with this */
117 uint8_t colorarg_b4[3];
118 uint8_t colorarg_b5[3];
119 uint8_t alphaarg_b4[3]; /* 11 32-bit words plus a byte */
120 uint8_t pad2[3];
121 };
122 uint64_t value64[6]; /* don't forget to resize PixelShader9.ff_key */
123 uint32_t value32[12];
124 };
125 };
126
127 static uint32_t nine_ff_vs_key_hash(const void *key)
128 {
129 const struct nine_ff_vs_key *vs = key;
130 unsigned i;
131 uint32_t hash = vs->value32[0];
132 for (i = 1; i < ARRAY_SIZE(vs->value32); ++i)
133 hash ^= vs->value32[i];
134 return hash;
135 }
136 static bool nine_ff_vs_key_comp(const void *key1, const void *key2)
137 {
138 struct nine_ff_vs_key *a = (struct nine_ff_vs_key *)key1;
139 struct nine_ff_vs_key *b = (struct nine_ff_vs_key *)key2;
140
141 return memcmp(a->value64, b->value64, sizeof(a->value64)) == 0;
142 }
143 static uint32_t nine_ff_ps_key_hash(const void *key)
144 {
145 const struct nine_ff_ps_key *ps = key;
146 unsigned i;
147 uint32_t hash = ps->value32[0];
148 for (i = 1; i < ARRAY_SIZE(ps->value32); ++i)
149 hash ^= ps->value32[i];
150 return hash;
151 }
152 static bool nine_ff_ps_key_comp(const void *key1, const void *key2)
153 {
154 struct nine_ff_ps_key *a = (struct nine_ff_ps_key *)key1;
155 struct nine_ff_ps_key *b = (struct nine_ff_ps_key *)key2;
156
157 return memcmp(a->value64, b->value64, sizeof(a->value64)) == 0;
158 }
159 static uint32_t nine_ff_fvf_key_hash(const void *key)
160 {
161 return *(DWORD *)key;
162 }
163 static bool nine_ff_fvf_key_comp(const void *key1, const void *key2)
164 {
165 return *(DWORD *)key1 == *(DWORD *)key2;
166 }
167
168 static void nine_ff_prune_vs(struct NineDevice9 *);
169 static void nine_ff_prune_ps(struct NineDevice9 *);
170
171 static void nine_ureg_tgsi_dump(struct ureg_program *ureg, boolean override)
172 {
173 if (debug_get_bool_option("NINE_FF_DUMP", FALSE) || override) {
174 const struct tgsi_token *toks = ureg_get_tokens(ureg, NULL);
175 tgsi_dump(toks, 0);
176 ureg_free_tokens(toks);
177 }
178 }
179
180 #define _X(r) ureg_scalar(ureg_src(r), TGSI_SWIZZLE_X)
181 #define _Y(r) ureg_scalar(ureg_src(r), TGSI_SWIZZLE_Y)
182 #define _Z(r) ureg_scalar(ureg_src(r), TGSI_SWIZZLE_Z)
183 #define _W(r) ureg_scalar(ureg_src(r), TGSI_SWIZZLE_W)
184
185 #define _XXXX(r) ureg_scalar(r, TGSI_SWIZZLE_X)
186 #define _YYYY(r) ureg_scalar(r, TGSI_SWIZZLE_Y)
187 #define _ZZZZ(r) ureg_scalar(r, TGSI_SWIZZLE_Z)
188 #define _WWWW(r) ureg_scalar(r, TGSI_SWIZZLE_W)
189
190 #define _XYZW(r) (r)
191
192 /* AL should contain base address of lights table. */
193 #define LIGHT_CONST(i) \
194 ureg_src_indirect(ureg_DECL_constant(ureg, i), _X(AL))
195
196 #define MATERIAL_CONST(i) \
197 ureg_DECL_constant(ureg, 19 + (i))
198
199 #define _CONST(n) ureg_DECL_constant(ureg, n)
200
201 /* VS FF constants layout:
202 *
203 * CONST[ 0.. 3] D3DTS_WORLD * D3DTS_VIEW * D3DTS_PROJECTION
204 * CONST[ 4.. 7] D3DTS_WORLD * D3DTS_VIEW
205 * CONST[ 8..11] D3DTS_PROJECTION
206 * CONST[12..15] D3DTS_VIEW^(-1)
207 * CONST[16..18] Normal matrix
208 *
209 * CONST[19].xyz MATERIAL.Emissive + Material.Ambient * RS.Ambient
210 * CONST[20] MATERIAL.Diffuse
211 * CONST[21] MATERIAL.Ambient
212 * CONST[22] MATERIAL.Specular
213 * CONST[23].x___ MATERIAL.Power
214 * CONST[24] MATERIAL.Emissive
215 * CONST[25] RS.Ambient
216 *
217 * CONST[26].x___ RS.PointSizeMin
218 * CONST[26]._y__ RS.PointSizeMax
219 * CONST[26].__z_ RS.PointSize
220 * CONST[26].___w RS.PointScaleA
221 * CONST[27].x___ RS.PointScaleB
222 * CONST[27]._y__ RS.PointScaleC
223 *
224 * CONST[28].x___ RS.FogEnd
225 * CONST[28]._y__ 1.0f / (RS.FogEnd - RS.FogStart)
226 * CONST[28].__z_ RS.FogDensity
227
228 * CONST[30].x___ TWEENFACTOR
229 *
230 * CONST[32].x___ LIGHT[0].Type
231 * CONST[32]._yzw LIGHT[0].Attenuation0,1,2
232 * CONST[33] LIGHT[0].Diffuse
233 * CONST[34] LIGHT[0].Specular
234 * CONST[35] LIGHT[0].Ambient
235 * CONST[36].xyz_ LIGHT[0].Position
236 * CONST[36].___w LIGHT[0].Range
237 * CONST[37].xyz_ LIGHT[0].Direction
238 * CONST[37].___w LIGHT[0].Falloff
239 * CONST[38].x___ cos(LIGHT[0].Theta / 2)
240 * CONST[38]._y__ cos(LIGHT[0].Phi / 2)
241 * CONST[38].__z_ 1.0f / (cos(LIGHT[0].Theta / 2) - cos(Light[0].Phi / 2))
242 * CONST[39].xyz_ LIGHT[0].HalfVector (for directional lights)
243 * CONST[39].___w 1 if this is the last active light, 0 if not
244 * CONST[40] LIGHT[1]
245 * CONST[48] LIGHT[2]
246 * CONST[56] LIGHT[3]
247 * CONST[64] LIGHT[4]
248 * CONST[72] LIGHT[5]
249 * CONST[80] LIGHT[6]
250 * CONST[88] LIGHT[7]
251 * NOTE: no lighting code is generated if there are no active lights
252 *
253 * CONST[100].x___ Viewport 2/width
254 * CONST[100]._y__ Viewport 2/height
255 * CONST[100].__z_ Viewport 1/(zmax - zmin)
256 * CONST[100].___w Viewport width
257 * CONST[101].x___ Viewport x0
258 * CONST[101]._y__ Viewport y0
259 * CONST[101].__z_ Viewport z0
260 *
261 * CONST[128..131] D3DTS_TEXTURE0
262 * CONST[132..135] D3DTS_TEXTURE1
263 * CONST[136..139] D3DTS_TEXTURE2
264 * CONST[140..143] D3DTS_TEXTURE3
265 * CONST[144..147] D3DTS_TEXTURE4
266 * CONST[148..151] D3DTS_TEXTURE5
267 * CONST[152..155] D3DTS_TEXTURE6
268 * CONST[156..159] D3DTS_TEXTURE7
269 *
270 * CONST[160] D3DTS_WORLDMATRIX[0] * D3DTS_VIEW
271 * CONST[164] D3DTS_WORLDMATRIX[1] * D3DTS_VIEW
272 * ...
273 * CONST[192] D3DTS_WORLDMATRIX[8] * D3DTS_VIEW
274 */
275 struct vs_build_ctx
276 {
277 struct ureg_program *ureg;
278 const struct nine_ff_vs_key *key;
279
280 uint16_t input[PIPE_MAX_ATTRIBS];
281 unsigned num_inputs;
282
283 struct ureg_src aVtx;
284 struct ureg_src aNrm;
285 struct ureg_src aCol[2];
286 struct ureg_src aTex[8];
287 struct ureg_src aPsz;
288 struct ureg_src aInd;
289 struct ureg_src aWgt;
290
291 struct ureg_src aVtx1; /* tweening */
292 struct ureg_src aNrm1;
293
294 struct ureg_src mtlA;
295 struct ureg_src mtlD;
296 struct ureg_src mtlS;
297 struct ureg_src mtlE;
298 };
299
300 static inline unsigned
301 get_texcoord_sn(struct pipe_screen *screen)
302 {
303 if (screen->get_param(screen, PIPE_CAP_TGSI_TEXCOORD))
304 return TGSI_SEMANTIC_TEXCOORD;
305 return TGSI_SEMANTIC_GENERIC;
306 }
307
308 static inline struct ureg_src
309 build_vs_add_input(struct vs_build_ctx *vs, uint16_t ndecl)
310 {
311 const unsigned i = vs->num_inputs++;
312 assert(i < PIPE_MAX_ATTRIBS);
313 vs->input[i] = ndecl;
314 return ureg_DECL_vs_input(vs->ureg, i);
315 }
316
317 /* NOTE: dst may alias src */
318 static inline void
319 ureg_normalize3(struct ureg_program *ureg,
320 struct ureg_dst dst, struct ureg_src src)
321 {
322 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
323 struct ureg_dst tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
324
325 ureg_DP3(ureg, tmp_x, src, src);
326 ureg_RSQ(ureg, tmp_x, _X(tmp));
327 ureg_MUL(ureg, dst, src, _X(tmp));
328 ureg_release_temporary(ureg, tmp);
329 }
330
331 static void *
332 nine_ff_build_vs(struct NineDevice9 *device, struct vs_build_ctx *vs)
333 {
334 const struct nine_ff_vs_key *key = vs->key;
335 struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
336 struct ureg_dst oPos, oCol[2], oPsz, oFog;
337 struct ureg_dst AR;
338 unsigned i, c;
339 unsigned label[32], l = 0;
340 boolean need_aNrm = key->lighting || key->passthrough & (1 << NINE_DECLUSAGE_NORMAL);
341 boolean has_aNrm = need_aNrm && key->has_normal;
342 boolean need_aVtx = key->lighting || key->fog_mode || key->pointscale || key->ucp;
343 const unsigned texcoord_sn = get_texcoord_sn(device->screen);
344
345 vs->ureg = ureg;
346
347 /* Check which inputs we should transform. */
348 for (i = 0; i < 8 * 3; i += 3) {
349 switch ((key->tc_gen >> i) & 0x7) {
350 case NINED3DTSS_TCI_CAMERASPACENORMAL:
351 need_aNrm = TRUE;
352 break;
353 case NINED3DTSS_TCI_CAMERASPACEPOSITION:
354 need_aVtx = TRUE;
355 break;
356 case NINED3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR:
357 need_aVtx = need_aNrm = TRUE;
358 break;
359 case NINED3DTSS_TCI_SPHEREMAP:
360 need_aVtx = need_aNrm = TRUE;
361 break;
362 default:
363 break;
364 }
365 }
366
367 /* Declare and record used inputs (needed for linkage with vertex format):
368 * (texture coordinates handled later)
369 */
370 vs->aVtx = build_vs_add_input(vs,
371 key->position_t ? NINE_DECLUSAGE_POSITIONT : NINE_DECLUSAGE_POSITION);
372
373 vs->aNrm = ureg_imm1f(ureg, 0.0f);
374 if (has_aNrm)
375 vs->aNrm = build_vs_add_input(vs, NINE_DECLUSAGE_NORMAL);
376
377 vs->aCol[0] = ureg_imm1f(ureg, 1.0f);
378 vs->aCol[1] = ureg_imm1f(ureg, 0.0f);
379
380 if (key->lighting || key->darkness) {
381 const unsigned mask = key->mtl_diffuse | key->mtl_specular |
382 key->mtl_ambient | key->mtl_emissive;
383 if ((mask & 0x1) && !key->color0in_one)
384 vs->aCol[0] = build_vs_add_input(vs, NINE_DECLUSAGE_i(COLOR, 0));
385 if ((mask & 0x2) && !key->color1in_zero)
386 vs->aCol[1] = build_vs_add_input(vs, NINE_DECLUSAGE_i(COLOR, 1));
387
388 vs->mtlD = MATERIAL_CONST(1);
389 vs->mtlA = MATERIAL_CONST(2);
390 vs->mtlS = MATERIAL_CONST(3);
391 vs->mtlE = MATERIAL_CONST(5);
392 if (key->mtl_diffuse == 1) vs->mtlD = vs->aCol[0]; else
393 if (key->mtl_diffuse == 2) vs->mtlD = vs->aCol[1];
394 if (key->mtl_ambient == 1) vs->mtlA = vs->aCol[0]; else
395 if (key->mtl_ambient == 2) vs->mtlA = vs->aCol[1];
396 if (key->mtl_specular == 1) vs->mtlS = vs->aCol[0]; else
397 if (key->mtl_specular == 2) vs->mtlS = vs->aCol[1];
398 if (key->mtl_emissive == 1) vs->mtlE = vs->aCol[0]; else
399 if (key->mtl_emissive == 2) vs->mtlE = vs->aCol[1];
400 } else {
401 if (!key->color0in_one) vs->aCol[0] = build_vs_add_input(vs, NINE_DECLUSAGE_i(COLOR, 0));
402 if (!key->color1in_zero) vs->aCol[1] = build_vs_add_input(vs, NINE_DECLUSAGE_i(COLOR, 1));
403 }
404
405 if (key->vertexpointsize)
406 vs->aPsz = build_vs_add_input(vs, NINE_DECLUSAGE_PSIZE);
407
408 if (key->vertexblend_indexed || key->passthrough & (1 << NINE_DECLUSAGE_BLENDINDICES))
409 vs->aInd = build_vs_add_input(vs, NINE_DECLUSAGE_BLENDINDICES);
410 if (key->vertexblend || key->passthrough & (1 << NINE_DECLUSAGE_BLENDWEIGHT))
411 vs->aWgt = build_vs_add_input(vs, NINE_DECLUSAGE_BLENDWEIGHT);
412 if (key->vertextween) {
413 vs->aVtx1 = build_vs_add_input(vs, NINE_DECLUSAGE_i(POSITION,1));
414 vs->aNrm1 = build_vs_add_input(vs, NINE_DECLUSAGE_i(NORMAL,1));
415 }
416
417 /* Declare outputs:
418 */
419 oPos = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0); /* HPOS */
420 oCol[0] = ureg_saturate(ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0));
421 oCol[1] = ureg_saturate(ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 1));
422 if (key->fog || key->passthrough & (1 << NINE_DECLUSAGE_FOG)) {
423 oFog = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 16);
424 oFog = ureg_writemask(oFog, TGSI_WRITEMASK_X);
425 }
426
427 if (key->vertexpointsize || key->pointscale) {
428 oPsz = ureg_DECL_output_masked(ureg, TGSI_SEMANTIC_PSIZE, 0,
429 TGSI_WRITEMASK_X, 0, 1);
430 oPsz = ureg_writemask(oPsz, TGSI_WRITEMASK_X);
431 }
432
433 if (key->lighting || key->vertexblend)
434 AR = ureg_DECL_address(ureg);
435
436 /* === Vertex transformation / vertex blending:
437 */
438
439 if (key->position_t) {
440 if (device->driver_caps.window_space_position_support) {
441 ureg_MOV(ureg, oPos, vs->aVtx);
442 } else {
443 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
444 /* vs->aVtx contains the coordinates buffer wise.
445 * later in the pipeline, clipping, viewport and division
446 * by w (rhw = 1/w) are going to be applied, so do the reverse
447 * of these transformations (except clipping) to have the good
448 * position at the end.*/
449 ureg_MOV(ureg, tmp, vs->aVtx);
450 /* X from [X_min, X_min + width] to [-1, 1], same for Y. Z to [0, 1] */
451 ureg_ADD(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), ureg_src(tmp), ureg_negate(_CONST(101)));
452 ureg_MUL(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), ureg_src(tmp), _CONST(100));
453 ureg_ADD(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XY), ureg_src(tmp), ureg_imm1f(ureg, -1.0f));
454 /* Y needs to be reversed */
455 ureg_MOV(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_Y), ureg_negate(ureg_src(tmp)));
456 /* inverse rhw */
457 ureg_RCP(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_W), _W(tmp));
458 /* multiply X, Y, Z by w */
459 ureg_MUL(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), ureg_src(tmp), _W(tmp));
460 ureg_MOV(ureg, oPos, ureg_src(tmp));
461 ureg_release_temporary(ureg, tmp);
462 }
463 } else if (key->vertexblend) {
464 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
465 struct ureg_dst tmp2 = ureg_DECL_temporary(ureg);
466 struct ureg_dst aVtx_dst = ureg_DECL_temporary(ureg);
467 struct ureg_dst aNrm_dst = ureg_DECL_temporary(ureg);
468 struct ureg_dst sum_blendweights = ureg_DECL_temporary(ureg);
469 struct ureg_src cWM[4];
470
471 for (i = 160; i <= 195; ++i)
472 ureg_DECL_constant(ureg, i);
473
474 /* translate world matrix index to constant file index */
475 if (key->vertexblend_indexed) {
476 ureg_MAD(ureg, tmp, vs->aInd, ureg_imm1f(ureg, 4.0f), ureg_imm1f(ureg, 160.0f));
477 ureg_ARL(ureg, AR, ureg_src(tmp));
478 }
479
480 ureg_MOV(ureg, aVtx_dst, ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 0.0f));
481 ureg_MOV(ureg, aNrm_dst, ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 0.0f));
482 ureg_MOV(ureg, sum_blendweights, ureg_imm4f(ureg, 1.0f, 1.0f, 1.0f, 1.0f));
483
484 for (i = 0; i < key->vertexblend; ++i) {
485 for (c = 0; c < 4; ++c) {
486 cWM[c] = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, (160 + i * 4) * !key->vertexblend_indexed + c), 0);
487 if (key->vertexblend_indexed)
488 cWM[c] = ureg_src_indirect(cWM[c], ureg_scalar(ureg_src(AR), i));
489 }
490
491 /* multiply by WORLD(index) */
492 ureg_MUL(ureg, tmp, _XXXX(vs->aVtx), cWM[0]);
493 ureg_MAD(ureg, tmp, _YYYY(vs->aVtx), cWM[1], ureg_src(tmp));
494 ureg_MAD(ureg, tmp, _ZZZZ(vs->aVtx), cWM[2], ureg_src(tmp));
495 ureg_MAD(ureg, tmp, _WWWW(vs->aVtx), cWM[3], ureg_src(tmp));
496
497 if (has_aNrm) {
498 /* Note: the spec says the transpose of the inverse of the
499 * WorldView matrices should be used, but all tests show
500 * otherwise.
501 * Only case unknown: D3DVBF_0WEIGHTS */
502 ureg_MUL(ureg, tmp2, _XXXX(vs->aNrm), cWM[0]);
503 ureg_MAD(ureg, tmp2, _YYYY(vs->aNrm), cWM[1], ureg_src(tmp2));
504 ureg_MAD(ureg, tmp2, _ZZZZ(vs->aNrm), cWM[2], ureg_src(tmp2));
505 }
506
507 if (i < (key->vertexblend - 1)) {
508 /* accumulate weighted position value */
509 ureg_MAD(ureg, aVtx_dst, ureg_src(tmp), ureg_scalar(vs->aWgt, i), ureg_src(aVtx_dst));
510 if (has_aNrm)
511 ureg_MAD(ureg, aNrm_dst, ureg_src(tmp2), ureg_scalar(vs->aWgt, i), ureg_src(aNrm_dst));
512 /* subtract weighted position value for last value */
513 ureg_ADD(ureg, sum_blendweights, ureg_src(sum_blendweights), ureg_negate(ureg_scalar(vs->aWgt, i)));
514 }
515 }
516
517 /* the last weighted position is always 1 - sum_of_previous_weights */
518 ureg_MAD(ureg, aVtx_dst, ureg_src(tmp), ureg_scalar(ureg_src(sum_blendweights), key->vertexblend - 1), ureg_src(aVtx_dst));
519 if (has_aNrm)
520 ureg_MAD(ureg, aNrm_dst, ureg_src(tmp2), ureg_scalar(ureg_src(sum_blendweights), key->vertexblend - 1), ureg_src(aNrm_dst));
521
522 /* multiply by VIEW_PROJ */
523 ureg_MUL(ureg, tmp, _X(aVtx_dst), _CONST(8));
524 ureg_MAD(ureg, tmp, _Y(aVtx_dst), _CONST(9), ureg_src(tmp));
525 ureg_MAD(ureg, tmp, _Z(aVtx_dst), _CONST(10), ureg_src(tmp));
526 ureg_MAD(ureg, oPos, _W(aVtx_dst), _CONST(11), ureg_src(tmp));
527
528 if (need_aVtx)
529 vs->aVtx = ureg_src(aVtx_dst);
530
531 ureg_release_temporary(ureg, tmp);
532 ureg_release_temporary(ureg, tmp2);
533 ureg_release_temporary(ureg, sum_blendweights);
534 if (!need_aVtx)
535 ureg_release_temporary(ureg, aVtx_dst);
536
537 if (has_aNrm) {
538 if (key->normalizenormals)
539 ureg_normalize3(ureg, aNrm_dst, ureg_src(aNrm_dst));
540 vs->aNrm = ureg_src(aNrm_dst);
541 } else
542 ureg_release_temporary(ureg, aNrm_dst);
543 } else {
544 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
545
546 if (key->vertextween) {
547 struct ureg_dst aVtx_dst = ureg_DECL_temporary(ureg);
548 ureg_LRP(ureg, aVtx_dst, _XXXX(_CONST(30)), vs->aVtx1, vs->aVtx);
549 vs->aVtx = ureg_src(aVtx_dst);
550 if (has_aNrm) {
551 struct ureg_dst aNrm_dst = ureg_DECL_temporary(ureg);
552 ureg_LRP(ureg, aNrm_dst, _XXXX(_CONST(30)), vs->aNrm1, vs->aNrm);
553 vs->aNrm = ureg_src(aNrm_dst);
554 }
555 }
556
557 /* position = vertex * WORLD_VIEW_PROJ */
558 ureg_MUL(ureg, tmp, _XXXX(vs->aVtx), _CONST(0));
559 ureg_MAD(ureg, tmp, _YYYY(vs->aVtx), _CONST(1), ureg_src(tmp));
560 ureg_MAD(ureg, tmp, _ZZZZ(vs->aVtx), _CONST(2), ureg_src(tmp));
561 ureg_MAD(ureg, oPos, _WWWW(vs->aVtx), _CONST(3), ureg_src(tmp));
562 ureg_release_temporary(ureg, tmp);
563
564 if (need_aVtx) {
565 struct ureg_dst aVtx_dst = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
566 ureg_MUL(ureg, aVtx_dst, _XXXX(vs->aVtx), _CONST(4));
567 ureg_MAD(ureg, aVtx_dst, _YYYY(vs->aVtx), _CONST(5), ureg_src(aVtx_dst));
568 ureg_MAD(ureg, aVtx_dst, _ZZZZ(vs->aVtx), _CONST(6), ureg_src(aVtx_dst));
569 ureg_MAD(ureg, aVtx_dst, _WWWW(vs->aVtx), _CONST(7), ureg_src(aVtx_dst));
570 vs->aVtx = ureg_src(aVtx_dst);
571 }
572 if (has_aNrm) {
573 struct ureg_dst aNrm_dst = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
574 ureg_MUL(ureg, aNrm_dst, _XXXX(vs->aNrm), _CONST(16));
575 ureg_MAD(ureg, aNrm_dst, _YYYY(vs->aNrm), _CONST(17), ureg_src(aNrm_dst));
576 ureg_MAD(ureg, aNrm_dst, _ZZZZ(vs->aNrm), _CONST(18), ureg_src(aNrm_dst));
577 if (key->normalizenormals)
578 ureg_normalize3(ureg, aNrm_dst, ureg_src(aNrm_dst));
579 vs->aNrm = ureg_src(aNrm_dst);
580 }
581 }
582
583 /* === Process point size:
584 */
585 if (key->vertexpointsize || key->pointscale) {
586 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
587 struct ureg_dst tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
588 struct ureg_dst tmp_y = ureg_writemask(tmp, TGSI_WRITEMASK_Y);
589 struct ureg_dst tmp_z = ureg_writemask(tmp, TGSI_WRITEMASK_Z);
590 if (key->vertexpointsize) {
591 struct ureg_src cPsz1 = ureg_DECL_constant(ureg, 26);
592 ureg_MAX(ureg, tmp_z, _XXXX(vs->aPsz), _XXXX(cPsz1));
593 ureg_MIN(ureg, tmp_z, _Z(tmp), _YYYY(cPsz1));
594 } else {
595 struct ureg_src cPsz1 = ureg_DECL_constant(ureg, 26);
596 ureg_MOV(ureg, tmp_z, _ZZZZ(cPsz1));
597 }
598
599 if (key->pointscale) {
600 struct ureg_src cPsz1 = ureg_DECL_constant(ureg, 26);
601 struct ureg_src cPsz2 = ureg_DECL_constant(ureg, 27);
602
603 ureg_DP3(ureg, tmp_x, vs->aVtx, vs->aVtx);
604 ureg_RSQ(ureg, tmp_y, _X(tmp));
605 ureg_MUL(ureg, tmp_y, _Y(tmp), _X(tmp));
606 ureg_CMP(ureg, tmp_y, ureg_negate(_Y(tmp)), _Y(tmp), ureg_imm1f(ureg, 0.0f));
607 ureg_MAD(ureg, tmp_x, _Y(tmp), _YYYY(cPsz2), _XXXX(cPsz2));
608 ureg_MAD(ureg, tmp_x, _Y(tmp), _X(tmp), _WWWW(cPsz1));
609 ureg_RSQ(ureg, tmp_x, _X(tmp));
610 ureg_MUL(ureg, tmp_x, _X(tmp), _Z(tmp));
611 ureg_MUL(ureg, tmp_x, _X(tmp), _WWWW(_CONST(100)));
612 ureg_MAX(ureg, tmp_x, _X(tmp), _XXXX(cPsz1));
613 ureg_MIN(ureg, tmp_z, _X(tmp), _YYYY(cPsz1));
614 }
615
616 ureg_MOV(ureg, oPsz, _Z(tmp));
617 ureg_release_temporary(ureg, tmp);
618 }
619
620 for (i = 0; i < 8; ++i) {
621 struct ureg_dst tmp, tmp_x, tmp2;
622 struct ureg_dst oTex, input_coord, transformed, t, aVtx_normed;
623 unsigned c, writemask;
624 const unsigned tci = (key->tc_gen >> (i * 3)) & 0x7;
625 const unsigned idx = (key->tc_idx >> (i * 3)) & 0x7;
626 unsigned dim_input = 1 + ((key->tc_dim_input >> (i * 2)) & 0x3);
627 const unsigned dim_output = (key->tc_dim_output >> (i * 3)) & 0x7;
628
629 /* No texture output of index s */
630 if (tci == NINED3DTSS_TCI_DISABLE)
631 continue;
632 oTex = ureg_DECL_output(ureg, texcoord_sn, i);
633 tmp = ureg_DECL_temporary(ureg);
634 tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
635 input_coord = ureg_DECL_temporary(ureg);
636 transformed = ureg_DECL_temporary(ureg);
637
638 /* Get the coordinate */
639 switch (tci) {
640 case NINED3DTSS_TCI_PASSTHRU:
641 /* NINED3DTSS_TCI_PASSTHRU => Use texcoord coming from index idx *
642 * Else the idx is used only to determine wrapping mode. */
643 vs->aTex[idx] = build_vs_add_input(vs, NINE_DECLUSAGE_i(TEXCOORD,idx));
644 ureg_MOV(ureg, input_coord, vs->aTex[idx]);
645 break;
646 case NINED3DTSS_TCI_CAMERASPACENORMAL:
647 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_XYZ), vs->aNrm);
648 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_W), ureg_imm1f(ureg, 1.0f));
649 dim_input = 4;
650 break;
651 case NINED3DTSS_TCI_CAMERASPACEPOSITION:
652 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_XYZ), vs->aVtx);
653 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_W), ureg_imm1f(ureg, 1.0f));
654 dim_input = 4;
655 break;
656 case NINED3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR:
657 tmp.WriteMask = TGSI_WRITEMASK_XYZ;
658 aVtx_normed = ureg_DECL_temporary(ureg);
659 ureg_normalize3(ureg, aVtx_normed, vs->aVtx);
660 ureg_DP3(ureg, tmp_x, ureg_src(aVtx_normed), vs->aNrm);
661 ureg_MUL(ureg, tmp, vs->aNrm, _X(tmp));
662 ureg_ADD(ureg, tmp, ureg_src(tmp), ureg_src(tmp));
663 ureg_ADD(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_XYZ), ureg_src(aVtx_normed), ureg_negate(ureg_src(tmp)));
664 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_W), ureg_imm1f(ureg, 1.0f));
665 ureg_release_temporary(ureg, aVtx_normed);
666 dim_input = 4;
667 tmp.WriteMask = TGSI_WRITEMASK_XYZW;
668 break;
669 case NINED3DTSS_TCI_SPHEREMAP:
670 /* Implement the formula of GL_SPHERE_MAP */
671 tmp.WriteMask = TGSI_WRITEMASK_XYZ;
672 aVtx_normed = ureg_DECL_temporary(ureg);
673 tmp2 = ureg_DECL_temporary(ureg);
674 ureg_normalize3(ureg, aVtx_normed, vs->aVtx);
675 ureg_DP3(ureg, tmp_x, ureg_src(aVtx_normed), vs->aNrm);
676 ureg_MUL(ureg, tmp, vs->aNrm, _X(tmp));
677 ureg_ADD(ureg, tmp, ureg_src(tmp), ureg_src(tmp));
678 ureg_ADD(ureg, tmp, ureg_src(aVtx_normed), ureg_negate(ureg_src(tmp)));
679 /* now tmp = normed(Vtx) - 2 dot3(normed(Vtx), Nrm) Nrm */
680 ureg_MOV(ureg, ureg_writemask(tmp2, TGSI_WRITEMASK_XYZ), ureg_src(tmp));
681 ureg_MUL(ureg, tmp2, ureg_src(tmp2), ureg_src(tmp2));
682 ureg_DP3(ureg, ureg_writemask(tmp2, TGSI_WRITEMASK_X), ureg_src(tmp2), ureg_src(tmp2));
683 ureg_RSQ(ureg, ureg_writemask(tmp2, TGSI_WRITEMASK_X), ureg_src(tmp2));
684 ureg_MUL(ureg, ureg_writemask(tmp2, TGSI_WRITEMASK_X), ureg_src(tmp2), ureg_imm1f(ureg, 0.5f));
685 /* tmp2 = 0.5 / sqrt(tmp.x^2 + tmp.y^2 + (tmp.z+1)^2)
686 * TODO: z coordinates are a bit different gl vs d3d, should the formula be adapted ? */
687 ureg_MUL(ureg, tmp, ureg_src(tmp), _X(tmp2));
688 ureg_ADD(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_XY), ureg_src(tmp), ureg_imm1f(ureg, 0.5f));
689 ureg_MOV(ureg, ureg_writemask(input_coord, TGSI_WRITEMASK_ZW), ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
690 ureg_release_temporary(ureg, aVtx_normed);
691 ureg_release_temporary(ureg, tmp2);
692 dim_input = 4;
693 tmp.WriteMask = TGSI_WRITEMASK_XYZW;
694 break;
695 default:
696 assert(0);
697 break;
698 }
699
700 /* Apply the transformation */
701 /* dim_output == 0 => do not transform the components.
702 * XYZRHW also disables transformation */
703 if (!dim_output || key->position_t) {
704 ureg_release_temporary(ureg, transformed);
705 transformed = input_coord;
706 writemask = TGSI_WRITEMASK_XYZW;
707 } else {
708 for (c = 0; c < dim_output; c++) {
709 t = ureg_writemask(transformed, 1 << c);
710 switch (dim_input) {
711 /* dim_input = 1 2 3: -> we add trailing 1 to input*/
712 case 1: ureg_MAD(ureg, t, _X(input_coord), _XXXX(_CONST(128 + i * 4 + c)), _YYYY(_CONST(128 + i * 4 + c)));
713 break;
714 case 2: ureg_DP2(ureg, t, ureg_src(input_coord), _CONST(128 + i * 4 + c));
715 ureg_ADD(ureg, t, ureg_src(transformed), _ZZZZ(_CONST(128 + i * 4 + c)));
716 break;
717 case 3: ureg_DP3(ureg, t, ureg_src(input_coord), _CONST(128 + i * 4 + c));
718 ureg_ADD(ureg, t, ureg_src(transformed), _WWWW(_CONST(128 + i * 4 + c)));
719 break;
720 case 4: ureg_DP4(ureg, t, ureg_src(input_coord), _CONST(128 + i * 4 + c)); break;
721 default:
722 assert(0);
723 }
724 }
725 writemask = (1 << dim_output) - 1;
726 ureg_release_temporary(ureg, input_coord);
727 }
728
729 ureg_MOV(ureg, ureg_writemask(oTex, writemask), ureg_src(transformed));
730 ureg_release_temporary(ureg, transformed);
731 ureg_release_temporary(ureg, tmp);
732 }
733
734 /* === Lighting:
735 *
736 * DIRECTIONAL: Light at infinite distance, parallel rays, no attenuation.
737 * POINT: Finite distance to scene, divergent rays, isotropic, attenuation.
738 * SPOT: Finite distance, divergent rays, angular dependence, attenuation.
739 *
740 * vec3 normal = normalize(in.Normal * NormalMatrix);
741 * vec3 hitDir = light.direction;
742 * float atten = 1.0;
743 *
744 * if (light.type != DIRECTIONAL)
745 * {
746 * vec3 hitVec = light.position - eyeVertex;
747 * float d = length(hitVec);
748 * hitDir = hitVec / d;
749 * atten = 1 / ((light.atten2 * d + light.atten1) * d + light.atten0);
750 * }
751 *
752 * if (light.type == SPOTLIGHT)
753 * {
754 * float rho = dp3(-hitVec, light.direction);
755 * if (rho < cos(light.phi / 2))
756 * atten = 0;
757 * if (rho < cos(light.theta / 2))
758 * atten *= pow(some_func(rho), light.falloff);
759 * }
760 *
761 * float nDotHit = dp3_sat(normal, hitVec);
762 * float powFact = 0.0;
763 *
764 * if (nDotHit > 0.0)
765 * {
766 * vec3 midVec = normalize(hitDir + eye);
767 * float nDotMid = dp3_sat(normal, midVec);
768 * pFact = pow(nDotMid, material.power);
769 * }
770 *
771 * ambient += light.ambient * atten;
772 * diffuse += light.diffuse * atten * nDotHit;
773 * specular += light.specular * atten * powFact;
774 */
775 if (key->lighting) {
776 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
777 struct ureg_dst tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
778 struct ureg_dst tmp_y = ureg_writemask(tmp, TGSI_WRITEMASK_Y);
779 struct ureg_dst tmp_z = ureg_writemask(tmp, TGSI_WRITEMASK_Z);
780 struct ureg_dst rAtt = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_W);
781 struct ureg_dst rHit = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
782 struct ureg_dst rMid = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
783
784 struct ureg_dst rCtr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_W);
785
786 struct ureg_dst AL = ureg_writemask(AR, TGSI_WRITEMASK_X);
787
788 /* Light.*.Alpha is not used. */
789 struct ureg_dst rD = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
790 struct ureg_dst rA = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_XYZ);
791 struct ureg_dst rS = ureg_DECL_temporary(ureg);
792
793 struct ureg_src mtlP = _XXXX(MATERIAL_CONST(4));
794
795 struct ureg_src cLKind = _XXXX(LIGHT_CONST(0));
796 struct ureg_src cLAtt0 = _YYYY(LIGHT_CONST(0));
797 struct ureg_src cLAtt1 = _ZZZZ(LIGHT_CONST(0));
798 struct ureg_src cLAtt2 = _WWWW(LIGHT_CONST(0));
799 struct ureg_src cLColD = _XYZW(LIGHT_CONST(1));
800 struct ureg_src cLColS = _XYZW(LIGHT_CONST(2));
801 struct ureg_src cLColA = _XYZW(LIGHT_CONST(3));
802 struct ureg_src cLPos = _XYZW(LIGHT_CONST(4));
803 struct ureg_src cLRng = _WWWW(LIGHT_CONST(4));
804 struct ureg_src cLDir = _XYZW(LIGHT_CONST(5));
805 struct ureg_src cLFOff = _WWWW(LIGHT_CONST(5));
806 struct ureg_src cLTht = _XXXX(LIGHT_CONST(6));
807 struct ureg_src cLPhi = _YYYY(LIGHT_CONST(6));
808 struct ureg_src cLSDiv = _ZZZZ(LIGHT_CONST(6));
809 struct ureg_src cLLast = _WWWW(LIGHT_CONST(7));
810
811 const unsigned loop_label = l++;
812
813 /* Declare all light constants to allow indirect adressing */
814 for (i = 32; i < 96; i++)
815 ureg_DECL_constant(ureg, i);
816
817 ureg_MOV(ureg, rCtr, ureg_imm1f(ureg, 32.0f)); /* &lightconst(0) */
818 ureg_MOV(ureg, rD, ureg_imm1f(ureg, 0.0f));
819 ureg_MOV(ureg, rA, ureg_imm1f(ureg, 0.0f));
820 ureg_MOV(ureg, rS, ureg_imm1f(ureg, 0.0f));
821
822 /* loop management */
823 ureg_BGNLOOP(ureg, &label[loop_label]);
824 ureg_ARL(ureg, AL, _W(rCtr));
825
826 /* if (not DIRECTIONAL light): */
827 ureg_SNE(ureg, tmp_x, cLKind, ureg_imm1f(ureg, D3DLIGHT_DIRECTIONAL));
828 ureg_MOV(ureg, rHit, ureg_negate(cLDir));
829 ureg_MOV(ureg, rAtt, ureg_imm1f(ureg, 1.0f));
830 ureg_IF(ureg, _X(tmp), &label[l++]);
831 {
832 /* hitDir = light.position - eyeVtx
833 * d = length(hitDir)
834 */
835 ureg_ADD(ureg, rHit, cLPos, ureg_negate(vs->aVtx));
836 ureg_DP3(ureg, tmp_x, ureg_src(rHit), ureg_src(rHit));
837 ureg_RSQ(ureg, tmp_y, _X(tmp));
838 ureg_MUL(ureg, tmp_x, _X(tmp), _Y(tmp)); /* length */
839
840 /* att = 1.0 / (light.att0 + (light.att1 + light.att2 * d) * d) */
841 ureg_MAD(ureg, rAtt, _X(tmp), cLAtt2, cLAtt1);
842 ureg_MAD(ureg, rAtt, _X(tmp), _W(rAtt), cLAtt0);
843 ureg_RCP(ureg, rAtt, _W(rAtt));
844 /* cut-off if distance exceeds Light.Range */
845 ureg_SLT(ureg, tmp_x, _X(tmp), cLRng);
846 ureg_MUL(ureg, rAtt, _W(rAtt), _X(tmp));
847 }
848 ureg_fixup_label(ureg, label[l-1], ureg_get_instruction_number(ureg));
849 ureg_ENDIF(ureg);
850
851 /* normalize hitDir */
852 ureg_normalize3(ureg, rHit, ureg_src(rHit));
853
854 /* if (SPOT light) */
855 ureg_SEQ(ureg, tmp_x, cLKind, ureg_imm1f(ureg, D3DLIGHT_SPOT));
856 ureg_IF(ureg, _X(tmp), &label[l++]);
857 {
858 /* rho = dp3(-hitDir, light.spotDir)
859 *
860 * if (rho > light.ctht2) NOTE: 0 <= phi <= pi, 0 <= theta <= phi
861 * spotAtt = 1
862 * else
863 * if (rho <= light.cphi2)
864 * spotAtt = 0
865 * else
866 * spotAtt = (rho - light.cphi2) / (light.ctht2 - light.cphi2) ^ light.falloff
867 */
868 ureg_DP3(ureg, tmp_y, ureg_negate(ureg_src(rHit)), cLDir); /* rho */
869 ureg_ADD(ureg, tmp_x, _Y(tmp), ureg_negate(cLPhi));
870 ureg_MUL(ureg, tmp_x, _X(tmp), cLSDiv);
871 ureg_POW(ureg, tmp_x, _X(tmp), cLFOff); /* spotAtten */
872 ureg_SGE(ureg, tmp_z, _Y(tmp), cLTht); /* if inside theta && phi */
873 ureg_SGE(ureg, tmp_y, _Y(tmp), cLPhi); /* if inside phi */
874 ureg_MAD(ureg, ureg_saturate(tmp_x), _X(tmp), _Y(tmp), _Z(tmp));
875 ureg_MUL(ureg, rAtt, _W(rAtt), _X(tmp));
876 }
877 ureg_fixup_label(ureg, label[l-1], ureg_get_instruction_number(ureg));
878 ureg_ENDIF(ureg);
879
880 /* directional factors, let's not use LIT because of clarity */
881
882 if (has_aNrm) {
883 if (key->localviewer) {
884 ureg_normalize3(ureg, rMid, vs->aVtx);
885 ureg_ADD(ureg, rMid, ureg_src(rHit), ureg_negate(ureg_src(rMid)));
886 } else {
887 ureg_ADD(ureg, rMid, ureg_src(rHit), ureg_imm3f(ureg, 0.0f, 0.0f, -1.0f));
888 }
889 ureg_normalize3(ureg, rMid, ureg_src(rMid));
890 ureg_DP3(ureg, ureg_saturate(tmp_x), vs->aNrm, ureg_src(rHit));
891 ureg_DP3(ureg, ureg_saturate(tmp_y), vs->aNrm, ureg_src(rMid));
892 ureg_MUL(ureg, tmp_z, _X(tmp), _Y(tmp));
893 /* Tests show that specular is computed only if (dp3(normal,hitDir) > 0).
894 * For front facing, it is more restrictive than test (dp3(normal,mid) > 0).
895 * No tests were made for backfacing, so add the two conditions */
896 ureg_IF(ureg, _Z(tmp), &label[l++]);
897 {
898 ureg_DP3(ureg, ureg_saturate(tmp_y), vs->aNrm, ureg_src(rMid));
899 ureg_POW(ureg, tmp_y, _Y(tmp), mtlP);
900 ureg_MUL(ureg, tmp_y, _W(rAtt), _Y(tmp)); /* power factor * att */
901 ureg_MAD(ureg, rS, cLColS, _Y(tmp), ureg_src(rS)); /* accumulate specular */
902 }
903 ureg_fixup_label(ureg, label[l-1], ureg_get_instruction_number(ureg));
904 ureg_ENDIF(ureg);
905
906 ureg_MUL(ureg, tmp_x, _W(rAtt), _X(tmp)); /* dp3(normal,hitDir) * att */
907 ureg_MAD(ureg, rD, cLColD, _X(tmp), ureg_src(rD)); /* accumulate diffuse */
908 }
909
910 ureg_MAD(ureg, rA, cLColA, _W(rAtt), ureg_src(rA)); /* accumulate ambient */
911
912 /* break if this was the last light */
913 ureg_IF(ureg, cLLast, &label[l++]);
914 ureg_BRK(ureg);
915 ureg_ENDIF(ureg);
916 ureg_fixup_label(ureg, label[l-1], ureg_get_instruction_number(ureg));
917
918 ureg_ADD(ureg, rCtr, _W(rCtr), ureg_imm1f(ureg, 8.0f));
919 ureg_fixup_label(ureg, label[loop_label], ureg_get_instruction_number(ureg));
920 ureg_ENDLOOP(ureg, &label[loop_label]);
921
922 /* Apply to material:
923 *
924 * oCol[0] = (material.emissive + material.ambient * rs.ambient) +
925 * material.ambient * ambient +
926 * material.diffuse * diffuse +
927 * oCol[1] = material.specular * specular;
928 */
929 if (key->mtl_emissive == 0 && key->mtl_ambient == 0)
930 ureg_MAD(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), ureg_src(rA), vs->mtlA, _CONST(19));
931 else {
932 ureg_ADD(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), ureg_src(rA), _CONST(25));
933 ureg_MAD(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ), vs->mtlA, ureg_src(tmp), vs->mtlE);
934 }
935
936 ureg_MAD(ureg, ureg_writemask(oCol[0], TGSI_WRITEMASK_XYZ), ureg_src(rD), vs->mtlD, ureg_src(tmp));
937 ureg_MOV(ureg, ureg_writemask(oCol[0], TGSI_WRITEMASK_W), vs->mtlD);
938 ureg_MUL(ureg, oCol[1], ureg_src(rS), vs->mtlS);
939 ureg_release_temporary(ureg, rAtt);
940 ureg_release_temporary(ureg, rHit);
941 ureg_release_temporary(ureg, rMid);
942 ureg_release_temporary(ureg, rCtr);
943 ureg_release_temporary(ureg, rD);
944 ureg_release_temporary(ureg, rA);
945 ureg_release_temporary(ureg, rS);
946 ureg_release_temporary(ureg, rAtt);
947 ureg_release_temporary(ureg, tmp);
948 } else
949 /* COLOR */
950 if (key->darkness) {
951 if (key->mtl_emissive == 0 && key->mtl_ambient == 0)
952 ureg_MOV(ureg, ureg_writemask(oCol[0], TGSI_WRITEMASK_XYZ), _CONST(19));
953 else
954 ureg_MAD(ureg, ureg_writemask(oCol[0], TGSI_WRITEMASK_XYZ), vs->mtlA, _CONST(25), vs->mtlE);
955 ureg_MOV(ureg, ureg_writemask(oCol[0], TGSI_WRITEMASK_W), vs->mtlD);
956 ureg_MOV(ureg, oCol[1], ureg_imm1f(ureg, 0.0f));
957 } else {
958 ureg_MOV(ureg, oCol[0], vs->aCol[0]);
959 ureg_MOV(ureg, oCol[1], vs->aCol[1]);
960 }
961
962 /* === Process fog.
963 *
964 * exp(x) = ex2(log2(e) * x)
965 */
966 if (key->fog_mode) {
967 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
968 struct ureg_dst tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
969 struct ureg_dst tmp_z = ureg_writemask(tmp, TGSI_WRITEMASK_Z);
970 if (key->fog_range) {
971 ureg_DP3(ureg, tmp_x, vs->aVtx, vs->aVtx);
972 ureg_RSQ(ureg, tmp_z, _X(tmp));
973 ureg_MUL(ureg, tmp_z, _Z(tmp), _X(tmp));
974 } else {
975 ureg_MOV(ureg, tmp_z, ureg_abs(_ZZZZ(vs->aVtx)));
976 }
977
978 if (key->fog_mode == D3DFOG_EXP) {
979 ureg_MUL(ureg, tmp_x, _Z(tmp), _ZZZZ(_CONST(28)));
980 ureg_MUL(ureg, tmp_x, _X(tmp), ureg_imm1f(ureg, -1.442695f));
981 ureg_EX2(ureg, tmp_x, _X(tmp));
982 } else
983 if (key->fog_mode == D3DFOG_EXP2) {
984 ureg_MUL(ureg, tmp_x, _Z(tmp), _ZZZZ(_CONST(28)));
985 ureg_MUL(ureg, tmp_x, _X(tmp), _X(tmp));
986 ureg_MUL(ureg, tmp_x, _X(tmp), ureg_imm1f(ureg, -1.442695f));
987 ureg_EX2(ureg, tmp_x, _X(tmp));
988 } else
989 if (key->fog_mode == D3DFOG_LINEAR) {
990 ureg_ADD(ureg, tmp_x, _XXXX(_CONST(28)), ureg_negate(_Z(tmp)));
991 ureg_MUL(ureg, ureg_saturate(tmp_x), _X(tmp), _YYYY(_CONST(28)));
992 }
993 ureg_MOV(ureg, oFog, _X(tmp));
994 ureg_release_temporary(ureg, tmp);
995 } else if (key->fog && !(key->passthrough & (1 << NINE_DECLUSAGE_FOG))) {
996 ureg_MOV(ureg, oFog, ureg_scalar(vs->aCol[1], TGSI_SWIZZLE_W));
997 }
998
999 if (key->passthrough & (1 << NINE_DECLUSAGE_BLENDWEIGHT)) {
1000 struct ureg_src input;
1001 struct ureg_dst output;
1002 input = vs->aWgt;
1003 output = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 19);
1004 ureg_MOV(ureg, output, input);
1005 }
1006 if (key->passthrough & (1 << NINE_DECLUSAGE_BLENDINDICES)) {
1007 struct ureg_src input;
1008 struct ureg_dst output;
1009 input = vs->aInd;
1010 output = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 20);
1011 ureg_MOV(ureg, output, input);
1012 }
1013 if (key->passthrough & (1 << NINE_DECLUSAGE_NORMAL)) {
1014 struct ureg_src input;
1015 struct ureg_dst output;
1016 input = vs->aNrm;
1017 output = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 21);
1018 ureg_MOV(ureg, output, input);
1019 }
1020 if (key->passthrough & (1 << NINE_DECLUSAGE_TANGENT)) {
1021 struct ureg_src input;
1022 struct ureg_dst output;
1023 input = build_vs_add_input(vs, NINE_DECLUSAGE_TANGENT);
1024 output = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 22);
1025 ureg_MOV(ureg, output, input);
1026 }
1027 if (key->passthrough & (1 << NINE_DECLUSAGE_BINORMAL)) {
1028 struct ureg_src input;
1029 struct ureg_dst output;
1030 input = build_vs_add_input(vs, NINE_DECLUSAGE_BINORMAL);
1031 output = ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 23);
1032 ureg_MOV(ureg, output, input);
1033 }
1034 if (key->passthrough & (1 << NINE_DECLUSAGE_FOG)) {
1035 struct ureg_src input;
1036 struct ureg_dst output;
1037 input = build_vs_add_input(vs, NINE_DECLUSAGE_FOG);
1038 input = ureg_scalar(input, TGSI_SWIZZLE_X);
1039 output = oFog;
1040 ureg_MOV(ureg, output, input);
1041 }
1042 if (key->passthrough & (1 << NINE_DECLUSAGE_DEPTH)) {
1043 (void) 0; /* TODO: replace z of position output ? */
1044 }
1045
1046 /* ucp for ff applies on world coordinates.
1047 * aVtx is in worldview coordinates. */
1048 if (key->ucp) {
1049 struct ureg_dst clipVect = ureg_DECL_output(ureg, TGSI_SEMANTIC_CLIPVERTEX, 0);
1050 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
1051 ureg_MUL(ureg, tmp, _XXXX(vs->aVtx), _CONST(12));
1052 ureg_MAD(ureg, tmp, _YYYY(vs->aVtx), _CONST(13), ureg_src(tmp));
1053 ureg_MAD(ureg, tmp, _ZZZZ(vs->aVtx), _CONST(14), ureg_src(tmp));
1054 ureg_ADD(ureg, clipVect, _CONST(15), ureg_src(tmp));
1055 ureg_release_temporary(ureg, tmp);
1056 }
1057
1058 if (key->position_t && device->driver_caps.window_space_position_support)
1059 ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, TRUE);
1060
1061 ureg_END(ureg);
1062 nine_ureg_tgsi_dump(ureg, FALSE);
1063 return nine_create_shader_with_so_and_destroy(ureg, device->context.pipe, NULL);
1064 }
1065
1066 /* PS FF constants layout:
1067 *
1068 * CONST[ 0.. 7] stage[i].D3DTSS_CONSTANT
1069 * CONST[ 8..15].x___ stage[i].D3DTSS_BUMPENVMAT00
1070 * CONST[ 8..15]._y__ stage[i].D3DTSS_BUMPENVMAT01
1071 * CONST[ 8..15].__z_ stage[i].D3DTSS_BUMPENVMAT10
1072 * CONST[ 8..15].___w stage[i].D3DTSS_BUMPENVMAT11
1073 * CONST[16..19].x_z_ stage[i].D3DTSS_BUMPENVLSCALE
1074 * CONST[17..19]._y_w stage[i].D3DTSS_BUMPENVLOFFSET
1075 *
1076 * CONST[20] D3DRS_TEXTUREFACTOR
1077 * CONST[21] D3DRS_FOGCOLOR
1078 * CONST[22].x___ RS.FogEnd
1079 * CONST[22]._y__ 1.0f / (RS.FogEnd - RS.FogStart)
1080 * CONST[22].__z_ RS.FogDensity
1081 */
1082 struct ps_build_ctx
1083 {
1084 struct ureg_program *ureg;
1085
1086 struct ureg_src vC[2]; /* DIFFUSE, SPECULAR */
1087 struct ureg_src vT[8]; /* TEXCOORD[i] */
1088 struct ureg_dst rCur; /* D3DTA_CURRENT */
1089 struct ureg_dst rMod;
1090 struct ureg_src rCurSrc;
1091 struct ureg_dst rTmp; /* D3DTA_TEMP */
1092 struct ureg_src rTmpSrc;
1093 struct ureg_dst rTex;
1094 struct ureg_src rTexSrc;
1095 struct ureg_src cBEM[8];
1096 struct ureg_src s[8];
1097
1098 struct {
1099 unsigned index;
1100 unsigned index_pre_mod;
1101 } stage;
1102 };
1103
1104 static struct ureg_src
1105 ps_get_ts_arg(struct ps_build_ctx *ps, unsigned ta)
1106 {
1107 struct ureg_src reg;
1108
1109 switch (ta & D3DTA_SELECTMASK) {
1110 case D3DTA_CONSTANT:
1111 reg = ureg_DECL_constant(ps->ureg, ps->stage.index);
1112 break;
1113 case D3DTA_CURRENT:
1114 reg = (ps->stage.index == ps->stage.index_pre_mod) ? ureg_src(ps->rMod) : ps->rCurSrc;
1115 break;
1116 case D3DTA_DIFFUSE:
1117 reg = ureg_DECL_fs_input(ps->ureg, TGSI_SEMANTIC_COLOR, 0, TGSI_INTERPOLATE_COLOR);
1118 break;
1119 case D3DTA_SPECULAR:
1120 reg = ureg_DECL_fs_input(ps->ureg, TGSI_SEMANTIC_COLOR, 1, TGSI_INTERPOLATE_COLOR);
1121 break;
1122 case D3DTA_TEMP:
1123 reg = ps->rTmpSrc;
1124 break;
1125 case D3DTA_TEXTURE:
1126 reg = ps->rTexSrc;
1127 break;
1128 case D3DTA_TFACTOR:
1129 reg = ureg_DECL_constant(ps->ureg, 20);
1130 break;
1131 default:
1132 assert(0);
1133 reg = ureg_src_undef();
1134 break;
1135 }
1136 if (ta & D3DTA_COMPLEMENT) {
1137 struct ureg_dst dst = ureg_DECL_temporary(ps->ureg);
1138 ureg_ADD(ps->ureg, dst, ureg_imm1f(ps->ureg, 1.0f), ureg_negate(reg));
1139 reg = ureg_src(dst);
1140 }
1141 if (ta & D3DTA_ALPHAREPLICATE)
1142 reg = _WWWW(reg);
1143 return reg;
1144 }
1145
1146 static struct ureg_dst
1147 ps_get_ts_dst(struct ps_build_ctx *ps, unsigned ta)
1148 {
1149 assert(!(ta & (D3DTA_COMPLEMENT | D3DTA_ALPHAREPLICATE)));
1150
1151 switch (ta & D3DTA_SELECTMASK) {
1152 case D3DTA_CURRENT:
1153 return ps->rCur;
1154 case D3DTA_TEMP:
1155 return ps->rTmp;
1156 default:
1157 assert(0);
1158 return ureg_dst_undef();
1159 }
1160 }
1161
1162 static uint8_t ps_d3dtop_args_mask(D3DTEXTUREOP top)
1163 {
1164 switch (top) {
1165 case D3DTOP_DISABLE:
1166 return 0x0;
1167 case D3DTOP_SELECTARG1:
1168 case D3DTOP_PREMODULATE:
1169 return 0x2;
1170 case D3DTOP_SELECTARG2:
1171 return 0x4;
1172 case D3DTOP_MULTIPLYADD:
1173 case D3DTOP_LERP:
1174 return 0x7;
1175 default:
1176 return 0x6;
1177 }
1178 }
1179
1180 static inline boolean
1181 is_MOV_no_op(struct ureg_dst dst, struct ureg_src src)
1182 {
1183 return !dst.WriteMask ||
1184 (dst.File == src.File &&
1185 dst.Index == src.Index &&
1186 !dst.Indirect &&
1187 !dst.Saturate &&
1188 !src.Indirect &&
1189 !src.Negate &&
1190 !src.Absolute &&
1191 (!(dst.WriteMask & TGSI_WRITEMASK_X) || (src.SwizzleX == TGSI_SWIZZLE_X)) &&
1192 (!(dst.WriteMask & TGSI_WRITEMASK_Y) || (src.SwizzleY == TGSI_SWIZZLE_Y)) &&
1193 (!(dst.WriteMask & TGSI_WRITEMASK_Z) || (src.SwizzleZ == TGSI_SWIZZLE_Z)) &&
1194 (!(dst.WriteMask & TGSI_WRITEMASK_W) || (src.SwizzleW == TGSI_SWIZZLE_W)));
1195
1196 }
1197
1198 static void
1199 ps_do_ts_op(struct ps_build_ctx *ps, unsigned top, struct ureg_dst dst, struct ureg_src *arg)
1200 {
1201 struct ureg_program *ureg = ps->ureg;
1202 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
1203 struct ureg_dst tmp2 = ureg_DECL_temporary(ureg);
1204 struct ureg_dst tmp_x = ureg_writemask(tmp, TGSI_WRITEMASK_X);
1205
1206 tmp.WriteMask = dst.WriteMask;
1207
1208 if (top != D3DTOP_SELECTARG1 && top != D3DTOP_SELECTARG2 &&
1209 top != D3DTOP_MODULATE && top != D3DTOP_PREMODULATE &&
1210 top != D3DTOP_BLENDDIFFUSEALPHA && top != D3DTOP_BLENDTEXTUREALPHA &&
1211 top != D3DTOP_BLENDFACTORALPHA && top != D3DTOP_BLENDCURRENTALPHA &&
1212 top != D3DTOP_BUMPENVMAP && top != D3DTOP_BUMPENVMAPLUMINANCE &&
1213 top != D3DTOP_LERP)
1214 dst = ureg_saturate(dst);
1215
1216 switch (top) {
1217 case D3DTOP_SELECTARG1:
1218 if (!is_MOV_no_op(dst, arg[1]))
1219 ureg_MOV(ureg, dst, arg[1]);
1220 break;
1221 case D3DTOP_SELECTARG2:
1222 if (!is_MOV_no_op(dst, arg[2]))
1223 ureg_MOV(ureg, dst, arg[2]);
1224 break;
1225 case D3DTOP_MODULATE:
1226 ureg_MUL(ureg, dst, arg[1], arg[2]);
1227 break;
1228 case D3DTOP_MODULATE2X:
1229 ureg_MUL(ureg, tmp, arg[1], arg[2]);
1230 ureg_ADD(ureg, dst, ureg_src(tmp), ureg_src(tmp));
1231 break;
1232 case D3DTOP_MODULATE4X:
1233 ureg_MUL(ureg, tmp, arg[1], arg[2]);
1234 ureg_MUL(ureg, dst, ureg_src(tmp), ureg_imm1f(ureg, 4.0f));
1235 break;
1236 case D3DTOP_ADD:
1237 ureg_ADD(ureg, dst, arg[1], arg[2]);
1238 break;
1239 case D3DTOP_ADDSIGNED:
1240 ureg_ADD(ureg, tmp, arg[1], arg[2]);
1241 ureg_ADD(ureg, dst, ureg_src(tmp), ureg_imm1f(ureg, -0.5f));
1242 break;
1243 case D3DTOP_ADDSIGNED2X:
1244 ureg_ADD(ureg, tmp, arg[1], arg[2]);
1245 ureg_MAD(ureg, dst, ureg_src(tmp), ureg_imm1f(ureg, 2.0f), ureg_imm1f(ureg, -1.0f));
1246 break;
1247 case D3DTOP_SUBTRACT:
1248 ureg_ADD(ureg, dst, arg[1], ureg_negate(arg[2]));
1249 break;
1250 case D3DTOP_ADDSMOOTH:
1251 ureg_ADD(ureg, tmp, ureg_imm1f(ureg, 1.0f), ureg_negate(arg[1]));
1252 ureg_MAD(ureg, dst, ureg_src(tmp), arg[2], arg[1]);
1253 break;
1254 case D3DTOP_BLENDDIFFUSEALPHA:
1255 ureg_LRP(ureg, dst, _WWWW(ps->vC[0]), arg[1], arg[2]);
1256 break;
1257 case D3DTOP_BLENDTEXTUREALPHA:
1258 /* XXX: alpha taken from previous stage, texture or result ? */
1259 ureg_LRP(ureg, dst, _W(ps->rTex), arg[1], arg[2]);
1260 break;
1261 case D3DTOP_BLENDFACTORALPHA:
1262 ureg_LRP(ureg, dst, _WWWW(_CONST(20)), arg[1], arg[2]);
1263 break;
1264 case D3DTOP_BLENDTEXTUREALPHAPM:
1265 ureg_ADD(ureg, tmp_x, ureg_imm1f(ureg, 1.0f), ureg_negate(_W(ps->rTex)));
1266 ureg_MAD(ureg, dst, arg[2], _X(tmp), arg[1]);
1267 break;
1268 case D3DTOP_BLENDCURRENTALPHA:
1269 ureg_LRP(ureg, dst, _WWWW(ps->rCurSrc), arg[1], arg[2]);
1270 break;
1271 case D3DTOP_PREMODULATE:
1272 ureg_MOV(ureg, dst, arg[1]);
1273 ps->stage.index_pre_mod = ps->stage.index + 1;
1274 break;
1275 case D3DTOP_MODULATEALPHA_ADDCOLOR:
1276 ureg_MAD(ureg, dst, _WWWW(arg[1]), arg[2], arg[1]);
1277 break;
1278 case D3DTOP_MODULATECOLOR_ADDALPHA:
1279 ureg_MAD(ureg, dst, arg[1], arg[2], _WWWW(arg[1]));
1280 break;
1281 case D3DTOP_MODULATEINVALPHA_ADDCOLOR:
1282 ureg_ADD(ureg, tmp_x, ureg_imm1f(ureg, 1.0f), ureg_negate(_WWWW(arg[1])));
1283 ureg_MAD(ureg, dst, _X(tmp), arg[2], arg[1]);
1284 break;
1285 case D3DTOP_MODULATEINVCOLOR_ADDALPHA:
1286 ureg_ADD(ureg, tmp, ureg_imm1f(ureg, 1.0f), ureg_negate(arg[1]));
1287 ureg_MAD(ureg, dst, ureg_src(tmp), arg[2], _WWWW(arg[1]));
1288 break;
1289 case D3DTOP_BUMPENVMAP:
1290 break;
1291 case D3DTOP_BUMPENVMAPLUMINANCE:
1292 break;
1293 case D3DTOP_DOTPRODUCT3:
1294 ureg_ADD(ureg, tmp, arg[1], ureg_imm4f(ureg,-0.5,-0.5,-0.5,-0.5));
1295 ureg_ADD(ureg, tmp2, arg[2] , ureg_imm4f(ureg,-0.5,-0.5,-0.5,-0.5));
1296 ureg_DP3(ureg, tmp, ureg_src(tmp), ureg_src(tmp2));
1297 ureg_MUL(ureg, ureg_saturate(dst), ureg_src(tmp), ureg_imm4f(ureg,4.0,4.0,4.0,4.0));
1298 break;
1299 case D3DTOP_MULTIPLYADD:
1300 ureg_MAD(ureg, dst, arg[1], arg[2], arg[0]);
1301 break;
1302 case D3DTOP_LERP:
1303 ureg_LRP(ureg, dst, arg[0], arg[1], arg[2]);
1304 break;
1305 case D3DTOP_DISABLE:
1306 /* no-op ? */
1307 break;
1308 default:
1309 assert(!"invalid D3DTOP");
1310 break;
1311 }
1312 ureg_release_temporary(ureg, tmp);
1313 ureg_release_temporary(ureg, tmp2);
1314 }
1315
1316 static void *
1317 nine_ff_build_ps(struct NineDevice9 *device, struct nine_ff_ps_key *key)
1318 {
1319 struct ps_build_ctx ps;
1320 struct ureg_program *ureg = ureg_create(PIPE_SHADER_FRAGMENT);
1321 struct ureg_dst oCol;
1322 unsigned s;
1323 const unsigned texcoord_sn = get_texcoord_sn(device->screen);
1324
1325 memset(&ps, 0, sizeof(ps));
1326 ps.ureg = ureg;
1327 ps.stage.index_pre_mod = -1;
1328
1329 ps.vC[0] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 0, TGSI_INTERPOLATE_COLOR);
1330
1331 ps.rCur = ureg_DECL_temporary(ureg);
1332 ps.rTmp = ureg_DECL_temporary(ureg);
1333 ps.rTex = ureg_DECL_temporary(ureg);
1334 ps.rCurSrc = ureg_src(ps.rCur);
1335 ps.rTmpSrc = ureg_src(ps.rTmp);
1336 ps.rTexSrc = ureg_src(ps.rTex);
1337
1338 /* Initial values */
1339 ureg_MOV(ureg, ps.rCur, ps.vC[0]);
1340 ureg_MOV(ureg, ps.rTmp, ureg_imm1f(ureg, 0.0f));
1341 ureg_MOV(ureg, ps.rTex, ureg_imm1f(ureg, 0.0f));
1342
1343 for (s = 0; s < 8; ++s) {
1344 ps.s[s] = ureg_src_undef();
1345
1346 if (key->ts[s].colorop != D3DTOP_DISABLE) {
1347 if (key->ts[s].colorarg0 == D3DTA_SPECULAR ||
1348 key->ts[s].colorarg1 == D3DTA_SPECULAR ||
1349 key->ts[s].colorarg2 == D3DTA_SPECULAR)
1350 ps.vC[1] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 1, TGSI_INTERPOLATE_COLOR);
1351
1352 if (key->ts[s].colorarg0 == D3DTA_TEXTURE ||
1353 key->ts[s].colorarg1 == D3DTA_TEXTURE ||
1354 key->ts[s].colorarg2 == D3DTA_TEXTURE) {
1355 ps.s[s] = ureg_DECL_sampler(ureg, s);
1356 ps.vT[s] = ureg_DECL_fs_input(ureg, texcoord_sn, s, TGSI_INTERPOLATE_PERSPECTIVE);
1357 }
1358 if (s && (key->ts[s - 1].colorop == D3DTOP_PREMODULATE ||
1359 key->ts[s - 1].alphaop == D3DTOP_PREMODULATE))
1360 ps.s[s] = ureg_DECL_sampler(ureg, s);
1361 }
1362
1363 if (key->ts[s].alphaop != D3DTOP_DISABLE) {
1364 if (key->ts[s].alphaarg0 == D3DTA_SPECULAR ||
1365 key->ts[s].alphaarg1 == D3DTA_SPECULAR ||
1366 key->ts[s].alphaarg2 == D3DTA_SPECULAR)
1367 ps.vC[1] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 1, TGSI_INTERPOLATE_COLOR);
1368
1369 if (key->ts[s].alphaarg0 == D3DTA_TEXTURE ||
1370 key->ts[s].alphaarg1 == D3DTA_TEXTURE ||
1371 key->ts[s].alphaarg2 == D3DTA_TEXTURE) {
1372 ps.s[s] = ureg_DECL_sampler(ureg, s);
1373 ps.vT[s] = ureg_DECL_fs_input(ureg, texcoord_sn, s, TGSI_INTERPOLATE_PERSPECTIVE);
1374 }
1375 }
1376 }
1377 if (key->specular)
1378 ps.vC[1] = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 1, TGSI_INTERPOLATE_COLOR);
1379
1380 oCol = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
1381
1382 /* Run stages.
1383 */
1384 for (s = 0; s < 8; ++s) {
1385 unsigned colorarg[3];
1386 unsigned alphaarg[3];
1387 const uint8_t used_c = ps_d3dtop_args_mask(key->ts[s].colorop);
1388 const uint8_t used_a = ps_d3dtop_args_mask(key->ts[s].alphaop);
1389 struct ureg_dst dst;
1390 struct ureg_src arg[3];
1391
1392 if (key->ts[s].colorop == D3DTOP_DISABLE) {
1393 assert (key->ts[s].alphaop == D3DTOP_DISABLE);
1394 continue;
1395 }
1396 ps.stage.index = s;
1397
1398 DBG("STAGE[%u]: colorop=%s alphaop=%s\n", s,
1399 nine_D3DTOP_to_str(key->ts[s].colorop),
1400 nine_D3DTOP_to_str(key->ts[s].alphaop));
1401
1402 if (!ureg_src_is_undef(ps.s[s])) {
1403 unsigned target;
1404 struct ureg_src texture_coord = ps.vT[s];
1405 struct ureg_dst delta;
1406 switch (key->ts[s].textarget) {
1407 case 0: target = TGSI_TEXTURE_1D; break;
1408 case 1: target = TGSI_TEXTURE_2D; break;
1409 case 2: target = TGSI_TEXTURE_3D; break;
1410 case 3: target = TGSI_TEXTURE_CUBE; break;
1411 /* this is a 2 bit bitfield, do I really need a default case ? */
1412 }
1413
1414 /* Modify coordinates */
1415 if (s >= 1 &&
1416 (key->ts[s-1].colorop == D3DTOP_BUMPENVMAP ||
1417 key->ts[s-1].colorop == D3DTOP_BUMPENVMAPLUMINANCE)) {
1418 delta = ureg_DECL_temporary(ureg);
1419 /* Du' = D3DTSS_BUMPENVMAT00(stage s-1)*t(s-1)R + D3DTSS_BUMPENVMAT10(stage s-1)*t(s-1)G */
1420 ureg_MUL(ureg, ureg_writemask(delta, TGSI_WRITEMASK_X), _X(ps.rTex), _XXXX(_CONST(8 + s - 1)));
1421 ureg_MAD(ureg, ureg_writemask(delta, TGSI_WRITEMASK_X), _Y(ps.rTex), _ZZZZ(_CONST(8 + s - 1)), ureg_src(delta));
1422 /* Dv' = D3DTSS_BUMPENVMAT01(stage s-1)*t(s-1)R + D3DTSS_BUMPENVMAT11(stage s-1)*t(s-1)G */
1423 ureg_MUL(ureg, ureg_writemask(delta, TGSI_WRITEMASK_Y), _X(ps.rTex), _YYYY(_CONST(8 + s - 1)));
1424 ureg_MAD(ureg, ureg_writemask(delta, TGSI_WRITEMASK_Y), _Y(ps.rTex), _WWWW(_CONST(8 + s - 1)), ureg_src(delta));
1425 texture_coord = ureg_src(ureg_DECL_temporary(ureg));
1426 ureg_MOV(ureg, ureg_writemask(ureg_dst(texture_coord), ureg_dst(ps.vT[s]).WriteMask), ps.vT[s]);
1427 ureg_ADD(ureg, ureg_writemask(ureg_dst(texture_coord), TGSI_WRITEMASK_XY), texture_coord, ureg_src(delta));
1428 /* Prepare luminance multiplier
1429 * t(s)RGBA = t(s)RGBA * clamp[(t(s-1)B * D3DTSS_BUMPENVLSCALE(stage s-1)) + D3DTSS_BUMPENVLOFFSET(stage s-1)] */
1430 if (key->ts[s-1].colorop == D3DTOP_BUMPENVMAPLUMINANCE) {
1431 struct ureg_src bumpenvlscale = ((s-1) & 1) ? _ZZZZ(_CONST(16 + (s-1) / 2)) : _XXXX(_CONST(16 + (s-1) / 2));
1432 struct ureg_src bumpenvloffset = ((s-1) & 1) ? _WWWW(_CONST(16 + (s-1) / 2)) : _YYYY(_CONST(16 + (s-1) / 2));
1433
1434 ureg_MAD(ureg, ureg_saturate(ureg_writemask(delta, TGSI_WRITEMASK_X)), _Z(ps.rTex), bumpenvlscale, bumpenvloffset);
1435 }
1436 }
1437 if (key->projected & (3 << (s *2))) {
1438 unsigned dim = 1 + ((key->projected >> (2 * s)) & 3);
1439 if (dim == 4)
1440 ureg_TXP(ureg, ps.rTex, target, texture_coord, ps.s[s]);
1441 else {
1442 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
1443 ureg_RCP(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_X), ureg_scalar(texture_coord, dim-1));
1444 ureg_MUL(ureg, ps.rTmp, _X(tmp), texture_coord);
1445 ureg_TEX(ureg, ps.rTex, target, ps.rTmpSrc, ps.s[s]);
1446 ureg_release_temporary(ureg, tmp);
1447 }
1448 } else {
1449 ureg_TEX(ureg, ps.rTex, target, texture_coord, ps.s[s]);
1450 }
1451 if (s >= 1 && key->ts[s-1].colorop == D3DTOP_BUMPENVMAPLUMINANCE)
1452 ureg_MUL(ureg, ps.rTex, ureg_src(ps.rTex), _X(delta));
1453 }
1454
1455 if (key->ts[s].colorop == D3DTOP_BUMPENVMAP ||
1456 key->ts[s].colorop == D3DTOP_BUMPENVMAPLUMINANCE)
1457 continue;
1458
1459 dst = ps_get_ts_dst(&ps, key->ts[s].resultarg ? D3DTA_TEMP : D3DTA_CURRENT);
1460
1461 if (ps.stage.index_pre_mod == ps.stage.index) {
1462 ps.rMod = ureg_DECL_temporary(ureg);
1463 ureg_MUL(ureg, ps.rMod, ps.rCurSrc, ps.rTexSrc);
1464 }
1465
1466 colorarg[0] = (key->ts[s].colorarg0 | (((key->colorarg_b4[0] >> s) & 0x1) << 4) | ((key->colorarg_b5[0] >> s) << 5)) & 0x3f;
1467 colorarg[1] = (key->ts[s].colorarg1 | (((key->colorarg_b4[1] >> s) & 0x1) << 4) | ((key->colorarg_b5[1] >> s) << 5)) & 0x3f;
1468 colorarg[2] = (key->ts[s].colorarg2 | (((key->colorarg_b4[2] >> s) & 0x1) << 4) | ((key->colorarg_b5[2] >> s) << 5)) & 0x3f;
1469 alphaarg[0] = (key->ts[s].alphaarg0 | ((key->alphaarg_b4[0] >> s) << 4)) & 0x1f;
1470 alphaarg[1] = (key->ts[s].alphaarg1 | ((key->alphaarg_b4[1] >> s) << 4)) & 0x1f;
1471 alphaarg[2] = (key->ts[s].alphaarg2 | ((key->alphaarg_b4[2] >> s) << 4)) & 0x1f;
1472
1473 if (key->ts[s].colorop != key->ts[s].alphaop ||
1474 colorarg[0] != alphaarg[0] ||
1475 colorarg[1] != alphaarg[1] ||
1476 colorarg[2] != alphaarg[2])
1477 dst.WriteMask = TGSI_WRITEMASK_XYZ;
1478
1479 /* Special DOTPRODUCT behaviour (see wine tests) */
1480 if (key->ts[s].colorop == D3DTOP_DOTPRODUCT3)
1481 dst.WriteMask = TGSI_WRITEMASK_XYZW;
1482
1483 if (used_c & 0x1) arg[0] = ps_get_ts_arg(&ps, colorarg[0]);
1484 if (used_c & 0x2) arg[1] = ps_get_ts_arg(&ps, colorarg[1]);
1485 if (used_c & 0x4) arg[2] = ps_get_ts_arg(&ps, colorarg[2]);
1486 ps_do_ts_op(&ps, key->ts[s].colorop, dst, arg);
1487
1488 if (dst.WriteMask != TGSI_WRITEMASK_XYZW) {
1489 dst.WriteMask = TGSI_WRITEMASK_W;
1490
1491 if (used_a & 0x1) arg[0] = ps_get_ts_arg(&ps, alphaarg[0]);
1492 if (used_a & 0x2) arg[1] = ps_get_ts_arg(&ps, alphaarg[1]);
1493 if (used_a & 0x4) arg[2] = ps_get_ts_arg(&ps, alphaarg[2]);
1494 ps_do_ts_op(&ps, key->ts[s].alphaop, dst, arg);
1495 }
1496 }
1497
1498 if (key->specular)
1499 ureg_ADD(ureg, ureg_writemask(ps.rCur, TGSI_WRITEMASK_XYZ), ps.rCurSrc, ps.vC[1]);
1500
1501 /* Fog.
1502 */
1503 if (key->fog_mode) {
1504 struct ureg_dst rFog = ureg_writemask(ps.rTmp, TGSI_WRITEMASK_X);
1505 struct ureg_src vPos;
1506 if (device->screen->get_param(device->screen,
1507 PIPE_CAP_TGSI_FS_POSITION_IS_SYSVAL)) {
1508 vPos = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_POSITION, 0);
1509 } else {
1510 vPos = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_POSITION, 0,
1511 TGSI_INTERPOLATE_LINEAR);
1512 }
1513
1514 /* Source is either W or Z.
1515 * When we use vs ff,
1516 * Z is when an orthogonal projection matrix is detected,
1517 * W (WFOG) else.
1518 * Z is used for programmable vs.
1519 * Note: Tests indicate that the projection matrix coefficients do
1520 * actually affect pixel fog (and not vertex fog) when vs ff is used,
1521 * which justifies taking the position's w instead of taking the z coordinate
1522 * before the projection in the vs shader.
1523 */
1524 if (!key->fog_source)
1525 ureg_MOV(ureg, rFog, _ZZZZ(vPos));
1526 else
1527 /* Position's w is 1/w */
1528 ureg_RCP(ureg, rFog, _WWWW(vPos));
1529
1530 if (key->fog_mode == D3DFOG_EXP) {
1531 ureg_MUL(ureg, rFog, _X(rFog), _ZZZZ(_CONST(22)));
1532 ureg_MUL(ureg, rFog, _X(rFog), ureg_imm1f(ureg, -1.442695f));
1533 ureg_EX2(ureg, rFog, _X(rFog));
1534 } else
1535 if (key->fog_mode == D3DFOG_EXP2) {
1536 ureg_MUL(ureg, rFog, _X(rFog), _ZZZZ(_CONST(22)));
1537 ureg_MUL(ureg, rFog, _X(rFog), _X(rFog));
1538 ureg_MUL(ureg, rFog, _X(rFog), ureg_imm1f(ureg, -1.442695f));
1539 ureg_EX2(ureg, rFog, _X(rFog));
1540 } else
1541 if (key->fog_mode == D3DFOG_LINEAR) {
1542 ureg_ADD(ureg, rFog, _XXXX(_CONST(22)), ureg_negate(_X(rFog)));
1543 ureg_MUL(ureg, ureg_saturate(rFog), _X(rFog), _YYYY(_CONST(22)));
1544 }
1545 ureg_LRP(ureg, ureg_writemask(oCol, TGSI_WRITEMASK_XYZ), _X(rFog), ps.rCurSrc, _CONST(21));
1546 ureg_MOV(ureg, ureg_writemask(oCol, TGSI_WRITEMASK_W), ps.rCurSrc);
1547 } else
1548 if (key->fog) {
1549 struct ureg_src vFog = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_GENERIC, 16, TGSI_INTERPOLATE_PERSPECTIVE);
1550 ureg_LRP(ureg, ureg_writemask(oCol, TGSI_WRITEMASK_XYZ), _XXXX(vFog), ps.rCurSrc, _CONST(21));
1551 ureg_MOV(ureg, ureg_writemask(oCol, TGSI_WRITEMASK_W), ps.rCurSrc);
1552 } else {
1553 ureg_MOV(ureg, oCol, ps.rCurSrc);
1554 }
1555
1556 ureg_END(ureg);
1557 nine_ureg_tgsi_dump(ureg, FALSE);
1558 return nine_create_shader_with_so_and_destroy(ureg, device->context.pipe, NULL);
1559 }
1560
1561 static struct NineVertexShader9 *
1562 nine_ff_get_vs(struct NineDevice9 *device)
1563 {
1564 const struct nine_context *context = &device->context;
1565 struct NineVertexShader9 *vs;
1566 struct vs_build_ctx bld;
1567 struct nine_ff_vs_key key;
1568 unsigned s, i;
1569 boolean has_indexes = false;
1570 boolean has_weights = false;
1571 char input_texture_coord[8];
1572
1573 assert(sizeof(key) <= sizeof(key.value32));
1574
1575 memset(&key, 0, sizeof(key));
1576 memset(&bld, 0, sizeof(bld));
1577 memset(&input_texture_coord, 0, sizeof(input_texture_coord));
1578
1579 bld.key = &key;
1580
1581 /* FIXME: this shouldn't be NULL, but it is on init */
1582 if (context->vdecl) {
1583 key.color0in_one = 1;
1584 key.color1in_zero = 1;
1585 for (i = 0; i < context->vdecl->nelems; i++) {
1586 uint16_t usage = context->vdecl->usage_map[i];
1587 if (usage == NINE_DECLUSAGE_POSITIONT)
1588 key.position_t = 1;
1589 else if (usage == NINE_DECLUSAGE_i(COLOR, 0))
1590 key.color0in_one = 0;
1591 else if (usage == NINE_DECLUSAGE_i(COLOR, 1))
1592 key.color1in_zero = 0;
1593 else if (usage == NINE_DECLUSAGE_i(BLENDINDICES, 0)) {
1594 has_indexes = true;
1595 key.passthrough |= 1 << usage;
1596 } else if (usage == NINE_DECLUSAGE_i(BLENDWEIGHT, 0)) {
1597 has_weights = true;
1598 key.passthrough |= 1 << usage;
1599 } else if (usage == NINE_DECLUSAGE_i(NORMAL, 0)) {
1600 key.has_normal = 1;
1601 key.passthrough |= 1 << usage;
1602 } else if (usage == NINE_DECLUSAGE_PSIZE)
1603 key.vertexpointsize = 1;
1604 else if (usage % NINE_DECLUSAGE_COUNT == NINE_DECLUSAGE_TEXCOORD) {
1605 s = usage / NINE_DECLUSAGE_COUNT;
1606 if (s < 8)
1607 input_texture_coord[s] = nine_decltype_get_dim(context->vdecl->decls[i].Type);
1608 else
1609 DBG("FF given texture coordinate >= 8. Ignoring\n");
1610 } else if (usage < NINE_DECLUSAGE_NONE)
1611 key.passthrough |= 1 << usage;
1612 }
1613 }
1614 /* ff vs + ps 3.0: some elements are passed to the ps (wine test).
1615 * We do restrict to indices 0 */
1616 key.passthrough &= ~((1 << NINE_DECLUSAGE_POSITION) | (1 << NINE_DECLUSAGE_PSIZE) |
1617 (1 << NINE_DECLUSAGE_TEXCOORD) | (1 << NINE_DECLUSAGE_POSITIONT) |
1618 (1 << NINE_DECLUSAGE_TESSFACTOR) | (1 << NINE_DECLUSAGE_SAMPLE));
1619 if (!key.position_t)
1620 key.passthrough = 0;
1621 key.pointscale = !!context->rs[D3DRS_POINTSCALEENABLE];
1622
1623 key.lighting = !!context->rs[D3DRS_LIGHTING] && context->ff.num_lights_active;
1624 key.darkness = !!context->rs[D3DRS_LIGHTING] && !context->ff.num_lights_active;
1625 if (key.position_t) {
1626 key.darkness = 0; /* |= key.lighting; */ /* XXX ? */
1627 key.lighting = 0;
1628 }
1629 if ((key.lighting | key.darkness) && context->rs[D3DRS_COLORVERTEX]) {
1630 uint32_t mask = (key.color0in_one ? 0 : 1) | (key.color1in_zero ? 0 : 2);
1631 key.mtl_diffuse = context->rs[D3DRS_DIFFUSEMATERIALSOURCE] & mask;
1632 key.mtl_ambient = context->rs[D3DRS_AMBIENTMATERIALSOURCE] & mask;
1633 key.mtl_specular = context->rs[D3DRS_SPECULARMATERIALSOURCE] & mask;
1634 key.mtl_emissive = context->rs[D3DRS_EMISSIVEMATERIALSOURCE] & mask;
1635 }
1636 key.fog = !!context->rs[D3DRS_FOGENABLE];
1637 key.fog_mode = (!key.position_t && context->rs[D3DRS_FOGENABLE]) ? context->rs[D3DRS_FOGVERTEXMODE] : 0;
1638 if (key.fog_mode)
1639 key.fog_range = context->rs[D3DRS_RANGEFOGENABLE];
1640
1641 key.localviewer = !!context->rs[D3DRS_LOCALVIEWER];
1642 key.normalizenormals = !!context->rs[D3DRS_NORMALIZENORMALS];
1643 key.ucp = !!context->rs[D3DRS_CLIPPLANEENABLE];
1644
1645 if (context->rs[D3DRS_VERTEXBLEND] != D3DVBF_DISABLE) {
1646 key.vertexblend_indexed = !!context->rs[D3DRS_INDEXEDVERTEXBLENDENABLE] && has_indexes;
1647
1648 switch (context->rs[D3DRS_VERTEXBLEND]) {
1649 case D3DVBF_0WEIGHTS: key.vertexblend = key.vertexblend_indexed; break;
1650 case D3DVBF_1WEIGHTS: key.vertexblend = 2; break;
1651 case D3DVBF_2WEIGHTS: key.vertexblend = 3; break;
1652 case D3DVBF_3WEIGHTS: key.vertexblend = 4; break;
1653 case D3DVBF_TWEENING: key.vertextween = 1; break;
1654 default:
1655 assert(!"invalid D3DVBF");
1656 break;
1657 }
1658 if (!has_weights && context->rs[D3DRS_VERTEXBLEND] != D3DVBF_0WEIGHTS)
1659 key.vertexblend = 0; /* TODO: if key.vertexblend_indexed, perhaps it should use 1.0 as weight, or revert to D3DVBF_0WEIGHTS */
1660 }
1661
1662 for (s = 0; s < 8; ++s) {
1663 unsigned gen = (context->ff.tex_stage[s][D3DTSS_TEXCOORDINDEX] >> 16) + 1;
1664 unsigned idx = context->ff.tex_stage[s][D3DTSS_TEXCOORDINDEX] & 7;
1665 unsigned dim;
1666
1667 if (key.position_t && gen > NINED3DTSS_TCI_PASSTHRU)
1668 gen = NINED3DTSS_TCI_PASSTHRU;
1669
1670 if (!input_texture_coord[idx] && gen == NINED3DTSS_TCI_PASSTHRU)
1671 gen = NINED3DTSS_TCI_DISABLE;
1672
1673 key.tc_gen |= gen << (s * 3);
1674 key.tc_idx |= idx << (s * 3);
1675 key.tc_dim_input |= ((input_texture_coord[idx]-1) & 0x3) << (s * 2);
1676
1677 dim = context->ff.tex_stage[s][D3DTSS_TEXTURETRANSFORMFLAGS] & 0x7;
1678 if (dim > 4)
1679 dim = input_texture_coord[idx];
1680 if (dim == 1) /* NV behaviour */
1681 dim = 0;
1682 key.tc_dim_output |= dim << (s * 3);
1683 }
1684
1685 DBG("VS ff key hash: %x\n", nine_ff_vs_key_hash(&key));
1686 vs = util_hash_table_get(device->ff.ht_vs, &key);
1687 if (vs)
1688 return vs;
1689 NineVertexShader9_new(device, &vs, NULL, nine_ff_build_vs(device, &bld));
1690
1691 nine_ff_prune_vs(device);
1692 if (vs) {
1693 unsigned n;
1694
1695 memcpy(&vs->ff_key, &key, sizeof(vs->ff_key));
1696
1697 _mesa_hash_table_insert(device->ff.ht_vs, &vs->ff_key, vs);
1698 device->ff.num_vs++;
1699
1700 vs->num_inputs = bld.num_inputs;
1701 for (n = 0; n < bld.num_inputs; ++n)
1702 vs->input_map[n].ndecl = bld.input[n];
1703
1704 vs->position_t = key.position_t;
1705 vs->point_size = key.vertexpointsize | key.pointscale;
1706 }
1707 return vs;
1708 }
1709
1710 #define GET_D3DTS(n) nine_state_access_transform(&context->ff, D3DTS_##n, FALSE)
1711 #define IS_D3DTS_DIRTY(s,n) ((s)->ff.changed.transform[(D3DTS_##n) / 32] & (1 << ((D3DTS_##n) % 32)))
1712
1713 static struct NinePixelShader9 *
1714 nine_ff_get_ps(struct NineDevice9 *device)
1715 {
1716 struct nine_context *context = &device->context;
1717 D3DMATRIX *projection_matrix = GET_D3DTS(PROJECTION);
1718 struct NinePixelShader9 *ps;
1719 struct nine_ff_ps_key key;
1720 unsigned s;
1721 uint8_t sampler_mask = 0;
1722
1723 assert(sizeof(key) <= sizeof(key.value32));
1724
1725 memset(&key, 0, sizeof(key));
1726 for (s = 0; s < 8; ++s) {
1727 key.ts[s].colorop = context->ff.tex_stage[s][D3DTSS_COLOROP];
1728 key.ts[s].alphaop = context->ff.tex_stage[s][D3DTSS_ALPHAOP];
1729 const uint8_t used_c = ps_d3dtop_args_mask(key.ts[s].colorop);
1730 const uint8_t used_a = ps_d3dtop_args_mask(key.ts[s].alphaop);
1731 /* MSDN says D3DTOP_DISABLE disables this and all subsequent stages.
1732 * ALPHAOP cannot be enabled if COLOROP is disabled.
1733 * Verified on Windows. */
1734 if (key.ts[s].colorop == D3DTOP_DISABLE) {
1735 key.ts[s].alphaop = D3DTOP_DISABLE; /* DISABLE == 1, avoid degenerate keys */
1736 break;
1737 }
1738
1739 if (!context->texture[s].enabled &&
1740 ((context->ff.tex_stage[s][D3DTSS_COLORARG0] == D3DTA_TEXTURE &&
1741 used_c & 0x1) ||
1742 (context->ff.tex_stage[s][D3DTSS_COLORARG1] == D3DTA_TEXTURE &&
1743 used_c & 0x2) ||
1744 (context->ff.tex_stage[s][D3DTSS_COLORARG2] == D3DTA_TEXTURE &&
1745 used_c & 0x4))) {
1746 /* Tested on Windows: Invalid texture read disables the stage
1747 * and the subsequent ones, but only for colorop. For alpha,
1748 * it's as if the texture had alpha of 1.0, which is what
1749 * has our dummy texture in that case. Invalid color also
1750 * disabled the following alpha stages. */
1751 key.ts[s].colorop = key.ts[s].alphaop = D3DTOP_DISABLE;
1752 break;
1753 }
1754
1755 if (context->ff.tex_stage[s][D3DTSS_COLORARG0] == D3DTA_TEXTURE ||
1756 context->ff.tex_stage[s][D3DTSS_COLORARG1] == D3DTA_TEXTURE ||
1757 context->ff.tex_stage[s][D3DTSS_COLORARG2] == D3DTA_TEXTURE ||
1758 context->ff.tex_stage[s][D3DTSS_ALPHAARG0] == D3DTA_TEXTURE ||
1759 context->ff.tex_stage[s][D3DTSS_ALPHAARG1] == D3DTA_TEXTURE ||
1760 context->ff.tex_stage[s][D3DTSS_ALPHAARG2] == D3DTA_TEXTURE)
1761 sampler_mask |= (1 << s);
1762
1763 if (key.ts[s].colorop != D3DTOP_DISABLE) {
1764 if (used_c & 0x1) key.ts[s].colorarg0 = context->ff.tex_stage[s][D3DTSS_COLORARG0] & 0x7;
1765 if (used_c & 0x2) key.ts[s].colorarg1 = context->ff.tex_stage[s][D3DTSS_COLORARG1] & 0x7;
1766 if (used_c & 0x4) key.ts[s].colorarg2 = context->ff.tex_stage[s][D3DTSS_COLORARG2] & 0x7;
1767 if (used_c & 0x1) key.colorarg_b4[0] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG0] >> 4) & 0x1) << s;
1768 if (used_c & 0x1) key.colorarg_b5[0] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG0] >> 5) & 0x1) << s;
1769 if (used_c & 0x2) key.colorarg_b4[1] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG1] >> 4) & 0x1) << s;
1770 if (used_c & 0x2) key.colorarg_b5[1] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG1] >> 5) & 0x1) << s;
1771 if (used_c & 0x4) key.colorarg_b4[2] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG2] >> 4) & 0x1) << s;
1772 if (used_c & 0x4) key.colorarg_b5[2] |= ((context->ff.tex_stage[s][D3DTSS_COLORARG2] >> 5) & 0x1) << s;
1773 }
1774 if (key.ts[s].alphaop != D3DTOP_DISABLE) {
1775 if (used_a & 0x1) key.ts[s].alphaarg0 = context->ff.tex_stage[s][D3DTSS_ALPHAARG0] & 0x7;
1776 if (used_a & 0x2) key.ts[s].alphaarg1 = context->ff.tex_stage[s][D3DTSS_ALPHAARG1] & 0x7;
1777 if (used_a & 0x4) key.ts[s].alphaarg2 = context->ff.tex_stage[s][D3DTSS_ALPHAARG2] & 0x7;
1778 if (used_a & 0x1) key.alphaarg_b4[0] |= ((context->ff.tex_stage[s][D3DTSS_ALPHAARG0] >> 4) & 0x1) << s;
1779 if (used_a & 0x2) key.alphaarg_b4[1] |= ((context->ff.tex_stage[s][D3DTSS_ALPHAARG1] >> 4) & 0x1) << s;
1780 if (used_a & 0x4) key.alphaarg_b4[2] |= ((context->ff.tex_stage[s][D3DTSS_ALPHAARG2] >> 4) & 0x1) << s;
1781 }
1782 key.ts[s].resultarg = context->ff.tex_stage[s][D3DTSS_RESULTARG] == D3DTA_TEMP;
1783
1784 if (context->texture[s].enabled) {
1785 switch (context->texture[s].type) {
1786 case D3DRTYPE_TEXTURE: key.ts[s].textarget = 1; break;
1787 case D3DRTYPE_VOLUMETEXTURE: key.ts[s].textarget = 2; break;
1788 case D3DRTYPE_CUBETEXTURE: key.ts[s].textarget = 3; break;
1789 default:
1790 assert(!"unexpected texture type");
1791 break;
1792 }
1793 } else {
1794 key.ts[s].textarget = 1;
1795 }
1796 }
1797
1798 /* Note: If colorop is D3DTOP_DISABLE for the first stage
1799 * (which implies alphaop is too), nothing particular happens,
1800 * that is, current is equal to diffuse (which is the case anyway,
1801 * because it is how it is initialized).
1802 * Special case seems if alphaop is D3DTOP_DISABLE and not colorop,
1803 * because then if the resultarg is TEMP, then diffuse alpha is written
1804 * to it. */
1805 if (key.ts[0].colorop != D3DTOP_DISABLE &&
1806 key.ts[0].alphaop == D3DTOP_DISABLE &&
1807 key.ts[0].resultarg != 0) {
1808 key.ts[0].alphaop = D3DTOP_SELECTARG1;
1809 key.ts[0].alphaarg1 = D3DTA_DIFFUSE;
1810 }
1811 /* When no alpha stage writes to current, diffuse alpha is taken.
1812 * Since we initialize current to diffuse, we have the behaviour. */
1813
1814 /* Last stage always writes to Current */
1815 if (s >= 1)
1816 key.ts[s-1].resultarg = 0;
1817
1818 key.projected = nine_ff_get_projected_key_ff(context);
1819 key.specular = !!context->rs[D3DRS_SPECULARENABLE];
1820
1821 for (; s < 8; ++s)
1822 key.ts[s].colorop = key.ts[s].alphaop = D3DTOP_DISABLE;
1823 if (context->rs[D3DRS_FOGENABLE])
1824 key.fog_mode = context->rs[D3DRS_FOGTABLEMODE];
1825 key.fog = !!context->rs[D3DRS_FOGENABLE];
1826 /* Pixel fog (with WFOG advertised): source is either Z or W.
1827 * W is the source if vs ff is used, and the
1828 * projection matrix is not orthogonal.
1829 * Tests on Win 10 seem to indicate _34
1830 * and _33 are checked against 0, 1. */
1831 if (key.fog_mode && key.fog)
1832 key.fog_source = !context->programmable_vs &&
1833 !(projection_matrix->_34 == 0.0f &&
1834 projection_matrix->_44 == 1.0f);
1835
1836 DBG("PS ff key hash: %x\n", nine_ff_ps_key_hash(&key));
1837 ps = util_hash_table_get(device->ff.ht_ps, &key);
1838 if (ps)
1839 return ps;
1840 NinePixelShader9_new(device, &ps, NULL, nine_ff_build_ps(device, &key));
1841
1842 nine_ff_prune_ps(device);
1843 if (ps) {
1844 memcpy(&ps->ff_key, &key, sizeof(ps->ff_key));
1845
1846 _mesa_hash_table_insert(device->ff.ht_ps, &ps->ff_key, ps);
1847 device->ff.num_ps++;
1848
1849 ps->rt_mask = 0x1;
1850 ps->sampler_mask = sampler_mask;
1851 }
1852 return ps;
1853 }
1854
1855 static void
1856 nine_ff_load_vs_transforms(struct NineDevice9 *device)
1857 {
1858 struct nine_context *context = &device->context;
1859 D3DMATRIX T;
1860 D3DMATRIX *M = (D3DMATRIX *)device->ff.vs_const;
1861 unsigned i;
1862
1863 /* TODO: make this nicer, and only upload the ones we need */
1864 /* TODO: use ff.vs_const as storage of W, V, P matrices */
1865
1866 if (IS_D3DTS_DIRTY(context, WORLD) ||
1867 IS_D3DTS_DIRTY(context, VIEW) ||
1868 IS_D3DTS_DIRTY(context, PROJECTION)) {
1869 /* WVP, WV matrices */
1870 nine_d3d_matrix_matrix_mul(&M[1], GET_D3DTS(WORLD), GET_D3DTS(VIEW));
1871 nine_d3d_matrix_matrix_mul(&M[0], &M[1], GET_D3DTS(PROJECTION));
1872
1873 /* normal matrix == transpose(inverse(WV)) */
1874 nine_d3d_matrix_inverse(&T, &M[1]);
1875 nine_d3d_matrix_transpose(&M[4], &T);
1876
1877 /* P matrix */
1878 M[2] = *GET_D3DTS(PROJECTION);
1879
1880 /* V and W matrix */
1881 nine_d3d_matrix_inverse(&M[3], GET_D3DTS(VIEW));
1882 M[40] = M[1];
1883 }
1884
1885 if (context->rs[D3DRS_VERTEXBLEND] != D3DVBF_DISABLE) {
1886 /* load other world matrices */
1887 for (i = 1; i <= 8; ++i) {
1888 nine_d3d_matrix_matrix_mul(&M[40 + i], GET_D3DTS(WORLDMATRIX(i)), GET_D3DTS(VIEW));
1889 }
1890 }
1891
1892 device->ff.vs_const[30 * 4] = asfloat(context->rs[D3DRS_TWEENFACTOR]);
1893 }
1894
1895 static void
1896 nine_ff_load_lights(struct NineDevice9 *device)
1897 {
1898 struct nine_context *context = &device->context;
1899 struct fvec4 *dst = (struct fvec4 *)device->ff.vs_const;
1900 unsigned l;
1901
1902 if (context->changed.group & NINE_STATE_FF_MATERIAL) {
1903 const D3DMATERIAL9 *mtl = &context->ff.material;
1904
1905 memcpy(&dst[20], &mtl->Diffuse, 4 * sizeof(float));
1906 memcpy(&dst[21], &mtl->Ambient, 4 * sizeof(float));
1907 memcpy(&dst[22], &mtl->Specular, 4 * sizeof(float));
1908 dst[23].x = mtl->Power;
1909 memcpy(&dst[24], &mtl->Emissive, 4 * sizeof(float));
1910 d3dcolor_to_rgba(&dst[25].x, context->rs[D3DRS_AMBIENT]);
1911 dst[19].x = dst[25].x * mtl->Ambient.r + mtl->Emissive.r;
1912 dst[19].y = dst[25].y * mtl->Ambient.g + mtl->Emissive.g;
1913 dst[19].z = dst[25].z * mtl->Ambient.b + mtl->Emissive.b;
1914 }
1915
1916 if (!(context->changed.group & NINE_STATE_FF_LIGHTING))
1917 return;
1918
1919 for (l = 0; l < context->ff.num_lights_active; ++l) {
1920 const D3DLIGHT9 *light = &context->ff.light[context->ff.active_light[l]];
1921
1922 dst[32 + l * 8].x = light->Type;
1923 dst[32 + l * 8].y = light->Attenuation0;
1924 dst[32 + l * 8].z = light->Attenuation1;
1925 dst[32 + l * 8].w = light->Attenuation2;
1926 memcpy(&dst[33 + l * 8].x, &light->Diffuse, sizeof(light->Diffuse));
1927 memcpy(&dst[34 + l * 8].x, &light->Specular, sizeof(light->Specular));
1928 memcpy(&dst[35 + l * 8].x, &light->Ambient, sizeof(light->Ambient));
1929 nine_d3d_vector4_matrix_mul((D3DVECTOR *)&dst[36 + l * 8].x, &light->Position, GET_D3DTS(VIEW));
1930 nine_d3d_vector3_matrix_mul((D3DVECTOR *)&dst[37 + l * 8].x, &light->Direction, GET_D3DTS(VIEW));
1931 dst[36 + l * 8].w = light->Type == D3DLIGHT_DIRECTIONAL ? 1e9f : light->Range;
1932 dst[37 + l * 8].w = light->Falloff;
1933 dst[38 + l * 8].x = cosf(light->Theta * 0.5f);
1934 dst[38 + l * 8].y = cosf(light->Phi * 0.5f);
1935 dst[38 + l * 8].z = 1.0f / (dst[38 + l * 8].x - dst[38 + l * 8].y);
1936 dst[39 + l * 8].w = (float)((l + 1) == context->ff.num_lights_active);
1937 }
1938 }
1939
1940 static void
1941 nine_ff_load_point_and_fog_params(struct NineDevice9 *device)
1942 {
1943 struct nine_context *context = &device->context;
1944 struct fvec4 *dst = (struct fvec4 *)device->ff.vs_const;
1945
1946 if (!(context->changed.group & NINE_STATE_FF_VS_OTHER))
1947 return;
1948 dst[26].x = asfloat(context->rs[D3DRS_POINTSIZE_MIN]);
1949 dst[26].y = asfloat(context->rs[D3DRS_POINTSIZE_MAX]);
1950 dst[26].z = asfloat(context->rs[D3DRS_POINTSIZE]);
1951 dst[26].w = asfloat(context->rs[D3DRS_POINTSCALE_A]);
1952 dst[27].x = asfloat(context->rs[D3DRS_POINTSCALE_B]);
1953 dst[27].y = asfloat(context->rs[D3DRS_POINTSCALE_C]);
1954 dst[28].x = asfloat(context->rs[D3DRS_FOGEND]);
1955 dst[28].y = 1.0f / (asfloat(context->rs[D3DRS_FOGEND]) - asfloat(context->rs[D3DRS_FOGSTART]));
1956 if (isinf(dst[28].y))
1957 dst[28].y = 0.0f;
1958 dst[28].z = asfloat(context->rs[D3DRS_FOGDENSITY]);
1959 }
1960
1961 static void
1962 nine_ff_load_tex_matrices(struct NineDevice9 *device)
1963 {
1964 struct nine_context *context = &device->context;
1965 D3DMATRIX *M = (D3DMATRIX *)device->ff.vs_const;
1966 unsigned s;
1967
1968 if (!(context->ff.changed.transform[0] & 0xff0000))
1969 return;
1970 for (s = 0; s < 8; ++s) {
1971 if (IS_D3DTS_DIRTY(context, TEXTURE0 + s))
1972 nine_d3d_matrix_transpose(&M[32 + s], nine_state_access_transform(&context->ff, D3DTS_TEXTURE0 + s, FALSE));
1973 }
1974 }
1975
1976 static void
1977 nine_ff_load_ps_params(struct NineDevice9 *device)
1978 {
1979 struct nine_context *context = &device->context;
1980 struct fvec4 *dst = (struct fvec4 *)device->ff.ps_const;
1981 unsigned s;
1982
1983 if (!(context->changed.group & NINE_STATE_FF_PS_CONSTS))
1984 return;
1985
1986 for (s = 0; s < 8; ++s)
1987 d3dcolor_to_rgba(&dst[s].x, context->ff.tex_stage[s][D3DTSS_CONSTANT]);
1988
1989 for (s = 0; s < 8; ++s) {
1990 dst[8 + s].x = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVMAT00]);
1991 dst[8 + s].y = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVMAT01]);
1992 dst[8 + s].z = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVMAT10]);
1993 dst[8 + s].w = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVMAT11]);
1994 if (s & 1) {
1995 dst[16 + s / 2].z = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVLSCALE]);
1996 dst[16 + s / 2].w = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVLOFFSET]);
1997 } else {
1998 dst[16 + s / 2].x = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVLSCALE]);
1999 dst[16 + s / 2].y = asfloat(context->ff.tex_stage[s][D3DTSS_BUMPENVLOFFSET]);
2000 }
2001 }
2002
2003 d3dcolor_to_rgba(&dst[20].x, context->rs[D3DRS_TEXTUREFACTOR]);
2004 d3dcolor_to_rgba(&dst[21].x, context->rs[D3DRS_FOGCOLOR]);
2005 dst[22].x = asfloat(context->rs[D3DRS_FOGEND]);
2006 dst[22].y = 1.0f / (asfloat(context->rs[D3DRS_FOGEND]) - asfloat(context->rs[D3DRS_FOGSTART]));
2007 dst[22].z = asfloat(context->rs[D3DRS_FOGDENSITY]);
2008 }
2009
2010 static void
2011 nine_ff_load_viewport_info(struct NineDevice9 *device)
2012 {
2013 D3DVIEWPORT9 *viewport = &device->context.viewport;
2014 struct fvec4 *dst = (struct fvec4 *)device->ff.vs_const;
2015 float diffZ = viewport->MaxZ - viewport->MinZ;
2016
2017 /* Note: the other functions avoids to fill the const again if nothing changed.
2018 * But we don't have much to fill, and adding code to allow that may be complex
2019 * so just fill it always */
2020 dst[100].x = 2.0f / (float)(viewport->Width);
2021 dst[100].y = 2.0f / (float)(viewport->Height);
2022 dst[100].z = (diffZ == 0.0f) ? 0.0f : (1.0f / diffZ);
2023 dst[100].w = (float)(viewport->Width);
2024 dst[101].x = (float)(viewport->X);
2025 dst[101].y = (float)(viewport->Y);
2026 dst[101].z = (float)(viewport->MinZ);
2027 }
2028
2029 void
2030 nine_ff_update(struct NineDevice9 *device)
2031 {
2032 struct nine_context *context = &device->context;
2033 struct pipe_constant_buffer cb;
2034
2035 DBG("vs=%p ps=%p\n", context->vs, context->ps);
2036
2037 /* NOTE: the only reference belongs to the hash table */
2038 if (!context->programmable_vs) {
2039 device->ff.vs = nine_ff_get_vs(device);
2040 context->changed.group |= NINE_STATE_VS;
2041 }
2042 if (!context->ps) {
2043 device->ff.ps = nine_ff_get_ps(device);
2044 context->changed.group |= NINE_STATE_PS;
2045 }
2046
2047 if (!context->programmable_vs) {
2048 nine_ff_load_vs_transforms(device);
2049 nine_ff_load_tex_matrices(device);
2050 nine_ff_load_lights(device);
2051 nine_ff_load_point_and_fog_params(device);
2052 nine_ff_load_viewport_info(device);
2053
2054 memset(context->ff.changed.transform, 0, sizeof(context->ff.changed.transform));
2055
2056 cb.buffer_offset = 0;
2057 cb.buffer = NULL;
2058 cb.user_buffer = device->ff.vs_const;
2059 cb.buffer_size = NINE_FF_NUM_VS_CONST * 4 * sizeof(float);
2060
2061 context->pipe_data.cb_vs_ff = cb;
2062 context->commit |= NINE_STATE_COMMIT_CONST_VS;
2063
2064 context->changed.group &= ~NINE_STATE_FF_VS;
2065 }
2066
2067 if (!context->ps) {
2068 nine_ff_load_ps_params(device);
2069
2070 cb.buffer_offset = 0;
2071 cb.buffer = NULL;
2072 cb.user_buffer = device->ff.ps_const;
2073 cb.buffer_size = NINE_FF_NUM_PS_CONST * 4 * sizeof(float);
2074
2075 context->pipe_data.cb_ps_ff = cb;
2076 context->commit |= NINE_STATE_COMMIT_CONST_PS;
2077
2078 context->changed.group &= ~NINE_STATE_FF_PS;
2079 }
2080 }
2081
2082
2083 boolean
2084 nine_ff_init(struct NineDevice9 *device)
2085 {
2086 device->ff.ht_vs = _mesa_hash_table_create(NULL, nine_ff_vs_key_hash,
2087 nine_ff_vs_key_comp);
2088 device->ff.ht_ps = _mesa_hash_table_create(NULL, nine_ff_ps_key_hash,
2089 nine_ff_ps_key_comp);
2090
2091 device->ff.ht_fvf = _mesa_hash_table_create(NULL, nine_ff_fvf_key_hash,
2092 nine_ff_fvf_key_comp);
2093
2094 device->ff.vs_const = CALLOC(NINE_FF_NUM_VS_CONST, 4 * sizeof(float));
2095 device->ff.ps_const = CALLOC(NINE_FF_NUM_PS_CONST, 4 * sizeof(float));
2096
2097 return device->ff.ht_vs && device->ff.ht_ps &&
2098 device->ff.ht_fvf &&
2099 device->ff.vs_const && device->ff.ps_const;
2100 }
2101
2102 static enum pipe_error nine_ff_ht_delete_cb(void *key, void *value, void *data)
2103 {
2104 NineUnknown_Unbind(NineUnknown(value));
2105 return PIPE_OK;
2106 }
2107
2108 void
2109 nine_ff_fini(struct NineDevice9 *device)
2110 {
2111 if (device->ff.ht_vs) {
2112 util_hash_table_foreach(device->ff.ht_vs, nine_ff_ht_delete_cb, NULL);
2113 _mesa_hash_table_destroy(device->ff.ht_vs, NULL);
2114 }
2115 if (device->ff.ht_ps) {
2116 util_hash_table_foreach(device->ff.ht_ps, nine_ff_ht_delete_cb, NULL);
2117 _mesa_hash_table_destroy(device->ff.ht_ps, NULL);
2118 }
2119 if (device->ff.ht_fvf) {
2120 util_hash_table_foreach(device->ff.ht_fvf, nine_ff_ht_delete_cb, NULL);
2121 _mesa_hash_table_destroy(device->ff.ht_fvf, NULL);
2122 }
2123 device->ff.vs = NULL; /* destroyed by unbinding from hash table */
2124 device->ff.ps = NULL;
2125
2126 FREE(device->ff.vs_const);
2127 FREE(device->ff.ps_const);
2128 }
2129
2130 static void
2131 nine_ff_prune_vs(struct NineDevice9 *device)
2132 {
2133 struct nine_context *context = &device->context;
2134
2135 if (device->ff.num_vs > 1024) {
2136 /* could destroy the bound one here, so unbind */
2137 context->pipe->bind_vs_state(context->pipe, NULL);
2138 util_hash_table_foreach(device->ff.ht_vs, nine_ff_ht_delete_cb, NULL);
2139 _mesa_hash_table_clear(device->ff.ht_vs, NULL);
2140 device->ff.num_vs = 0;
2141 context->changed.group |= NINE_STATE_VS;
2142 }
2143 }
2144 static void
2145 nine_ff_prune_ps(struct NineDevice9 *device)
2146 {
2147 struct nine_context *context = &device->context;
2148
2149 if (device->ff.num_ps > 1024) {
2150 /* could destroy the bound one here, so unbind */
2151 context->pipe->bind_fs_state(context->pipe, NULL);
2152 util_hash_table_foreach(device->ff.ht_ps, nine_ff_ht_delete_cb, NULL);
2153 _mesa_hash_table_clear(device->ff.ht_ps, NULL);
2154 device->ff.num_ps = 0;
2155 context->changed.group |= NINE_STATE_PS;
2156 }
2157 }
2158
2159 /* ========================================================================== */
2160
2161 /* Matrix multiplication:
2162 *
2163 * in memory: 0 1 2 3 (row major)
2164 * 4 5 6 7
2165 * 8 9 a b
2166 * c d e f
2167 *
2168 * cA cB cC cD
2169 * r0 = (r0 * cA) (r0 * cB) . .
2170 * r1 = (r1 * cA) (r1 * cB)
2171 * r2 = (r2 * cA) .
2172 * r3 = (r3 * cA) .
2173 *
2174 * r: (11) (12) (13) (14)
2175 * (21) (22) (23) (24)
2176 * (31) (32) (33) (34)
2177 * (41) (42) (43) (44)
2178 * l: (11 12 13 14)
2179 * (21 22 23 24)
2180 * (31 32 33 34)
2181 * (41 42 43 44)
2182 *
2183 * v: (x y z 1 )
2184 *
2185 * t.xyzw = MUL(v.xxxx, r[0]);
2186 * t.xyzw = MAD(v.yyyy, r[1], t.xyzw);
2187 * t.xyzw = MAD(v.zzzz, r[2], t.xyzw);
2188 * v.xyzw = MAD(v.wwww, r[3], t.xyzw);
2189 *
2190 * v.x = DP4(v, c[0]);
2191 * v.y = DP4(v, c[1]);
2192 * v.z = DP4(v, c[2]);
2193 * v.w = DP4(v, c[3]) = 1
2194 */
2195
2196 /*
2197 static void
2198 nine_D3DMATRIX_print(const D3DMATRIX *M)
2199 {
2200 DBG("\n(%f %f %f %f)\n"
2201 "(%f %f %f %f)\n"
2202 "(%f %f %f %f)\n"
2203 "(%f %f %f %f)\n",
2204 M->m[0][0], M->m[0][1], M->m[0][2], M->m[0][3],
2205 M->m[1][0], M->m[1][1], M->m[1][2], M->m[1][3],
2206 M->m[2][0], M->m[2][1], M->m[2][2], M->m[2][3],
2207 M->m[3][0], M->m[3][1], M->m[3][2], M->m[3][3]);
2208 }
2209 */
2210
2211 static inline float
2212 nine_DP4_row_col(const D3DMATRIX *A, int r, const D3DMATRIX *B, int c)
2213 {
2214 return A->m[r][0] * B->m[0][c] +
2215 A->m[r][1] * B->m[1][c] +
2216 A->m[r][2] * B->m[2][c] +
2217 A->m[r][3] * B->m[3][c];
2218 }
2219
2220 static inline float
2221 nine_DP4_vec_col(const D3DVECTOR *v, const D3DMATRIX *M, int c)
2222 {
2223 return v->x * M->m[0][c] +
2224 v->y * M->m[1][c] +
2225 v->z * M->m[2][c] +
2226 1.0f * M->m[3][c];
2227 }
2228
2229 static inline float
2230 nine_DP3_vec_col(const D3DVECTOR *v, const D3DMATRIX *M, int c)
2231 {
2232 return v->x * M->m[0][c] +
2233 v->y * M->m[1][c] +
2234 v->z * M->m[2][c];
2235 }
2236
2237 void
2238 nine_d3d_matrix_matrix_mul(D3DMATRIX *D, const D3DMATRIX *L, const D3DMATRIX *R)
2239 {
2240 D->_11 = nine_DP4_row_col(L, 0, R, 0);
2241 D->_12 = nine_DP4_row_col(L, 0, R, 1);
2242 D->_13 = nine_DP4_row_col(L, 0, R, 2);
2243 D->_14 = nine_DP4_row_col(L, 0, R, 3);
2244
2245 D->_21 = nine_DP4_row_col(L, 1, R, 0);
2246 D->_22 = nine_DP4_row_col(L, 1, R, 1);
2247 D->_23 = nine_DP4_row_col(L, 1, R, 2);
2248 D->_24 = nine_DP4_row_col(L, 1, R, 3);
2249
2250 D->_31 = nine_DP4_row_col(L, 2, R, 0);
2251 D->_32 = nine_DP4_row_col(L, 2, R, 1);
2252 D->_33 = nine_DP4_row_col(L, 2, R, 2);
2253 D->_34 = nine_DP4_row_col(L, 2, R, 3);
2254
2255 D->_41 = nine_DP4_row_col(L, 3, R, 0);
2256 D->_42 = nine_DP4_row_col(L, 3, R, 1);
2257 D->_43 = nine_DP4_row_col(L, 3, R, 2);
2258 D->_44 = nine_DP4_row_col(L, 3, R, 3);
2259 }
2260
2261 void
2262 nine_d3d_vector4_matrix_mul(D3DVECTOR *d, const D3DVECTOR *v, const D3DMATRIX *M)
2263 {
2264 d->x = nine_DP4_vec_col(v, M, 0);
2265 d->y = nine_DP4_vec_col(v, M, 1);
2266 d->z = nine_DP4_vec_col(v, M, 2);
2267 }
2268
2269 void
2270 nine_d3d_vector3_matrix_mul(D3DVECTOR *d, const D3DVECTOR *v, const D3DMATRIX *M)
2271 {
2272 d->x = nine_DP3_vec_col(v, M, 0);
2273 d->y = nine_DP3_vec_col(v, M, 1);
2274 d->z = nine_DP3_vec_col(v, M, 2);
2275 }
2276
2277 void
2278 nine_d3d_matrix_transpose(D3DMATRIX *D, const D3DMATRIX *M)
2279 {
2280 unsigned i, j;
2281 for (i = 0; i < 4; ++i)
2282 for (j = 0; j < 4; ++j)
2283 D->m[i][j] = M->m[j][i];
2284 }
2285
2286 #define _M_ADD_PROD_1i_2j_3k_4l(i,j,k,l) do { \
2287 float t = M->_1##i * M->_2##j * M->_3##k * M->_4##l; \
2288 if (t > 0.0f) pos += t; else neg += t; } while(0)
2289
2290 #define _M_SUB_PROD_1i_2j_3k_4l(i,j,k,l) do { \
2291 float t = M->_1##i * M->_2##j * M->_3##k * M->_4##l; \
2292 if (t > 0.0f) neg -= t; else pos -= t; } while(0)
2293 float
2294 nine_d3d_matrix_det(const D3DMATRIX *M)
2295 {
2296 float pos = 0.0f;
2297 float neg = 0.0f;
2298
2299 _M_ADD_PROD_1i_2j_3k_4l(1, 2, 3, 4);
2300 _M_ADD_PROD_1i_2j_3k_4l(1, 3, 4, 2);
2301 _M_ADD_PROD_1i_2j_3k_4l(1, 4, 2, 3);
2302
2303 _M_ADD_PROD_1i_2j_3k_4l(2, 1, 4, 3);
2304 _M_ADD_PROD_1i_2j_3k_4l(2, 3, 1, 4);
2305 _M_ADD_PROD_1i_2j_3k_4l(2, 4, 3, 1);
2306
2307 _M_ADD_PROD_1i_2j_3k_4l(3, 1, 2, 4);
2308 _M_ADD_PROD_1i_2j_3k_4l(3, 2, 4, 1);
2309 _M_ADD_PROD_1i_2j_3k_4l(3, 4, 1, 2);
2310
2311 _M_ADD_PROD_1i_2j_3k_4l(4, 1, 3, 2);
2312 _M_ADD_PROD_1i_2j_3k_4l(4, 2, 1, 3);
2313 _M_ADD_PROD_1i_2j_3k_4l(4, 3, 2, 1);
2314
2315 _M_SUB_PROD_1i_2j_3k_4l(1, 2, 4, 3);
2316 _M_SUB_PROD_1i_2j_3k_4l(1, 3, 2, 4);
2317 _M_SUB_PROD_1i_2j_3k_4l(1, 4, 3, 2);
2318
2319 _M_SUB_PROD_1i_2j_3k_4l(2, 1, 3, 4);
2320 _M_SUB_PROD_1i_2j_3k_4l(2, 3, 4, 1);
2321 _M_SUB_PROD_1i_2j_3k_4l(2, 4, 1, 3);
2322
2323 _M_SUB_PROD_1i_2j_3k_4l(3, 1, 4, 2);
2324 _M_SUB_PROD_1i_2j_3k_4l(3, 2, 1, 4);
2325 _M_SUB_PROD_1i_2j_3k_4l(3, 4, 2, 1);
2326
2327 _M_SUB_PROD_1i_2j_3k_4l(4, 1, 2, 3);
2328 _M_SUB_PROD_1i_2j_3k_4l(4, 2, 3, 1);
2329 _M_SUB_PROD_1i_2j_3k_4l(4, 3, 1, 2);
2330
2331 return pos + neg;
2332 }
2333
2334 /* XXX: Probably better to just use src/mesa/math/m_matrix.c because
2335 * I have no idea where this code came from.
2336 */
2337 void
2338 nine_d3d_matrix_inverse(D3DMATRIX *D, const D3DMATRIX *M)
2339 {
2340 int i, k;
2341 float det;
2342
2343 D->m[0][0] =
2344 M->m[1][1] * M->m[2][2] * M->m[3][3] -
2345 M->m[1][1] * M->m[3][2] * M->m[2][3] -
2346 M->m[1][2] * M->m[2][1] * M->m[3][3] +
2347 M->m[1][2] * M->m[3][1] * M->m[2][3] +
2348 M->m[1][3] * M->m[2][1] * M->m[3][2] -
2349 M->m[1][3] * M->m[3][1] * M->m[2][2];
2350
2351 D->m[0][1] =
2352 -M->m[0][1] * M->m[2][2] * M->m[3][3] +
2353 M->m[0][1] * M->m[3][2] * M->m[2][3] +
2354 M->m[0][2] * M->m[2][1] * M->m[3][3] -
2355 M->m[0][2] * M->m[3][1] * M->m[2][3] -
2356 M->m[0][3] * M->m[2][1] * M->m[3][2] +
2357 M->m[0][3] * M->m[3][1] * M->m[2][2];
2358
2359 D->m[0][2] =
2360 M->m[0][1] * M->m[1][2] * M->m[3][3] -
2361 M->m[0][1] * M->m[3][2] * M->m[1][3] -
2362 M->m[0][2] * M->m[1][1] * M->m[3][3] +
2363 M->m[0][2] * M->m[3][1] * M->m[1][3] +
2364 M->m[0][3] * M->m[1][1] * M->m[3][2] -
2365 M->m[0][3] * M->m[3][1] * M->m[1][2];
2366
2367 D->m[0][3] =
2368 -M->m[0][1] * M->m[1][2] * M->m[2][3] +
2369 M->m[0][1] * M->m[2][2] * M->m[1][3] +
2370 M->m[0][2] * M->m[1][1] * M->m[2][3] -
2371 M->m[0][2] * M->m[2][1] * M->m[1][3] -
2372 M->m[0][3] * M->m[1][1] * M->m[2][2] +
2373 M->m[0][3] * M->m[2][1] * M->m[1][2];
2374
2375 D->m[1][0] =
2376 -M->m[1][0] * M->m[2][2] * M->m[3][3] +
2377 M->m[1][0] * M->m[3][2] * M->m[2][3] +
2378 M->m[1][2] * M->m[2][0] * M->m[3][3] -
2379 M->m[1][2] * M->m[3][0] * M->m[2][3] -
2380 M->m[1][3] * M->m[2][0] * M->m[3][2] +
2381 M->m[1][3] * M->m[3][0] * M->m[2][2];
2382
2383 D->m[1][1] =
2384 M->m[0][0] * M->m[2][2] * M->m[3][3] -
2385 M->m[0][0] * M->m[3][2] * M->m[2][3] -
2386 M->m[0][2] * M->m[2][0] * M->m[3][3] +
2387 M->m[0][2] * M->m[3][0] * M->m[2][3] +
2388 M->m[0][3] * M->m[2][0] * M->m[3][2] -
2389 M->m[0][3] * M->m[3][0] * M->m[2][2];
2390
2391 D->m[1][2] =
2392 -M->m[0][0] * M->m[1][2] * M->m[3][3] +
2393 M->m[0][0] * M->m[3][2] * M->m[1][3] +
2394 M->m[0][2] * M->m[1][0] * M->m[3][3] -
2395 M->m[0][2] * M->m[3][0] * M->m[1][3] -
2396 M->m[0][3] * M->m[1][0] * M->m[3][2] +
2397 M->m[0][3] * M->m[3][0] * M->m[1][2];
2398
2399 D->m[1][3] =
2400 M->m[0][0] * M->m[1][2] * M->m[2][3] -
2401 M->m[0][0] * M->m[2][2] * M->m[1][3] -
2402 M->m[0][2] * M->m[1][0] * M->m[2][3] +
2403 M->m[0][2] * M->m[2][0] * M->m[1][3] +
2404 M->m[0][3] * M->m[1][0] * M->m[2][2] -
2405 M->m[0][3] * M->m[2][0] * M->m[1][2];
2406
2407 D->m[2][0] =
2408 M->m[1][0] * M->m[2][1] * M->m[3][3] -
2409 M->m[1][0] * M->m[3][1] * M->m[2][3] -
2410 M->m[1][1] * M->m[2][0] * M->m[3][3] +
2411 M->m[1][1] * M->m[3][0] * M->m[2][3] +
2412 M->m[1][3] * M->m[2][0] * M->m[3][1] -
2413 M->m[1][3] * M->m[3][0] * M->m[2][1];
2414
2415 D->m[2][1] =
2416 -M->m[0][0] * M->m[2][1] * M->m[3][3] +
2417 M->m[0][0] * M->m[3][1] * M->m[2][3] +
2418 M->m[0][1] * M->m[2][0] * M->m[3][3] -
2419 M->m[0][1] * M->m[3][0] * M->m[2][3] -
2420 M->m[0][3] * M->m[2][0] * M->m[3][1] +
2421 M->m[0][3] * M->m[3][0] * M->m[2][1];
2422
2423 D->m[2][2] =
2424 M->m[0][0] * M->m[1][1] * M->m[3][3] -
2425 M->m[0][0] * M->m[3][1] * M->m[1][3] -
2426 M->m[0][1] * M->m[1][0] * M->m[3][3] +
2427 M->m[0][1] * M->m[3][0] * M->m[1][3] +
2428 M->m[0][3] * M->m[1][0] * M->m[3][1] -
2429 M->m[0][3] * M->m[3][0] * M->m[1][1];
2430
2431 D->m[2][3] =
2432 -M->m[0][0] * M->m[1][1] * M->m[2][3] +
2433 M->m[0][0] * M->m[2][1] * M->m[1][3] +
2434 M->m[0][1] * M->m[1][0] * M->m[2][3] -
2435 M->m[0][1] * M->m[2][0] * M->m[1][3] -
2436 M->m[0][3] * M->m[1][0] * M->m[2][1] +
2437 M->m[0][3] * M->m[2][0] * M->m[1][1];
2438
2439 D->m[3][0] =
2440 -M->m[1][0] * M->m[2][1] * M->m[3][2] +
2441 M->m[1][0] * M->m[3][1] * M->m[2][2] +
2442 M->m[1][1] * M->m[2][0] * M->m[3][2] -
2443 M->m[1][1] * M->m[3][0] * M->m[2][2] -
2444 M->m[1][2] * M->m[2][0] * M->m[3][1] +
2445 M->m[1][2] * M->m[3][0] * M->m[2][1];
2446
2447 D->m[3][1] =
2448 M->m[0][0] * M->m[2][1] * M->m[3][2] -
2449 M->m[0][0] * M->m[3][1] * M->m[2][2] -
2450 M->m[0][1] * M->m[2][0] * M->m[3][2] +
2451 M->m[0][1] * M->m[3][0] * M->m[2][2] +
2452 M->m[0][2] * M->m[2][0] * M->m[3][1] -
2453 M->m[0][2] * M->m[3][0] * M->m[2][1];
2454
2455 D->m[3][2] =
2456 -M->m[0][0] * M->m[1][1] * M->m[3][2] +
2457 M->m[0][0] * M->m[3][1] * M->m[1][2] +
2458 M->m[0][1] * M->m[1][0] * M->m[3][2] -
2459 M->m[0][1] * M->m[3][0] * M->m[1][2] -
2460 M->m[0][2] * M->m[1][0] * M->m[3][1] +
2461 M->m[0][2] * M->m[3][0] * M->m[1][1];
2462
2463 D->m[3][3] =
2464 M->m[0][0] * M->m[1][1] * M->m[2][2] -
2465 M->m[0][0] * M->m[2][1] * M->m[1][2] -
2466 M->m[0][1] * M->m[1][0] * M->m[2][2] +
2467 M->m[0][1] * M->m[2][0] * M->m[1][2] +
2468 M->m[0][2] * M->m[1][0] * M->m[2][1] -
2469 M->m[0][2] * M->m[2][0] * M->m[1][1];
2470
2471 det =
2472 M->m[0][0] * D->m[0][0] +
2473 M->m[1][0] * D->m[0][1] +
2474 M->m[2][0] * D->m[0][2] +
2475 M->m[3][0] * D->m[0][3];
2476
2477 if (fabsf(det) < 1e-30) {/* non inversible */
2478 *D = *M; /* wine tests */
2479 return;
2480 }
2481
2482 det = 1.0 / det;
2483
2484 for (i = 0; i < 4; i++)
2485 for (k = 0; k < 4; k++)
2486 D->m[i][k] *= det;
2487
2488 #if defined(DEBUG) || !defined(NDEBUG)
2489 {
2490 D3DMATRIX I;
2491
2492 nine_d3d_matrix_matrix_mul(&I, D, M);
2493
2494 for (i = 0; i < 4; ++i)
2495 for (k = 0; k < 4; ++k)
2496 if (fabsf(I.m[i][k] - (float)(i == k)) > 1e-3)
2497 DBG("Matrix inversion check FAILED !\n");
2498 }
2499 #endif
2500 }