Merge branch 'xa_branch'
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 if (state->language_version < 130) {
439 _mesa_glsl_error(loc, state,
440 "operator '%%' is reserved in %s",
441 state->version_string);
442 return glsl_type::error_type;
443 }
444
445 /* From GLSL 1.50 spec, page 56:
446 * "The operator modulus (%) operates on signed or unsigned integers or
447 * integer vectors. The operand types must both be signed or both be
448 * unsigned."
449 */
450 if (!type_a->is_integer()) {
451 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
452 return glsl_type::error_type;
453 }
454 if (!type_b->is_integer()) {
455 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
456 return glsl_type::error_type;
457 }
458 if (type_a->base_type != type_b->base_type) {
459 _mesa_glsl_error(loc, state,
460 "operands of %% must have the same base type");
461 return glsl_type::error_type;
462 }
463
464 /* "The operands cannot be vectors of differing size. If one operand is
465 * a scalar and the other vector, then the scalar is applied component-
466 * wise to the vector, resulting in the same type as the vector. If both
467 * are vectors of the same size, the result is computed component-wise."
468 */
469 if (type_a->is_vector()) {
470 if (!type_b->is_vector()
471 || (type_a->vector_elements == type_b->vector_elements))
472 return type_a;
473 } else
474 return type_b;
475
476 /* "The operator modulus (%) is not defined for any other data types
477 * (non-integer types)."
478 */
479 _mesa_glsl_error(loc, state, "type mismatch");
480 return glsl_type::error_type;
481 }
482
483
484 static const struct glsl_type *
485 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
486 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
487 {
488 const glsl_type *type_a = value_a->type;
489 const glsl_type *type_b = value_b->type;
490
491 /* From GLSL 1.50 spec, page 56:
492 * "The relational operators greater than (>), less than (<), greater
493 * than or equal (>=), and less than or equal (<=) operate only on
494 * scalar integer and scalar floating-point expressions."
495 */
496 if (!type_a->is_numeric()
497 || !type_b->is_numeric()
498 || !type_a->is_scalar()
499 || !type_b->is_scalar()) {
500 _mesa_glsl_error(loc, state,
501 "Operands to relational operators must be scalar and "
502 "numeric");
503 return glsl_type::error_type;
504 }
505
506 /* "Either the operands' types must match, or the conversions from
507 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
508 * operand, after which the types must match."
509 */
510 if (!apply_implicit_conversion(type_a, value_b, state)
511 && !apply_implicit_conversion(type_b, value_a, state)) {
512 _mesa_glsl_error(loc, state,
513 "Could not implicitly convert operands to "
514 "relational operator");
515 return glsl_type::error_type;
516 }
517 type_a = value_a->type;
518 type_b = value_b->type;
519
520 if (type_a->base_type != type_b->base_type) {
521 _mesa_glsl_error(loc, state, "base type mismatch");
522 return glsl_type::error_type;
523 }
524
525 /* "The result is scalar Boolean."
526 */
527 return glsl_type::bool_type;
528 }
529
530 /**
531 * \brief Return the result type of a bit-shift operation.
532 *
533 * If the given types to the bit-shift operator are invalid, return
534 * glsl_type::error_type.
535 *
536 * \param type_a Type of LHS of bit-shift op
537 * \param type_b Type of RHS of bit-shift op
538 */
539 static const struct glsl_type *
540 shift_result_type(const struct glsl_type *type_a,
541 const struct glsl_type *type_b,
542 ast_operators op,
543 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
544 {
545 if (state->language_version < 130) {
546 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
547 return glsl_type::error_type;
548 }
549
550 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
551 *
552 * "The shift operators (<<) and (>>). For both operators, the operands
553 * must be signed or unsigned integers or integer vectors. One operand
554 * can be signed while the other is unsigned."
555 */
556 if (!type_a->is_integer()) {
557 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
558 "integer vector", ast_expression::operator_string(op));
559 return glsl_type::error_type;
560
561 }
562 if (!type_b->is_integer()) {
563 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566 }
567
568 /* "If the first operand is a scalar, the second operand has to be
569 * a scalar as well."
570 */
571 if (type_a->is_scalar() && !type_b->is_scalar()) {
572 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
573 "second must be scalar as well",
574 ast_expression::operator_string(op));
575 return glsl_type::error_type;
576 }
577
578 /* If both operands are vectors, check that they have same number of
579 * elements.
580 */
581 if (type_a->is_vector() &&
582 type_b->is_vector() &&
583 type_a->vector_elements != type_b->vector_elements) {
584 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
585 "have same number of elements",
586 ast_expression::operator_string(op));
587 return glsl_type::error_type;
588 }
589
590 /* "In all cases, the resulting type will be the same type as the left
591 * operand."
592 */
593 return type_a;
594 }
595
596 /**
597 * Validates that a value can be assigned to a location with a specified type
598 *
599 * Validates that \c rhs can be assigned to some location. If the types are
600 * not an exact match but an automatic conversion is possible, \c rhs will be
601 * converted.
602 *
603 * \return
604 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
605 * Otherwise the actual RHS to be assigned will be returned. This may be
606 * \c rhs, or it may be \c rhs after some type conversion.
607 *
608 * \note
609 * In addition to being used for assignments, this function is used to
610 * type-check return values.
611 */
612 ir_rvalue *
613 validate_assignment(struct _mesa_glsl_parse_state *state,
614 const glsl_type *lhs_type, ir_rvalue *rhs,
615 bool is_initializer)
616 {
617 /* If there is already some error in the RHS, just return it. Anything
618 * else will lead to an avalanche of error message back to the user.
619 */
620 if (rhs->type->is_error())
621 return rhs;
622
623 /* If the types are identical, the assignment can trivially proceed.
624 */
625 if (rhs->type == lhs_type)
626 return rhs;
627
628 /* If the array element types are the same and the size of the LHS is zero,
629 * the assignment is okay for initializers embedded in variable
630 * declarations.
631 *
632 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
633 * is handled by ir_dereference::is_lvalue.
634 */
635 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
636 && (lhs_type->element_type() == rhs->type->element_type())
637 && (lhs_type->array_size() == 0)) {
638 return rhs;
639 }
640
641 /* Check for implicit conversion in GLSL 1.20 */
642 if (apply_implicit_conversion(lhs_type, rhs, state)) {
643 if (rhs->type == lhs_type)
644 return rhs;
645 }
646
647 return NULL;
648 }
649
650 ir_rvalue *
651 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
652 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
653 YYLTYPE lhs_loc)
654 {
655 void *ctx = state;
656 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
657
658 if (!error_emitted) {
659 if (lhs->variable_referenced() != NULL
660 && lhs->variable_referenced()->read_only) {
661 _mesa_glsl_error(&lhs_loc, state,
662 "assignment to read-only variable '%s'",
663 lhs->variable_referenced()->name);
664 error_emitted = true;
665
666 } else if (!lhs->is_lvalue()) {
667 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
668 error_emitted = true;
669 }
670
671 if (state->es_shader && lhs->type->is_array()) {
672 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
673 "allowed in GLSL ES 1.00.");
674 error_emitted = true;
675 }
676 }
677
678 ir_rvalue *new_rhs =
679 validate_assignment(state, lhs->type, rhs, is_initializer);
680 if (new_rhs == NULL) {
681 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
682 } else {
683 rhs = new_rhs;
684
685 /* If the LHS array was not declared with a size, it takes it size from
686 * the RHS. If the LHS is an l-value and a whole array, it must be a
687 * dereference of a variable. Any other case would require that the LHS
688 * is either not an l-value or not a whole array.
689 */
690 if (lhs->type->array_size() == 0) {
691 ir_dereference *const d = lhs->as_dereference();
692
693 assert(d != NULL);
694
695 ir_variable *const var = d->variable_referenced();
696
697 assert(var != NULL);
698
699 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
700 /* FINISHME: This should actually log the location of the RHS. */
701 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
702 "previous access",
703 var->max_array_access);
704 }
705
706 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
707 rhs->type->array_size());
708 d->type = var->type;
709 }
710 }
711
712 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
713 * but not post_inc) need the converted assigned value as an rvalue
714 * to handle things like:
715 *
716 * i = j += 1;
717 *
718 * So we always just store the computed value being assigned to a
719 * temporary and return a deref of that temporary. If the rvalue
720 * ends up not being used, the temp will get copy-propagated out.
721 */
722 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
723 ir_var_temporary);
724 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
725 instructions->push_tail(var);
726 instructions->push_tail(new(ctx) ir_assignment(deref_var,
727 rhs,
728 NULL));
729 deref_var = new(ctx) ir_dereference_variable(var);
730
731 if (!error_emitted)
732 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
733
734 return new(ctx) ir_dereference_variable(var);
735 }
736
737 static ir_rvalue *
738 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
739 {
740 void *ctx = ralloc_parent(lvalue);
741 ir_variable *var;
742
743 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
744 ir_var_temporary);
745 instructions->push_tail(var);
746 var->mode = ir_var_auto;
747
748 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
749 lvalue, NULL));
750
751 /* Once we've created this temporary, mark it read only so it's no
752 * longer considered an lvalue.
753 */
754 var->read_only = true;
755
756 return new(ctx) ir_dereference_variable(var);
757 }
758
759
760 ir_rvalue *
761 ast_node::hir(exec_list *instructions,
762 struct _mesa_glsl_parse_state *state)
763 {
764 (void) instructions;
765 (void) state;
766
767 return NULL;
768 }
769
770 static void
771 mark_whole_array_access(ir_rvalue *access)
772 {
773 ir_dereference_variable *deref = access->as_dereference_variable();
774
775 if (deref) {
776 deref->var->max_array_access = deref->type->length - 1;
777 }
778 }
779
780 static ir_rvalue *
781 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
782 {
783 int join_op;
784 ir_rvalue *cmp = NULL;
785
786 if (operation == ir_binop_all_equal)
787 join_op = ir_binop_logic_and;
788 else
789 join_op = ir_binop_logic_or;
790
791 switch (op0->type->base_type) {
792 case GLSL_TYPE_FLOAT:
793 case GLSL_TYPE_UINT:
794 case GLSL_TYPE_INT:
795 case GLSL_TYPE_BOOL:
796 return new(mem_ctx) ir_expression(operation, op0, op1);
797
798 case GLSL_TYPE_ARRAY: {
799 for (unsigned int i = 0; i < op0->type->length; i++) {
800 ir_rvalue *e0, *e1, *result;
801
802 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
803 new(mem_ctx) ir_constant(i));
804 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
805 new(mem_ctx) ir_constant(i));
806 result = do_comparison(mem_ctx, operation, e0, e1);
807
808 if (cmp) {
809 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
810 } else {
811 cmp = result;
812 }
813 }
814
815 mark_whole_array_access(op0);
816 mark_whole_array_access(op1);
817 break;
818 }
819
820 case GLSL_TYPE_STRUCT: {
821 for (unsigned int i = 0; i < op0->type->length; i++) {
822 ir_rvalue *e0, *e1, *result;
823 const char *field_name = op0->type->fields.structure[i].name;
824
825 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
826 field_name);
827 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
828 field_name);
829 result = do_comparison(mem_ctx, operation, e0, e1);
830
831 if (cmp) {
832 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
833 } else {
834 cmp = result;
835 }
836 }
837 break;
838 }
839
840 case GLSL_TYPE_ERROR:
841 case GLSL_TYPE_VOID:
842 case GLSL_TYPE_SAMPLER:
843 /* I assume a comparison of a struct containing a sampler just
844 * ignores the sampler present in the type.
845 */
846 break;
847
848 default:
849 assert(!"Should not get here.");
850 break;
851 }
852
853 if (cmp == NULL)
854 cmp = new(mem_ctx) ir_constant(true);
855
856 return cmp;
857 }
858
859 /* For logical operations, we want to ensure that the operands are
860 * scalar booleans. If it isn't, emit an error and return a constant
861 * boolean to avoid triggering cascading error messages.
862 */
863 ir_rvalue *
864 get_scalar_boolean_operand(exec_list *instructions,
865 struct _mesa_glsl_parse_state *state,
866 ast_expression *parent_expr,
867 int operand,
868 const char *operand_name,
869 bool *error_emitted)
870 {
871 ast_expression *expr = parent_expr->subexpressions[operand];
872 void *ctx = state;
873 ir_rvalue *val = expr->hir(instructions, state);
874
875 if (val->type->is_boolean() && val->type->is_scalar())
876 return val;
877
878 if (!*error_emitted) {
879 YYLTYPE loc = expr->get_location();
880 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
881 operand_name,
882 parent_expr->operator_string(parent_expr->oper));
883 *error_emitted = true;
884 }
885
886 return new(ctx) ir_constant(true);
887 }
888
889 ir_rvalue *
890 ast_expression::hir(exec_list *instructions,
891 struct _mesa_glsl_parse_state *state)
892 {
893 void *ctx = state;
894 static const int operations[AST_NUM_OPERATORS] = {
895 -1, /* ast_assign doesn't convert to ir_expression. */
896 -1, /* ast_plus doesn't convert to ir_expression. */
897 ir_unop_neg,
898 ir_binop_add,
899 ir_binop_sub,
900 ir_binop_mul,
901 ir_binop_div,
902 ir_binop_mod,
903 ir_binop_lshift,
904 ir_binop_rshift,
905 ir_binop_less,
906 ir_binop_greater,
907 ir_binop_lequal,
908 ir_binop_gequal,
909 ir_binop_all_equal,
910 ir_binop_any_nequal,
911 ir_binop_bit_and,
912 ir_binop_bit_xor,
913 ir_binop_bit_or,
914 ir_unop_bit_not,
915 ir_binop_logic_and,
916 ir_binop_logic_xor,
917 ir_binop_logic_or,
918 ir_unop_logic_not,
919
920 /* Note: The following block of expression types actually convert
921 * to multiple IR instructions.
922 */
923 ir_binop_mul, /* ast_mul_assign */
924 ir_binop_div, /* ast_div_assign */
925 ir_binop_mod, /* ast_mod_assign */
926 ir_binop_add, /* ast_add_assign */
927 ir_binop_sub, /* ast_sub_assign */
928 ir_binop_lshift, /* ast_ls_assign */
929 ir_binop_rshift, /* ast_rs_assign */
930 ir_binop_bit_and, /* ast_and_assign */
931 ir_binop_bit_xor, /* ast_xor_assign */
932 ir_binop_bit_or, /* ast_or_assign */
933
934 -1, /* ast_conditional doesn't convert to ir_expression. */
935 ir_binop_add, /* ast_pre_inc. */
936 ir_binop_sub, /* ast_pre_dec. */
937 ir_binop_add, /* ast_post_inc. */
938 ir_binop_sub, /* ast_post_dec. */
939 -1, /* ast_field_selection doesn't conv to ir_expression. */
940 -1, /* ast_array_index doesn't convert to ir_expression. */
941 -1, /* ast_function_call doesn't conv to ir_expression. */
942 -1, /* ast_identifier doesn't convert to ir_expression. */
943 -1, /* ast_int_constant doesn't convert to ir_expression. */
944 -1, /* ast_uint_constant doesn't conv to ir_expression. */
945 -1, /* ast_float_constant doesn't conv to ir_expression. */
946 -1, /* ast_bool_constant doesn't conv to ir_expression. */
947 -1, /* ast_sequence doesn't convert to ir_expression. */
948 };
949 ir_rvalue *result = NULL;
950 ir_rvalue *op[3];
951 const struct glsl_type *type; /* a temporary variable for switch cases */
952 bool error_emitted = false;
953 YYLTYPE loc;
954
955 loc = this->get_location();
956
957 switch (this->oper) {
958 case ast_assign: {
959 op[0] = this->subexpressions[0]->hir(instructions, state);
960 op[1] = this->subexpressions[1]->hir(instructions, state);
961
962 result = do_assignment(instructions, state, op[0], op[1], false,
963 this->subexpressions[0]->get_location());
964 error_emitted = result->type->is_error();
965 break;
966 }
967
968 case ast_plus:
969 op[0] = this->subexpressions[0]->hir(instructions, state);
970
971 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
972
973 error_emitted = type->is_error();
974
975 result = op[0];
976 break;
977
978 case ast_neg:
979 op[0] = this->subexpressions[0]->hir(instructions, state);
980
981 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
982
983 error_emitted = type->is_error();
984
985 result = new(ctx) ir_expression(operations[this->oper], type,
986 op[0], NULL);
987 break;
988
989 case ast_add:
990 case ast_sub:
991 case ast_mul:
992 case ast_div:
993 op[0] = this->subexpressions[0]->hir(instructions, state);
994 op[1] = this->subexpressions[1]->hir(instructions, state);
995
996 type = arithmetic_result_type(op[0], op[1],
997 (this->oper == ast_mul),
998 state, & loc);
999 error_emitted = type->is_error();
1000
1001 result = new(ctx) ir_expression(operations[this->oper], type,
1002 op[0], op[1]);
1003 break;
1004
1005 case ast_mod:
1006 op[0] = this->subexpressions[0]->hir(instructions, state);
1007 op[1] = this->subexpressions[1]->hir(instructions, state);
1008
1009 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1010
1011 assert(operations[this->oper] == ir_binop_mod);
1012
1013 result = new(ctx) ir_expression(operations[this->oper], type,
1014 op[0], op[1]);
1015 error_emitted = type->is_error();
1016 break;
1017
1018 case ast_lshift:
1019 case ast_rshift:
1020 if (state->language_version < 130) {
1021 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1022 operator_string(this->oper));
1023 error_emitted = true;
1024 }
1025
1026 op[0] = this->subexpressions[0]->hir(instructions, state);
1027 op[1] = this->subexpressions[1]->hir(instructions, state);
1028 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1029 &loc);
1030 result = new(ctx) ir_expression(operations[this->oper], type,
1031 op[0], op[1]);
1032 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1033 break;
1034
1035 case ast_less:
1036 case ast_greater:
1037 case ast_lequal:
1038 case ast_gequal:
1039 op[0] = this->subexpressions[0]->hir(instructions, state);
1040 op[1] = this->subexpressions[1]->hir(instructions, state);
1041
1042 type = relational_result_type(op[0], op[1], state, & loc);
1043
1044 /* The relational operators must either generate an error or result
1045 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1046 */
1047 assert(type->is_error()
1048 || ((type->base_type == GLSL_TYPE_BOOL)
1049 && type->is_scalar()));
1050
1051 result = new(ctx) ir_expression(operations[this->oper], type,
1052 op[0], op[1]);
1053 error_emitted = type->is_error();
1054 break;
1055
1056 case ast_nequal:
1057 case ast_equal:
1058 op[0] = this->subexpressions[0]->hir(instructions, state);
1059 op[1] = this->subexpressions[1]->hir(instructions, state);
1060
1061 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1062 *
1063 * "The equality operators equal (==), and not equal (!=)
1064 * operate on all types. They result in a scalar Boolean. If
1065 * the operand types do not match, then there must be a
1066 * conversion from Section 4.1.10 "Implicit Conversions"
1067 * applied to one operand that can make them match, in which
1068 * case this conversion is done."
1069 */
1070 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1071 && !apply_implicit_conversion(op[1]->type, op[0], state))
1072 || (op[0]->type != op[1]->type)) {
1073 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1074 "type", (this->oper == ast_equal) ? "==" : "!=");
1075 error_emitted = true;
1076 } else if ((state->language_version <= 110)
1077 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1078 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1079 "GLSL 1.10");
1080 error_emitted = true;
1081 }
1082
1083 if (error_emitted) {
1084 result = new(ctx) ir_constant(false);
1085 } else {
1086 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1087 assert(result->type == glsl_type::bool_type);
1088 }
1089 break;
1090
1091 case ast_bit_and:
1092 case ast_bit_xor:
1093 case ast_bit_or:
1094 op[0] = this->subexpressions[0]->hir(instructions, state);
1095 op[1] = this->subexpressions[1]->hir(instructions, state);
1096 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1097 state, &loc);
1098 result = new(ctx) ir_expression(operations[this->oper], type,
1099 op[0], op[1]);
1100 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1101 break;
1102
1103 case ast_bit_not:
1104 op[0] = this->subexpressions[0]->hir(instructions, state);
1105
1106 if (state->language_version < 130) {
1107 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1108 error_emitted = true;
1109 }
1110
1111 if (!op[0]->type->is_integer()) {
1112 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1113 error_emitted = true;
1114 }
1115
1116 type = op[0]->type;
1117 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1118 break;
1119
1120 case ast_logic_and: {
1121 exec_list rhs_instructions;
1122 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1123 "LHS", &error_emitted);
1124 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1125 "RHS", &error_emitted);
1126
1127 ir_constant *op0_const = op[0]->constant_expression_value();
1128 if (op0_const) {
1129 if (op0_const->value.b[0]) {
1130 instructions->append_list(&rhs_instructions);
1131 result = op[1];
1132 } else {
1133 result = op0_const;
1134 }
1135 type = glsl_type::bool_type;
1136 } else {
1137 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1138 "and_tmp",
1139 ir_var_temporary);
1140 instructions->push_tail(tmp);
1141
1142 ir_if *const stmt = new(ctx) ir_if(op[0]);
1143 instructions->push_tail(stmt);
1144
1145 stmt->then_instructions.append_list(&rhs_instructions);
1146 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1147 ir_assignment *const then_assign =
1148 new(ctx) ir_assignment(then_deref, op[1], NULL);
1149 stmt->then_instructions.push_tail(then_assign);
1150
1151 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1152 ir_assignment *const else_assign =
1153 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1154 stmt->else_instructions.push_tail(else_assign);
1155
1156 result = new(ctx) ir_dereference_variable(tmp);
1157 type = tmp->type;
1158 }
1159 break;
1160 }
1161
1162 case ast_logic_or: {
1163 exec_list rhs_instructions;
1164 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1165 "LHS", &error_emitted);
1166 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1167 "RHS", &error_emitted);
1168
1169 ir_constant *op0_const = op[0]->constant_expression_value();
1170 if (op0_const) {
1171 if (op0_const->value.b[0]) {
1172 result = op0_const;
1173 } else {
1174 result = op[1];
1175 }
1176 type = glsl_type::bool_type;
1177 } else {
1178 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1179 "or_tmp",
1180 ir_var_temporary);
1181 instructions->push_tail(tmp);
1182
1183 ir_if *const stmt = new(ctx) ir_if(op[0]);
1184 instructions->push_tail(stmt);
1185
1186 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1187 ir_assignment *const then_assign =
1188 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1189 stmt->then_instructions.push_tail(then_assign);
1190
1191 stmt->else_instructions.append_list(&rhs_instructions);
1192 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1193 ir_assignment *const else_assign =
1194 new(ctx) ir_assignment(else_deref, op[1], NULL);
1195 stmt->else_instructions.push_tail(else_assign);
1196
1197 result = new(ctx) ir_dereference_variable(tmp);
1198 type = tmp->type;
1199 }
1200 break;
1201 }
1202
1203 case ast_logic_xor:
1204 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1205 *
1206 * "The logical binary operators and (&&), or ( | | ), and
1207 * exclusive or (^^). They operate only on two Boolean
1208 * expressions and result in a Boolean expression."
1209 */
1210 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1211 &error_emitted);
1212 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1213 &error_emitted);
1214
1215 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1216 op[0], op[1]);
1217 break;
1218
1219 case ast_logic_not:
1220 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1221 "operand", &error_emitted);
1222
1223 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1224 op[0], NULL);
1225 break;
1226
1227 case ast_mul_assign:
1228 case ast_div_assign:
1229 case ast_add_assign:
1230 case ast_sub_assign: {
1231 op[0] = this->subexpressions[0]->hir(instructions, state);
1232 op[1] = this->subexpressions[1]->hir(instructions, state);
1233
1234 type = arithmetic_result_type(op[0], op[1],
1235 (this->oper == ast_mul_assign),
1236 state, & loc);
1237
1238 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1239 op[0], op[1]);
1240
1241 result = do_assignment(instructions, state,
1242 op[0]->clone(ctx, NULL), temp_rhs, false,
1243 this->subexpressions[0]->get_location());
1244 error_emitted = (op[0]->type->is_error());
1245
1246 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1247 * explicitly test for this because none of the binary expression
1248 * operators allow array operands either.
1249 */
1250
1251 break;
1252 }
1253
1254 case ast_mod_assign: {
1255 op[0] = this->subexpressions[0]->hir(instructions, state);
1256 op[1] = this->subexpressions[1]->hir(instructions, state);
1257
1258 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1259
1260 assert(operations[this->oper] == ir_binop_mod);
1261
1262 ir_rvalue *temp_rhs;
1263 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1264 op[0], op[1]);
1265
1266 result = do_assignment(instructions, state,
1267 op[0]->clone(ctx, NULL), temp_rhs, false,
1268 this->subexpressions[0]->get_location());
1269 error_emitted = type->is_error();
1270 break;
1271 }
1272
1273 case ast_ls_assign:
1274 case ast_rs_assign: {
1275 op[0] = this->subexpressions[0]->hir(instructions, state);
1276 op[1] = this->subexpressions[1]->hir(instructions, state);
1277 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1278 &loc);
1279 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1280 type, op[0], op[1]);
1281 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1282 temp_rhs, false,
1283 this->subexpressions[0]->get_location());
1284 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1285 break;
1286 }
1287
1288 case ast_and_assign:
1289 case ast_xor_assign:
1290 case ast_or_assign: {
1291 op[0] = this->subexpressions[0]->hir(instructions, state);
1292 op[1] = this->subexpressions[1]->hir(instructions, state);
1293 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1294 state, &loc);
1295 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1296 type, op[0], op[1]);
1297 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1298 temp_rhs, false,
1299 this->subexpressions[0]->get_location());
1300 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1301 break;
1302 }
1303
1304 case ast_conditional: {
1305 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1306 *
1307 * "The ternary selection operator (?:). It operates on three
1308 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1309 * first expression, which must result in a scalar Boolean."
1310 */
1311 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1312 "condition", &error_emitted);
1313
1314 /* The :? operator is implemented by generating an anonymous temporary
1315 * followed by an if-statement. The last instruction in each branch of
1316 * the if-statement assigns a value to the anonymous temporary. This
1317 * temporary is the r-value of the expression.
1318 */
1319 exec_list then_instructions;
1320 exec_list else_instructions;
1321
1322 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1323 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1324
1325 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1326 *
1327 * "The second and third expressions can be any type, as
1328 * long their types match, or there is a conversion in
1329 * Section 4.1.10 "Implicit Conversions" that can be applied
1330 * to one of the expressions to make their types match. This
1331 * resulting matching type is the type of the entire
1332 * expression."
1333 */
1334 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1335 && !apply_implicit_conversion(op[2]->type, op[1], state))
1336 || (op[1]->type != op[2]->type)) {
1337 YYLTYPE loc = this->subexpressions[1]->get_location();
1338
1339 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1340 "operator must have matching types.");
1341 error_emitted = true;
1342 type = glsl_type::error_type;
1343 } else {
1344 type = op[1]->type;
1345 }
1346
1347 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1348 *
1349 * "The second and third expressions must be the same type, but can
1350 * be of any type other than an array."
1351 */
1352 if ((state->language_version <= 110) && type->is_array()) {
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must not be arrays.");
1355 error_emitted = true;
1356 }
1357
1358 ir_constant *cond_val = op[0]->constant_expression_value();
1359 ir_constant *then_val = op[1]->constant_expression_value();
1360 ir_constant *else_val = op[2]->constant_expression_value();
1361
1362 if (then_instructions.is_empty()
1363 && else_instructions.is_empty()
1364 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1365 result = (cond_val->value.b[0]) ? then_val : else_val;
1366 } else {
1367 ir_variable *const tmp =
1368 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1369 instructions->push_tail(tmp);
1370
1371 ir_if *const stmt = new(ctx) ir_if(op[0]);
1372 instructions->push_tail(stmt);
1373
1374 then_instructions.move_nodes_to(& stmt->then_instructions);
1375 ir_dereference *const then_deref =
1376 new(ctx) ir_dereference_variable(tmp);
1377 ir_assignment *const then_assign =
1378 new(ctx) ir_assignment(then_deref, op[1], NULL);
1379 stmt->then_instructions.push_tail(then_assign);
1380
1381 else_instructions.move_nodes_to(& stmt->else_instructions);
1382 ir_dereference *const else_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const else_assign =
1385 new(ctx) ir_assignment(else_deref, op[2], NULL);
1386 stmt->else_instructions.push_tail(else_assign);
1387
1388 result = new(ctx) ir_dereference_variable(tmp);
1389 }
1390 break;
1391 }
1392
1393 case ast_pre_inc:
1394 case ast_pre_dec: {
1395 op[0] = this->subexpressions[0]->hir(instructions, state);
1396 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1397 op[1] = new(ctx) ir_constant(1.0f);
1398 else
1399 op[1] = new(ctx) ir_constant(1);
1400
1401 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1402
1403 ir_rvalue *temp_rhs;
1404 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1405 op[0], op[1]);
1406
1407 result = do_assignment(instructions, state,
1408 op[0]->clone(ctx, NULL), temp_rhs, false,
1409 this->subexpressions[0]->get_location());
1410 error_emitted = op[0]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_post_inc:
1415 case ast_post_dec: {
1416 op[0] = this->subexpressions[0]->hir(instructions, state);
1417 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1418 op[1] = new(ctx) ir_constant(1.0f);
1419 else
1420 op[1] = new(ctx) ir_constant(1);
1421
1422 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1423
1424 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1425
1426 ir_rvalue *temp_rhs;
1427 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], op[1]);
1429
1430 /* Get a temporary of a copy of the lvalue before it's modified.
1431 * This may get thrown away later.
1432 */
1433 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1434
1435 (void)do_assignment(instructions, state,
1436 op[0]->clone(ctx, NULL), temp_rhs, false,
1437 this->subexpressions[0]->get_location());
1438
1439 error_emitted = op[0]->type->is_error();
1440 break;
1441 }
1442
1443 case ast_field_selection:
1444 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1445 break;
1446
1447 case ast_array_index: {
1448 YYLTYPE index_loc = subexpressions[1]->get_location();
1449
1450 op[0] = subexpressions[0]->hir(instructions, state);
1451 op[1] = subexpressions[1]->hir(instructions, state);
1452
1453 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1454
1455 ir_rvalue *const array = op[0];
1456
1457 result = new(ctx) ir_dereference_array(op[0], op[1]);
1458
1459 /* Do not use op[0] after this point. Use array.
1460 */
1461 op[0] = NULL;
1462
1463
1464 if (error_emitted)
1465 break;
1466
1467 if (!array->type->is_array()
1468 && !array->type->is_matrix()
1469 && !array->type->is_vector()) {
1470 _mesa_glsl_error(& index_loc, state,
1471 "cannot dereference non-array / non-matrix / "
1472 "non-vector");
1473 error_emitted = true;
1474 }
1475
1476 if (!op[1]->type->is_integer()) {
1477 _mesa_glsl_error(& index_loc, state,
1478 "array index must be integer type");
1479 error_emitted = true;
1480 } else if (!op[1]->type->is_scalar()) {
1481 _mesa_glsl_error(& index_loc, state,
1482 "array index must be scalar");
1483 error_emitted = true;
1484 }
1485
1486 /* If the array index is a constant expression and the array has a
1487 * declared size, ensure that the access is in-bounds. If the array
1488 * index is not a constant expression, ensure that the array has a
1489 * declared size.
1490 */
1491 ir_constant *const const_index = op[1]->constant_expression_value();
1492 if (const_index != NULL) {
1493 const int idx = const_index->value.i[0];
1494 const char *type_name;
1495 unsigned bound = 0;
1496
1497 if (array->type->is_matrix()) {
1498 type_name = "matrix";
1499 } else if (array->type->is_vector()) {
1500 type_name = "vector";
1501 } else {
1502 type_name = "array";
1503 }
1504
1505 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1506 *
1507 * "It is illegal to declare an array with a size, and then
1508 * later (in the same shader) index the same array with an
1509 * integral constant expression greater than or equal to the
1510 * declared size. It is also illegal to index an array with a
1511 * negative constant expression."
1512 */
1513 if (array->type->is_matrix()) {
1514 if (array->type->row_type()->vector_elements <= idx) {
1515 bound = array->type->row_type()->vector_elements;
1516 }
1517 } else if (array->type->is_vector()) {
1518 if (array->type->vector_elements <= idx) {
1519 bound = array->type->vector_elements;
1520 }
1521 } else {
1522 if ((array->type->array_size() > 0)
1523 && (array->type->array_size() <= idx)) {
1524 bound = array->type->array_size();
1525 }
1526 }
1527
1528 if (bound > 0) {
1529 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1530 type_name, bound);
1531 error_emitted = true;
1532 } else if (idx < 0) {
1533 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1534 type_name);
1535 error_emitted = true;
1536 }
1537
1538 if (array->type->is_array()) {
1539 /* If the array is a variable dereference, it dereferences the
1540 * whole array, by definition. Use this to get the variable.
1541 *
1542 * FINISHME: Should some methods for getting / setting / testing
1543 * FINISHME: array access limits be added to ir_dereference?
1544 */
1545 ir_variable *const v = array->whole_variable_referenced();
1546 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1547 v->max_array_access = idx;
1548 }
1549 } else if (array->type->array_size() == 0) {
1550 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1551 } else {
1552 if (array->type->is_array()) {
1553 /* whole_variable_referenced can return NULL if the array is a
1554 * member of a structure. In this case it is safe to not update
1555 * the max_array_access field because it is never used for fields
1556 * of structures.
1557 */
1558 ir_variable *v = array->whole_variable_referenced();
1559 if (v != NULL)
1560 v->max_array_access = array->type->array_size() - 1;
1561 }
1562 }
1563
1564 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1565 *
1566 * "Samplers aggregated into arrays within a shader (using square
1567 * brackets [ ]) can only be indexed with integral constant
1568 * expressions [...]."
1569 *
1570 * This restriction was added in GLSL 1.30. Shaders using earlier version
1571 * of the language should not be rejected by the compiler front-end for
1572 * using this construct. This allows useful things such as using a loop
1573 * counter as the index to an array of samplers. If the loop in unrolled,
1574 * the code should compile correctly. Instead, emit a warning.
1575 */
1576 if (array->type->is_array() &&
1577 array->type->element_type()->is_sampler() &&
1578 const_index == NULL) {
1579
1580 if (state->language_version == 100) {
1581 _mesa_glsl_warning(&loc, state,
1582 "sampler arrays indexed with non-constant "
1583 "expressions is optional in GLSL ES 1.00");
1584 } else if (state->language_version < 130) {
1585 _mesa_glsl_warning(&loc, state,
1586 "sampler arrays indexed with non-constant "
1587 "expressions is forbidden in GLSL 1.30 and "
1588 "later");
1589 } else {
1590 _mesa_glsl_error(&loc, state,
1591 "sampler arrays indexed with non-constant "
1592 "expressions is forbidden in GLSL 1.30 and "
1593 "later");
1594 error_emitted = true;
1595 }
1596 }
1597
1598 if (error_emitted)
1599 result->type = glsl_type::error_type;
1600
1601 break;
1602 }
1603
1604 case ast_function_call:
1605 /* Should *NEVER* get here. ast_function_call should always be handled
1606 * by ast_function_expression::hir.
1607 */
1608 assert(0);
1609 break;
1610
1611 case ast_identifier: {
1612 /* ast_identifier can appear several places in a full abstract syntax
1613 * tree. This particular use must be at location specified in the grammar
1614 * as 'variable_identifier'.
1615 */
1616 ir_variable *var =
1617 state->symbols->get_variable(this->primary_expression.identifier);
1618
1619 result = new(ctx) ir_dereference_variable(var);
1620
1621 if (var != NULL) {
1622 var->used = true;
1623 } else {
1624 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1625 this->primary_expression.identifier);
1626
1627 error_emitted = true;
1628 }
1629 break;
1630 }
1631
1632 case ast_int_constant:
1633 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1634 break;
1635
1636 case ast_uint_constant:
1637 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1638 break;
1639
1640 case ast_float_constant:
1641 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1642 break;
1643
1644 case ast_bool_constant:
1645 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1646 break;
1647
1648 case ast_sequence: {
1649 /* It should not be possible to generate a sequence in the AST without
1650 * any expressions in it.
1651 */
1652 assert(!this->expressions.is_empty());
1653
1654 /* The r-value of a sequence is the last expression in the sequence. If
1655 * the other expressions in the sequence do not have side-effects (and
1656 * therefore add instructions to the instruction list), they get dropped
1657 * on the floor.
1658 */
1659 exec_node *previous_tail_pred = NULL;
1660 YYLTYPE previous_operand_loc = loc;
1661
1662 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1663 /* If one of the operands of comma operator does not generate any
1664 * code, we want to emit a warning. At each pass through the loop
1665 * previous_tail_pred will point to the last instruction in the
1666 * stream *before* processing the previous operand. Naturally,
1667 * instructions->tail_pred will point to the last instruction in the
1668 * stream *after* processing the previous operand. If the two
1669 * pointers match, then the previous operand had no effect.
1670 *
1671 * The warning behavior here differs slightly from GCC. GCC will
1672 * only emit a warning if none of the left-hand operands have an
1673 * effect. However, it will emit a warning for each. I believe that
1674 * there are some cases in C (especially with GCC extensions) where
1675 * it is useful to have an intermediate step in a sequence have no
1676 * effect, but I don't think these cases exist in GLSL. Either way,
1677 * it would be a giant hassle to replicate that behavior.
1678 */
1679 if (previous_tail_pred == instructions->tail_pred) {
1680 _mesa_glsl_warning(&previous_operand_loc, state,
1681 "left-hand operand of comma expression has "
1682 "no effect");
1683 }
1684
1685 /* tail_pred is directly accessed instead of using the get_tail()
1686 * method for performance reasons. get_tail() has extra code to
1687 * return NULL when the list is empty. We don't care about that
1688 * here, so using tail_pred directly is fine.
1689 */
1690 previous_tail_pred = instructions->tail_pred;
1691 previous_operand_loc = ast->get_location();
1692
1693 result = ast->hir(instructions, state);
1694 }
1695
1696 /* Any errors should have already been emitted in the loop above.
1697 */
1698 error_emitted = true;
1699 break;
1700 }
1701 }
1702 type = NULL; /* use result->type, not type. */
1703 assert(result != NULL);
1704
1705 if (result->type->is_error() && !error_emitted)
1706 _mesa_glsl_error(& loc, state, "type mismatch");
1707
1708 return result;
1709 }
1710
1711
1712 ir_rvalue *
1713 ast_expression_statement::hir(exec_list *instructions,
1714 struct _mesa_glsl_parse_state *state)
1715 {
1716 /* It is possible to have expression statements that don't have an
1717 * expression. This is the solitary semicolon:
1718 *
1719 * for (i = 0; i < 5; i++)
1720 * ;
1721 *
1722 * In this case the expression will be NULL. Test for NULL and don't do
1723 * anything in that case.
1724 */
1725 if (expression != NULL)
1726 expression->hir(instructions, state);
1727
1728 /* Statements do not have r-values.
1729 */
1730 return NULL;
1731 }
1732
1733
1734 ir_rvalue *
1735 ast_compound_statement::hir(exec_list *instructions,
1736 struct _mesa_glsl_parse_state *state)
1737 {
1738 if (new_scope)
1739 state->symbols->push_scope();
1740
1741 foreach_list_typed (ast_node, ast, link, &this->statements)
1742 ast->hir(instructions, state);
1743
1744 if (new_scope)
1745 state->symbols->pop_scope();
1746
1747 /* Compound statements do not have r-values.
1748 */
1749 return NULL;
1750 }
1751
1752
1753 static const glsl_type *
1754 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1755 struct _mesa_glsl_parse_state *state)
1756 {
1757 unsigned length = 0;
1758
1759 /* FINISHME: Reject delcarations of multidimensional arrays. */
1760
1761 if (array_size != NULL) {
1762 exec_list dummy_instructions;
1763 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1764 YYLTYPE loc = array_size->get_location();
1765
1766 /* FINISHME: Verify that the grammar forbids side-effects in array
1767 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1768 */
1769 assert(dummy_instructions.is_empty());
1770
1771 if (ir != NULL) {
1772 if (!ir->type->is_integer()) {
1773 _mesa_glsl_error(& loc, state, "array size must be integer type");
1774 } else if (!ir->type->is_scalar()) {
1775 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1776 } else {
1777 ir_constant *const size = ir->constant_expression_value();
1778
1779 if (size == NULL) {
1780 _mesa_glsl_error(& loc, state, "array size must be a "
1781 "constant valued expression");
1782 } else if (size->value.i[0] <= 0) {
1783 _mesa_glsl_error(& loc, state, "array size must be > 0");
1784 } else {
1785 assert(size->type == ir->type);
1786 length = size->value.u[0];
1787 }
1788 }
1789 }
1790 } else if (state->es_shader) {
1791 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1792 * array declarations have been removed from the language.
1793 */
1794 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1795 "allowed in GLSL ES 1.00.");
1796 }
1797
1798 return glsl_type::get_array_instance(base, length);
1799 }
1800
1801
1802 const glsl_type *
1803 ast_type_specifier::glsl_type(const char **name,
1804 struct _mesa_glsl_parse_state *state) const
1805 {
1806 const struct glsl_type *type;
1807
1808 type = state->symbols->get_type(this->type_name);
1809 *name = this->type_name;
1810
1811 if (this->is_array) {
1812 YYLTYPE loc = this->get_location();
1813 type = process_array_type(&loc, type, this->array_size, state);
1814 }
1815
1816 return type;
1817 }
1818
1819
1820 static void
1821 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1822 ir_variable *var,
1823 struct _mesa_glsl_parse_state *state,
1824 YYLTYPE *loc)
1825 {
1826 if (qual->flags.q.invariant) {
1827 if (var->used) {
1828 _mesa_glsl_error(loc, state,
1829 "variable `%s' may not be redeclared "
1830 "`invariant' after being used",
1831 var->name);
1832 } else {
1833 var->invariant = 1;
1834 }
1835 }
1836
1837 if (qual->flags.q.constant || qual->flags.q.attribute
1838 || qual->flags.q.uniform
1839 || (qual->flags.q.varying && (state->target == fragment_shader)))
1840 var->read_only = 1;
1841
1842 if (qual->flags.q.centroid)
1843 var->centroid = 1;
1844
1845 if (qual->flags.q.attribute && state->target != vertex_shader) {
1846 var->type = glsl_type::error_type;
1847 _mesa_glsl_error(loc, state,
1848 "`attribute' variables may not be declared in the "
1849 "%s shader",
1850 _mesa_glsl_shader_target_name(state->target));
1851 }
1852
1853 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1854 *
1855 * "The varying qualifier can be used only with the data types
1856 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1857 * these."
1858 */
1859 if (qual->flags.q.varying) {
1860 const glsl_type *non_array_type;
1861
1862 if (var->type && var->type->is_array())
1863 non_array_type = var->type->fields.array;
1864 else
1865 non_array_type = var->type;
1866
1867 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1868 var->type = glsl_type::error_type;
1869 _mesa_glsl_error(loc, state,
1870 "varying variables must be of base type float");
1871 }
1872 }
1873
1874 /* If there is no qualifier that changes the mode of the variable, leave
1875 * the setting alone.
1876 */
1877 if (qual->flags.q.in && qual->flags.q.out)
1878 var->mode = ir_var_inout;
1879 else if (qual->flags.q.attribute || qual->flags.q.in
1880 || (qual->flags.q.varying && (state->target == fragment_shader)))
1881 var->mode = ir_var_in;
1882 else if (qual->flags.q.out
1883 || (qual->flags.q.varying && (state->target == vertex_shader)))
1884 var->mode = ir_var_out;
1885 else if (qual->flags.q.uniform)
1886 var->mode = ir_var_uniform;
1887
1888 if (state->all_invariant && (state->current_function == NULL)) {
1889 switch (state->target) {
1890 case vertex_shader:
1891 if (var->mode == ir_var_out)
1892 var->invariant = true;
1893 break;
1894 case geometry_shader:
1895 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1896 var->invariant = true;
1897 break;
1898 case fragment_shader:
1899 if (var->mode == ir_var_in)
1900 var->invariant = true;
1901 break;
1902 }
1903 }
1904
1905 if (qual->flags.q.flat)
1906 var->interpolation = ir_var_flat;
1907 else if (qual->flags.q.noperspective)
1908 var->interpolation = ir_var_noperspective;
1909 else
1910 var->interpolation = ir_var_smooth;
1911
1912 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1913 var->origin_upper_left = qual->flags.q.origin_upper_left;
1914 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1915 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1916 const char *const qual_string = (qual->flags.q.origin_upper_left)
1917 ? "origin_upper_left" : "pixel_center_integer";
1918
1919 _mesa_glsl_error(loc, state,
1920 "layout qualifier `%s' can only be applied to "
1921 "fragment shader input `gl_FragCoord'",
1922 qual_string);
1923 }
1924
1925 if (qual->flags.q.explicit_location) {
1926 const bool global_scope = (state->current_function == NULL);
1927 bool fail = false;
1928 const char *string = "";
1929
1930 /* In the vertex shader only shader inputs can be given explicit
1931 * locations.
1932 *
1933 * In the fragment shader only shader outputs can be given explicit
1934 * locations.
1935 */
1936 switch (state->target) {
1937 case vertex_shader:
1938 if (!global_scope || (var->mode != ir_var_in)) {
1939 fail = true;
1940 string = "input";
1941 }
1942 break;
1943
1944 case geometry_shader:
1945 _mesa_glsl_error(loc, state,
1946 "geometry shader variables cannot be given "
1947 "explicit locations\n");
1948 break;
1949
1950 case fragment_shader:
1951 if (!global_scope || (var->mode != ir_var_out)) {
1952 fail = true;
1953 string = "output";
1954 }
1955 break;
1956 };
1957
1958 if (fail) {
1959 _mesa_glsl_error(loc, state,
1960 "only %s shader %s variables can be given an "
1961 "explicit location\n",
1962 _mesa_glsl_shader_target_name(state->target),
1963 string);
1964 } else {
1965 var->explicit_location = true;
1966
1967 /* This bit of silliness is needed because invalid explicit locations
1968 * are supposed to be flagged during linking. Small negative values
1969 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1970 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1971 * The linker needs to be able to differentiate these cases. This
1972 * ensures that negative values stay negative.
1973 */
1974 if (qual->location >= 0) {
1975 var->location = (state->target == vertex_shader)
1976 ? (qual->location + VERT_ATTRIB_GENERIC0)
1977 : (qual->location + FRAG_RESULT_DATA0);
1978 } else {
1979 var->location = qual->location;
1980 }
1981 }
1982 }
1983
1984 /* Does the declaration use the 'layout' keyword?
1985 */
1986 const bool uses_layout = qual->flags.q.pixel_center_integer
1987 || qual->flags.q.origin_upper_left
1988 || qual->flags.q.explicit_location;
1989
1990 /* Does the declaration use the deprecated 'attribute' or 'varying'
1991 * keywords?
1992 */
1993 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1994 || qual->flags.q.varying;
1995
1996 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1997 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1998 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1999 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2000 * These extensions and all following extensions that add the 'layout'
2001 * keyword have been modified to require the use of 'in' or 'out'.
2002 *
2003 * The following extension do not allow the deprecated keywords:
2004 *
2005 * GL_AMD_conservative_depth
2006 * GL_ARB_gpu_shader5
2007 * GL_ARB_separate_shader_objects
2008 * GL_ARB_tesselation_shader
2009 * GL_ARB_transform_feedback3
2010 * GL_ARB_uniform_buffer_object
2011 *
2012 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2013 * allow layout with the deprecated keywords.
2014 */
2015 const bool relaxed_layout_qualifier_checking =
2016 state->ARB_fragment_coord_conventions_enable;
2017
2018 if (uses_layout && uses_deprecated_qualifier) {
2019 if (relaxed_layout_qualifier_checking) {
2020 _mesa_glsl_warning(loc, state,
2021 "`layout' qualifier may not be used with "
2022 "`attribute' or `varying'");
2023 } else {
2024 _mesa_glsl_error(loc, state,
2025 "`layout' qualifier may not be used with "
2026 "`attribute' or `varying'");
2027 }
2028 }
2029
2030 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2031 * AMD_conservative_depth.
2032 */
2033 int depth_layout_count = qual->flags.q.depth_any
2034 + qual->flags.q.depth_greater
2035 + qual->flags.q.depth_less
2036 + qual->flags.q.depth_unchanged;
2037 if (depth_layout_count > 0
2038 && !state->AMD_conservative_depth_enable) {
2039 _mesa_glsl_error(loc, state,
2040 "extension GL_AMD_conservative_depth must be enabled "
2041 "to use depth layout qualifiers");
2042 } else if (depth_layout_count > 0
2043 && strcmp(var->name, "gl_FragDepth") != 0) {
2044 _mesa_glsl_error(loc, state,
2045 "depth layout qualifiers can be applied only to "
2046 "gl_FragDepth");
2047 } else if (depth_layout_count > 1
2048 && strcmp(var->name, "gl_FragDepth") == 0) {
2049 _mesa_glsl_error(loc, state,
2050 "at most one depth layout qualifier can be applied to "
2051 "gl_FragDepth");
2052 }
2053 if (qual->flags.q.depth_any)
2054 var->depth_layout = ir_depth_layout_any;
2055 else if (qual->flags.q.depth_greater)
2056 var->depth_layout = ir_depth_layout_greater;
2057 else if (qual->flags.q.depth_less)
2058 var->depth_layout = ir_depth_layout_less;
2059 else if (qual->flags.q.depth_unchanged)
2060 var->depth_layout = ir_depth_layout_unchanged;
2061 else
2062 var->depth_layout = ir_depth_layout_none;
2063
2064 if (var->type->is_array() && state->language_version != 110) {
2065 var->array_lvalue = true;
2066 }
2067 }
2068
2069 /**
2070 * Get the variable that is being redeclared by this declaration
2071 *
2072 * Semantic checks to verify the validity of the redeclaration are also
2073 * performed. If semantic checks fail, compilation error will be emitted via
2074 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2075 *
2076 * \returns
2077 * A pointer to an existing variable in the current scope if the declaration
2078 * is a redeclaration, \c NULL otherwise.
2079 */
2080 ir_variable *
2081 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2082 struct _mesa_glsl_parse_state *state)
2083 {
2084 /* Check if this declaration is actually a re-declaration, either to
2085 * resize an array or add qualifiers to an existing variable.
2086 *
2087 * This is allowed for variables in the current scope, or when at
2088 * global scope (for built-ins in the implicit outer scope).
2089 */
2090 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2091 if (earlier == NULL ||
2092 (state->current_function != NULL &&
2093 !state->symbols->name_declared_this_scope(decl->identifier))) {
2094 return NULL;
2095 }
2096
2097
2098 YYLTYPE loc = decl->get_location();
2099
2100 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2101 *
2102 * "It is legal to declare an array without a size and then
2103 * later re-declare the same name as an array of the same
2104 * type and specify a size."
2105 */
2106 if ((earlier->type->array_size() == 0)
2107 && var->type->is_array()
2108 && (var->type->element_type() == earlier->type->element_type())) {
2109 /* FINISHME: This doesn't match the qualifiers on the two
2110 * FINISHME: declarations. It's not 100% clear whether this is
2111 * FINISHME: required or not.
2112 */
2113
2114 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2115 *
2116 * "The size [of gl_TexCoord] can be at most
2117 * gl_MaxTextureCoords."
2118 */
2119 const unsigned size = unsigned(var->type->array_size());
2120 if ((strcmp("gl_TexCoord", var->name) == 0)
2121 && (size > state->Const.MaxTextureCoords)) {
2122 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2123 "be larger than gl_MaxTextureCoords (%u)\n",
2124 state->Const.MaxTextureCoords);
2125 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2126 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2127 "previous access",
2128 earlier->max_array_access);
2129 }
2130
2131 earlier->type = var->type;
2132 delete var;
2133 var = NULL;
2134 } else if (state->ARB_fragment_coord_conventions_enable
2135 && strcmp(var->name, "gl_FragCoord") == 0
2136 && earlier->type == var->type
2137 && earlier->mode == var->mode) {
2138 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2139 * qualifiers.
2140 */
2141 earlier->origin_upper_left = var->origin_upper_left;
2142 earlier->pixel_center_integer = var->pixel_center_integer;
2143
2144 /* According to section 4.3.7 of the GLSL 1.30 spec,
2145 * the following built-in varaibles can be redeclared with an
2146 * interpolation qualifier:
2147 * * gl_FrontColor
2148 * * gl_BackColor
2149 * * gl_FrontSecondaryColor
2150 * * gl_BackSecondaryColor
2151 * * gl_Color
2152 * * gl_SecondaryColor
2153 */
2154 } else if (state->language_version >= 130
2155 && (strcmp(var->name, "gl_FrontColor") == 0
2156 || strcmp(var->name, "gl_BackColor") == 0
2157 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2158 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2159 || strcmp(var->name, "gl_Color") == 0
2160 || strcmp(var->name, "gl_SecondaryColor") == 0)
2161 && earlier->type == var->type
2162 && earlier->mode == var->mode) {
2163 earlier->interpolation = var->interpolation;
2164
2165 /* Layout qualifiers for gl_FragDepth. */
2166 } else if (state->AMD_conservative_depth_enable
2167 && strcmp(var->name, "gl_FragDepth") == 0
2168 && earlier->type == var->type
2169 && earlier->mode == var->mode) {
2170
2171 /** From the AMD_conservative_depth spec:
2172 * Within any shader, the first redeclarations of gl_FragDepth
2173 * must appear before any use of gl_FragDepth.
2174 */
2175 if (earlier->used) {
2176 _mesa_glsl_error(&loc, state,
2177 "the first redeclaration of gl_FragDepth "
2178 "must appear before any use of gl_FragDepth");
2179 }
2180
2181 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2182 if (earlier->depth_layout != ir_depth_layout_none
2183 && earlier->depth_layout != var->depth_layout) {
2184 _mesa_glsl_error(&loc, state,
2185 "gl_FragDepth: depth layout is declared here "
2186 "as '%s, but it was previously declared as "
2187 "'%s'",
2188 depth_layout_string(var->depth_layout),
2189 depth_layout_string(earlier->depth_layout));
2190 }
2191
2192 earlier->depth_layout = var->depth_layout;
2193
2194 } else {
2195 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2196 }
2197
2198 return earlier;
2199 }
2200
2201 /**
2202 * Generate the IR for an initializer in a variable declaration
2203 */
2204 ir_rvalue *
2205 process_initializer(ir_variable *var, ast_declaration *decl,
2206 ast_fully_specified_type *type,
2207 exec_list *initializer_instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 ir_rvalue *result = NULL;
2211
2212 YYLTYPE initializer_loc = decl->initializer->get_location();
2213
2214 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2215 *
2216 * "All uniform variables are read-only and are initialized either
2217 * directly by an application via API commands, or indirectly by
2218 * OpenGL."
2219 */
2220 if ((state->language_version <= 110)
2221 && (var->mode == ir_var_uniform)) {
2222 _mesa_glsl_error(& initializer_loc, state,
2223 "cannot initialize uniforms in GLSL 1.10");
2224 }
2225
2226 if (var->type->is_sampler()) {
2227 _mesa_glsl_error(& initializer_loc, state,
2228 "cannot initialize samplers");
2229 }
2230
2231 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2232 _mesa_glsl_error(& initializer_loc, state,
2233 "cannot initialize %s shader input / %s",
2234 _mesa_glsl_shader_target_name(state->target),
2235 (state->target == vertex_shader)
2236 ? "attribute" : "varying");
2237 }
2238
2239 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2240 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2241 state);
2242
2243 /* Calculate the constant value if this is a const or uniform
2244 * declaration.
2245 */
2246 if (type->qualifier.flags.q.constant
2247 || type->qualifier.flags.q.uniform) {
2248 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2249 if (new_rhs != NULL) {
2250 rhs = new_rhs;
2251
2252 ir_constant *constant_value = rhs->constant_expression_value();
2253 if (!constant_value) {
2254 _mesa_glsl_error(& initializer_loc, state,
2255 "initializer of %s variable `%s' must be a "
2256 "constant expression",
2257 (type->qualifier.flags.q.constant)
2258 ? "const" : "uniform",
2259 decl->identifier);
2260 if (var->type->is_numeric()) {
2261 /* Reduce cascading errors. */
2262 var->constant_value = ir_constant::zero(state, var->type);
2263 }
2264 } else {
2265 rhs = constant_value;
2266 var->constant_value = constant_value;
2267 }
2268 } else {
2269 _mesa_glsl_error(&initializer_loc, state,
2270 "initializer of type %s cannot be assigned to "
2271 "variable of type %s",
2272 rhs->type->name, var->type->name);
2273 if (var->type->is_numeric()) {
2274 /* Reduce cascading errors. */
2275 var->constant_value = ir_constant::zero(state, var->type);
2276 }
2277 }
2278 }
2279
2280 if (rhs && !rhs->type->is_error()) {
2281 bool temp = var->read_only;
2282 if (type->qualifier.flags.q.constant)
2283 var->read_only = false;
2284
2285 /* Never emit code to initialize a uniform.
2286 */
2287 const glsl_type *initializer_type;
2288 if (!type->qualifier.flags.q.uniform) {
2289 result = do_assignment(initializer_instructions, state,
2290 lhs, rhs, true,
2291 type->get_location());
2292 initializer_type = result->type;
2293 } else
2294 initializer_type = rhs->type;
2295
2296 /* If the declared variable is an unsized array, it must inherrit
2297 * its full type from the initializer. A declaration such as
2298 *
2299 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2300 *
2301 * becomes
2302 *
2303 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2304 *
2305 * The assignment generated in the if-statement (below) will also
2306 * automatically handle this case for non-uniforms.
2307 *
2308 * If the declared variable is not an array, the types must
2309 * already match exactly. As a result, the type assignment
2310 * here can be done unconditionally. For non-uniforms the call
2311 * to do_assignment can change the type of the initializer (via
2312 * the implicit conversion rules). For uniforms the initializer
2313 * must be a constant expression, and the type of that expression
2314 * was validated above.
2315 */
2316 var->type = initializer_type;
2317
2318 var->read_only = temp;
2319 }
2320
2321 return result;
2322 }
2323
2324 ir_rvalue *
2325 ast_declarator_list::hir(exec_list *instructions,
2326 struct _mesa_glsl_parse_state *state)
2327 {
2328 void *ctx = state;
2329 const struct glsl_type *decl_type;
2330 const char *type_name = NULL;
2331 ir_rvalue *result = NULL;
2332 YYLTYPE loc = this->get_location();
2333
2334 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2335 *
2336 * "To ensure that a particular output variable is invariant, it is
2337 * necessary to use the invariant qualifier. It can either be used to
2338 * qualify a previously declared variable as being invariant
2339 *
2340 * invariant gl_Position; // make existing gl_Position be invariant"
2341 *
2342 * In these cases the parser will set the 'invariant' flag in the declarator
2343 * list, and the type will be NULL.
2344 */
2345 if (this->invariant) {
2346 assert(this->type == NULL);
2347
2348 if (state->current_function != NULL) {
2349 _mesa_glsl_error(& loc, state,
2350 "All uses of `invariant' keyword must be at global "
2351 "scope\n");
2352 }
2353
2354 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2355 assert(!decl->is_array);
2356 assert(decl->array_size == NULL);
2357 assert(decl->initializer == NULL);
2358
2359 ir_variable *const earlier =
2360 state->symbols->get_variable(decl->identifier);
2361 if (earlier == NULL) {
2362 _mesa_glsl_error(& loc, state,
2363 "Undeclared variable `%s' cannot be marked "
2364 "invariant\n", decl->identifier);
2365 } else if ((state->target == vertex_shader)
2366 && (earlier->mode != ir_var_out)) {
2367 _mesa_glsl_error(& loc, state,
2368 "`%s' cannot be marked invariant, vertex shader "
2369 "outputs only\n", decl->identifier);
2370 } else if ((state->target == fragment_shader)
2371 && (earlier->mode != ir_var_in)) {
2372 _mesa_glsl_error(& loc, state,
2373 "`%s' cannot be marked invariant, fragment shader "
2374 "inputs only\n", decl->identifier);
2375 } else if (earlier->used) {
2376 _mesa_glsl_error(& loc, state,
2377 "variable `%s' may not be redeclared "
2378 "`invariant' after being used",
2379 earlier->name);
2380 } else {
2381 earlier->invariant = true;
2382 }
2383 }
2384
2385 /* Invariant redeclarations do not have r-values.
2386 */
2387 return NULL;
2388 }
2389
2390 assert(this->type != NULL);
2391 assert(!this->invariant);
2392
2393 /* The type specifier may contain a structure definition. Process that
2394 * before any of the variable declarations.
2395 */
2396 (void) this->type->specifier->hir(instructions, state);
2397
2398 decl_type = this->type->specifier->glsl_type(& type_name, state);
2399 if (this->declarations.is_empty()) {
2400 /* The only valid case where the declaration list can be empty is when
2401 * the declaration is setting the default precision of a built-in type
2402 * (e.g., 'precision highp vec4;').
2403 */
2404
2405 if (decl_type != NULL) {
2406 } else {
2407 _mesa_glsl_error(& loc, state, "incomplete declaration");
2408 }
2409 }
2410
2411 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2412 const struct glsl_type *var_type;
2413 ir_variable *var;
2414
2415 /* FINISHME: Emit a warning if a variable declaration shadows a
2416 * FINISHME: declaration at a higher scope.
2417 */
2418
2419 if ((decl_type == NULL) || decl_type->is_void()) {
2420 if (type_name != NULL) {
2421 _mesa_glsl_error(& loc, state,
2422 "invalid type `%s' in declaration of `%s'",
2423 type_name, decl->identifier);
2424 } else {
2425 _mesa_glsl_error(& loc, state,
2426 "invalid type in declaration of `%s'",
2427 decl->identifier);
2428 }
2429 continue;
2430 }
2431
2432 if (decl->is_array) {
2433 var_type = process_array_type(&loc, decl_type, decl->array_size,
2434 state);
2435 } else {
2436 var_type = decl_type;
2437 }
2438
2439 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2440
2441 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2442 *
2443 * "Global variables can only use the qualifiers const,
2444 * attribute, uni form, or varying. Only one may be
2445 * specified.
2446 *
2447 * Local variables can only use the qualifier const."
2448 *
2449 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2450 * that adds the 'layout' keyword.
2451 */
2452 if ((state->language_version < 130)
2453 && !state->ARB_explicit_attrib_location_enable
2454 && !state->ARB_fragment_coord_conventions_enable) {
2455 if (this->type->qualifier.flags.q.out) {
2456 _mesa_glsl_error(& loc, state,
2457 "`out' qualifier in declaration of `%s' "
2458 "only valid for function parameters in %s.",
2459 decl->identifier, state->version_string);
2460 }
2461 if (this->type->qualifier.flags.q.in) {
2462 _mesa_glsl_error(& loc, state,
2463 "`in' qualifier in declaration of `%s' "
2464 "only valid for function parameters in %s.",
2465 decl->identifier, state->version_string);
2466 }
2467 /* FINISHME: Test for other invalid qualifiers. */
2468 }
2469
2470 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2471 & loc);
2472
2473 if (this->type->qualifier.flags.q.invariant) {
2474 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2475 var->mode == ir_var_inout)) {
2476 /* FINISHME: Note that this doesn't work for invariant on
2477 * a function signature outval
2478 */
2479 _mesa_glsl_error(& loc, state,
2480 "`%s' cannot be marked invariant, vertex shader "
2481 "outputs only\n", var->name);
2482 } else if ((state->target == fragment_shader) &&
2483 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2484 /* FINISHME: Note that this doesn't work for invariant on
2485 * a function signature inval
2486 */
2487 _mesa_glsl_error(& loc, state,
2488 "`%s' cannot be marked invariant, fragment shader "
2489 "inputs only\n", var->name);
2490 }
2491 }
2492
2493 if (state->current_function != NULL) {
2494 const char *mode = NULL;
2495 const char *extra = "";
2496
2497 /* There is no need to check for 'inout' here because the parser will
2498 * only allow that in function parameter lists.
2499 */
2500 if (this->type->qualifier.flags.q.attribute) {
2501 mode = "attribute";
2502 } else if (this->type->qualifier.flags.q.uniform) {
2503 mode = "uniform";
2504 } else if (this->type->qualifier.flags.q.varying) {
2505 mode = "varying";
2506 } else if (this->type->qualifier.flags.q.in) {
2507 mode = "in";
2508 extra = " or in function parameter list";
2509 } else if (this->type->qualifier.flags.q.out) {
2510 mode = "out";
2511 extra = " or in function parameter list";
2512 }
2513
2514 if (mode) {
2515 _mesa_glsl_error(& loc, state,
2516 "%s variable `%s' must be declared at "
2517 "global scope%s",
2518 mode, var->name, extra);
2519 }
2520 } else if (var->mode == ir_var_in) {
2521 var->read_only = true;
2522
2523 if (state->target == vertex_shader) {
2524 bool error_emitted = false;
2525
2526 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2527 *
2528 * "Vertex shader inputs can only be float, floating-point
2529 * vectors, matrices, signed and unsigned integers and integer
2530 * vectors. Vertex shader inputs can also form arrays of these
2531 * types, but not structures."
2532 *
2533 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2534 *
2535 * "Vertex shader inputs can only be float, floating-point
2536 * vectors, matrices, signed and unsigned integers and integer
2537 * vectors. They cannot be arrays or structures."
2538 *
2539 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2540 *
2541 * "The attribute qualifier can be used only with float,
2542 * floating-point vectors, and matrices. Attribute variables
2543 * cannot be declared as arrays or structures."
2544 */
2545 const glsl_type *check_type = var->type->is_array()
2546 ? var->type->fields.array : var->type;
2547
2548 switch (check_type->base_type) {
2549 case GLSL_TYPE_FLOAT:
2550 break;
2551 case GLSL_TYPE_UINT:
2552 case GLSL_TYPE_INT:
2553 if (state->language_version > 120)
2554 break;
2555 /* FALLTHROUGH */
2556 default:
2557 _mesa_glsl_error(& loc, state,
2558 "vertex shader input / attribute cannot have "
2559 "type %s`%s'",
2560 var->type->is_array() ? "array of " : "",
2561 check_type->name);
2562 error_emitted = true;
2563 }
2564
2565 if (!error_emitted && (state->language_version <= 130)
2566 && var->type->is_array()) {
2567 _mesa_glsl_error(& loc, state,
2568 "vertex shader input / attribute cannot have "
2569 "array type");
2570 error_emitted = true;
2571 }
2572 }
2573 }
2574
2575 /* Integer vertex outputs must be qualified with 'flat'.
2576 *
2577 * From section 4.3.6 of the GLSL 1.30 spec:
2578 * "If a vertex output is a signed or unsigned integer or integer
2579 * vector, then it must be qualified with the interpolation qualifier
2580 * flat."
2581 */
2582 if (state->language_version >= 130
2583 && state->target == vertex_shader
2584 && state->current_function == NULL
2585 && var->type->is_integer()
2586 && var->mode == ir_var_out
2587 && var->interpolation != ir_var_flat) {
2588
2589 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2590 "then it must be qualified with 'flat'");
2591 }
2592
2593
2594 /* Interpolation qualifiers cannot be applied to 'centroid' and
2595 * 'centroid varying'.
2596 *
2597 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2598 * "interpolation qualifiers may only precede the qualifiers in,
2599 * centroid in, out, or centroid out in a declaration. They do not apply
2600 * to the deprecated storage qualifiers varying or centroid varying."
2601 */
2602 if (state->language_version >= 130
2603 && this->type->qualifier.has_interpolation()
2604 && this->type->qualifier.flags.q.varying) {
2605
2606 const char *i = this->type->qualifier.interpolation_string();
2607 assert(i != NULL);
2608 const char *s;
2609 if (this->type->qualifier.flags.q.centroid)
2610 s = "centroid varying";
2611 else
2612 s = "varying";
2613
2614 _mesa_glsl_error(&loc, state,
2615 "qualifier '%s' cannot be applied to the "
2616 "deprecated storage qualifier '%s'", i, s);
2617 }
2618
2619
2620 /* Interpolation qualifiers can only apply to vertex shader outputs and
2621 * fragment shader inputs.
2622 *
2623 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2624 * "Outputs from a vertex shader (out) and inputs to a fragment
2625 * shader (in) can be further qualified with one or more of these
2626 * interpolation qualifiers"
2627 */
2628 if (state->language_version >= 130
2629 && this->type->qualifier.has_interpolation()) {
2630
2631 const char *i = this->type->qualifier.interpolation_string();
2632 assert(i != NULL);
2633
2634 switch (state->target) {
2635 case vertex_shader:
2636 if (this->type->qualifier.flags.q.in) {
2637 _mesa_glsl_error(&loc, state,
2638 "qualifier '%s' cannot be applied to vertex "
2639 "shader inputs", i);
2640 }
2641 break;
2642 case fragment_shader:
2643 if (this->type->qualifier.flags.q.out) {
2644 _mesa_glsl_error(&loc, state,
2645 "qualifier '%s' cannot be applied to fragment "
2646 "shader outputs", i);
2647 }
2648 break;
2649 default:
2650 assert(0);
2651 }
2652 }
2653
2654
2655 /* From section 4.3.4 of the GLSL 1.30 spec:
2656 * "It is an error to use centroid in in a vertex shader."
2657 */
2658 if (state->language_version >= 130
2659 && this->type->qualifier.flags.q.centroid
2660 && this->type->qualifier.flags.q.in
2661 && state->target == vertex_shader) {
2662
2663 _mesa_glsl_error(&loc, state,
2664 "'centroid in' cannot be used in a vertex shader");
2665 }
2666
2667
2668 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2669 */
2670 if (this->type->specifier->precision != ast_precision_none
2671 && state->language_version != 100
2672 && state->language_version < 130) {
2673
2674 _mesa_glsl_error(&loc, state,
2675 "precision qualifiers are supported only in GLSL ES "
2676 "1.00, and GLSL 1.30 and later");
2677 }
2678
2679
2680 /* Precision qualifiers only apply to floating point and integer types.
2681 *
2682 * From section 4.5.2 of the GLSL 1.30 spec:
2683 * "Any floating point or any integer declaration can have the type
2684 * preceded by one of these precision qualifiers [...] Literal
2685 * constants do not have precision qualifiers. Neither do Boolean
2686 * variables.
2687 *
2688 * In GLSL ES, sampler types are also allowed.
2689 *
2690 * From page 87 of the GLSL ES spec:
2691 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2692 */
2693 if (this->type->specifier->precision != ast_precision_none
2694 && !var->type->is_float()
2695 && !var->type->is_integer()
2696 && !(var->type->is_sampler() && state->es_shader)
2697 && !(var->type->is_array()
2698 && (var->type->fields.array->is_float()
2699 || var->type->fields.array->is_integer()))) {
2700
2701 _mesa_glsl_error(&loc, state,
2702 "precision qualifiers apply only to floating point"
2703 "%s types", state->es_shader ? ", integer, and sampler"
2704 : "and integer");
2705 }
2706
2707 /* Process the initializer and add its instructions to a temporary
2708 * list. This list will be added to the instruction stream (below) after
2709 * the declaration is added. This is done because in some cases (such as
2710 * redeclarations) the declaration may not actually be added to the
2711 * instruction stream.
2712 */
2713 exec_list initializer_instructions;
2714 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2715
2716 if (decl->initializer != NULL) {
2717 result = process_initializer((earlier == NULL) ? var : earlier,
2718 decl, this->type,
2719 &initializer_instructions, state);
2720 }
2721
2722 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2723 *
2724 * "It is an error to write to a const variable outside of
2725 * its declaration, so they must be initialized when
2726 * declared."
2727 */
2728 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2729 _mesa_glsl_error(& loc, state,
2730 "const declaration of `%s' must be initialized",
2731 decl->identifier);
2732 }
2733
2734 /* If the declaration is not a redeclaration, there are a few additional
2735 * semantic checks that must be applied. In addition, variable that was
2736 * created for the declaration should be added to the IR stream.
2737 */
2738 if (earlier == NULL) {
2739 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2740 *
2741 * "Identifiers starting with "gl_" are reserved for use by
2742 * OpenGL, and may not be declared in a shader as either a
2743 * variable or a function."
2744 */
2745 if (strncmp(decl->identifier, "gl_", 3) == 0)
2746 _mesa_glsl_error(& loc, state,
2747 "identifier `%s' uses reserved `gl_' prefix",
2748 decl->identifier);
2749
2750 /* Add the variable to the symbol table. Note that the initializer's
2751 * IR was already processed earlier (though it hasn't been emitted
2752 * yet), without the variable in scope.
2753 *
2754 * This differs from most C-like languages, but it follows the GLSL
2755 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2756 * spec:
2757 *
2758 * "Within a declaration, the scope of a name starts immediately
2759 * after the initializer if present or immediately after the name
2760 * being declared if not."
2761 */
2762 if (!state->symbols->add_variable(var)) {
2763 YYLTYPE loc = this->get_location();
2764 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2765 "current scope", decl->identifier);
2766 continue;
2767 }
2768
2769 /* Push the variable declaration to the top. It means that all the
2770 * variable declarations will appear in a funny last-to-first order,
2771 * but otherwise we run into trouble if a function is prototyped, a
2772 * global var is decled, then the function is defined with usage of
2773 * the global var. See glslparsertest's CorrectModule.frag.
2774 */
2775 instructions->push_head(var);
2776 }
2777
2778 instructions->append_list(&initializer_instructions);
2779 }
2780
2781
2782 /* Generally, variable declarations do not have r-values. However,
2783 * one is used for the declaration in
2784 *
2785 * while (bool b = some_condition()) {
2786 * ...
2787 * }
2788 *
2789 * so we return the rvalue from the last seen declaration here.
2790 */
2791 return result;
2792 }
2793
2794
2795 ir_rvalue *
2796 ast_parameter_declarator::hir(exec_list *instructions,
2797 struct _mesa_glsl_parse_state *state)
2798 {
2799 void *ctx = state;
2800 const struct glsl_type *type;
2801 const char *name = NULL;
2802 YYLTYPE loc = this->get_location();
2803
2804 type = this->type->specifier->glsl_type(& name, state);
2805
2806 if (type == NULL) {
2807 if (name != NULL) {
2808 _mesa_glsl_error(& loc, state,
2809 "invalid type `%s' in declaration of `%s'",
2810 name, this->identifier);
2811 } else {
2812 _mesa_glsl_error(& loc, state,
2813 "invalid type in declaration of `%s'",
2814 this->identifier);
2815 }
2816
2817 type = glsl_type::error_type;
2818 }
2819
2820 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2821 *
2822 * "Functions that accept no input arguments need not use void in the
2823 * argument list because prototypes (or definitions) are required and
2824 * therefore there is no ambiguity when an empty argument list "( )" is
2825 * declared. The idiom "(void)" as a parameter list is provided for
2826 * convenience."
2827 *
2828 * Placing this check here prevents a void parameter being set up
2829 * for a function, which avoids tripping up checks for main taking
2830 * parameters and lookups of an unnamed symbol.
2831 */
2832 if (type->is_void()) {
2833 if (this->identifier != NULL)
2834 _mesa_glsl_error(& loc, state,
2835 "named parameter cannot have type `void'");
2836
2837 is_void = true;
2838 return NULL;
2839 }
2840
2841 if (formal_parameter && (this->identifier == NULL)) {
2842 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2843 return NULL;
2844 }
2845
2846 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2847 * call already handled the "vec4[..] foo" case.
2848 */
2849 if (this->is_array) {
2850 type = process_array_type(&loc, type, this->array_size, state);
2851 }
2852
2853 if (type->array_size() == 0) {
2854 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2855 "a declared size.");
2856 type = glsl_type::error_type;
2857 }
2858
2859 is_void = false;
2860 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2861
2862 /* Apply any specified qualifiers to the parameter declaration. Note that
2863 * for function parameters the default mode is 'in'.
2864 */
2865 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2866
2867 instructions->push_tail(var);
2868
2869 /* Parameter declarations do not have r-values.
2870 */
2871 return NULL;
2872 }
2873
2874
2875 void
2876 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2877 bool formal,
2878 exec_list *ir_parameters,
2879 _mesa_glsl_parse_state *state)
2880 {
2881 ast_parameter_declarator *void_param = NULL;
2882 unsigned count = 0;
2883
2884 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2885 param->formal_parameter = formal;
2886 param->hir(ir_parameters, state);
2887
2888 if (param->is_void)
2889 void_param = param;
2890
2891 count++;
2892 }
2893
2894 if ((void_param != NULL) && (count > 1)) {
2895 YYLTYPE loc = void_param->get_location();
2896
2897 _mesa_glsl_error(& loc, state,
2898 "`void' parameter must be only parameter");
2899 }
2900 }
2901
2902
2903 void
2904 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2905 ir_function *f)
2906 {
2907 /* Emit the new function header */
2908 if (state->current_function == NULL) {
2909 instructions->push_tail(f);
2910 } else {
2911 /* IR invariants disallow function declarations or definitions nested
2912 * within other function definitions. Insert the new ir_function
2913 * block in the instruction sequence before the ir_function block
2914 * containing the current ir_function_signature.
2915 */
2916 ir_function *const curr =
2917 const_cast<ir_function *>(state->current_function->function());
2918
2919 curr->insert_before(f);
2920 }
2921 }
2922
2923
2924 ir_rvalue *
2925 ast_function::hir(exec_list *instructions,
2926 struct _mesa_glsl_parse_state *state)
2927 {
2928 void *ctx = state;
2929 ir_function *f = NULL;
2930 ir_function_signature *sig = NULL;
2931 exec_list hir_parameters;
2932
2933 const char *const name = identifier;
2934
2935 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2936 *
2937 * "Function declarations (prototypes) cannot occur inside of functions;
2938 * they must be at global scope, or for the built-in functions, outside
2939 * the global scope."
2940 *
2941 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2942 *
2943 * "User defined functions may only be defined within the global scope."
2944 *
2945 * Note that this language does not appear in GLSL 1.10.
2946 */
2947 if ((state->current_function != NULL) && (state->language_version != 110)) {
2948 YYLTYPE loc = this->get_location();
2949 _mesa_glsl_error(&loc, state,
2950 "declaration of function `%s' not allowed within "
2951 "function body", name);
2952 }
2953
2954 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2955 *
2956 * "Identifiers starting with "gl_" are reserved for use by
2957 * OpenGL, and may not be declared in a shader as either a
2958 * variable or a function."
2959 */
2960 if (strncmp(name, "gl_", 3) == 0) {
2961 YYLTYPE loc = this->get_location();
2962 _mesa_glsl_error(&loc, state,
2963 "identifier `%s' uses reserved `gl_' prefix", name);
2964 }
2965
2966 /* Convert the list of function parameters to HIR now so that they can be
2967 * used below to compare this function's signature with previously seen
2968 * signatures for functions with the same name.
2969 */
2970 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2971 is_definition,
2972 & hir_parameters, state);
2973
2974 const char *return_type_name;
2975 const glsl_type *return_type =
2976 this->return_type->specifier->glsl_type(& return_type_name, state);
2977
2978 if (!return_type) {
2979 YYLTYPE loc = this->get_location();
2980 _mesa_glsl_error(&loc, state,
2981 "function `%s' has undeclared return type `%s'",
2982 name, return_type_name);
2983 return_type = glsl_type::error_type;
2984 }
2985
2986 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2987 * "No qualifier is allowed on the return type of a function."
2988 */
2989 if (this->return_type->has_qualifiers()) {
2990 YYLTYPE loc = this->get_location();
2991 _mesa_glsl_error(& loc, state,
2992 "function `%s' return type has qualifiers", name);
2993 }
2994
2995 /* Verify that this function's signature either doesn't match a previously
2996 * seen signature for a function with the same name, or, if a match is found,
2997 * that the previously seen signature does not have an associated definition.
2998 */
2999 f = state->symbols->get_function(name);
3000 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3001 sig = f->exact_matching_signature(&hir_parameters);
3002 if (sig != NULL) {
3003 const char *badvar = sig->qualifiers_match(&hir_parameters);
3004 if (badvar != NULL) {
3005 YYLTYPE loc = this->get_location();
3006
3007 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3008 "qualifiers don't match prototype", name, badvar);
3009 }
3010
3011 if (sig->return_type != return_type) {
3012 YYLTYPE loc = this->get_location();
3013
3014 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3015 "match prototype", name);
3016 }
3017
3018 if (is_definition && sig->is_defined) {
3019 YYLTYPE loc = this->get_location();
3020
3021 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3022 }
3023 }
3024 } else {
3025 f = new(ctx) ir_function(name);
3026 if (!state->symbols->add_function(f)) {
3027 /* This function name shadows a non-function use of the same name. */
3028 YYLTYPE loc = this->get_location();
3029
3030 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3031 "non-function", name);
3032 return NULL;
3033 }
3034
3035 emit_function(state, instructions, f);
3036 }
3037
3038 /* Verify the return type of main() */
3039 if (strcmp(name, "main") == 0) {
3040 if (! return_type->is_void()) {
3041 YYLTYPE loc = this->get_location();
3042
3043 _mesa_glsl_error(& loc, state, "main() must return void");
3044 }
3045
3046 if (!hir_parameters.is_empty()) {
3047 YYLTYPE loc = this->get_location();
3048
3049 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3050 }
3051 }
3052
3053 /* Finish storing the information about this new function in its signature.
3054 */
3055 if (sig == NULL) {
3056 sig = new(ctx) ir_function_signature(return_type);
3057 f->add_signature(sig);
3058 }
3059
3060 sig->replace_parameters(&hir_parameters);
3061 signature = sig;
3062
3063 /* Function declarations (prototypes) do not have r-values.
3064 */
3065 return NULL;
3066 }
3067
3068
3069 ir_rvalue *
3070 ast_function_definition::hir(exec_list *instructions,
3071 struct _mesa_glsl_parse_state *state)
3072 {
3073 prototype->is_definition = true;
3074 prototype->hir(instructions, state);
3075
3076 ir_function_signature *signature = prototype->signature;
3077 if (signature == NULL)
3078 return NULL;
3079
3080 assert(state->current_function == NULL);
3081 state->current_function = signature;
3082 state->found_return = false;
3083
3084 /* Duplicate parameters declared in the prototype as concrete variables.
3085 * Add these to the symbol table.
3086 */
3087 state->symbols->push_scope();
3088 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3089 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3090
3091 assert(var != NULL);
3092
3093 /* The only way a parameter would "exist" is if two parameters have
3094 * the same name.
3095 */
3096 if (state->symbols->name_declared_this_scope(var->name)) {
3097 YYLTYPE loc = this->get_location();
3098
3099 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3100 } else {
3101 state->symbols->add_variable(var);
3102 }
3103 }
3104
3105 /* Convert the body of the function to HIR. */
3106 this->body->hir(&signature->body, state);
3107 signature->is_defined = true;
3108
3109 state->symbols->pop_scope();
3110
3111 assert(state->current_function == signature);
3112 state->current_function = NULL;
3113
3114 if (!signature->return_type->is_void() && !state->found_return) {
3115 YYLTYPE loc = this->get_location();
3116 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3117 "%s, but no return statement",
3118 signature->function_name(),
3119 signature->return_type->name);
3120 }
3121
3122 /* Function definitions do not have r-values.
3123 */
3124 return NULL;
3125 }
3126
3127
3128 ir_rvalue *
3129 ast_jump_statement::hir(exec_list *instructions,
3130 struct _mesa_glsl_parse_state *state)
3131 {
3132 void *ctx = state;
3133
3134 switch (mode) {
3135 case ast_return: {
3136 ir_return *inst;
3137 assert(state->current_function);
3138
3139 if (opt_return_value) {
3140 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3141
3142 /* The value of the return type can be NULL if the shader says
3143 * 'return foo();' and foo() is a function that returns void.
3144 *
3145 * NOTE: The GLSL spec doesn't say that this is an error. The type
3146 * of the return value is void. If the return type of the function is
3147 * also void, then this should compile without error. Seriously.
3148 */
3149 const glsl_type *const ret_type =
3150 (ret == NULL) ? glsl_type::void_type : ret->type;
3151
3152 /* Implicit conversions are not allowed for return values. */
3153 if (state->current_function->return_type != ret_type) {
3154 YYLTYPE loc = this->get_location();
3155
3156 _mesa_glsl_error(& loc, state,
3157 "`return' with wrong type %s, in function `%s' "
3158 "returning %s",
3159 ret_type->name,
3160 state->current_function->function_name(),
3161 state->current_function->return_type->name);
3162 }
3163
3164 inst = new(ctx) ir_return(ret);
3165 } else {
3166 if (state->current_function->return_type->base_type !=
3167 GLSL_TYPE_VOID) {
3168 YYLTYPE loc = this->get_location();
3169
3170 _mesa_glsl_error(& loc, state,
3171 "`return' with no value, in function %s returning "
3172 "non-void",
3173 state->current_function->function_name());
3174 }
3175 inst = new(ctx) ir_return;
3176 }
3177
3178 state->found_return = true;
3179 instructions->push_tail(inst);
3180 break;
3181 }
3182
3183 case ast_discard:
3184 if (state->target != fragment_shader) {
3185 YYLTYPE loc = this->get_location();
3186
3187 _mesa_glsl_error(& loc, state,
3188 "`discard' may only appear in a fragment shader");
3189 }
3190 instructions->push_tail(new(ctx) ir_discard);
3191 break;
3192
3193 case ast_break:
3194 case ast_continue:
3195 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3196 * FINISHME: and they use a different IR instruction for 'break'.
3197 */
3198 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3199 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3200 * FINISHME: loop.
3201 */
3202 if (state->loop_or_switch_nesting == NULL) {
3203 YYLTYPE loc = this->get_location();
3204
3205 _mesa_glsl_error(& loc, state,
3206 "`%s' may only appear in a loop",
3207 (mode == ast_break) ? "break" : "continue");
3208 } else {
3209 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3210
3211 /* Inline the for loop expression again, since we don't know
3212 * where near the end of the loop body the normal copy of it
3213 * is going to be placed.
3214 */
3215 if (mode == ast_continue &&
3216 state->loop_or_switch_nesting_ast->rest_expression) {
3217 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3218 state);
3219 }
3220
3221 if (loop != NULL) {
3222 ir_loop_jump *const jump =
3223 new(ctx) ir_loop_jump((mode == ast_break)
3224 ? ir_loop_jump::jump_break
3225 : ir_loop_jump::jump_continue);
3226 instructions->push_tail(jump);
3227 }
3228 }
3229
3230 break;
3231 }
3232
3233 /* Jump instructions do not have r-values.
3234 */
3235 return NULL;
3236 }
3237
3238
3239 ir_rvalue *
3240 ast_selection_statement::hir(exec_list *instructions,
3241 struct _mesa_glsl_parse_state *state)
3242 {
3243 void *ctx = state;
3244
3245 ir_rvalue *const condition = this->condition->hir(instructions, state);
3246
3247 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3248 *
3249 * "Any expression whose type evaluates to a Boolean can be used as the
3250 * conditional expression bool-expression. Vector types are not accepted
3251 * as the expression to if."
3252 *
3253 * The checks are separated so that higher quality diagnostics can be
3254 * generated for cases where both rules are violated.
3255 */
3256 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3257 YYLTYPE loc = this->condition->get_location();
3258
3259 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3260 "boolean");
3261 }
3262
3263 ir_if *const stmt = new(ctx) ir_if(condition);
3264
3265 if (then_statement != NULL) {
3266 state->symbols->push_scope();
3267 then_statement->hir(& stmt->then_instructions, state);
3268 state->symbols->pop_scope();
3269 }
3270
3271 if (else_statement != NULL) {
3272 state->symbols->push_scope();
3273 else_statement->hir(& stmt->else_instructions, state);
3274 state->symbols->pop_scope();
3275 }
3276
3277 instructions->push_tail(stmt);
3278
3279 /* if-statements do not have r-values.
3280 */
3281 return NULL;
3282 }
3283
3284
3285 void
3286 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3287 struct _mesa_glsl_parse_state *state)
3288 {
3289 void *ctx = state;
3290
3291 if (condition != NULL) {
3292 ir_rvalue *const cond =
3293 condition->hir(& stmt->body_instructions, state);
3294
3295 if ((cond == NULL)
3296 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3297 YYLTYPE loc = condition->get_location();
3298
3299 _mesa_glsl_error(& loc, state,
3300 "loop condition must be scalar boolean");
3301 } else {
3302 /* As the first code in the loop body, generate a block that looks
3303 * like 'if (!condition) break;' as the loop termination condition.
3304 */
3305 ir_rvalue *const not_cond =
3306 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3307 NULL);
3308
3309 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3310
3311 ir_jump *const break_stmt =
3312 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3313
3314 if_stmt->then_instructions.push_tail(break_stmt);
3315 stmt->body_instructions.push_tail(if_stmt);
3316 }
3317 }
3318 }
3319
3320
3321 ir_rvalue *
3322 ast_iteration_statement::hir(exec_list *instructions,
3323 struct _mesa_glsl_parse_state *state)
3324 {
3325 void *ctx = state;
3326
3327 /* For-loops and while-loops start a new scope, but do-while loops do not.
3328 */
3329 if (mode != ast_do_while)
3330 state->symbols->push_scope();
3331
3332 if (init_statement != NULL)
3333 init_statement->hir(instructions, state);
3334
3335 ir_loop *const stmt = new(ctx) ir_loop();
3336 instructions->push_tail(stmt);
3337
3338 /* Track the current loop and / or switch-statement nesting.
3339 */
3340 ir_instruction *const nesting = state->loop_or_switch_nesting;
3341 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3342
3343 state->loop_or_switch_nesting = stmt;
3344 state->loop_or_switch_nesting_ast = this;
3345
3346 if (mode != ast_do_while)
3347 condition_to_hir(stmt, state);
3348
3349 if (body != NULL)
3350 body->hir(& stmt->body_instructions, state);
3351
3352 if (rest_expression != NULL)
3353 rest_expression->hir(& stmt->body_instructions, state);
3354
3355 if (mode == ast_do_while)
3356 condition_to_hir(stmt, state);
3357
3358 if (mode != ast_do_while)
3359 state->symbols->pop_scope();
3360
3361 /* Restore previous nesting before returning.
3362 */
3363 state->loop_or_switch_nesting = nesting;
3364 state->loop_or_switch_nesting_ast = nesting_ast;
3365
3366 /* Loops do not have r-values.
3367 */
3368 return NULL;
3369 }
3370
3371
3372 ir_rvalue *
3373 ast_type_specifier::hir(exec_list *instructions,
3374 struct _mesa_glsl_parse_state *state)
3375 {
3376 if (!this->is_precision_statement && this->structure == NULL)
3377 return NULL;
3378
3379 YYLTYPE loc = this->get_location();
3380
3381 if (this->precision != ast_precision_none
3382 && state->language_version != 100
3383 && state->language_version < 130) {
3384 _mesa_glsl_error(&loc, state,
3385 "precision qualifiers exist only in "
3386 "GLSL ES 1.00, and GLSL 1.30 and later");
3387 return NULL;
3388 }
3389 if (this->precision != ast_precision_none
3390 && this->structure != NULL) {
3391 _mesa_glsl_error(&loc, state,
3392 "precision qualifiers do not apply to structures");
3393 return NULL;
3394 }
3395
3396 /* If this is a precision statement, check that the type to which it is
3397 * applied is either float or int.
3398 *
3399 * From section 4.5.3 of the GLSL 1.30 spec:
3400 * "The precision statement
3401 * precision precision-qualifier type;
3402 * can be used to establish a default precision qualifier. The type
3403 * field can be either int or float [...]. Any other types or
3404 * qualifiers will result in an error.
3405 */
3406 if (this->is_precision_statement) {
3407 assert(this->precision != ast_precision_none);
3408 assert(this->structure == NULL); /* The check for structures was
3409 * performed above. */
3410 if (this->is_array) {
3411 _mesa_glsl_error(&loc, state,
3412 "default precision statements do not apply to "
3413 "arrays");
3414 return NULL;
3415 }
3416 if (this->type_specifier != ast_float
3417 && this->type_specifier != ast_int) {
3418 _mesa_glsl_error(&loc, state,
3419 "default precision statements apply only to types "
3420 "float and int");
3421 return NULL;
3422 }
3423
3424 /* FINISHME: Translate precision statements into IR. */
3425 return NULL;
3426 }
3427
3428 if (this->structure != NULL)
3429 return this->structure->hir(instructions, state);
3430
3431 return NULL;
3432 }
3433
3434
3435 ir_rvalue *
3436 ast_struct_specifier::hir(exec_list *instructions,
3437 struct _mesa_glsl_parse_state *state)
3438 {
3439 unsigned decl_count = 0;
3440
3441 /* Make an initial pass over the list of structure fields to determine how
3442 * many there are. Each element in this list is an ast_declarator_list.
3443 * This means that we actually need to count the number of elements in the
3444 * 'declarations' list in each of the elements.
3445 */
3446 foreach_list_typed (ast_declarator_list, decl_list, link,
3447 &this->declarations) {
3448 foreach_list_const (decl_ptr, & decl_list->declarations) {
3449 decl_count++;
3450 }
3451 }
3452
3453 /* Allocate storage for the structure fields and process the field
3454 * declarations. As the declarations are processed, try to also convert
3455 * the types to HIR. This ensures that structure definitions embedded in
3456 * other structure definitions are processed.
3457 */
3458 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3459 decl_count);
3460
3461 unsigned i = 0;
3462 foreach_list_typed (ast_declarator_list, decl_list, link,
3463 &this->declarations) {
3464 const char *type_name;
3465
3466 decl_list->type->specifier->hir(instructions, state);
3467
3468 /* Section 10.9 of the GLSL ES 1.00 specification states that
3469 * embedded structure definitions have been removed from the language.
3470 */
3471 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3472 YYLTYPE loc = this->get_location();
3473 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3474 "not allowed in GLSL ES 1.00.");
3475 }
3476
3477 const glsl_type *decl_type =
3478 decl_list->type->specifier->glsl_type(& type_name, state);
3479
3480 foreach_list_typed (ast_declaration, decl, link,
3481 &decl_list->declarations) {
3482 const struct glsl_type *field_type = decl_type;
3483 if (decl->is_array) {
3484 YYLTYPE loc = decl->get_location();
3485 field_type = process_array_type(&loc, decl_type, decl->array_size,
3486 state);
3487 }
3488 fields[i].type = (field_type != NULL)
3489 ? field_type : glsl_type::error_type;
3490 fields[i].name = decl->identifier;
3491 i++;
3492 }
3493 }
3494
3495 assert(i == decl_count);
3496
3497 const glsl_type *t =
3498 glsl_type::get_record_instance(fields, decl_count, this->name);
3499
3500 YYLTYPE loc = this->get_location();
3501 if (!state->symbols->add_type(name, t)) {
3502 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3503 } else {
3504 const glsl_type **s = reralloc(state, state->user_structures,
3505 const glsl_type *,
3506 state->num_user_structures + 1);
3507 if (s != NULL) {
3508 s[state->num_user_structures] = t;
3509 state->user_structures = s;
3510 state->num_user_structures++;
3511 }
3512 }
3513
3514 /* Structure type definitions do not have r-values.
3515 */
3516 return NULL;
3517 }