87df93e684ea4cc92c45c5a0793ef2cb17636764
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list_typed(ast_node, ast, link, parameters) {
45 ir_rvalue *result = ast->hir(instructions, state);
46
47 ir_constant *const constant = result->constant_expression_value();
48 if (constant != NULL)
49 result = constant;
50
51 actual_parameters->push_tail(result);
52 count++;
53 }
54
55 return count;
56 }
57
58
59 /**
60 * Generate a source prototype for a function signature
61 *
62 * \param return_type Return type of the function. May be \c NULL.
63 * \param name Name of the function.
64 * \param parameters List of \c ir_instruction nodes representing the
65 * parameter list for the function. This may be either a
66 * formal (\c ir_variable) or actual (\c ir_rvalue)
67 * parameter list. Only the type is used.
68 *
69 * \return
70 * A ralloced string representing the prototype of the function.
71 */
72 char *
73 prototype_string(const glsl_type *return_type, const char *name,
74 exec_list *parameters)
75 {
76 char *str = NULL;
77
78 if (return_type != NULL)
79 str = ralloc_asprintf(NULL, "%s ", return_type->name);
80
81 ralloc_asprintf_append(&str, "%s(", name);
82
83 const char *comma = "";
84 foreach_in_list(const ir_variable, param, parameters) {
85 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
86 comma = ", ";
87 }
88
89 ralloc_strcat(&str, ")");
90 return str;
91 }
92
93 static bool
94 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
95 const ir_variable *formal, const ir_variable *actual)
96 {
97 /**
98 * From the ARB_shader_image_load_store specification:
99 *
100 * "The values of image variables qualified with coherent,
101 * volatile, restrict, readonly, or writeonly may not be passed
102 * to functions whose formal parameters lack such
103 * qualifiers. [...] It is legal to have additional qualifiers
104 * on a formal parameter, but not to have fewer."
105 */
106 if (actual->data.image_coherent && !formal->data.image_coherent) {
107 _mesa_glsl_error(loc, state,
108 "function call parameter `%s' drops "
109 "`coherent' qualifier", formal->name);
110 return false;
111 }
112
113 if (actual->data.image_volatile && !formal->data.image_volatile) {
114 _mesa_glsl_error(loc, state,
115 "function call parameter `%s' drops "
116 "`volatile' qualifier", formal->name);
117 return false;
118 }
119
120 if (actual->data.image_restrict && !formal->data.image_restrict) {
121 _mesa_glsl_error(loc, state,
122 "function call parameter `%s' drops "
123 "`restrict' qualifier", formal->name);
124 return false;
125 }
126
127 if (actual->data.image_read_only && !formal->data.image_read_only) {
128 _mesa_glsl_error(loc, state,
129 "function call parameter `%s' drops "
130 "`readonly' qualifier", formal->name);
131 return false;
132 }
133
134 if (actual->data.image_write_only && !formal->data.image_write_only) {
135 _mesa_glsl_error(loc, state,
136 "function call parameter `%s' drops "
137 "`writeonly' qualifier", formal->name);
138 return false;
139 }
140
141 return true;
142 }
143
144 /**
145 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
146 * that 'const_in' formal parameters (an extension in our IR) correspond to
147 * ir_constant actual parameters.
148 */
149 static bool
150 verify_parameter_modes(_mesa_glsl_parse_state *state,
151 ir_function_signature *sig,
152 exec_list &actual_ir_parameters,
153 exec_list &actual_ast_parameters)
154 {
155 exec_node *actual_ir_node = actual_ir_parameters.head;
156 exec_node *actual_ast_node = actual_ast_parameters.head;
157
158 foreach_in_list(const ir_variable, formal, &sig->parameters) {
159 /* The lists must be the same length. */
160 assert(!actual_ir_node->is_tail_sentinel());
161 assert(!actual_ast_node->is_tail_sentinel());
162
163 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
164 const ast_expression *const actual_ast =
165 exec_node_data(ast_expression, actual_ast_node, link);
166
167 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
168 * FIXME: 0:0(0).
169 */
170 YYLTYPE loc = actual_ast->get_location();
171
172 /* Verify that 'const_in' parameters are ir_constants. */
173 if (formal->data.mode == ir_var_const_in &&
174 actual->ir_type != ir_type_constant) {
175 _mesa_glsl_error(&loc, state,
176 "parameter `in %s' must be a constant expression",
177 formal->name);
178 return false;
179 }
180
181 /* Verify that shader_in parameters are shader inputs */
182 if (formal->data.must_be_shader_input) {
183 ir_variable *var = actual->variable_referenced();
184 if (var && var->data.mode != ir_var_shader_in) {
185 _mesa_glsl_error(&loc, state,
186 "parameter `%s` must be a shader input",
187 formal->name);
188 return false;
189 }
190
191 if (actual->ir_type == ir_type_swizzle) {
192 _mesa_glsl_error(&loc, state,
193 "parameter `%s` must not be swizzled",
194 formal->name);
195 return false;
196 }
197 }
198
199 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
200 if (formal->data.mode == ir_var_function_out
201 || formal->data.mode == ir_var_function_inout) {
202 const char *mode = NULL;
203 switch (formal->data.mode) {
204 case ir_var_function_out: mode = "out"; break;
205 case ir_var_function_inout: mode = "inout"; break;
206 default: assert(false); break;
207 }
208
209 /* This AST-based check catches errors like f(i++). The IR-based
210 * is_lvalue() is insufficient because the actual parameter at the
211 * IR-level is just a temporary value, which is an l-value.
212 */
213 if (actual_ast->non_lvalue_description != NULL) {
214 _mesa_glsl_error(&loc, state,
215 "function parameter '%s %s' references a %s",
216 mode, formal->name,
217 actual_ast->non_lvalue_description);
218 return false;
219 }
220
221 ir_variable *var = actual->variable_referenced();
222 if (var)
223 var->data.assigned = true;
224
225 if (var && var->data.read_only) {
226 _mesa_glsl_error(&loc, state,
227 "function parameter '%s %s' references the "
228 "read-only variable '%s'",
229 mode, formal->name,
230 actual->variable_referenced()->name);
231 return false;
232 } else if (!actual->is_lvalue()) {
233 /* Even though ir_binop_vector_extract is not an l-value, let it
234 * slop through. generate_call will handle it correctly.
235 */
236 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
237 if (expr == NULL
238 || expr->operation != ir_binop_vector_extract
239 || !expr->operands[0]->is_lvalue()) {
240 _mesa_glsl_error(&loc, state,
241 "function parameter '%s %s' is not an lvalue",
242 mode, formal->name);
243 return false;
244 }
245 }
246 }
247
248 if (formal->type->is_image() &&
249 actual->variable_referenced()) {
250 if (!verify_image_parameter(&loc, state, formal,
251 actual->variable_referenced()))
252 return false;
253 }
254
255 actual_ir_node = actual_ir_node->next;
256 actual_ast_node = actual_ast_node->next;
257 }
258 return true;
259 }
260
261 static void
262 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
263 exec_list *before_instructions, exec_list *after_instructions,
264 bool parameter_is_inout)
265 {
266 ir_expression *const expr = actual->as_expression();
267
268 /* If the types match exactly and the parameter is not a vector-extract,
269 * nothing needs to be done to fix the parameter.
270 */
271 if (formal_type == actual->type
272 && (expr == NULL || expr->operation != ir_binop_vector_extract))
273 return;
274
275 /* To convert an out parameter, we need to create a temporary variable to
276 * hold the value before conversion, and then perform the conversion after
277 * the function call returns.
278 *
279 * This has the effect of transforming code like this:
280 *
281 * void f(out int x);
282 * float value;
283 * f(value);
284 *
285 * Into IR that's equivalent to this:
286 *
287 * void f(out int x);
288 * float value;
289 * int out_parameter_conversion;
290 * f(out_parameter_conversion);
291 * value = float(out_parameter_conversion);
292 *
293 * If the parameter is an ir_expression of ir_binop_vector_extract,
294 * additional conversion is needed in the post-call re-write.
295 */
296 ir_variable *tmp =
297 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
298
299 before_instructions->push_tail(tmp);
300
301 /* If the parameter is an inout parameter, copy the value of the actual
302 * parameter to the new temporary. Note that no type conversion is allowed
303 * here because inout parameters must match types exactly.
304 */
305 if (parameter_is_inout) {
306 /* Inout parameters should never require conversion, since that would
307 * require an implicit conversion to exist both to and from the formal
308 * parameter type, and there are no bidirectional implicit conversions.
309 */
310 assert (actual->type == formal_type);
311
312 ir_dereference_variable *const deref_tmp_1 =
313 new(mem_ctx) ir_dereference_variable(tmp);
314 ir_assignment *const assignment =
315 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
316 before_instructions->push_tail(assignment);
317 }
318
319 /* Replace the parameter in the call with a dereference of the new
320 * temporary.
321 */
322 ir_dereference_variable *const deref_tmp_2 =
323 new(mem_ctx) ir_dereference_variable(tmp);
324 actual->replace_with(deref_tmp_2);
325
326
327 /* Copy the temporary variable to the actual parameter with optional
328 * type conversion applied.
329 */
330 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
331 if (actual->type != formal_type)
332 rhs = convert_component(rhs, actual->type);
333
334 ir_rvalue *lhs = actual;
335 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
336 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
337 expr->operands[0]->type,
338 expr->operands[0]->clone(mem_ctx, NULL),
339 rhs,
340 expr->operands[1]->clone(mem_ctx, NULL));
341 lhs = expr->operands[0]->clone(mem_ctx, NULL);
342 }
343
344 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
345 after_instructions->push_tail(assignment_2);
346 }
347
348 /**
349 * Generate a function call.
350 *
351 * For non-void functions, this returns a dereference of the temporary variable
352 * which stores the return value for the call. For void functions, this returns
353 * NULL.
354 */
355 static ir_rvalue *
356 generate_call(exec_list *instructions, ir_function_signature *sig,
357 exec_list *actual_parameters,
358 struct _mesa_glsl_parse_state *state)
359 {
360 void *ctx = state;
361 exec_list post_call_conversions;
362
363 /* Perform implicit conversion of arguments. For out parameters, we need
364 * to place them in a temporary variable and do the conversion after the
365 * call takes place. Since we haven't emitted the call yet, we'll place
366 * the post-call conversions in a temporary exec_list, and emit them later.
367 */
368 foreach_two_lists(formal_node, &sig->parameters,
369 actual_node, actual_parameters) {
370 ir_rvalue *actual = (ir_rvalue *) actual_node;
371 ir_variable *formal = (ir_variable *) formal_node;
372
373 if (formal->type->is_numeric() || formal->type->is_boolean()) {
374 switch (formal->data.mode) {
375 case ir_var_const_in:
376 case ir_var_function_in: {
377 ir_rvalue *converted
378 = convert_component(actual, formal->type);
379 actual->replace_with(converted);
380 break;
381 }
382 case ir_var_function_out:
383 case ir_var_function_inout:
384 fix_parameter(ctx, actual, formal->type,
385 instructions, &post_call_conversions,
386 formal->data.mode == ir_var_function_inout);
387 break;
388 default:
389 assert (!"Illegal formal parameter mode");
390 break;
391 }
392 }
393 }
394
395 /* If the function call is a constant expression, don't generate any
396 * instructions; just generate an ir_constant.
397 *
398 * Function calls were first allowed to be constant expressions in GLSL
399 * 1.20 and GLSL ES 3.00.
400 */
401 if (state->is_version(120, 300)) {
402 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
403 if (value != NULL) {
404 return value;
405 }
406 }
407
408 ir_dereference_variable *deref = NULL;
409 if (!sig->return_type->is_void()) {
410 /* Create a new temporary to hold the return value. */
411 char *const name = ir_variable::temporaries_allocate_names
412 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
413 : NULL;
414
415 ir_variable *var;
416
417 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
418 instructions->push_tail(var);
419
420 ralloc_free(name);
421
422 deref = new(ctx) ir_dereference_variable(var);
423 }
424 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
425 instructions->push_tail(call);
426
427 /* Also emit any necessary out-parameter conversions. */
428 instructions->append_list(&post_call_conversions);
429
430 return deref ? deref->clone(ctx, NULL) : NULL;
431 }
432
433 /**
434 * Given a function name and parameter list, find the matching signature.
435 */
436 static ir_function_signature *
437 match_function_by_name(const char *name,
438 exec_list *actual_parameters,
439 struct _mesa_glsl_parse_state *state)
440 {
441 void *ctx = state;
442 ir_function *f = state->symbols->get_function(name);
443 ir_function_signature *local_sig = NULL;
444 ir_function_signature *sig = NULL;
445
446 /* Is the function hidden by a record type constructor? */
447 if (state->symbols->get_type(name))
448 goto done; /* no match */
449
450 /* Is the function hidden by a variable (impossible in 1.10)? */
451 if (!state->symbols->separate_function_namespace
452 && state->symbols->get_variable(name))
453 goto done; /* no match */
454
455 if (f != NULL) {
456 /* In desktop GL, the presence of a user-defined signature hides any
457 * built-in signatures, so we must ignore them. In contrast, in ES2
458 * user-defined signatures add new overloads, so we must consider them.
459 */
460 bool allow_builtins = state->es_shader || !f->has_user_signature();
461
462 /* Look for a match in the local shader. If exact, we're done. */
463 bool is_exact = false;
464 sig = local_sig = f->matching_signature(state, actual_parameters,
465 allow_builtins, &is_exact);
466 if (is_exact)
467 goto done;
468
469 if (!allow_builtins)
470 goto done;
471 }
472
473 /* Local shader has no exact candidates; check the built-ins. */
474 _mesa_glsl_initialize_builtin_functions();
475 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
476
477 done:
478 if (sig != NULL) {
479 /* If the match is from a linked built-in shader, import the prototype. */
480 if (sig != local_sig) {
481 if (f == NULL) {
482 f = new(ctx) ir_function(name);
483 state->symbols->add_global_function(f);
484 emit_function(state, f);
485 }
486 f->add_signature(sig->clone_prototype(f, NULL));
487 }
488 }
489 return sig;
490 }
491
492 static void
493 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
494 ir_function *f)
495 {
496 if (f == NULL)
497 return;
498
499 foreach_in_list(ir_function_signature, sig, &f->signatures) {
500 if (sig->is_builtin() && !sig->is_builtin_available(state))
501 continue;
502
503 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
504 _mesa_glsl_error(loc, state, " %s", str);
505 ralloc_free(str);
506 }
507 }
508
509 /**
510 * Raise a "no matching function" error, listing all possible overloads the
511 * compiler considered so developers can figure out what went wrong.
512 */
513 static void
514 no_matching_function_error(const char *name,
515 YYLTYPE *loc,
516 exec_list *actual_parameters,
517 _mesa_glsl_parse_state *state)
518 {
519 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
520
521 if (state->symbols->get_function(name) == NULL
522 && (!state->uses_builtin_functions
523 || sh->symbols->get_function(name) == NULL)) {
524 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
525 } else {
526 char *str = prototype_string(NULL, name, actual_parameters);
527 _mesa_glsl_error(loc, state,
528 "no matching function for call to `%s'; candidates are:",
529 str);
530 ralloc_free(str);
531
532 print_function_prototypes(state, loc, state->symbols->get_function(name));
533
534 if (state->uses_builtin_functions) {
535 print_function_prototypes(state, loc, sh->symbols->get_function(name));
536 }
537 }
538 }
539
540 /**
541 * Perform automatic type conversion of constructor parameters
542 *
543 * This implements the rules in the "Conversion and Scalar Constructors"
544 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
545 */
546 static ir_rvalue *
547 convert_component(ir_rvalue *src, const glsl_type *desired_type)
548 {
549 void *ctx = ralloc_parent(src);
550 const unsigned a = desired_type->base_type;
551 const unsigned b = src->type->base_type;
552 ir_expression *result = NULL;
553
554 if (src->type->is_error())
555 return src;
556
557 assert(a <= GLSL_TYPE_BOOL);
558 assert(b <= GLSL_TYPE_BOOL);
559
560 if (a == b)
561 return src;
562
563 switch (a) {
564 case GLSL_TYPE_UINT:
565 switch (b) {
566 case GLSL_TYPE_INT:
567 result = new(ctx) ir_expression(ir_unop_i2u, src);
568 break;
569 case GLSL_TYPE_FLOAT:
570 result = new(ctx) ir_expression(ir_unop_f2u, src);
571 break;
572 case GLSL_TYPE_BOOL:
573 result = new(ctx) ir_expression(ir_unop_i2u,
574 new(ctx) ir_expression(ir_unop_b2i, src));
575 break;
576 case GLSL_TYPE_DOUBLE:
577 result = new(ctx) ir_expression(ir_unop_d2u, src);
578 break;
579 }
580 break;
581 case GLSL_TYPE_INT:
582 switch (b) {
583 case GLSL_TYPE_UINT:
584 result = new(ctx) ir_expression(ir_unop_u2i, src);
585 break;
586 case GLSL_TYPE_FLOAT:
587 result = new(ctx) ir_expression(ir_unop_f2i, src);
588 break;
589 case GLSL_TYPE_BOOL:
590 result = new(ctx) ir_expression(ir_unop_b2i, src);
591 break;
592 case GLSL_TYPE_DOUBLE:
593 result = new(ctx) ir_expression(ir_unop_d2i, src);
594 break;
595 }
596 break;
597 case GLSL_TYPE_FLOAT:
598 switch (b) {
599 case GLSL_TYPE_UINT:
600 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
601 break;
602 case GLSL_TYPE_INT:
603 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
604 break;
605 case GLSL_TYPE_BOOL:
606 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
607 break;
608 case GLSL_TYPE_DOUBLE:
609 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
610 break;
611 }
612 break;
613 case GLSL_TYPE_BOOL:
614 switch (b) {
615 case GLSL_TYPE_UINT:
616 result = new(ctx) ir_expression(ir_unop_i2b,
617 new(ctx) ir_expression(ir_unop_u2i, src));
618 break;
619 case GLSL_TYPE_INT:
620 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
621 break;
622 case GLSL_TYPE_FLOAT:
623 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
624 break;
625 case GLSL_TYPE_DOUBLE:
626 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
627 break;
628 }
629 break;
630 case GLSL_TYPE_DOUBLE:
631 switch (b) {
632 case GLSL_TYPE_INT:
633 result = new(ctx) ir_expression(ir_unop_i2d, src);
634 break;
635 case GLSL_TYPE_UINT:
636 result = new(ctx) ir_expression(ir_unop_u2d, src);
637 break;
638 case GLSL_TYPE_BOOL:
639 result = new(ctx) ir_expression(ir_unop_f2d,
640 new(ctx) ir_expression(ir_unop_b2f, src));
641 break;
642 case GLSL_TYPE_FLOAT:
643 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
644 break;
645 }
646 }
647
648 assert(result != NULL);
649 assert(result->type == desired_type);
650
651 /* Try constant folding; it may fold in the conversion we just added. */
652 ir_constant *const constant = result->constant_expression_value();
653 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
654 }
655
656 /**
657 * Dereference a specific component from a scalar, vector, or matrix
658 */
659 static ir_rvalue *
660 dereference_component(ir_rvalue *src, unsigned component)
661 {
662 void *ctx = ralloc_parent(src);
663 assert(component < src->type->components());
664
665 /* If the source is a constant, just create a new constant instead of a
666 * dereference of the existing constant.
667 */
668 ir_constant *constant = src->as_constant();
669 if (constant)
670 return new(ctx) ir_constant(constant, component);
671
672 if (src->type->is_scalar()) {
673 return src;
674 } else if (src->type->is_vector()) {
675 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
676 } else {
677 assert(src->type->is_matrix());
678
679 /* Dereference a row of the matrix, then call this function again to get
680 * a specific element from that row.
681 */
682 const int c = component / src->type->column_type()->vector_elements;
683 const int r = component % src->type->column_type()->vector_elements;
684 ir_constant *const col_index = new(ctx) ir_constant(c);
685 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
686
687 col->type = src->type->column_type();
688
689 return dereference_component(col, r);
690 }
691
692 assert(!"Should not get here.");
693 return NULL;
694 }
695
696
697 static ir_rvalue *
698 process_vec_mat_constructor(exec_list *instructions,
699 const glsl_type *constructor_type,
700 YYLTYPE *loc, exec_list *parameters,
701 struct _mesa_glsl_parse_state *state)
702 {
703 void *ctx = state;
704
705 /* The ARB_shading_language_420pack spec says:
706 *
707 * "If an initializer is a list of initializers enclosed in curly braces,
708 * the variable being declared must be a vector, a matrix, an array, or a
709 * structure.
710 *
711 * int i = { 1 }; // illegal, i is not an aggregate"
712 */
713 if (constructor_type->vector_elements <= 1) {
714 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
715 "matrices, arrays, and structs");
716 return ir_rvalue::error_value(ctx);
717 }
718
719 exec_list actual_parameters;
720 const unsigned parameter_count =
721 process_parameters(instructions, &actual_parameters, parameters, state);
722
723 if (parameter_count == 0
724 || (constructor_type->is_vector() &&
725 constructor_type->vector_elements != parameter_count)
726 || (constructor_type->is_matrix() &&
727 constructor_type->matrix_columns != parameter_count)) {
728 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
729 constructor_type->is_vector() ? "vector" : "matrix",
730 constructor_type->vector_elements);
731 return ir_rvalue::error_value(ctx);
732 }
733
734 bool all_parameters_are_constant = true;
735
736 /* Type cast each parameter and, if possible, fold constants. */
737 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
738 ir_rvalue *result = ir;
739
740 /* Apply implicit conversions (not the scalar constructor rules!). See
741 * the spec quote above. */
742 if (constructor_type->base_type != result->type->base_type) {
743 const glsl_type *desired_type =
744 glsl_type::get_instance(constructor_type->base_type,
745 ir->type->vector_elements,
746 ir->type->matrix_columns);
747 if (result->type->can_implicitly_convert_to(desired_type, state)) {
748 /* Even though convert_component() implements the constructor
749 * conversion rules (not the implicit conversion rules), its safe
750 * to use it here because we already checked that the implicit
751 * conversion is legal.
752 */
753 result = convert_component(ir, desired_type);
754 }
755 }
756
757 if (constructor_type->is_matrix()) {
758 if (result->type != constructor_type->column_type()) {
759 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
760 "expected: %s, found %s",
761 constructor_type->column_type()->name,
762 result->type->name);
763 return ir_rvalue::error_value(ctx);
764 }
765 } else if (result->type != constructor_type->get_scalar_type()) {
766 _mesa_glsl_error(loc, state, "type error in vector constructor: "
767 "expected: %s, found %s",
768 constructor_type->get_scalar_type()->name,
769 result->type->name);
770 return ir_rvalue::error_value(ctx);
771 }
772
773 /* Attempt to convert the parameter to a constant valued expression.
774 * After doing so, track whether or not all the parameters to the
775 * constructor are trivially constant valued expressions.
776 */
777 ir_rvalue *const constant = result->constant_expression_value();
778
779 if (constant != NULL)
780 result = constant;
781 else
782 all_parameters_are_constant = false;
783
784 ir->replace_with(result);
785 }
786
787 if (all_parameters_are_constant)
788 return new(ctx) ir_constant(constructor_type, &actual_parameters);
789
790 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
791 ir_var_temporary);
792 instructions->push_tail(var);
793
794 int i = 0;
795
796 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
797 ir_instruction *assignment = NULL;
798
799 if (var->type->is_matrix()) {
800 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
801 new(ctx) ir_constant(i));
802 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
803 } else {
804 /* use writemask rather than index for vector */
805 assert(var->type->is_vector());
806 assert(i < 4);
807 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
808 assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
809 }
810
811 instructions->push_tail(assignment);
812
813 i++;
814 }
815
816 return new(ctx) ir_dereference_variable(var);
817 }
818
819
820 static ir_rvalue *
821 process_array_constructor(exec_list *instructions,
822 const glsl_type *constructor_type,
823 YYLTYPE *loc, exec_list *parameters,
824 struct _mesa_glsl_parse_state *state)
825 {
826 void *ctx = state;
827 /* Array constructors come in two forms: sized and unsized. Sized array
828 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
829 * variables. In this case the number of parameters must exactly match the
830 * specified size of the array.
831 *
832 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
833 * are vec4 variables. In this case the size of the array being constructed
834 * is determined by the number of parameters.
835 *
836 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
837 *
838 * "There must be exactly the same number of arguments as the size of
839 * the array being constructed. If no size is present in the
840 * constructor, then the array is explicitly sized to the number of
841 * arguments provided. The arguments are assigned in order, starting at
842 * element 0, to the elements of the constructed array. Each argument
843 * must be the same type as the element type of the array, or be a type
844 * that can be converted to the element type of the array according to
845 * Section 4.1.10 "Implicit Conversions.""
846 */
847 exec_list actual_parameters;
848 const unsigned parameter_count =
849 process_parameters(instructions, &actual_parameters, parameters, state);
850 bool is_unsized_array = constructor_type->is_unsized_array();
851
852 if ((parameter_count == 0) ||
853 (!is_unsized_array && (constructor_type->length != parameter_count))) {
854 const unsigned min_param = is_unsized_array
855 ? 1 : constructor_type->length;
856
857 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
858 "parameter%s",
859 is_unsized_array ? "at least" : "exactly",
860 min_param, (min_param <= 1) ? "" : "s");
861 return ir_rvalue::error_value(ctx);
862 }
863
864 if (is_unsized_array) {
865 constructor_type =
866 glsl_type::get_array_instance(constructor_type->element_type(),
867 parameter_count);
868 assert(constructor_type != NULL);
869 assert(constructor_type->length == parameter_count);
870 }
871
872 bool all_parameters_are_constant = true;
873
874 /* Type cast each parameter and, if possible, fold constants. */
875 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
876 ir_rvalue *result = ir;
877
878 const glsl_base_type element_base_type =
879 constructor_type->element_type()->base_type;
880
881 /* Apply implicit conversions (not the scalar constructor rules!). See
882 * the spec quote above. */
883 if (element_base_type != result->type->base_type) {
884 const glsl_type *desired_type =
885 glsl_type::get_instance(element_base_type,
886 ir->type->vector_elements,
887 ir->type->matrix_columns);
888
889 if (result->type->can_implicitly_convert_to(desired_type, state)) {
890 /* Even though convert_component() implements the constructor
891 * conversion rules (not the implicit conversion rules), its safe
892 * to use it here because we already checked that the implicit
893 * conversion is legal.
894 */
895 result = convert_component(ir, desired_type);
896 }
897 }
898
899 if (result->type != constructor_type->element_type()) {
900 _mesa_glsl_error(loc, state, "type error in array constructor: "
901 "expected: %s, found %s",
902 constructor_type->element_type()->name,
903 result->type->name);
904 return ir_rvalue::error_value(ctx);
905 }
906
907 /* Attempt to convert the parameter to a constant valued expression.
908 * After doing so, track whether or not all the parameters to the
909 * constructor are trivially constant valued expressions.
910 */
911 ir_rvalue *const constant = result->constant_expression_value();
912
913 if (constant != NULL)
914 result = constant;
915 else
916 all_parameters_are_constant = false;
917
918 ir->replace_with(result);
919 }
920
921 if (all_parameters_are_constant)
922 return new(ctx) ir_constant(constructor_type, &actual_parameters);
923
924 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
925 ir_var_temporary);
926 instructions->push_tail(var);
927
928 int i = 0;
929 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
930 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
931 new(ctx) ir_constant(i));
932
933 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
934 instructions->push_tail(assignment);
935
936 i++;
937 }
938
939 return new(ctx) ir_dereference_variable(var);
940 }
941
942
943 /**
944 * Try to convert a record constructor to a constant expression
945 */
946 static ir_constant *
947 constant_record_constructor(const glsl_type *constructor_type,
948 exec_list *parameters, void *mem_ctx)
949 {
950 foreach_in_list(ir_instruction, node, parameters) {
951 ir_constant *constant = node->as_constant();
952 if (constant == NULL)
953 return NULL;
954 node->replace_with(constant);
955 }
956
957 return new(mem_ctx) ir_constant(constructor_type, parameters);
958 }
959
960
961 /**
962 * Determine if a list consists of a single scalar r-value
963 */
964 bool
965 single_scalar_parameter(exec_list *parameters)
966 {
967 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
968 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
969
970 return (p->type->is_scalar() && p->next->is_tail_sentinel());
971 }
972
973
974 /**
975 * Generate inline code for a vector constructor
976 *
977 * The generated constructor code will consist of a temporary variable
978 * declaration of the same type as the constructor. A sequence of assignments
979 * from constructor parameters to the temporary will follow.
980 *
981 * \return
982 * An \c ir_dereference_variable of the temprorary generated in the constructor
983 * body.
984 */
985 ir_rvalue *
986 emit_inline_vector_constructor(const glsl_type *type,
987 exec_list *instructions,
988 exec_list *parameters,
989 void *ctx)
990 {
991 assert(!parameters->is_empty());
992
993 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
994 instructions->push_tail(var);
995
996 /* There are two kinds of vector constructors.
997 *
998 * - Construct a vector from a single scalar by replicating that scalar to
999 * all components of the vector.
1000 *
1001 * - Construct a vector from an arbirary combination of vectors and
1002 * scalars. The components of the constructor parameters are assigned
1003 * to the vector in order until the vector is full.
1004 */
1005 const unsigned lhs_components = type->components();
1006 if (single_scalar_parameter(parameters)) {
1007 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
1008 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1009 lhs_components);
1010 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1011 const unsigned mask = (1U << lhs_components) - 1;
1012
1013 assert(rhs->type == lhs->type);
1014
1015 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1016 instructions->push_tail(inst);
1017 } else {
1018 unsigned base_component = 0;
1019 unsigned base_lhs_component = 0;
1020 ir_constant_data data;
1021 unsigned constant_mask = 0, constant_components = 0;
1022
1023 memset(&data, 0, sizeof(data));
1024
1025 foreach_in_list(ir_rvalue, param, parameters) {
1026 unsigned rhs_components = param->type->components();
1027
1028 /* Do not try to assign more components to the vector than it has!
1029 */
1030 if ((rhs_components + base_lhs_component) > lhs_components) {
1031 rhs_components = lhs_components - base_lhs_component;
1032 }
1033
1034 const ir_constant *const c = param->as_constant();
1035 if (c != NULL) {
1036 for (unsigned i = 0; i < rhs_components; i++) {
1037 switch (c->type->base_type) {
1038 case GLSL_TYPE_UINT:
1039 data.u[i + base_component] = c->get_uint_component(i);
1040 break;
1041 case GLSL_TYPE_INT:
1042 data.i[i + base_component] = c->get_int_component(i);
1043 break;
1044 case GLSL_TYPE_FLOAT:
1045 data.f[i + base_component] = c->get_float_component(i);
1046 break;
1047 case GLSL_TYPE_DOUBLE:
1048 data.d[i + base_component] = c->get_double_component(i);
1049 break;
1050 case GLSL_TYPE_BOOL:
1051 data.b[i + base_component] = c->get_bool_component(i);
1052 break;
1053 default:
1054 assert(!"Should not get here.");
1055 break;
1056 }
1057 }
1058
1059 /* Mask of fields to be written in the assignment.
1060 */
1061 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1062 constant_components += rhs_components;
1063
1064 base_component += rhs_components;
1065 }
1066 /* Advance the component index by the number of components
1067 * that were just assigned.
1068 */
1069 base_lhs_component += rhs_components;
1070 }
1071
1072 if (constant_mask != 0) {
1073 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1074 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
1075 constant_components,
1076 1);
1077 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1078
1079 ir_instruction *inst =
1080 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1081 instructions->push_tail(inst);
1082 }
1083
1084 base_component = 0;
1085 foreach_in_list(ir_rvalue, param, parameters) {
1086 unsigned rhs_components = param->type->components();
1087
1088 /* Do not try to assign more components to the vector than it has!
1089 */
1090 if ((rhs_components + base_component) > lhs_components) {
1091 rhs_components = lhs_components - base_component;
1092 }
1093
1094 const ir_constant *const c = param->as_constant();
1095 if (c == NULL) {
1096 /* Mask of fields to be written in the assignment.
1097 */
1098 const unsigned write_mask = ((1U << rhs_components) - 1)
1099 << base_component;
1100
1101 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1102
1103 /* Generate a swizzle so that LHS and RHS sizes match.
1104 */
1105 ir_rvalue *rhs =
1106 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1107
1108 ir_instruction *inst =
1109 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1110 instructions->push_tail(inst);
1111 }
1112
1113 /* Advance the component index by the number of components that were
1114 * just assigned.
1115 */
1116 base_component += rhs_components;
1117 }
1118 }
1119 return new(ctx) ir_dereference_variable(var);
1120 }
1121
1122
1123 /**
1124 * Generate assignment of a portion of a vector to a portion of a matrix column
1125 *
1126 * \param src_base First component of the source to be used in assignment
1127 * \param column Column of destination to be assiged
1128 * \param row_base First component of the destination column to be assigned
1129 * \param count Number of components to be assigned
1130 *
1131 * \note
1132 * \c src_base + \c count must be less than or equal to the number of components
1133 * in the source vector.
1134 */
1135 ir_instruction *
1136 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1137 ir_rvalue *src, unsigned src_base, unsigned count,
1138 void *mem_ctx)
1139 {
1140 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1141 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1142
1143 assert(column_ref->type->components() >= (row_base + count));
1144 assert(src->type->components() >= (src_base + count));
1145
1146 /* Generate a swizzle that extracts the number of components from the source
1147 * that are to be assigned to the column of the matrix.
1148 */
1149 if (count < src->type->vector_elements) {
1150 src = new(mem_ctx) ir_swizzle(src,
1151 src_base + 0, src_base + 1,
1152 src_base + 2, src_base + 3,
1153 count);
1154 }
1155
1156 /* Mask of fields to be written in the assignment.
1157 */
1158 const unsigned write_mask = ((1U << count) - 1) << row_base;
1159
1160 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1161 }
1162
1163
1164 /**
1165 * Generate inline code for a matrix constructor
1166 *
1167 * The generated constructor code will consist of a temporary variable
1168 * declaration of the same type as the constructor. A sequence of assignments
1169 * from constructor parameters to the temporary will follow.
1170 *
1171 * \return
1172 * An \c ir_dereference_variable of the temprorary generated in the constructor
1173 * body.
1174 */
1175 ir_rvalue *
1176 emit_inline_matrix_constructor(const glsl_type *type,
1177 exec_list *instructions,
1178 exec_list *parameters,
1179 void *ctx)
1180 {
1181 assert(!parameters->is_empty());
1182
1183 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1184 instructions->push_tail(var);
1185
1186 /* There are three kinds of matrix constructors.
1187 *
1188 * - Construct a matrix from a single scalar by replicating that scalar to
1189 * along the diagonal of the matrix and setting all other components to
1190 * zero.
1191 *
1192 * - Construct a matrix from an arbirary combination of vectors and
1193 * scalars. The components of the constructor parameters are assigned
1194 * to the matrix in colum-major order until the matrix is full.
1195 *
1196 * - Construct a matrix from a single matrix. The source matrix is copied
1197 * to the upper left portion of the constructed matrix, and the remaining
1198 * elements take values from the identity matrix.
1199 */
1200 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1201 if (single_scalar_parameter(parameters)) {
1202 /* Assign the scalar to the X component of a vec4, and fill the remaining
1203 * components with zero.
1204 */
1205 glsl_base_type param_base_type = first_param->type->base_type;
1206 assert(param_base_type == GLSL_TYPE_FLOAT ||
1207 param_base_type == GLSL_TYPE_DOUBLE);
1208 ir_variable *rhs_var =
1209 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1210 "mat_ctor_vec",
1211 ir_var_temporary);
1212 instructions->push_tail(rhs_var);
1213
1214 ir_constant_data zero;
1215 for (unsigned i = 0; i < 4; i++)
1216 if (param_base_type == GLSL_TYPE_FLOAT)
1217 zero.f[i] = 0.0;
1218 else
1219 zero.d[i] = 0.0;
1220
1221 ir_instruction *inst =
1222 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1223 new(ctx) ir_constant(rhs_var->type, &zero),
1224 NULL);
1225 instructions->push_tail(inst);
1226
1227 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1228
1229 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1230 instructions->push_tail(inst);
1231
1232 /* Assign the temporary vector to each column of the destination matrix
1233 * with a swizzle that puts the X component on the diagonal of the
1234 * matrix. In some cases this may mean that the X component does not
1235 * get assigned into the column at all (i.e., when the matrix has more
1236 * columns than rows).
1237 */
1238 static const unsigned rhs_swiz[4][4] = {
1239 { 0, 1, 1, 1 },
1240 { 1, 0, 1, 1 },
1241 { 1, 1, 0, 1 },
1242 { 1, 1, 1, 0 }
1243 };
1244
1245 const unsigned cols_to_init = MIN2(type->matrix_columns,
1246 type->vector_elements);
1247 for (unsigned i = 0; i < cols_to_init; i++) {
1248 ir_constant *const col_idx = new(ctx) ir_constant(i);
1249 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1250
1251 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1252 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1253 type->vector_elements);
1254
1255 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1256 instructions->push_tail(inst);
1257 }
1258
1259 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1260 ir_constant *const col_idx = new(ctx) ir_constant(i);
1261 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1262
1263 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1264 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1265 type->vector_elements);
1266
1267 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1268 instructions->push_tail(inst);
1269 }
1270 } else if (first_param->type->is_matrix()) {
1271 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1272 *
1273 * "If a matrix is constructed from a matrix, then each component
1274 * (column i, row j) in the result that has a corresponding
1275 * component (column i, row j) in the argument will be initialized
1276 * from there. All other components will be initialized to the
1277 * identity matrix. If a matrix argument is given to a matrix
1278 * constructor, it is an error to have any other arguments."
1279 */
1280 assert(first_param->next->is_tail_sentinel());
1281 ir_rvalue *const src_matrix = first_param;
1282
1283 /* If the source matrix is smaller, pre-initialize the relavent parts of
1284 * the destination matrix to the identity matrix.
1285 */
1286 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1287 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1288
1289 /* If the source matrix has fewer rows, every column of the destination
1290 * must be initialized. Otherwise only the columns in the destination
1291 * that do not exist in the source must be initialized.
1292 */
1293 unsigned col =
1294 (src_matrix->type->vector_elements < var->type->vector_elements)
1295 ? 0 : src_matrix->type->matrix_columns;
1296
1297 const glsl_type *const col_type = var->type->column_type();
1298 for (/* empty */; col < var->type->matrix_columns; col++) {
1299 ir_constant_data ident;
1300
1301 ident.f[0] = 0.0;
1302 ident.f[1] = 0.0;
1303 ident.f[2] = 0.0;
1304 ident.f[3] = 0.0;
1305
1306 ident.f[col] = 1.0;
1307
1308 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1309
1310 ir_rvalue *const lhs =
1311 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1312
1313 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1314 instructions->push_tail(inst);
1315 }
1316 }
1317
1318 /* Assign columns from the source matrix to the destination matrix.
1319 *
1320 * Since the parameter will be used in the RHS of multiple assignments,
1321 * generate a temporary and copy the paramter there.
1322 */
1323 ir_variable *const rhs_var =
1324 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1325 ir_var_temporary);
1326 instructions->push_tail(rhs_var);
1327
1328 ir_dereference *const rhs_var_ref =
1329 new(ctx) ir_dereference_variable(rhs_var);
1330 ir_instruction *const inst =
1331 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1332 instructions->push_tail(inst);
1333
1334 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1335 var->type->vector_elements);
1336 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1337 var->type->matrix_columns);
1338
1339 unsigned swiz[4] = { 0, 0, 0, 0 };
1340 for (unsigned i = 1; i < last_row; i++)
1341 swiz[i] = i;
1342
1343 const unsigned write_mask = (1U << last_row) - 1;
1344
1345 for (unsigned i = 0; i < last_col; i++) {
1346 ir_dereference *const lhs =
1347 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1348 ir_rvalue *const rhs_col =
1349 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1350
1351 /* If one matrix has columns that are smaller than the columns of the
1352 * other matrix, wrap the column access of the larger with a swizzle
1353 * so that the LHS and RHS of the assignment have the same size (and
1354 * therefore have the same type).
1355 *
1356 * It would be perfectly valid to unconditionally generate the
1357 * swizzles, this this will typically result in a more compact IR tree.
1358 */
1359 ir_rvalue *rhs;
1360 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1361 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1362 } else {
1363 rhs = rhs_col;
1364 }
1365
1366 ir_instruction *inst =
1367 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1368 instructions->push_tail(inst);
1369 }
1370 } else {
1371 const unsigned cols = type->matrix_columns;
1372 const unsigned rows = type->vector_elements;
1373 unsigned remaining_slots = rows * cols;
1374 unsigned col_idx = 0;
1375 unsigned row_idx = 0;
1376
1377 foreach_in_list(ir_rvalue, rhs, parameters) {
1378 unsigned rhs_components = rhs->type->components();
1379 unsigned rhs_base = 0;
1380
1381 if (remaining_slots == 0)
1382 break;
1383
1384 /* Since the parameter might be used in the RHS of two assignments,
1385 * generate a temporary and copy the paramter there.
1386 */
1387 ir_variable *rhs_var =
1388 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1389 instructions->push_tail(rhs_var);
1390
1391 ir_dereference *rhs_var_ref =
1392 new(ctx) ir_dereference_variable(rhs_var);
1393 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1394 instructions->push_tail(inst);
1395
1396 do {
1397 /* Assign the current parameter to as many components of the matrix
1398 * as it will fill.
1399 *
1400 * NOTE: A single vector parameter can span two matrix columns. A
1401 * single vec4, for example, can completely fill a mat2.
1402 */
1403 unsigned count = MIN2(rows - row_idx,
1404 rhs_components - rhs_base);
1405
1406 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1407 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1408 row_idx,
1409 rhs_var_ref,
1410 rhs_base,
1411 count, ctx);
1412 instructions->push_tail(inst);
1413 rhs_base += count;
1414 row_idx += count;
1415 remaining_slots -= count;
1416
1417 /* Sometimes, there is still data left in the parameters and
1418 * components left to be set in the destination but in other
1419 * column.
1420 */
1421 if (row_idx >= rows) {
1422 row_idx = 0;
1423 col_idx++;
1424 }
1425 } while(remaining_slots > 0 && rhs_base < rhs_components);
1426 }
1427 }
1428
1429 return new(ctx) ir_dereference_variable(var);
1430 }
1431
1432
1433 ir_rvalue *
1434 emit_inline_record_constructor(const glsl_type *type,
1435 exec_list *instructions,
1436 exec_list *parameters,
1437 void *mem_ctx)
1438 {
1439 ir_variable *const var =
1440 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1441 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1442
1443 instructions->push_tail(var);
1444
1445 exec_node *node = parameters->head;
1446 for (unsigned i = 0; i < type->length; i++) {
1447 assert(!node->is_tail_sentinel());
1448
1449 ir_dereference *const lhs =
1450 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1451 type->fields.structure[i].name);
1452
1453 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1454 assert(rhs != NULL);
1455
1456 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1457
1458 instructions->push_tail(assign);
1459 node = node->next;
1460 }
1461
1462 return d;
1463 }
1464
1465
1466 static ir_rvalue *
1467 process_record_constructor(exec_list *instructions,
1468 const glsl_type *constructor_type,
1469 YYLTYPE *loc, exec_list *parameters,
1470 struct _mesa_glsl_parse_state *state)
1471 {
1472 void *ctx = state;
1473 exec_list actual_parameters;
1474
1475 process_parameters(instructions, &actual_parameters,
1476 parameters, state);
1477
1478 exec_node *node = actual_parameters.head;
1479 for (unsigned i = 0; i < constructor_type->length; i++) {
1480 ir_rvalue *ir = (ir_rvalue *) node;
1481
1482 if (node->is_tail_sentinel()) {
1483 _mesa_glsl_error(loc, state,
1484 "insufficient parameters to constructor for `%s'",
1485 constructor_type->name);
1486 return ir_rvalue::error_value(ctx);
1487 }
1488
1489 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1490 ir, state)) {
1491 node->replace_with(ir);
1492 } else {
1493 _mesa_glsl_error(loc, state,
1494 "parameter type mismatch in constructor for `%s.%s' "
1495 "(%s vs %s)",
1496 constructor_type->name,
1497 constructor_type->fields.structure[i].name,
1498 ir->type->name,
1499 constructor_type->fields.structure[i].type->name);
1500 return ir_rvalue::error_value(ctx);;
1501 }
1502
1503 node = node->next;
1504 }
1505
1506 if (!node->is_tail_sentinel()) {
1507 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1508 "for `%s'", constructor_type->name);
1509 return ir_rvalue::error_value(ctx);
1510 }
1511
1512 ir_rvalue *const constant =
1513 constant_record_constructor(constructor_type, &actual_parameters,
1514 state);
1515
1516 return (constant != NULL)
1517 ? constant
1518 : emit_inline_record_constructor(constructor_type, instructions,
1519 &actual_parameters, state);
1520 }
1521
1522
1523 ir_rvalue *
1524 ast_function_expression::hir(exec_list *instructions,
1525 struct _mesa_glsl_parse_state *state)
1526 {
1527 void *ctx = state;
1528 /* There are three sorts of function calls.
1529 *
1530 * 1. constructors - The first subexpression is an ast_type_specifier.
1531 * 2. methods - Only the .length() method of array types.
1532 * 3. functions - Calls to regular old functions.
1533 *
1534 * Method calls are actually detected when the ast_field_selection
1535 * expression is handled.
1536 */
1537 if (is_constructor()) {
1538 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1539 YYLTYPE loc = type->get_location();
1540 const char *name;
1541
1542 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1543
1544 /* constructor_type can be NULL if a variable with the same name as the
1545 * structure has come into scope.
1546 */
1547 if (constructor_type == NULL) {
1548 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1549 "may be shadowed by a variable with the same name)",
1550 type->type_name);
1551 return ir_rvalue::error_value(ctx);
1552 }
1553
1554
1555 /* Constructors for opaque types are illegal.
1556 */
1557 if (constructor_type->contains_opaque()) {
1558 _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1559 constructor_type->name);
1560 return ir_rvalue::error_value(ctx);
1561 }
1562
1563 if (constructor_type->is_array()) {
1564 if (!state->check_version(120, 300, &loc,
1565 "array constructors forbidden")) {
1566 return ir_rvalue::error_value(ctx);
1567 }
1568
1569 return process_array_constructor(instructions, constructor_type,
1570 & loc, &this->expressions, state);
1571 }
1572
1573
1574 /* There are two kinds of constructor calls. Constructors for arrays and
1575 * structures must have the exact number of arguments with matching types
1576 * in the correct order. These constructors follow essentially the same
1577 * type matching rules as functions.
1578 *
1579 * Constructors for built-in language types, such as mat4 and vec2, are
1580 * free form. The only requirements are that the parameters must provide
1581 * enough values of the correct scalar type and that no arguments are
1582 * given past the last used argument.
1583 *
1584 * When using the C-style initializer syntax from GLSL 4.20, constructors
1585 * must have the exact number of arguments with matching types in the
1586 * correct order.
1587 */
1588 if (constructor_type->is_record()) {
1589 return process_record_constructor(instructions, constructor_type,
1590 &loc, &this->expressions,
1591 state);
1592 }
1593
1594 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1595 return ir_rvalue::error_value(ctx);
1596
1597 /* Total number of components of the type being constructed. */
1598 const unsigned type_components = constructor_type->components();
1599
1600 /* Number of components from parameters that have actually been
1601 * consumed. This is used to perform several kinds of error checking.
1602 */
1603 unsigned components_used = 0;
1604
1605 unsigned matrix_parameters = 0;
1606 unsigned nonmatrix_parameters = 0;
1607 exec_list actual_parameters;
1608
1609 foreach_list_typed(ast_node, ast, link, &this->expressions) {
1610 ir_rvalue *result = ast->hir(instructions, state);
1611
1612 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1613 *
1614 * "It is an error to provide extra arguments beyond this
1615 * last used argument."
1616 */
1617 if (components_used >= type_components) {
1618 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1619 "constructor",
1620 constructor_type->name);
1621 return ir_rvalue::error_value(ctx);
1622 }
1623
1624 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1625 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1626 "non-numeric data type",
1627 constructor_type->name);
1628 return ir_rvalue::error_value(ctx);
1629 }
1630
1631 /* Count the number of matrix and nonmatrix parameters. This
1632 * is used below to enforce some of the constructor rules.
1633 */
1634 if (result->type->is_matrix())
1635 matrix_parameters++;
1636 else
1637 nonmatrix_parameters++;
1638
1639 actual_parameters.push_tail(result);
1640 components_used += result->type->components();
1641 }
1642
1643 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1644 *
1645 * "It is an error to construct matrices from other matrices. This
1646 * is reserved for future use."
1647 */
1648 if (matrix_parameters > 0
1649 && constructor_type->is_matrix()
1650 && !state->check_version(120, 100, &loc,
1651 "cannot construct `%s' from a matrix",
1652 constructor_type->name)) {
1653 return ir_rvalue::error_value(ctx);
1654 }
1655
1656 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1657 *
1658 * "If a matrix argument is given to a matrix constructor, it is
1659 * an error to have any other arguments."
1660 */
1661 if ((matrix_parameters > 0)
1662 && ((matrix_parameters + nonmatrix_parameters) > 1)
1663 && constructor_type->is_matrix()) {
1664 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1665 "matrix must be only parameter",
1666 constructor_type->name);
1667 return ir_rvalue::error_value(ctx);
1668 }
1669
1670 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1671 *
1672 * "In these cases, there must be enough components provided in the
1673 * arguments to provide an initializer for every component in the
1674 * constructed value."
1675 */
1676 if (components_used < type_components && components_used != 1
1677 && matrix_parameters == 0) {
1678 _mesa_glsl_error(& loc, state, "too few components to construct "
1679 "`%s'",
1680 constructor_type->name);
1681 return ir_rvalue::error_value(ctx);
1682 }
1683
1684 /* Later, we cast each parameter to the same base type as the
1685 * constructor. Since there are no non-floating point matrices, we
1686 * need to break them up into a series of column vectors.
1687 */
1688 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1689 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
1690 if (!matrix->type->is_matrix())
1691 continue;
1692
1693 /* Create a temporary containing the matrix. */
1694 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1695 ir_var_temporary);
1696 instructions->push_tail(var);
1697 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1698 ir_dereference_variable(var), matrix, NULL));
1699 var->constant_value = matrix->constant_expression_value();
1700
1701 /* Replace the matrix with dereferences of its columns. */
1702 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1703 matrix->insert_before(new (ctx) ir_dereference_array(var,
1704 new(ctx) ir_constant(i)));
1705 }
1706 matrix->remove();
1707 }
1708 }
1709
1710 bool all_parameters_are_constant = true;
1711
1712 /* Type cast each parameter and, if possible, fold constants.*/
1713 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1714 const glsl_type *desired_type =
1715 glsl_type::get_instance(constructor_type->base_type,
1716 ir->type->vector_elements,
1717 ir->type->matrix_columns);
1718 ir_rvalue *result = convert_component(ir, desired_type);
1719
1720 /* Attempt to convert the parameter to a constant valued expression.
1721 * After doing so, track whether or not all the parameters to the
1722 * constructor are trivially constant valued expressions.
1723 */
1724 ir_rvalue *const constant = result->constant_expression_value();
1725
1726 if (constant != NULL)
1727 result = constant;
1728 else
1729 all_parameters_are_constant = false;
1730
1731 if (result != ir) {
1732 ir->replace_with(result);
1733 }
1734 }
1735
1736 /* If all of the parameters are trivially constant, create a
1737 * constant representing the complete collection of parameters.
1738 */
1739 if (all_parameters_are_constant) {
1740 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1741 } else if (constructor_type->is_scalar()) {
1742 return dereference_component((ir_rvalue *) actual_parameters.head,
1743 0);
1744 } else if (constructor_type->is_vector()) {
1745 return emit_inline_vector_constructor(constructor_type,
1746 instructions,
1747 &actual_parameters,
1748 ctx);
1749 } else {
1750 assert(constructor_type->is_matrix());
1751 return emit_inline_matrix_constructor(constructor_type,
1752 instructions,
1753 &actual_parameters,
1754 ctx);
1755 }
1756 } else {
1757 const ast_expression *id = subexpressions[0];
1758 const char *func_name = id->primary_expression.identifier;
1759 YYLTYPE loc = get_location();
1760 exec_list actual_parameters;
1761
1762 process_parameters(instructions, &actual_parameters, &this->expressions,
1763 state);
1764
1765 ir_function_signature *sig =
1766 match_function_by_name(func_name, &actual_parameters, state);
1767
1768 ir_rvalue *value = NULL;
1769 if (sig == NULL) {
1770 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1771 value = ir_rvalue::error_value(ctx);
1772 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1773 /* an error has already been emitted */
1774 value = ir_rvalue::error_value(ctx);
1775 } else {
1776 value = generate_call(instructions, sig, &actual_parameters, state);
1777 }
1778
1779 return value;
1780 }
1781
1782 unreachable("not reached");
1783 }
1784
1785 ir_rvalue *
1786 ast_aggregate_initializer::hir(exec_list *instructions,
1787 struct _mesa_glsl_parse_state *state)
1788 {
1789 void *ctx = state;
1790 YYLTYPE loc = this->get_location();
1791
1792 if (!this->constructor_type) {
1793 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1794 return ir_rvalue::error_value(ctx);
1795 }
1796 const glsl_type *const constructor_type = this->constructor_type;
1797
1798 if (!state->ARB_shading_language_420pack_enable) {
1799 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1800 "GL_ARB_shading_language_420pack extension");
1801 return ir_rvalue::error_value(ctx);
1802 }
1803
1804 if (constructor_type->is_array()) {
1805 return process_array_constructor(instructions, constructor_type, &loc,
1806 &this->expressions, state);
1807 }
1808
1809 if (constructor_type->is_record()) {
1810 return process_record_constructor(instructions, constructor_type, &loc,
1811 &this->expressions, state);
1812 }
1813
1814 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1815 &this->expressions, state);
1816 }