Merge remote-tracking branch 'origin/master' into pipe-video
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 if (state->language_version < 130) {
439 _mesa_glsl_error(loc, state,
440 "operator '%%' is reserved in %s",
441 state->version_string);
442 return glsl_type::error_type;
443 }
444
445 /* From GLSL 1.50 spec, page 56:
446 * "The operator modulus (%) operates on signed or unsigned integers or
447 * integer vectors. The operand types must both be signed or both be
448 * unsigned."
449 */
450 if (!type_a->is_integer() || !type_b->is_integer()
451 || (type_a->base_type != type_b->base_type)) {
452 _mesa_glsl_error(loc, state, "type mismatch");
453 return glsl_type::error_type;
454 }
455
456 /* "The operands cannot be vectors of differing size. If one operand is
457 * a scalar and the other vector, then the scalar is applied component-
458 * wise to the vector, resulting in the same type as the vector. If both
459 * are vectors of the same size, the result is computed component-wise."
460 */
461 if (type_a->is_vector()) {
462 if (!type_b->is_vector()
463 || (type_a->vector_elements == type_b->vector_elements))
464 return type_a;
465 } else
466 return type_b;
467
468 /* "The operator modulus (%) is not defined for any other data types
469 * (non-integer types)."
470 */
471 _mesa_glsl_error(loc, state, "type mismatch");
472 return glsl_type::error_type;
473 }
474
475
476 static const struct glsl_type *
477 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
478 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
479 {
480 const glsl_type *type_a = value_a->type;
481 const glsl_type *type_b = value_b->type;
482
483 /* From GLSL 1.50 spec, page 56:
484 * "The relational operators greater than (>), less than (<), greater
485 * than or equal (>=), and less than or equal (<=) operate only on
486 * scalar integer and scalar floating-point expressions."
487 */
488 if (!type_a->is_numeric()
489 || !type_b->is_numeric()
490 || !type_a->is_scalar()
491 || !type_b->is_scalar()) {
492 _mesa_glsl_error(loc, state,
493 "Operands to relational operators must be scalar and "
494 "numeric");
495 return glsl_type::error_type;
496 }
497
498 /* "Either the operands' types must match, or the conversions from
499 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
500 * operand, after which the types must match."
501 */
502 if (!apply_implicit_conversion(type_a, value_b, state)
503 && !apply_implicit_conversion(type_b, value_a, state)) {
504 _mesa_glsl_error(loc, state,
505 "Could not implicitly convert operands to "
506 "relational operator");
507 return glsl_type::error_type;
508 }
509 type_a = value_a->type;
510 type_b = value_b->type;
511
512 if (type_a->base_type != type_b->base_type) {
513 _mesa_glsl_error(loc, state, "base type mismatch");
514 return glsl_type::error_type;
515 }
516
517 /* "The result is scalar Boolean."
518 */
519 return glsl_type::bool_type;
520 }
521
522 /**
523 * \brief Return the result type of a bit-shift operation.
524 *
525 * If the given types to the bit-shift operator are invalid, return
526 * glsl_type::error_type.
527 *
528 * \param type_a Type of LHS of bit-shift op
529 * \param type_b Type of RHS of bit-shift op
530 */
531 static const struct glsl_type *
532 shift_result_type(const struct glsl_type *type_a,
533 const struct glsl_type *type_b,
534 ast_operators op,
535 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
536 {
537 if (state->language_version < 130) {
538 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
539 return glsl_type::error_type;
540 }
541
542 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
543 *
544 * "The shift operators (<<) and (>>). For both operators, the operands
545 * must be signed or unsigned integers or integer vectors. One operand
546 * can be signed while the other is unsigned."
547 */
548 if (!type_a->is_integer()) {
549 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
550 "integer vector", ast_expression::operator_string(op));
551 return glsl_type::error_type;
552
553 }
554 if (!type_b->is_integer()) {
555 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
556 "integer vector", ast_expression::operator_string(op));
557 return glsl_type::error_type;
558 }
559
560 /* "If the first operand is a scalar, the second operand has to be
561 * a scalar as well."
562 */
563 if (type_a->is_scalar() && !type_b->is_scalar()) {
564 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
565 "second must be scalar as well",
566 ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* If both operands are vectors, check that they have same number of
571 * elements.
572 */
573 if (type_a->is_vector() &&
574 type_b->is_vector() &&
575 type_a->vector_elements != type_b->vector_elements) {
576 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
577 "have same number of elements",
578 ast_expression::operator_string(op));
579 return glsl_type::error_type;
580 }
581
582 /* "In all cases, the resulting type will be the same type as the left
583 * operand."
584 */
585 return type_a;
586 }
587
588 /**
589 * Validates that a value can be assigned to a location with a specified type
590 *
591 * Validates that \c rhs can be assigned to some location. If the types are
592 * not an exact match but an automatic conversion is possible, \c rhs will be
593 * converted.
594 *
595 * \return
596 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
597 * Otherwise the actual RHS to be assigned will be returned. This may be
598 * \c rhs, or it may be \c rhs after some type conversion.
599 *
600 * \note
601 * In addition to being used for assignments, this function is used to
602 * type-check return values.
603 */
604 ir_rvalue *
605 validate_assignment(struct _mesa_glsl_parse_state *state,
606 const glsl_type *lhs_type, ir_rvalue *rhs,
607 bool is_initializer)
608 {
609 /* If there is already some error in the RHS, just return it. Anything
610 * else will lead to an avalanche of error message back to the user.
611 */
612 if (rhs->type->is_error())
613 return rhs;
614
615 /* If the types are identical, the assignment can trivially proceed.
616 */
617 if (rhs->type == lhs_type)
618 return rhs;
619
620 /* If the array element types are the same and the size of the LHS is zero,
621 * the assignment is okay for initializers embedded in variable
622 * declarations.
623 *
624 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
625 * is handled by ir_dereference::is_lvalue.
626 */
627 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
628 && (lhs_type->element_type() == rhs->type->element_type())
629 && (lhs_type->array_size() == 0)) {
630 return rhs;
631 }
632
633 /* Check for implicit conversion in GLSL 1.20 */
634 if (apply_implicit_conversion(lhs_type, rhs, state)) {
635 if (rhs->type == lhs_type)
636 return rhs;
637 }
638
639 return NULL;
640 }
641
642 ir_rvalue *
643 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
644 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
645 YYLTYPE lhs_loc)
646 {
647 void *ctx = state;
648 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
649
650 if (!error_emitted) {
651 if (lhs->variable_referenced() != NULL
652 && lhs->variable_referenced()->read_only) {
653 _mesa_glsl_error(&lhs_loc, state,
654 "assignment to read-only variable '%s'",
655 lhs->variable_referenced()->name);
656 error_emitted = true;
657
658 } else if (!lhs->is_lvalue()) {
659 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
660 error_emitted = true;
661 }
662
663 if (state->es_shader && lhs->type->is_array()) {
664 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
665 "allowed in GLSL ES 1.00.");
666 error_emitted = true;
667 }
668 }
669
670 ir_rvalue *new_rhs =
671 validate_assignment(state, lhs->type, rhs, is_initializer);
672 if (new_rhs == NULL) {
673 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
674 } else {
675 rhs = new_rhs;
676
677 /* If the LHS array was not declared with a size, it takes it size from
678 * the RHS. If the LHS is an l-value and a whole array, it must be a
679 * dereference of a variable. Any other case would require that the LHS
680 * is either not an l-value or not a whole array.
681 */
682 if (lhs->type->array_size() == 0) {
683 ir_dereference *const d = lhs->as_dereference();
684
685 assert(d != NULL);
686
687 ir_variable *const var = d->variable_referenced();
688
689 assert(var != NULL);
690
691 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
692 /* FINISHME: This should actually log the location of the RHS. */
693 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
694 "previous access",
695 var->max_array_access);
696 }
697
698 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
699 rhs->type->array_size());
700 d->type = var->type;
701 }
702 }
703
704 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
705 * but not post_inc) need the converted assigned value as an rvalue
706 * to handle things like:
707 *
708 * i = j += 1;
709 *
710 * So we always just store the computed value being assigned to a
711 * temporary and return a deref of that temporary. If the rvalue
712 * ends up not being used, the temp will get copy-propagated out.
713 */
714 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
715 ir_var_temporary);
716 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
717 instructions->push_tail(var);
718 instructions->push_tail(new(ctx) ir_assignment(deref_var,
719 rhs,
720 NULL));
721 deref_var = new(ctx) ir_dereference_variable(var);
722
723 if (!error_emitted)
724 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
725
726 return new(ctx) ir_dereference_variable(var);
727 }
728
729 static ir_rvalue *
730 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
731 {
732 void *ctx = ralloc_parent(lvalue);
733 ir_variable *var;
734
735 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
736 ir_var_temporary);
737 instructions->push_tail(var);
738 var->mode = ir_var_auto;
739
740 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
741 lvalue, NULL));
742
743 /* Once we've created this temporary, mark it read only so it's no
744 * longer considered an lvalue.
745 */
746 var->read_only = true;
747
748 return new(ctx) ir_dereference_variable(var);
749 }
750
751
752 ir_rvalue *
753 ast_node::hir(exec_list *instructions,
754 struct _mesa_glsl_parse_state *state)
755 {
756 (void) instructions;
757 (void) state;
758
759 return NULL;
760 }
761
762 static void
763 mark_whole_array_access(ir_rvalue *access)
764 {
765 ir_dereference_variable *deref = access->as_dereference_variable();
766
767 if (deref) {
768 deref->var->max_array_access = deref->type->length - 1;
769 }
770 }
771
772 static ir_rvalue *
773 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
774 {
775 int join_op;
776 ir_rvalue *cmp = NULL;
777
778 if (operation == ir_binop_all_equal)
779 join_op = ir_binop_logic_and;
780 else
781 join_op = ir_binop_logic_or;
782
783 switch (op0->type->base_type) {
784 case GLSL_TYPE_FLOAT:
785 case GLSL_TYPE_UINT:
786 case GLSL_TYPE_INT:
787 case GLSL_TYPE_BOOL:
788 return new(mem_ctx) ir_expression(operation, op0, op1);
789
790 case GLSL_TYPE_ARRAY: {
791 for (unsigned int i = 0; i < op0->type->length; i++) {
792 ir_rvalue *e0, *e1, *result;
793
794 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
795 new(mem_ctx) ir_constant(i));
796 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
797 new(mem_ctx) ir_constant(i));
798 result = do_comparison(mem_ctx, operation, e0, e1);
799
800 if (cmp) {
801 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
802 } else {
803 cmp = result;
804 }
805 }
806
807 mark_whole_array_access(op0);
808 mark_whole_array_access(op1);
809 break;
810 }
811
812 case GLSL_TYPE_STRUCT: {
813 for (unsigned int i = 0; i < op0->type->length; i++) {
814 ir_rvalue *e0, *e1, *result;
815 const char *field_name = op0->type->fields.structure[i].name;
816
817 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
818 field_name);
819 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
820 field_name);
821 result = do_comparison(mem_ctx, operation, e0, e1);
822
823 if (cmp) {
824 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
825 } else {
826 cmp = result;
827 }
828 }
829 break;
830 }
831
832 case GLSL_TYPE_ERROR:
833 case GLSL_TYPE_VOID:
834 case GLSL_TYPE_SAMPLER:
835 /* I assume a comparison of a struct containing a sampler just
836 * ignores the sampler present in the type.
837 */
838 break;
839
840 default:
841 assert(!"Should not get here.");
842 break;
843 }
844
845 if (cmp == NULL)
846 cmp = new(mem_ctx) ir_constant(true);
847
848 return cmp;
849 }
850
851 /* For logical operations, we want to ensure that the operands are
852 * scalar booleans. If it isn't, emit an error and return a constant
853 * boolean to avoid triggering cascading error messages.
854 */
855 ir_rvalue *
856 get_scalar_boolean_operand(exec_list *instructions,
857 struct _mesa_glsl_parse_state *state,
858 ast_expression *parent_expr,
859 int operand,
860 const char *operand_name,
861 bool *error_emitted)
862 {
863 ast_expression *expr = parent_expr->subexpressions[operand];
864 void *ctx = state;
865 ir_rvalue *val = expr->hir(instructions, state);
866
867 if (val->type->is_boolean() && val->type->is_scalar())
868 return val;
869
870 if (!*error_emitted) {
871 YYLTYPE loc = expr->get_location();
872 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
873 operand_name,
874 parent_expr->operator_string(parent_expr->oper));
875 *error_emitted = true;
876 }
877
878 return new(ctx) ir_constant(true);
879 }
880
881 ir_rvalue *
882 ast_expression::hir(exec_list *instructions,
883 struct _mesa_glsl_parse_state *state)
884 {
885 void *ctx = state;
886 static const int operations[AST_NUM_OPERATORS] = {
887 -1, /* ast_assign doesn't convert to ir_expression. */
888 -1, /* ast_plus doesn't convert to ir_expression. */
889 ir_unop_neg,
890 ir_binop_add,
891 ir_binop_sub,
892 ir_binop_mul,
893 ir_binop_div,
894 ir_binop_mod,
895 ir_binop_lshift,
896 ir_binop_rshift,
897 ir_binop_less,
898 ir_binop_greater,
899 ir_binop_lequal,
900 ir_binop_gequal,
901 ir_binop_all_equal,
902 ir_binop_any_nequal,
903 ir_binop_bit_and,
904 ir_binop_bit_xor,
905 ir_binop_bit_or,
906 ir_unop_bit_not,
907 ir_binop_logic_and,
908 ir_binop_logic_xor,
909 ir_binop_logic_or,
910 ir_unop_logic_not,
911
912 /* Note: The following block of expression types actually convert
913 * to multiple IR instructions.
914 */
915 ir_binop_mul, /* ast_mul_assign */
916 ir_binop_div, /* ast_div_assign */
917 ir_binop_mod, /* ast_mod_assign */
918 ir_binop_add, /* ast_add_assign */
919 ir_binop_sub, /* ast_sub_assign */
920 ir_binop_lshift, /* ast_ls_assign */
921 ir_binop_rshift, /* ast_rs_assign */
922 ir_binop_bit_and, /* ast_and_assign */
923 ir_binop_bit_xor, /* ast_xor_assign */
924 ir_binop_bit_or, /* ast_or_assign */
925
926 -1, /* ast_conditional doesn't convert to ir_expression. */
927 ir_binop_add, /* ast_pre_inc. */
928 ir_binop_sub, /* ast_pre_dec. */
929 ir_binop_add, /* ast_post_inc. */
930 ir_binop_sub, /* ast_post_dec. */
931 -1, /* ast_field_selection doesn't conv to ir_expression. */
932 -1, /* ast_array_index doesn't convert to ir_expression. */
933 -1, /* ast_function_call doesn't conv to ir_expression. */
934 -1, /* ast_identifier doesn't convert to ir_expression. */
935 -1, /* ast_int_constant doesn't convert to ir_expression. */
936 -1, /* ast_uint_constant doesn't conv to ir_expression. */
937 -1, /* ast_float_constant doesn't conv to ir_expression. */
938 -1, /* ast_bool_constant doesn't conv to ir_expression. */
939 -1, /* ast_sequence doesn't convert to ir_expression. */
940 };
941 ir_rvalue *result = NULL;
942 ir_rvalue *op[3];
943 const struct glsl_type *type; /* a temporary variable for switch cases */
944 bool error_emitted = false;
945 YYLTYPE loc;
946
947 loc = this->get_location();
948
949 switch (this->oper) {
950 case ast_assign: {
951 op[0] = this->subexpressions[0]->hir(instructions, state);
952 op[1] = this->subexpressions[1]->hir(instructions, state);
953
954 result = do_assignment(instructions, state, op[0], op[1], false,
955 this->subexpressions[0]->get_location());
956 error_emitted = result->type->is_error();
957 break;
958 }
959
960 case ast_plus:
961 op[0] = this->subexpressions[0]->hir(instructions, state);
962
963 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
964
965 error_emitted = type->is_error();
966
967 result = op[0];
968 break;
969
970 case ast_neg:
971 op[0] = this->subexpressions[0]->hir(instructions, state);
972
973 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
974
975 error_emitted = type->is_error();
976
977 result = new(ctx) ir_expression(operations[this->oper], type,
978 op[0], NULL);
979 break;
980
981 case ast_add:
982 case ast_sub:
983 case ast_mul:
984 case ast_div:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986 op[1] = this->subexpressions[1]->hir(instructions, state);
987
988 type = arithmetic_result_type(op[0], op[1],
989 (this->oper == ast_mul),
990 state, & loc);
991 error_emitted = type->is_error();
992
993 result = new(ctx) ir_expression(operations[this->oper], type,
994 op[0], op[1]);
995 break;
996
997 case ast_mod:
998 op[0] = this->subexpressions[0]->hir(instructions, state);
999 op[1] = this->subexpressions[1]->hir(instructions, state);
1000
1001 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1002
1003 assert(operations[this->oper] == ir_binop_mod);
1004
1005 result = new(ctx) ir_expression(operations[this->oper], type,
1006 op[0], op[1]);
1007 error_emitted = type->is_error();
1008 break;
1009
1010 case ast_lshift:
1011 case ast_rshift:
1012 if (state->language_version < 130) {
1013 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1014 operator_string(this->oper));
1015 error_emitted = true;
1016 }
1017
1018 op[0] = this->subexpressions[0]->hir(instructions, state);
1019 op[1] = this->subexpressions[1]->hir(instructions, state);
1020 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1021 &loc);
1022 result = new(ctx) ir_expression(operations[this->oper], type,
1023 op[0], op[1]);
1024 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1025 break;
1026
1027 case ast_less:
1028 case ast_greater:
1029 case ast_lequal:
1030 case ast_gequal:
1031 op[0] = this->subexpressions[0]->hir(instructions, state);
1032 op[1] = this->subexpressions[1]->hir(instructions, state);
1033
1034 type = relational_result_type(op[0], op[1], state, & loc);
1035
1036 /* The relational operators must either generate an error or result
1037 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1038 */
1039 assert(type->is_error()
1040 || ((type->base_type == GLSL_TYPE_BOOL)
1041 && type->is_scalar()));
1042
1043 result = new(ctx) ir_expression(operations[this->oper], type,
1044 op[0], op[1]);
1045 error_emitted = type->is_error();
1046 break;
1047
1048 case ast_nequal:
1049 case ast_equal:
1050 op[0] = this->subexpressions[0]->hir(instructions, state);
1051 op[1] = this->subexpressions[1]->hir(instructions, state);
1052
1053 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1054 *
1055 * "The equality operators equal (==), and not equal (!=)
1056 * operate on all types. They result in a scalar Boolean. If
1057 * the operand types do not match, then there must be a
1058 * conversion from Section 4.1.10 "Implicit Conversions"
1059 * applied to one operand that can make them match, in which
1060 * case this conversion is done."
1061 */
1062 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1063 && !apply_implicit_conversion(op[1]->type, op[0], state))
1064 || (op[0]->type != op[1]->type)) {
1065 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1066 "type", (this->oper == ast_equal) ? "==" : "!=");
1067 error_emitted = true;
1068 } else if ((state->language_version <= 110)
1069 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1070 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1071 "GLSL 1.10");
1072 error_emitted = true;
1073 }
1074
1075 if (error_emitted) {
1076 result = new(ctx) ir_constant(false);
1077 } else {
1078 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1079 assert(result->type == glsl_type::bool_type);
1080 }
1081 break;
1082
1083 case ast_bit_and:
1084 case ast_bit_xor:
1085 case ast_bit_or:
1086 op[0] = this->subexpressions[0]->hir(instructions, state);
1087 op[1] = this->subexpressions[1]->hir(instructions, state);
1088 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1089 state, &loc);
1090 result = new(ctx) ir_expression(operations[this->oper], type,
1091 op[0], op[1]);
1092 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1093 break;
1094
1095 case ast_bit_not:
1096 op[0] = this->subexpressions[0]->hir(instructions, state);
1097
1098 if (state->language_version < 130) {
1099 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1100 error_emitted = true;
1101 }
1102
1103 if (!op[0]->type->is_integer()) {
1104 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1105 error_emitted = true;
1106 }
1107
1108 type = op[0]->type;
1109 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1110 break;
1111
1112 case ast_logic_and: {
1113 exec_list rhs_instructions;
1114 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1115 "LHS", &error_emitted);
1116 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1117 "RHS", &error_emitted);
1118
1119 ir_constant *op0_const = op[0]->constant_expression_value();
1120 if (op0_const) {
1121 if (op0_const->value.b[0]) {
1122 instructions->append_list(&rhs_instructions);
1123 result = op[1];
1124 } else {
1125 result = op0_const;
1126 }
1127 type = glsl_type::bool_type;
1128 } else {
1129 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1130 "and_tmp",
1131 ir_var_temporary);
1132 instructions->push_tail(tmp);
1133
1134 ir_if *const stmt = new(ctx) ir_if(op[0]);
1135 instructions->push_tail(stmt);
1136
1137 stmt->then_instructions.append_list(&rhs_instructions);
1138 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1139 ir_assignment *const then_assign =
1140 new(ctx) ir_assignment(then_deref, op[1], NULL);
1141 stmt->then_instructions.push_tail(then_assign);
1142
1143 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1144 ir_assignment *const else_assign =
1145 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1146 stmt->else_instructions.push_tail(else_assign);
1147
1148 result = new(ctx) ir_dereference_variable(tmp);
1149 type = tmp->type;
1150 }
1151 break;
1152 }
1153
1154 case ast_logic_or: {
1155 exec_list rhs_instructions;
1156 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1157 "LHS", &error_emitted);
1158 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1159 "RHS", &error_emitted);
1160
1161 ir_constant *op0_const = op[0]->constant_expression_value();
1162 if (op0_const) {
1163 if (op0_const->value.b[0]) {
1164 result = op0_const;
1165 } else {
1166 result = op[1];
1167 }
1168 type = glsl_type::bool_type;
1169 } else {
1170 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1171 "or_tmp",
1172 ir_var_temporary);
1173 instructions->push_tail(tmp);
1174
1175 ir_if *const stmt = new(ctx) ir_if(op[0]);
1176 instructions->push_tail(stmt);
1177
1178 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1179 ir_assignment *const then_assign =
1180 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1181 stmt->then_instructions.push_tail(then_assign);
1182
1183 stmt->else_instructions.append_list(&rhs_instructions);
1184 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1185 ir_assignment *const else_assign =
1186 new(ctx) ir_assignment(else_deref, op[1], NULL);
1187 stmt->else_instructions.push_tail(else_assign);
1188
1189 result = new(ctx) ir_dereference_variable(tmp);
1190 type = tmp->type;
1191 }
1192 break;
1193 }
1194
1195 case ast_logic_xor:
1196 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1197 *
1198 * "The logical binary operators and (&&), or ( | | ), and
1199 * exclusive or (^^). They operate only on two Boolean
1200 * expressions and result in a Boolean expression."
1201 */
1202 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1203 &error_emitted);
1204 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1205 &error_emitted);
1206
1207 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1208 op[0], op[1]);
1209 break;
1210
1211 case ast_logic_not:
1212 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1213 "operand", &error_emitted);
1214
1215 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1216 op[0], NULL);
1217 break;
1218
1219 case ast_mul_assign:
1220 case ast_div_assign:
1221 case ast_add_assign:
1222 case ast_sub_assign: {
1223 op[0] = this->subexpressions[0]->hir(instructions, state);
1224 op[1] = this->subexpressions[1]->hir(instructions, state);
1225
1226 type = arithmetic_result_type(op[0], op[1],
1227 (this->oper == ast_mul_assign),
1228 state, & loc);
1229
1230 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1231 op[0], op[1]);
1232
1233 result = do_assignment(instructions, state,
1234 op[0]->clone(ctx, NULL), temp_rhs, false,
1235 this->subexpressions[0]->get_location());
1236 error_emitted = (op[0]->type->is_error());
1237
1238 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1239 * explicitly test for this because none of the binary expression
1240 * operators allow array operands either.
1241 */
1242
1243 break;
1244 }
1245
1246 case ast_mod_assign: {
1247 op[0] = this->subexpressions[0]->hir(instructions, state);
1248 op[1] = this->subexpressions[1]->hir(instructions, state);
1249
1250 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1251
1252 assert(operations[this->oper] == ir_binop_mod);
1253
1254 ir_rvalue *temp_rhs;
1255 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1256 op[0], op[1]);
1257
1258 result = do_assignment(instructions, state,
1259 op[0]->clone(ctx, NULL), temp_rhs, false,
1260 this->subexpressions[0]->get_location());
1261 error_emitted = type->is_error();
1262 break;
1263 }
1264
1265 case ast_ls_assign:
1266 case ast_rs_assign: {
1267 op[0] = this->subexpressions[0]->hir(instructions, state);
1268 op[1] = this->subexpressions[1]->hir(instructions, state);
1269 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1270 &loc);
1271 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1272 type, op[0], op[1]);
1273 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1274 temp_rhs, false,
1275 this->subexpressions[0]->get_location());
1276 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1277 break;
1278 }
1279
1280 case ast_and_assign:
1281 case ast_xor_assign:
1282 case ast_or_assign: {
1283 op[0] = this->subexpressions[0]->hir(instructions, state);
1284 op[1] = this->subexpressions[1]->hir(instructions, state);
1285 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1286 state, &loc);
1287 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1288 type, op[0], op[1]);
1289 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1290 temp_rhs, false,
1291 this->subexpressions[0]->get_location());
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294 }
1295
1296 case ast_conditional: {
1297 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1298 *
1299 * "The ternary selection operator (?:). It operates on three
1300 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1301 * first expression, which must result in a scalar Boolean."
1302 */
1303 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1304 "condition", &error_emitted);
1305
1306 /* The :? operator is implemented by generating an anonymous temporary
1307 * followed by an if-statement. The last instruction in each branch of
1308 * the if-statement assigns a value to the anonymous temporary. This
1309 * temporary is the r-value of the expression.
1310 */
1311 exec_list then_instructions;
1312 exec_list else_instructions;
1313
1314 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1315 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1316
1317 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1318 *
1319 * "The second and third expressions can be any type, as
1320 * long their types match, or there is a conversion in
1321 * Section 4.1.10 "Implicit Conversions" that can be applied
1322 * to one of the expressions to make their types match. This
1323 * resulting matching type is the type of the entire
1324 * expression."
1325 */
1326 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1327 && !apply_implicit_conversion(op[2]->type, op[1], state))
1328 || (op[1]->type != op[2]->type)) {
1329 YYLTYPE loc = this->subexpressions[1]->get_location();
1330
1331 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1332 "operator must have matching types.");
1333 error_emitted = true;
1334 type = glsl_type::error_type;
1335 } else {
1336 type = op[1]->type;
1337 }
1338
1339 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1340 *
1341 * "The second and third expressions must be the same type, but can
1342 * be of any type other than an array."
1343 */
1344 if ((state->language_version <= 110) && type->is_array()) {
1345 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1346 "operator must not be arrays.");
1347 error_emitted = true;
1348 }
1349
1350 ir_constant *cond_val = op[0]->constant_expression_value();
1351 ir_constant *then_val = op[1]->constant_expression_value();
1352 ir_constant *else_val = op[2]->constant_expression_value();
1353
1354 if (then_instructions.is_empty()
1355 && else_instructions.is_empty()
1356 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1357 result = (cond_val->value.b[0]) ? then_val : else_val;
1358 } else {
1359 ir_variable *const tmp =
1360 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1361 instructions->push_tail(tmp);
1362
1363 ir_if *const stmt = new(ctx) ir_if(op[0]);
1364 instructions->push_tail(stmt);
1365
1366 then_instructions.move_nodes_to(& stmt->then_instructions);
1367 ir_dereference *const then_deref =
1368 new(ctx) ir_dereference_variable(tmp);
1369 ir_assignment *const then_assign =
1370 new(ctx) ir_assignment(then_deref, op[1], NULL);
1371 stmt->then_instructions.push_tail(then_assign);
1372
1373 else_instructions.move_nodes_to(& stmt->else_instructions);
1374 ir_dereference *const else_deref =
1375 new(ctx) ir_dereference_variable(tmp);
1376 ir_assignment *const else_assign =
1377 new(ctx) ir_assignment(else_deref, op[2], NULL);
1378 stmt->else_instructions.push_tail(else_assign);
1379
1380 result = new(ctx) ir_dereference_variable(tmp);
1381 }
1382 break;
1383 }
1384
1385 case ast_pre_inc:
1386 case ast_pre_dec: {
1387 op[0] = this->subexpressions[0]->hir(instructions, state);
1388 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1389 op[1] = new(ctx) ir_constant(1.0f);
1390 else
1391 op[1] = new(ctx) ir_constant(1);
1392
1393 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1394
1395 ir_rvalue *temp_rhs;
1396 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1397 op[0], op[1]);
1398
1399 result = do_assignment(instructions, state,
1400 op[0]->clone(ctx, NULL), temp_rhs, false,
1401 this->subexpressions[0]->get_location());
1402 error_emitted = op[0]->type->is_error();
1403 break;
1404 }
1405
1406 case ast_post_inc:
1407 case ast_post_dec: {
1408 op[0] = this->subexpressions[0]->hir(instructions, state);
1409 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1410 op[1] = new(ctx) ir_constant(1.0f);
1411 else
1412 op[1] = new(ctx) ir_constant(1);
1413
1414 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1415
1416 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1417
1418 ir_rvalue *temp_rhs;
1419 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1420 op[0], op[1]);
1421
1422 /* Get a temporary of a copy of the lvalue before it's modified.
1423 * This may get thrown away later.
1424 */
1425 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1426
1427 (void)do_assignment(instructions, state,
1428 op[0]->clone(ctx, NULL), temp_rhs, false,
1429 this->subexpressions[0]->get_location());
1430
1431 error_emitted = op[0]->type->is_error();
1432 break;
1433 }
1434
1435 case ast_field_selection:
1436 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1437 break;
1438
1439 case ast_array_index: {
1440 YYLTYPE index_loc = subexpressions[1]->get_location();
1441
1442 op[0] = subexpressions[0]->hir(instructions, state);
1443 op[1] = subexpressions[1]->hir(instructions, state);
1444
1445 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1446
1447 ir_rvalue *const array = op[0];
1448
1449 result = new(ctx) ir_dereference_array(op[0], op[1]);
1450
1451 /* Do not use op[0] after this point. Use array.
1452 */
1453 op[0] = NULL;
1454
1455
1456 if (error_emitted)
1457 break;
1458
1459 if (!array->type->is_array()
1460 && !array->type->is_matrix()
1461 && !array->type->is_vector()) {
1462 _mesa_glsl_error(& index_loc, state,
1463 "cannot dereference non-array / non-matrix / "
1464 "non-vector");
1465 error_emitted = true;
1466 }
1467
1468 if (!op[1]->type->is_integer()) {
1469 _mesa_glsl_error(& index_loc, state,
1470 "array index must be integer type");
1471 error_emitted = true;
1472 } else if (!op[1]->type->is_scalar()) {
1473 _mesa_glsl_error(& index_loc, state,
1474 "array index must be scalar");
1475 error_emitted = true;
1476 }
1477
1478 /* If the array index is a constant expression and the array has a
1479 * declared size, ensure that the access is in-bounds. If the array
1480 * index is not a constant expression, ensure that the array has a
1481 * declared size.
1482 */
1483 ir_constant *const const_index = op[1]->constant_expression_value();
1484 if (const_index != NULL) {
1485 const int idx = const_index->value.i[0];
1486 const char *type_name;
1487 unsigned bound = 0;
1488
1489 if (array->type->is_matrix()) {
1490 type_name = "matrix";
1491 } else if (array->type->is_vector()) {
1492 type_name = "vector";
1493 } else {
1494 type_name = "array";
1495 }
1496
1497 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1498 *
1499 * "It is illegal to declare an array with a size, and then
1500 * later (in the same shader) index the same array with an
1501 * integral constant expression greater than or equal to the
1502 * declared size. It is also illegal to index an array with a
1503 * negative constant expression."
1504 */
1505 if (array->type->is_matrix()) {
1506 if (array->type->row_type()->vector_elements <= idx) {
1507 bound = array->type->row_type()->vector_elements;
1508 }
1509 } else if (array->type->is_vector()) {
1510 if (array->type->vector_elements <= idx) {
1511 bound = array->type->vector_elements;
1512 }
1513 } else {
1514 if ((array->type->array_size() > 0)
1515 && (array->type->array_size() <= idx)) {
1516 bound = array->type->array_size();
1517 }
1518 }
1519
1520 if (bound > 0) {
1521 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1522 type_name, bound);
1523 error_emitted = true;
1524 } else if (idx < 0) {
1525 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1526 type_name);
1527 error_emitted = true;
1528 }
1529
1530 if (array->type->is_array()) {
1531 /* If the array is a variable dereference, it dereferences the
1532 * whole array, by definition. Use this to get the variable.
1533 *
1534 * FINISHME: Should some methods for getting / setting / testing
1535 * FINISHME: array access limits be added to ir_dereference?
1536 */
1537 ir_variable *const v = array->whole_variable_referenced();
1538 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1539 v->max_array_access = idx;
1540 }
1541 } else if (array->type->array_size() == 0) {
1542 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1543 } else {
1544 if (array->type->is_array()) {
1545 /* whole_variable_referenced can return NULL if the array is a
1546 * member of a structure. In this case it is safe to not update
1547 * the max_array_access field because it is never used for fields
1548 * of structures.
1549 */
1550 ir_variable *v = array->whole_variable_referenced();
1551 if (v != NULL)
1552 v->max_array_access = array->type->array_size() - 1;
1553 }
1554 }
1555
1556 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1557 *
1558 * "Samplers aggregated into arrays within a shader (using square
1559 * brackets [ ]) can only be indexed with integral constant
1560 * expressions [...]."
1561 *
1562 * This restriction was added in GLSL 1.30. Shaders using earlier version
1563 * of the language should not be rejected by the compiler front-end for
1564 * using this construct. This allows useful things such as using a loop
1565 * counter as the index to an array of samplers. If the loop in unrolled,
1566 * the code should compile correctly. Instead, emit a warning.
1567 */
1568 if (array->type->is_array() &&
1569 array->type->element_type()->is_sampler() &&
1570 const_index == NULL) {
1571
1572 if (state->language_version == 100) {
1573 _mesa_glsl_warning(&loc, state,
1574 "sampler arrays indexed with non-constant "
1575 "expressions is optional in GLSL ES 1.00");
1576 } else if (state->language_version < 130) {
1577 _mesa_glsl_warning(&loc, state,
1578 "sampler arrays indexed with non-constant "
1579 "expressions is forbidden in GLSL 1.30 and "
1580 "later");
1581 } else {
1582 _mesa_glsl_error(&loc, state,
1583 "sampler arrays indexed with non-constant "
1584 "expressions is forbidden in GLSL 1.30 and "
1585 "later");
1586 error_emitted = true;
1587 }
1588 }
1589
1590 if (error_emitted)
1591 result->type = glsl_type::error_type;
1592
1593 break;
1594 }
1595
1596 case ast_function_call:
1597 /* Should *NEVER* get here. ast_function_call should always be handled
1598 * by ast_function_expression::hir.
1599 */
1600 assert(0);
1601 break;
1602
1603 case ast_identifier: {
1604 /* ast_identifier can appear several places in a full abstract syntax
1605 * tree. This particular use must be at location specified in the grammar
1606 * as 'variable_identifier'.
1607 */
1608 ir_variable *var =
1609 state->symbols->get_variable(this->primary_expression.identifier);
1610
1611 result = new(ctx) ir_dereference_variable(var);
1612
1613 if (var != NULL) {
1614 var->used = true;
1615 } else {
1616 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1617 this->primary_expression.identifier);
1618
1619 error_emitted = true;
1620 }
1621 break;
1622 }
1623
1624 case ast_int_constant:
1625 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1626 break;
1627
1628 case ast_uint_constant:
1629 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1630 break;
1631
1632 case ast_float_constant:
1633 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1634 break;
1635
1636 case ast_bool_constant:
1637 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1638 break;
1639
1640 case ast_sequence: {
1641 /* It should not be possible to generate a sequence in the AST without
1642 * any expressions in it.
1643 */
1644 assert(!this->expressions.is_empty());
1645
1646 /* The r-value of a sequence is the last expression in the sequence. If
1647 * the other expressions in the sequence do not have side-effects (and
1648 * therefore add instructions to the instruction list), they get dropped
1649 * on the floor.
1650 */
1651 exec_node *previous_tail_pred = NULL;
1652 YYLTYPE previous_operand_loc = loc;
1653
1654 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1655 /* If one of the operands of comma operator does not generate any
1656 * code, we want to emit a warning. At each pass through the loop
1657 * previous_tail_pred will point to the last instruction in the
1658 * stream *before* processing the previous operand. Naturally,
1659 * instructions->tail_pred will point to the last instruction in the
1660 * stream *after* processing the previous operand. If the two
1661 * pointers match, then the previous operand had no effect.
1662 *
1663 * The warning behavior here differs slightly from GCC. GCC will
1664 * only emit a warning if none of the left-hand operands have an
1665 * effect. However, it will emit a warning for each. I believe that
1666 * there are some cases in C (especially with GCC extensions) where
1667 * it is useful to have an intermediate step in a sequence have no
1668 * effect, but I don't think these cases exist in GLSL. Either way,
1669 * it would be a giant hassle to replicate that behavior.
1670 */
1671 if (previous_tail_pred == instructions->tail_pred) {
1672 _mesa_glsl_warning(&previous_operand_loc, state,
1673 "left-hand operand of comma expression has "
1674 "no effect");
1675 }
1676
1677 /* tail_pred is directly accessed instead of using the get_tail()
1678 * method for performance reasons. get_tail() has extra code to
1679 * return NULL when the list is empty. We don't care about that
1680 * here, so using tail_pred directly is fine.
1681 */
1682 previous_tail_pred = instructions->tail_pred;
1683 previous_operand_loc = ast->get_location();
1684
1685 result = ast->hir(instructions, state);
1686 }
1687
1688 /* Any errors should have already been emitted in the loop above.
1689 */
1690 error_emitted = true;
1691 break;
1692 }
1693 }
1694 type = NULL; /* use result->type, not type. */
1695 assert(result != NULL);
1696
1697 if (result->type->is_error() && !error_emitted)
1698 _mesa_glsl_error(& loc, state, "type mismatch");
1699
1700 return result;
1701 }
1702
1703
1704 ir_rvalue *
1705 ast_expression_statement::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 /* It is possible to have expression statements that don't have an
1709 * expression. This is the solitary semicolon:
1710 *
1711 * for (i = 0; i < 5; i++)
1712 * ;
1713 *
1714 * In this case the expression will be NULL. Test for NULL and don't do
1715 * anything in that case.
1716 */
1717 if (expression != NULL)
1718 expression->hir(instructions, state);
1719
1720 /* Statements do not have r-values.
1721 */
1722 return NULL;
1723 }
1724
1725
1726 ir_rvalue *
1727 ast_compound_statement::hir(exec_list *instructions,
1728 struct _mesa_glsl_parse_state *state)
1729 {
1730 if (new_scope)
1731 state->symbols->push_scope();
1732
1733 foreach_list_typed (ast_node, ast, link, &this->statements)
1734 ast->hir(instructions, state);
1735
1736 if (new_scope)
1737 state->symbols->pop_scope();
1738
1739 /* Compound statements do not have r-values.
1740 */
1741 return NULL;
1742 }
1743
1744
1745 static const glsl_type *
1746 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1747 struct _mesa_glsl_parse_state *state)
1748 {
1749 unsigned length = 0;
1750
1751 /* FINISHME: Reject delcarations of multidimensional arrays. */
1752
1753 if (array_size != NULL) {
1754 exec_list dummy_instructions;
1755 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1756 YYLTYPE loc = array_size->get_location();
1757
1758 /* FINISHME: Verify that the grammar forbids side-effects in array
1759 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1760 */
1761 assert(dummy_instructions.is_empty());
1762
1763 if (ir != NULL) {
1764 if (!ir->type->is_integer()) {
1765 _mesa_glsl_error(& loc, state, "array size must be integer type");
1766 } else if (!ir->type->is_scalar()) {
1767 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1768 } else {
1769 ir_constant *const size = ir->constant_expression_value();
1770
1771 if (size == NULL) {
1772 _mesa_glsl_error(& loc, state, "array size must be a "
1773 "constant valued expression");
1774 } else if (size->value.i[0] <= 0) {
1775 _mesa_glsl_error(& loc, state, "array size must be > 0");
1776 } else {
1777 assert(size->type == ir->type);
1778 length = size->value.u[0];
1779 }
1780 }
1781 }
1782 } else if (state->es_shader) {
1783 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1784 * array declarations have been removed from the language.
1785 */
1786 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1787 "allowed in GLSL ES 1.00.");
1788 }
1789
1790 return glsl_type::get_array_instance(base, length);
1791 }
1792
1793
1794 const glsl_type *
1795 ast_type_specifier::glsl_type(const char **name,
1796 struct _mesa_glsl_parse_state *state) const
1797 {
1798 const struct glsl_type *type;
1799
1800 type = state->symbols->get_type(this->type_name);
1801 *name = this->type_name;
1802
1803 if (this->is_array) {
1804 YYLTYPE loc = this->get_location();
1805 type = process_array_type(&loc, type, this->array_size, state);
1806 }
1807
1808 return type;
1809 }
1810
1811
1812 static void
1813 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1814 ir_variable *var,
1815 struct _mesa_glsl_parse_state *state,
1816 YYLTYPE *loc)
1817 {
1818 if (qual->flags.q.invariant) {
1819 if (var->used) {
1820 _mesa_glsl_error(loc, state,
1821 "variable `%s' may not be redeclared "
1822 "`invariant' after being used",
1823 var->name);
1824 } else {
1825 var->invariant = 1;
1826 }
1827 }
1828
1829 if (qual->flags.q.constant || qual->flags.q.attribute
1830 || qual->flags.q.uniform
1831 || (qual->flags.q.varying && (state->target == fragment_shader)))
1832 var->read_only = 1;
1833
1834 if (qual->flags.q.centroid)
1835 var->centroid = 1;
1836
1837 if (qual->flags.q.attribute && state->target != vertex_shader) {
1838 var->type = glsl_type::error_type;
1839 _mesa_glsl_error(loc, state,
1840 "`attribute' variables may not be declared in the "
1841 "%s shader",
1842 _mesa_glsl_shader_target_name(state->target));
1843 }
1844
1845 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1846 *
1847 * "The varying qualifier can be used only with the data types
1848 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1849 * these."
1850 */
1851 if (qual->flags.q.varying) {
1852 const glsl_type *non_array_type;
1853
1854 if (var->type && var->type->is_array())
1855 non_array_type = var->type->fields.array;
1856 else
1857 non_array_type = var->type;
1858
1859 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1860 var->type = glsl_type::error_type;
1861 _mesa_glsl_error(loc, state,
1862 "varying variables must be of base type float");
1863 }
1864 }
1865
1866 /* If there is no qualifier that changes the mode of the variable, leave
1867 * the setting alone.
1868 */
1869 if (qual->flags.q.in && qual->flags.q.out)
1870 var->mode = ir_var_inout;
1871 else if (qual->flags.q.attribute || qual->flags.q.in
1872 || (qual->flags.q.varying && (state->target == fragment_shader)))
1873 var->mode = ir_var_in;
1874 else if (qual->flags.q.out
1875 || (qual->flags.q.varying && (state->target == vertex_shader)))
1876 var->mode = ir_var_out;
1877 else if (qual->flags.q.uniform)
1878 var->mode = ir_var_uniform;
1879
1880 if (state->all_invariant && (state->current_function == NULL)) {
1881 switch (state->target) {
1882 case vertex_shader:
1883 if (var->mode == ir_var_out)
1884 var->invariant = true;
1885 break;
1886 case geometry_shader:
1887 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1888 var->invariant = true;
1889 break;
1890 case fragment_shader:
1891 if (var->mode == ir_var_in)
1892 var->invariant = true;
1893 break;
1894 }
1895 }
1896
1897 if (qual->flags.q.flat)
1898 var->interpolation = ir_var_flat;
1899 else if (qual->flags.q.noperspective)
1900 var->interpolation = ir_var_noperspective;
1901 else
1902 var->interpolation = ir_var_smooth;
1903
1904 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1905 var->origin_upper_left = qual->flags.q.origin_upper_left;
1906 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1907 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1908 const char *const qual_string = (qual->flags.q.origin_upper_left)
1909 ? "origin_upper_left" : "pixel_center_integer";
1910
1911 _mesa_glsl_error(loc, state,
1912 "layout qualifier `%s' can only be applied to "
1913 "fragment shader input `gl_FragCoord'",
1914 qual_string);
1915 }
1916
1917 if (qual->flags.q.explicit_location) {
1918 const bool global_scope = (state->current_function == NULL);
1919 bool fail = false;
1920 const char *string = "";
1921
1922 /* In the vertex shader only shader inputs can be given explicit
1923 * locations.
1924 *
1925 * In the fragment shader only shader outputs can be given explicit
1926 * locations.
1927 */
1928 switch (state->target) {
1929 case vertex_shader:
1930 if (!global_scope || (var->mode != ir_var_in)) {
1931 fail = true;
1932 string = "input";
1933 }
1934 break;
1935
1936 case geometry_shader:
1937 _mesa_glsl_error(loc, state,
1938 "geometry shader variables cannot be given "
1939 "explicit locations\n");
1940 break;
1941
1942 case fragment_shader:
1943 if (!global_scope || (var->mode != ir_var_in)) {
1944 fail = true;
1945 string = "output";
1946 }
1947 break;
1948 };
1949
1950 if (fail) {
1951 _mesa_glsl_error(loc, state,
1952 "only %s shader %s variables can be given an "
1953 "explicit location\n",
1954 _mesa_glsl_shader_target_name(state->target),
1955 string);
1956 } else {
1957 var->explicit_location = true;
1958
1959 /* This bit of silliness is needed because invalid explicit locations
1960 * are supposed to be flagged during linking. Small negative values
1961 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1962 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1963 * The linker needs to be able to differentiate these cases. This
1964 * ensures that negative values stay negative.
1965 */
1966 if (qual->location >= 0) {
1967 var->location = (state->target == vertex_shader)
1968 ? (qual->location + VERT_ATTRIB_GENERIC0)
1969 : (qual->location + FRAG_RESULT_DATA0);
1970 } else {
1971 var->location = qual->location;
1972 }
1973 }
1974 }
1975
1976 /* Does the declaration use the 'layout' keyword?
1977 */
1978 const bool uses_layout = qual->flags.q.pixel_center_integer
1979 || qual->flags.q.origin_upper_left
1980 || qual->flags.q.explicit_location;
1981
1982 /* Does the declaration use the deprecated 'attribute' or 'varying'
1983 * keywords?
1984 */
1985 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1986 || qual->flags.q.varying;
1987
1988 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1989 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1990 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1991 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1992 * These extensions and all following extensions that add the 'layout'
1993 * keyword have been modified to require the use of 'in' or 'out'.
1994 *
1995 * The following extension do not allow the deprecated keywords:
1996 *
1997 * GL_AMD_conservative_depth
1998 * GL_ARB_gpu_shader5
1999 * GL_ARB_separate_shader_objects
2000 * GL_ARB_tesselation_shader
2001 * GL_ARB_transform_feedback3
2002 * GL_ARB_uniform_buffer_object
2003 *
2004 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2005 * allow layout with the deprecated keywords.
2006 */
2007 const bool relaxed_layout_qualifier_checking =
2008 state->ARB_fragment_coord_conventions_enable;
2009
2010 if (uses_layout && uses_deprecated_qualifier) {
2011 if (relaxed_layout_qualifier_checking) {
2012 _mesa_glsl_warning(loc, state,
2013 "`layout' qualifier may not be used with "
2014 "`attribute' or `varying'");
2015 } else {
2016 _mesa_glsl_error(loc, state,
2017 "`layout' qualifier may not be used with "
2018 "`attribute' or `varying'");
2019 }
2020 }
2021
2022 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2023 * AMD_conservative_depth.
2024 */
2025 int depth_layout_count = qual->flags.q.depth_any
2026 + qual->flags.q.depth_greater
2027 + qual->flags.q.depth_less
2028 + qual->flags.q.depth_unchanged;
2029 if (depth_layout_count > 0
2030 && !state->AMD_conservative_depth_enable) {
2031 _mesa_glsl_error(loc, state,
2032 "extension GL_AMD_conservative_depth must be enabled "
2033 "to use depth layout qualifiers");
2034 } else if (depth_layout_count > 0
2035 && strcmp(var->name, "gl_FragDepth") != 0) {
2036 _mesa_glsl_error(loc, state,
2037 "depth layout qualifiers can be applied only to "
2038 "gl_FragDepth");
2039 } else if (depth_layout_count > 1
2040 && strcmp(var->name, "gl_FragDepth") == 0) {
2041 _mesa_glsl_error(loc, state,
2042 "at most one depth layout qualifier can be applied to "
2043 "gl_FragDepth");
2044 }
2045 if (qual->flags.q.depth_any)
2046 var->depth_layout = ir_depth_layout_any;
2047 else if (qual->flags.q.depth_greater)
2048 var->depth_layout = ir_depth_layout_greater;
2049 else if (qual->flags.q.depth_less)
2050 var->depth_layout = ir_depth_layout_less;
2051 else if (qual->flags.q.depth_unchanged)
2052 var->depth_layout = ir_depth_layout_unchanged;
2053 else
2054 var->depth_layout = ir_depth_layout_none;
2055
2056 if (var->type->is_array() && state->language_version != 110) {
2057 var->array_lvalue = true;
2058 }
2059 }
2060
2061 /**
2062 * Get the variable that is being redeclared by this declaration
2063 *
2064 * Semantic checks to verify the validity of the redeclaration are also
2065 * performed. If semantic checks fail, compilation error will be emitted via
2066 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2067 *
2068 * \returns
2069 * A pointer to an existing variable in the current scope if the declaration
2070 * is a redeclaration, \c NULL otherwise.
2071 */
2072 ir_variable *
2073 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2074 struct _mesa_glsl_parse_state *state)
2075 {
2076 /* Check if this declaration is actually a re-declaration, either to
2077 * resize an array or add qualifiers to an existing variable.
2078 *
2079 * This is allowed for variables in the current scope, or when at
2080 * global scope (for built-ins in the implicit outer scope).
2081 */
2082 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2083 if (earlier == NULL ||
2084 (state->current_function != NULL &&
2085 !state->symbols->name_declared_this_scope(decl->identifier))) {
2086 return NULL;
2087 }
2088
2089
2090 YYLTYPE loc = decl->get_location();
2091
2092 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2093 *
2094 * "It is legal to declare an array without a size and then
2095 * later re-declare the same name as an array of the same
2096 * type and specify a size."
2097 */
2098 if ((earlier->type->array_size() == 0)
2099 && var->type->is_array()
2100 && (var->type->element_type() == earlier->type->element_type())) {
2101 /* FINISHME: This doesn't match the qualifiers on the two
2102 * FINISHME: declarations. It's not 100% clear whether this is
2103 * FINISHME: required or not.
2104 */
2105
2106 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2107 *
2108 * "The size [of gl_TexCoord] can be at most
2109 * gl_MaxTextureCoords."
2110 */
2111 const unsigned size = unsigned(var->type->array_size());
2112 if ((strcmp("gl_TexCoord", var->name) == 0)
2113 && (size > state->Const.MaxTextureCoords)) {
2114 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2115 "be larger than gl_MaxTextureCoords (%u)\n",
2116 state->Const.MaxTextureCoords);
2117 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2118 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2119 "previous access",
2120 earlier->max_array_access);
2121 }
2122
2123 earlier->type = var->type;
2124 delete var;
2125 var = NULL;
2126 } else if (state->ARB_fragment_coord_conventions_enable
2127 && strcmp(var->name, "gl_FragCoord") == 0
2128 && earlier->type == var->type
2129 && earlier->mode == var->mode) {
2130 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2131 * qualifiers.
2132 */
2133 earlier->origin_upper_left = var->origin_upper_left;
2134 earlier->pixel_center_integer = var->pixel_center_integer;
2135
2136 /* According to section 4.3.7 of the GLSL 1.30 spec,
2137 * the following built-in varaibles can be redeclared with an
2138 * interpolation qualifier:
2139 * * gl_FrontColor
2140 * * gl_BackColor
2141 * * gl_FrontSecondaryColor
2142 * * gl_BackSecondaryColor
2143 * * gl_Color
2144 * * gl_SecondaryColor
2145 */
2146 } else if (state->language_version >= 130
2147 && (strcmp(var->name, "gl_FrontColor") == 0
2148 || strcmp(var->name, "gl_BackColor") == 0
2149 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2150 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2151 || strcmp(var->name, "gl_Color") == 0
2152 || strcmp(var->name, "gl_SecondaryColor") == 0)
2153 && earlier->type == var->type
2154 && earlier->mode == var->mode) {
2155 earlier->interpolation = var->interpolation;
2156
2157 /* Layout qualifiers for gl_FragDepth. */
2158 } else if (state->AMD_conservative_depth_enable
2159 && strcmp(var->name, "gl_FragDepth") == 0
2160 && earlier->type == var->type
2161 && earlier->mode == var->mode) {
2162
2163 /** From the AMD_conservative_depth spec:
2164 * Within any shader, the first redeclarations of gl_FragDepth
2165 * must appear before any use of gl_FragDepth.
2166 */
2167 if (earlier->used) {
2168 _mesa_glsl_error(&loc, state,
2169 "the first redeclaration of gl_FragDepth "
2170 "must appear before any use of gl_FragDepth");
2171 }
2172
2173 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2174 if (earlier->depth_layout != ir_depth_layout_none
2175 && earlier->depth_layout != var->depth_layout) {
2176 _mesa_glsl_error(&loc, state,
2177 "gl_FragDepth: depth layout is declared here "
2178 "as '%s, but it was previously declared as "
2179 "'%s'",
2180 depth_layout_string(var->depth_layout),
2181 depth_layout_string(earlier->depth_layout));
2182 }
2183
2184 earlier->depth_layout = var->depth_layout;
2185
2186 } else {
2187 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2188 }
2189
2190 return earlier;
2191 }
2192
2193 /**
2194 * Generate the IR for an initializer in a variable declaration
2195 */
2196 ir_rvalue *
2197 process_initializer(ir_variable *var, ast_declaration *decl,
2198 ast_fully_specified_type *type,
2199 exec_list *initializer_instructions,
2200 struct _mesa_glsl_parse_state *state)
2201 {
2202 ir_rvalue *result = NULL;
2203
2204 YYLTYPE initializer_loc = decl->initializer->get_location();
2205
2206 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2207 *
2208 * "All uniform variables are read-only and are initialized either
2209 * directly by an application via API commands, or indirectly by
2210 * OpenGL."
2211 */
2212 if ((state->language_version <= 110)
2213 && (var->mode == ir_var_uniform)) {
2214 _mesa_glsl_error(& initializer_loc, state,
2215 "cannot initialize uniforms in GLSL 1.10");
2216 }
2217
2218 if (var->type->is_sampler()) {
2219 _mesa_glsl_error(& initializer_loc, state,
2220 "cannot initialize samplers");
2221 }
2222
2223 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2224 _mesa_glsl_error(& initializer_loc, state,
2225 "cannot initialize %s shader input / %s",
2226 _mesa_glsl_shader_target_name(state->target),
2227 (state->target == vertex_shader)
2228 ? "attribute" : "varying");
2229 }
2230
2231 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2232 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2233 state);
2234
2235 /* Calculate the constant value if this is a const or uniform
2236 * declaration.
2237 */
2238 if (type->qualifier.flags.q.constant
2239 || type->qualifier.flags.q.uniform) {
2240 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2241 if (new_rhs != NULL) {
2242 rhs = new_rhs;
2243
2244 ir_constant *constant_value = rhs->constant_expression_value();
2245 if (!constant_value) {
2246 _mesa_glsl_error(& initializer_loc, state,
2247 "initializer of %s variable `%s' must be a "
2248 "constant expression",
2249 (type->qualifier.flags.q.constant)
2250 ? "const" : "uniform",
2251 decl->identifier);
2252 if (var->type->is_numeric()) {
2253 /* Reduce cascading errors. */
2254 var->constant_value = ir_constant::zero(state, var->type);
2255 }
2256 } else {
2257 rhs = constant_value;
2258 var->constant_value = constant_value;
2259 }
2260 } else {
2261 _mesa_glsl_error(&initializer_loc, state,
2262 "initializer of type %s cannot be assigned to "
2263 "variable of type %s",
2264 rhs->type->name, var->type->name);
2265 if (var->type->is_numeric()) {
2266 /* Reduce cascading errors. */
2267 var->constant_value = ir_constant::zero(state, var->type);
2268 }
2269 }
2270 }
2271
2272 if (rhs && !rhs->type->is_error()) {
2273 bool temp = var->read_only;
2274 if (type->qualifier.flags.q.constant)
2275 var->read_only = false;
2276
2277 /* Never emit code to initialize a uniform.
2278 */
2279 const glsl_type *initializer_type;
2280 if (!type->qualifier.flags.q.uniform) {
2281 result = do_assignment(initializer_instructions, state,
2282 lhs, rhs, true,
2283 type->get_location());
2284 initializer_type = result->type;
2285 } else
2286 initializer_type = rhs->type;
2287
2288 /* If the declared variable is an unsized array, it must inherrit
2289 * its full type from the initializer. A declaration such as
2290 *
2291 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2292 *
2293 * becomes
2294 *
2295 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2296 *
2297 * The assignment generated in the if-statement (below) will also
2298 * automatically handle this case for non-uniforms.
2299 *
2300 * If the declared variable is not an array, the types must
2301 * already match exactly. As a result, the type assignment
2302 * here can be done unconditionally. For non-uniforms the call
2303 * to do_assignment can change the type of the initializer (via
2304 * the implicit conversion rules). For uniforms the initializer
2305 * must be a constant expression, and the type of that expression
2306 * was validated above.
2307 */
2308 var->type = initializer_type;
2309
2310 var->read_only = temp;
2311 }
2312
2313 return result;
2314 }
2315
2316 ir_rvalue *
2317 ast_declarator_list::hir(exec_list *instructions,
2318 struct _mesa_glsl_parse_state *state)
2319 {
2320 void *ctx = state;
2321 const struct glsl_type *decl_type;
2322 const char *type_name = NULL;
2323 ir_rvalue *result = NULL;
2324 YYLTYPE loc = this->get_location();
2325
2326 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2327 *
2328 * "To ensure that a particular output variable is invariant, it is
2329 * necessary to use the invariant qualifier. It can either be used to
2330 * qualify a previously declared variable as being invariant
2331 *
2332 * invariant gl_Position; // make existing gl_Position be invariant"
2333 *
2334 * In these cases the parser will set the 'invariant' flag in the declarator
2335 * list, and the type will be NULL.
2336 */
2337 if (this->invariant) {
2338 assert(this->type == NULL);
2339
2340 if (state->current_function != NULL) {
2341 _mesa_glsl_error(& loc, state,
2342 "All uses of `invariant' keyword must be at global "
2343 "scope\n");
2344 }
2345
2346 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2347 assert(!decl->is_array);
2348 assert(decl->array_size == NULL);
2349 assert(decl->initializer == NULL);
2350
2351 ir_variable *const earlier =
2352 state->symbols->get_variable(decl->identifier);
2353 if (earlier == NULL) {
2354 _mesa_glsl_error(& loc, state,
2355 "Undeclared variable `%s' cannot be marked "
2356 "invariant\n", decl->identifier);
2357 } else if ((state->target == vertex_shader)
2358 && (earlier->mode != ir_var_out)) {
2359 _mesa_glsl_error(& loc, state,
2360 "`%s' cannot be marked invariant, vertex shader "
2361 "outputs only\n", decl->identifier);
2362 } else if ((state->target == fragment_shader)
2363 && (earlier->mode != ir_var_in)) {
2364 _mesa_glsl_error(& loc, state,
2365 "`%s' cannot be marked invariant, fragment shader "
2366 "inputs only\n", decl->identifier);
2367 } else if (earlier->used) {
2368 _mesa_glsl_error(& loc, state,
2369 "variable `%s' may not be redeclared "
2370 "`invariant' after being used",
2371 earlier->name);
2372 } else {
2373 earlier->invariant = true;
2374 }
2375 }
2376
2377 /* Invariant redeclarations do not have r-values.
2378 */
2379 return NULL;
2380 }
2381
2382 assert(this->type != NULL);
2383 assert(!this->invariant);
2384
2385 /* The type specifier may contain a structure definition. Process that
2386 * before any of the variable declarations.
2387 */
2388 (void) this->type->specifier->hir(instructions, state);
2389
2390 decl_type = this->type->specifier->glsl_type(& type_name, state);
2391 if (this->declarations.is_empty()) {
2392 /* The only valid case where the declaration list can be empty is when
2393 * the declaration is setting the default precision of a built-in type
2394 * (e.g., 'precision highp vec4;').
2395 */
2396
2397 if (decl_type != NULL) {
2398 } else {
2399 _mesa_glsl_error(& loc, state, "incomplete declaration");
2400 }
2401 }
2402
2403 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2404 const struct glsl_type *var_type;
2405 ir_variable *var;
2406
2407 /* FINISHME: Emit a warning if a variable declaration shadows a
2408 * FINISHME: declaration at a higher scope.
2409 */
2410
2411 if ((decl_type == NULL) || decl_type->is_void()) {
2412 if (type_name != NULL) {
2413 _mesa_glsl_error(& loc, state,
2414 "invalid type `%s' in declaration of `%s'",
2415 type_name, decl->identifier);
2416 } else {
2417 _mesa_glsl_error(& loc, state,
2418 "invalid type in declaration of `%s'",
2419 decl->identifier);
2420 }
2421 continue;
2422 }
2423
2424 if (decl->is_array) {
2425 var_type = process_array_type(&loc, decl_type, decl->array_size,
2426 state);
2427 } else {
2428 var_type = decl_type;
2429 }
2430
2431 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2432
2433 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2434 *
2435 * "Global variables can only use the qualifiers const,
2436 * attribute, uni form, or varying. Only one may be
2437 * specified.
2438 *
2439 * Local variables can only use the qualifier const."
2440 *
2441 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2442 * that adds the 'layout' keyword.
2443 */
2444 if ((state->language_version < 130)
2445 && !state->ARB_explicit_attrib_location_enable
2446 && !state->ARB_fragment_coord_conventions_enable) {
2447 if (this->type->qualifier.flags.q.out) {
2448 _mesa_glsl_error(& loc, state,
2449 "`out' qualifier in declaration of `%s' "
2450 "only valid for function parameters in %s.",
2451 decl->identifier, state->version_string);
2452 }
2453 if (this->type->qualifier.flags.q.in) {
2454 _mesa_glsl_error(& loc, state,
2455 "`in' qualifier in declaration of `%s' "
2456 "only valid for function parameters in %s.",
2457 decl->identifier, state->version_string);
2458 }
2459 /* FINISHME: Test for other invalid qualifiers. */
2460 }
2461
2462 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2463 & loc);
2464
2465 if (this->type->qualifier.flags.q.invariant) {
2466 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2467 var->mode == ir_var_inout)) {
2468 /* FINISHME: Note that this doesn't work for invariant on
2469 * a function signature outval
2470 */
2471 _mesa_glsl_error(& loc, state,
2472 "`%s' cannot be marked invariant, vertex shader "
2473 "outputs only\n", var->name);
2474 } else if ((state->target == fragment_shader) &&
2475 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2476 /* FINISHME: Note that this doesn't work for invariant on
2477 * a function signature inval
2478 */
2479 _mesa_glsl_error(& loc, state,
2480 "`%s' cannot be marked invariant, fragment shader "
2481 "inputs only\n", var->name);
2482 }
2483 }
2484
2485 if (state->current_function != NULL) {
2486 const char *mode = NULL;
2487 const char *extra = "";
2488
2489 /* There is no need to check for 'inout' here because the parser will
2490 * only allow that in function parameter lists.
2491 */
2492 if (this->type->qualifier.flags.q.attribute) {
2493 mode = "attribute";
2494 } else if (this->type->qualifier.flags.q.uniform) {
2495 mode = "uniform";
2496 } else if (this->type->qualifier.flags.q.varying) {
2497 mode = "varying";
2498 } else if (this->type->qualifier.flags.q.in) {
2499 mode = "in";
2500 extra = " or in function parameter list";
2501 } else if (this->type->qualifier.flags.q.out) {
2502 mode = "out";
2503 extra = " or in function parameter list";
2504 }
2505
2506 if (mode) {
2507 _mesa_glsl_error(& loc, state,
2508 "%s variable `%s' must be declared at "
2509 "global scope%s",
2510 mode, var->name, extra);
2511 }
2512 } else if (var->mode == ir_var_in) {
2513 var->read_only = true;
2514
2515 if (state->target == vertex_shader) {
2516 bool error_emitted = false;
2517
2518 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2519 *
2520 * "Vertex shader inputs can only be float, floating-point
2521 * vectors, matrices, signed and unsigned integers and integer
2522 * vectors. Vertex shader inputs can also form arrays of these
2523 * types, but not structures."
2524 *
2525 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2526 *
2527 * "Vertex shader inputs can only be float, floating-point
2528 * vectors, matrices, signed and unsigned integers and integer
2529 * vectors. They cannot be arrays or structures."
2530 *
2531 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2532 *
2533 * "The attribute qualifier can be used only with float,
2534 * floating-point vectors, and matrices. Attribute variables
2535 * cannot be declared as arrays or structures."
2536 */
2537 const glsl_type *check_type = var->type->is_array()
2538 ? var->type->fields.array : var->type;
2539
2540 switch (check_type->base_type) {
2541 case GLSL_TYPE_FLOAT:
2542 break;
2543 case GLSL_TYPE_UINT:
2544 case GLSL_TYPE_INT:
2545 if (state->language_version > 120)
2546 break;
2547 /* FALLTHROUGH */
2548 default:
2549 _mesa_glsl_error(& loc, state,
2550 "vertex shader input / attribute cannot have "
2551 "type %s`%s'",
2552 var->type->is_array() ? "array of " : "",
2553 check_type->name);
2554 error_emitted = true;
2555 }
2556
2557 if (!error_emitted && (state->language_version <= 130)
2558 && var->type->is_array()) {
2559 _mesa_glsl_error(& loc, state,
2560 "vertex shader input / attribute cannot have "
2561 "array type");
2562 error_emitted = true;
2563 }
2564 }
2565 }
2566
2567 /* Integer vertex outputs must be qualified with 'flat'.
2568 *
2569 * From section 4.3.6 of the GLSL 1.30 spec:
2570 * "If a vertex output is a signed or unsigned integer or integer
2571 * vector, then it must be qualified with the interpolation qualifier
2572 * flat."
2573 */
2574 if (state->language_version >= 130
2575 && state->target == vertex_shader
2576 && state->current_function == NULL
2577 && var->type->is_integer()
2578 && var->mode == ir_var_out
2579 && var->interpolation != ir_var_flat) {
2580
2581 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2582 "then it must be qualified with 'flat'");
2583 }
2584
2585
2586 /* Interpolation qualifiers cannot be applied to 'centroid' and
2587 * 'centroid varying'.
2588 *
2589 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2590 * "interpolation qualifiers may only precede the qualifiers in,
2591 * centroid in, out, or centroid out in a declaration. They do not apply
2592 * to the deprecated storage qualifiers varying or centroid varying."
2593 */
2594 if (state->language_version >= 130
2595 && this->type->qualifier.has_interpolation()
2596 && this->type->qualifier.flags.q.varying) {
2597
2598 const char *i = this->type->qualifier.interpolation_string();
2599 assert(i != NULL);
2600 const char *s;
2601 if (this->type->qualifier.flags.q.centroid)
2602 s = "centroid varying";
2603 else
2604 s = "varying";
2605
2606 _mesa_glsl_error(&loc, state,
2607 "qualifier '%s' cannot be applied to the "
2608 "deprecated storage qualifier '%s'", i, s);
2609 }
2610
2611
2612 /* Interpolation qualifiers can only apply to vertex shader outputs and
2613 * fragment shader inputs.
2614 *
2615 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2616 * "Outputs from a vertex shader (out) and inputs to a fragment
2617 * shader (in) can be further qualified with one or more of these
2618 * interpolation qualifiers"
2619 */
2620 if (state->language_version >= 130
2621 && this->type->qualifier.has_interpolation()) {
2622
2623 const char *i = this->type->qualifier.interpolation_string();
2624 assert(i != NULL);
2625
2626 switch (state->target) {
2627 case vertex_shader:
2628 if (this->type->qualifier.flags.q.in) {
2629 _mesa_glsl_error(&loc, state,
2630 "qualifier '%s' cannot be applied to vertex "
2631 "shader inputs", i);
2632 }
2633 break;
2634 case fragment_shader:
2635 if (this->type->qualifier.flags.q.out) {
2636 _mesa_glsl_error(&loc, state,
2637 "qualifier '%s' cannot be applied to fragment "
2638 "shader outputs", i);
2639 }
2640 break;
2641 default:
2642 assert(0);
2643 }
2644 }
2645
2646
2647 /* From section 4.3.4 of the GLSL 1.30 spec:
2648 * "It is an error to use centroid in in a vertex shader."
2649 */
2650 if (state->language_version >= 130
2651 && this->type->qualifier.flags.q.centroid
2652 && this->type->qualifier.flags.q.in
2653 && state->target == vertex_shader) {
2654
2655 _mesa_glsl_error(&loc, state,
2656 "'centroid in' cannot be used in a vertex shader");
2657 }
2658
2659
2660 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2661 */
2662 if (this->type->specifier->precision != ast_precision_none
2663 && state->language_version != 100
2664 && state->language_version < 130) {
2665
2666 _mesa_glsl_error(&loc, state,
2667 "precision qualifiers are supported only in GLSL ES "
2668 "1.00, and GLSL 1.30 and later");
2669 }
2670
2671
2672 /* Precision qualifiers only apply to floating point and integer types.
2673 *
2674 * From section 4.5.2 of the GLSL 1.30 spec:
2675 * "Any floating point or any integer declaration can have the type
2676 * preceded by one of these precision qualifiers [...] Literal
2677 * constants do not have precision qualifiers. Neither do Boolean
2678 * variables.
2679 *
2680 * In GLSL ES, sampler types are also allowed.
2681 *
2682 * From page 87 of the GLSL ES spec:
2683 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2684 */
2685 if (this->type->specifier->precision != ast_precision_none
2686 && !var->type->is_float()
2687 && !var->type->is_integer()
2688 && !(var->type->is_sampler() && state->es_shader)
2689 && !(var->type->is_array()
2690 && (var->type->fields.array->is_float()
2691 || var->type->fields.array->is_integer()))) {
2692
2693 _mesa_glsl_error(&loc, state,
2694 "precision qualifiers apply only to floating point"
2695 "%s types", state->es_shader ? ", integer, and sampler"
2696 : "and integer");
2697 }
2698
2699 /* Process the initializer and add its instructions to a temporary
2700 * list. This list will be added to the instruction stream (below) after
2701 * the declaration is added. This is done because in some cases (such as
2702 * redeclarations) the declaration may not actually be added to the
2703 * instruction stream.
2704 */
2705 exec_list initializer_instructions;
2706 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2707
2708 if (decl->initializer != NULL) {
2709 result = process_initializer((earlier == NULL) ? var : earlier,
2710 decl, this->type,
2711 &initializer_instructions, state);
2712 }
2713
2714 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2715 *
2716 * "It is an error to write to a const variable outside of
2717 * its declaration, so they must be initialized when
2718 * declared."
2719 */
2720 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2721 _mesa_glsl_error(& loc, state,
2722 "const declaration of `%s' must be initialized",
2723 decl->identifier);
2724 }
2725
2726 /* If the declaration is not a redeclaration, there are a few additional
2727 * semantic checks that must be applied. In addition, variable that was
2728 * created for the declaration should be added to the IR stream.
2729 */
2730 if (earlier == NULL) {
2731 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2732 *
2733 * "Identifiers starting with "gl_" are reserved for use by
2734 * OpenGL, and may not be declared in a shader as either a
2735 * variable or a function."
2736 */
2737 if (strncmp(decl->identifier, "gl_", 3) == 0)
2738 _mesa_glsl_error(& loc, state,
2739 "identifier `%s' uses reserved `gl_' prefix",
2740 decl->identifier);
2741
2742 /* Add the variable to the symbol table. Note that the initializer's
2743 * IR was already processed earlier (though it hasn't been emitted
2744 * yet), without the variable in scope.
2745 *
2746 * This differs from most C-like languages, but it follows the GLSL
2747 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2748 * spec:
2749 *
2750 * "Within a declaration, the scope of a name starts immediately
2751 * after the initializer if present or immediately after the name
2752 * being declared if not."
2753 */
2754 if (!state->symbols->add_variable(var)) {
2755 YYLTYPE loc = this->get_location();
2756 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2757 "current scope", decl->identifier);
2758 continue;
2759 }
2760
2761 /* Push the variable declaration to the top. It means that all the
2762 * variable declarations will appear in a funny last-to-first order,
2763 * but otherwise we run into trouble if a function is prototyped, a
2764 * global var is decled, then the function is defined with usage of
2765 * the global var. See glslparsertest's CorrectModule.frag.
2766 */
2767 instructions->push_head(var);
2768 }
2769
2770 instructions->append_list(&initializer_instructions);
2771 }
2772
2773
2774 /* Generally, variable declarations do not have r-values. However,
2775 * one is used for the declaration in
2776 *
2777 * while (bool b = some_condition()) {
2778 * ...
2779 * }
2780 *
2781 * so we return the rvalue from the last seen declaration here.
2782 */
2783 return result;
2784 }
2785
2786
2787 ir_rvalue *
2788 ast_parameter_declarator::hir(exec_list *instructions,
2789 struct _mesa_glsl_parse_state *state)
2790 {
2791 void *ctx = state;
2792 const struct glsl_type *type;
2793 const char *name = NULL;
2794 YYLTYPE loc = this->get_location();
2795
2796 type = this->type->specifier->glsl_type(& name, state);
2797
2798 if (type == NULL) {
2799 if (name != NULL) {
2800 _mesa_glsl_error(& loc, state,
2801 "invalid type `%s' in declaration of `%s'",
2802 name, this->identifier);
2803 } else {
2804 _mesa_glsl_error(& loc, state,
2805 "invalid type in declaration of `%s'",
2806 this->identifier);
2807 }
2808
2809 type = glsl_type::error_type;
2810 }
2811
2812 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2813 *
2814 * "Functions that accept no input arguments need not use void in the
2815 * argument list because prototypes (or definitions) are required and
2816 * therefore there is no ambiguity when an empty argument list "( )" is
2817 * declared. The idiom "(void)" as a parameter list is provided for
2818 * convenience."
2819 *
2820 * Placing this check here prevents a void parameter being set up
2821 * for a function, which avoids tripping up checks for main taking
2822 * parameters and lookups of an unnamed symbol.
2823 */
2824 if (type->is_void()) {
2825 if (this->identifier != NULL)
2826 _mesa_glsl_error(& loc, state,
2827 "named parameter cannot have type `void'");
2828
2829 is_void = true;
2830 return NULL;
2831 }
2832
2833 if (formal_parameter && (this->identifier == NULL)) {
2834 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2835 return NULL;
2836 }
2837
2838 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2839 * call already handled the "vec4[..] foo" case.
2840 */
2841 if (this->is_array) {
2842 type = process_array_type(&loc, type, this->array_size, state);
2843 }
2844
2845 if (type->array_size() == 0) {
2846 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2847 "a declared size.");
2848 type = glsl_type::error_type;
2849 }
2850
2851 is_void = false;
2852 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2853
2854 /* Apply any specified qualifiers to the parameter declaration. Note that
2855 * for function parameters the default mode is 'in'.
2856 */
2857 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2858
2859 instructions->push_tail(var);
2860
2861 /* Parameter declarations do not have r-values.
2862 */
2863 return NULL;
2864 }
2865
2866
2867 void
2868 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2869 bool formal,
2870 exec_list *ir_parameters,
2871 _mesa_glsl_parse_state *state)
2872 {
2873 ast_parameter_declarator *void_param = NULL;
2874 unsigned count = 0;
2875
2876 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2877 param->formal_parameter = formal;
2878 param->hir(ir_parameters, state);
2879
2880 if (param->is_void)
2881 void_param = param;
2882
2883 count++;
2884 }
2885
2886 if ((void_param != NULL) && (count > 1)) {
2887 YYLTYPE loc = void_param->get_location();
2888
2889 _mesa_glsl_error(& loc, state,
2890 "`void' parameter must be only parameter");
2891 }
2892 }
2893
2894
2895 void
2896 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2897 ir_function *f)
2898 {
2899 /* Emit the new function header */
2900 if (state->current_function == NULL) {
2901 instructions->push_tail(f);
2902 } else {
2903 /* IR invariants disallow function declarations or definitions nested
2904 * within other function definitions. Insert the new ir_function
2905 * block in the instruction sequence before the ir_function block
2906 * containing the current ir_function_signature.
2907 */
2908 ir_function *const curr =
2909 const_cast<ir_function *>(state->current_function->function());
2910
2911 curr->insert_before(f);
2912 }
2913 }
2914
2915
2916 ir_rvalue *
2917 ast_function::hir(exec_list *instructions,
2918 struct _mesa_glsl_parse_state *state)
2919 {
2920 void *ctx = state;
2921 ir_function *f = NULL;
2922 ir_function_signature *sig = NULL;
2923 exec_list hir_parameters;
2924
2925 const char *const name = identifier;
2926
2927 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2928 *
2929 * "Function declarations (prototypes) cannot occur inside of functions;
2930 * they must be at global scope, or for the built-in functions, outside
2931 * the global scope."
2932 *
2933 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2934 *
2935 * "User defined functions may only be defined within the global scope."
2936 *
2937 * Note that this language does not appear in GLSL 1.10.
2938 */
2939 if ((state->current_function != NULL) && (state->language_version != 110)) {
2940 YYLTYPE loc = this->get_location();
2941 _mesa_glsl_error(&loc, state,
2942 "declaration of function `%s' not allowed within "
2943 "function body", name);
2944 }
2945
2946 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2947 *
2948 * "Identifiers starting with "gl_" are reserved for use by
2949 * OpenGL, and may not be declared in a shader as either a
2950 * variable or a function."
2951 */
2952 if (strncmp(name, "gl_", 3) == 0) {
2953 YYLTYPE loc = this->get_location();
2954 _mesa_glsl_error(&loc, state,
2955 "identifier `%s' uses reserved `gl_' prefix", name);
2956 }
2957
2958 /* Convert the list of function parameters to HIR now so that they can be
2959 * used below to compare this function's signature with previously seen
2960 * signatures for functions with the same name.
2961 */
2962 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2963 is_definition,
2964 & hir_parameters, state);
2965
2966 const char *return_type_name;
2967 const glsl_type *return_type =
2968 this->return_type->specifier->glsl_type(& return_type_name, state);
2969
2970 if (!return_type) {
2971 YYLTYPE loc = this->get_location();
2972 _mesa_glsl_error(&loc, state,
2973 "function `%s' has undeclared return type `%s'",
2974 name, return_type_name);
2975 return_type = glsl_type::error_type;
2976 }
2977
2978 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2979 * "No qualifier is allowed on the return type of a function."
2980 */
2981 if (this->return_type->has_qualifiers()) {
2982 YYLTYPE loc = this->get_location();
2983 _mesa_glsl_error(& loc, state,
2984 "function `%s' return type has qualifiers", name);
2985 }
2986
2987 /* Verify that this function's signature either doesn't match a previously
2988 * seen signature for a function with the same name, or, if a match is found,
2989 * that the previously seen signature does not have an associated definition.
2990 */
2991 f = state->symbols->get_function(name);
2992 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2993 sig = f->exact_matching_signature(&hir_parameters);
2994 if (sig != NULL) {
2995 const char *badvar = sig->qualifiers_match(&hir_parameters);
2996 if (badvar != NULL) {
2997 YYLTYPE loc = this->get_location();
2998
2999 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3000 "qualifiers don't match prototype", name, badvar);
3001 }
3002
3003 if (sig->return_type != return_type) {
3004 YYLTYPE loc = this->get_location();
3005
3006 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3007 "match prototype", name);
3008 }
3009
3010 if (is_definition && sig->is_defined) {
3011 YYLTYPE loc = this->get_location();
3012
3013 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3014 }
3015 }
3016 } else {
3017 f = new(ctx) ir_function(name);
3018 if (!state->symbols->add_function(f)) {
3019 /* This function name shadows a non-function use of the same name. */
3020 YYLTYPE loc = this->get_location();
3021
3022 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3023 "non-function", name);
3024 return NULL;
3025 }
3026
3027 emit_function(state, instructions, f);
3028 }
3029
3030 /* Verify the return type of main() */
3031 if (strcmp(name, "main") == 0) {
3032 if (! return_type->is_void()) {
3033 YYLTYPE loc = this->get_location();
3034
3035 _mesa_glsl_error(& loc, state, "main() must return void");
3036 }
3037
3038 if (!hir_parameters.is_empty()) {
3039 YYLTYPE loc = this->get_location();
3040
3041 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3042 }
3043 }
3044
3045 /* Finish storing the information about this new function in its signature.
3046 */
3047 if (sig == NULL) {
3048 sig = new(ctx) ir_function_signature(return_type);
3049 f->add_signature(sig);
3050 }
3051
3052 sig->replace_parameters(&hir_parameters);
3053 signature = sig;
3054
3055 /* Function declarations (prototypes) do not have r-values.
3056 */
3057 return NULL;
3058 }
3059
3060
3061 ir_rvalue *
3062 ast_function_definition::hir(exec_list *instructions,
3063 struct _mesa_glsl_parse_state *state)
3064 {
3065 prototype->is_definition = true;
3066 prototype->hir(instructions, state);
3067
3068 ir_function_signature *signature = prototype->signature;
3069 if (signature == NULL)
3070 return NULL;
3071
3072 assert(state->current_function == NULL);
3073 state->current_function = signature;
3074 state->found_return = false;
3075
3076 /* Duplicate parameters declared in the prototype as concrete variables.
3077 * Add these to the symbol table.
3078 */
3079 state->symbols->push_scope();
3080 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3081 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3082
3083 assert(var != NULL);
3084
3085 /* The only way a parameter would "exist" is if two parameters have
3086 * the same name.
3087 */
3088 if (state->symbols->name_declared_this_scope(var->name)) {
3089 YYLTYPE loc = this->get_location();
3090
3091 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3092 } else {
3093 state->symbols->add_variable(var);
3094 }
3095 }
3096
3097 /* Convert the body of the function to HIR. */
3098 this->body->hir(&signature->body, state);
3099 signature->is_defined = true;
3100
3101 state->symbols->pop_scope();
3102
3103 assert(state->current_function == signature);
3104 state->current_function = NULL;
3105
3106 if (!signature->return_type->is_void() && !state->found_return) {
3107 YYLTYPE loc = this->get_location();
3108 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3109 "%s, but no return statement",
3110 signature->function_name(),
3111 signature->return_type->name);
3112 }
3113
3114 /* Function definitions do not have r-values.
3115 */
3116 return NULL;
3117 }
3118
3119
3120 ir_rvalue *
3121 ast_jump_statement::hir(exec_list *instructions,
3122 struct _mesa_glsl_parse_state *state)
3123 {
3124 void *ctx = state;
3125
3126 switch (mode) {
3127 case ast_return: {
3128 ir_return *inst;
3129 assert(state->current_function);
3130
3131 if (opt_return_value) {
3132 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3133
3134 /* The value of the return type can be NULL if the shader says
3135 * 'return foo();' and foo() is a function that returns void.
3136 *
3137 * NOTE: The GLSL spec doesn't say that this is an error. The type
3138 * of the return value is void. If the return type of the function is
3139 * also void, then this should compile without error. Seriously.
3140 */
3141 const glsl_type *const ret_type =
3142 (ret == NULL) ? glsl_type::void_type : ret->type;
3143
3144 /* Implicit conversions are not allowed for return values. */
3145 if (state->current_function->return_type != ret_type) {
3146 YYLTYPE loc = this->get_location();
3147
3148 _mesa_glsl_error(& loc, state,
3149 "`return' with wrong type %s, in function `%s' "
3150 "returning %s",
3151 ret_type->name,
3152 state->current_function->function_name(),
3153 state->current_function->return_type->name);
3154 }
3155
3156 inst = new(ctx) ir_return(ret);
3157 } else {
3158 if (state->current_function->return_type->base_type !=
3159 GLSL_TYPE_VOID) {
3160 YYLTYPE loc = this->get_location();
3161
3162 _mesa_glsl_error(& loc, state,
3163 "`return' with no value, in function %s returning "
3164 "non-void",
3165 state->current_function->function_name());
3166 }
3167 inst = new(ctx) ir_return;
3168 }
3169
3170 state->found_return = true;
3171 instructions->push_tail(inst);
3172 break;
3173 }
3174
3175 case ast_discard:
3176 if (state->target != fragment_shader) {
3177 YYLTYPE loc = this->get_location();
3178
3179 _mesa_glsl_error(& loc, state,
3180 "`discard' may only appear in a fragment shader");
3181 }
3182 instructions->push_tail(new(ctx) ir_discard);
3183 break;
3184
3185 case ast_break:
3186 case ast_continue:
3187 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3188 * FINISHME: and they use a different IR instruction for 'break'.
3189 */
3190 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3191 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3192 * FINISHME: loop.
3193 */
3194 if (state->loop_or_switch_nesting == NULL) {
3195 YYLTYPE loc = this->get_location();
3196
3197 _mesa_glsl_error(& loc, state,
3198 "`%s' may only appear in a loop",
3199 (mode == ast_break) ? "break" : "continue");
3200 } else {
3201 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3202
3203 /* Inline the for loop expression again, since we don't know
3204 * where near the end of the loop body the normal copy of it
3205 * is going to be placed.
3206 */
3207 if (mode == ast_continue &&
3208 state->loop_or_switch_nesting_ast->rest_expression) {
3209 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3210 state);
3211 }
3212
3213 if (loop != NULL) {
3214 ir_loop_jump *const jump =
3215 new(ctx) ir_loop_jump((mode == ast_break)
3216 ? ir_loop_jump::jump_break
3217 : ir_loop_jump::jump_continue);
3218 instructions->push_tail(jump);
3219 }
3220 }
3221
3222 break;
3223 }
3224
3225 /* Jump instructions do not have r-values.
3226 */
3227 return NULL;
3228 }
3229
3230
3231 ir_rvalue *
3232 ast_selection_statement::hir(exec_list *instructions,
3233 struct _mesa_glsl_parse_state *state)
3234 {
3235 void *ctx = state;
3236
3237 ir_rvalue *const condition = this->condition->hir(instructions, state);
3238
3239 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3240 *
3241 * "Any expression whose type evaluates to a Boolean can be used as the
3242 * conditional expression bool-expression. Vector types are not accepted
3243 * as the expression to if."
3244 *
3245 * The checks are separated so that higher quality diagnostics can be
3246 * generated for cases where both rules are violated.
3247 */
3248 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3249 YYLTYPE loc = this->condition->get_location();
3250
3251 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3252 "boolean");
3253 }
3254
3255 ir_if *const stmt = new(ctx) ir_if(condition);
3256
3257 if (then_statement != NULL) {
3258 state->symbols->push_scope();
3259 then_statement->hir(& stmt->then_instructions, state);
3260 state->symbols->pop_scope();
3261 }
3262
3263 if (else_statement != NULL) {
3264 state->symbols->push_scope();
3265 else_statement->hir(& stmt->else_instructions, state);
3266 state->symbols->pop_scope();
3267 }
3268
3269 instructions->push_tail(stmt);
3270
3271 /* if-statements do not have r-values.
3272 */
3273 return NULL;
3274 }
3275
3276
3277 void
3278 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3279 struct _mesa_glsl_parse_state *state)
3280 {
3281 void *ctx = state;
3282
3283 if (condition != NULL) {
3284 ir_rvalue *const cond =
3285 condition->hir(& stmt->body_instructions, state);
3286
3287 if ((cond == NULL)
3288 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3289 YYLTYPE loc = condition->get_location();
3290
3291 _mesa_glsl_error(& loc, state,
3292 "loop condition must be scalar boolean");
3293 } else {
3294 /* As the first code in the loop body, generate a block that looks
3295 * like 'if (!condition) break;' as the loop termination condition.
3296 */
3297 ir_rvalue *const not_cond =
3298 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3299 NULL);
3300
3301 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3302
3303 ir_jump *const break_stmt =
3304 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3305
3306 if_stmt->then_instructions.push_tail(break_stmt);
3307 stmt->body_instructions.push_tail(if_stmt);
3308 }
3309 }
3310 }
3311
3312
3313 ir_rvalue *
3314 ast_iteration_statement::hir(exec_list *instructions,
3315 struct _mesa_glsl_parse_state *state)
3316 {
3317 void *ctx = state;
3318
3319 /* For-loops and while-loops start a new scope, but do-while loops do not.
3320 */
3321 if (mode != ast_do_while)
3322 state->symbols->push_scope();
3323
3324 if (init_statement != NULL)
3325 init_statement->hir(instructions, state);
3326
3327 ir_loop *const stmt = new(ctx) ir_loop();
3328 instructions->push_tail(stmt);
3329
3330 /* Track the current loop and / or switch-statement nesting.
3331 */
3332 ir_instruction *const nesting = state->loop_or_switch_nesting;
3333 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3334
3335 state->loop_or_switch_nesting = stmt;
3336 state->loop_or_switch_nesting_ast = this;
3337
3338 if (mode != ast_do_while)
3339 condition_to_hir(stmt, state);
3340
3341 if (body != NULL)
3342 body->hir(& stmt->body_instructions, state);
3343
3344 if (rest_expression != NULL)
3345 rest_expression->hir(& stmt->body_instructions, state);
3346
3347 if (mode == ast_do_while)
3348 condition_to_hir(stmt, state);
3349
3350 if (mode != ast_do_while)
3351 state->symbols->pop_scope();
3352
3353 /* Restore previous nesting before returning.
3354 */
3355 state->loop_or_switch_nesting = nesting;
3356 state->loop_or_switch_nesting_ast = nesting_ast;
3357
3358 /* Loops do not have r-values.
3359 */
3360 return NULL;
3361 }
3362
3363
3364 ir_rvalue *
3365 ast_type_specifier::hir(exec_list *instructions,
3366 struct _mesa_glsl_parse_state *state)
3367 {
3368 if (!this->is_precision_statement && this->structure == NULL)
3369 return NULL;
3370
3371 YYLTYPE loc = this->get_location();
3372
3373 if (this->precision != ast_precision_none
3374 && state->language_version != 100
3375 && state->language_version < 130) {
3376 _mesa_glsl_error(&loc, state,
3377 "precision qualifiers exist only in "
3378 "GLSL ES 1.00, and GLSL 1.30 and later");
3379 return NULL;
3380 }
3381 if (this->precision != ast_precision_none
3382 && this->structure != NULL) {
3383 _mesa_glsl_error(&loc, state,
3384 "precision qualifiers do not apply to structures");
3385 return NULL;
3386 }
3387
3388 /* If this is a precision statement, check that the type to which it is
3389 * applied is either float or int.
3390 *
3391 * From section 4.5.3 of the GLSL 1.30 spec:
3392 * "The precision statement
3393 * precision precision-qualifier type;
3394 * can be used to establish a default precision qualifier. The type
3395 * field can be either int or float [...]. Any other types or
3396 * qualifiers will result in an error.
3397 */
3398 if (this->is_precision_statement) {
3399 assert(this->precision != ast_precision_none);
3400 assert(this->structure == NULL); /* The check for structures was
3401 * performed above. */
3402 if (this->is_array) {
3403 _mesa_glsl_error(&loc, state,
3404 "default precision statements do not apply to "
3405 "arrays");
3406 return NULL;
3407 }
3408 if (this->type_specifier != ast_float
3409 && this->type_specifier != ast_int) {
3410 _mesa_glsl_error(&loc, state,
3411 "default precision statements apply only to types "
3412 "float and int");
3413 return NULL;
3414 }
3415
3416 /* FINISHME: Translate precision statements into IR. */
3417 return NULL;
3418 }
3419
3420 if (this->structure != NULL)
3421 return this->structure->hir(instructions, state);
3422
3423 return NULL;
3424 }
3425
3426
3427 ir_rvalue *
3428 ast_struct_specifier::hir(exec_list *instructions,
3429 struct _mesa_glsl_parse_state *state)
3430 {
3431 unsigned decl_count = 0;
3432
3433 /* Make an initial pass over the list of structure fields to determine how
3434 * many there are. Each element in this list is an ast_declarator_list.
3435 * This means that we actually need to count the number of elements in the
3436 * 'declarations' list in each of the elements.
3437 */
3438 foreach_list_typed (ast_declarator_list, decl_list, link,
3439 &this->declarations) {
3440 foreach_list_const (decl_ptr, & decl_list->declarations) {
3441 decl_count++;
3442 }
3443 }
3444
3445 /* Allocate storage for the structure fields and process the field
3446 * declarations. As the declarations are processed, try to also convert
3447 * the types to HIR. This ensures that structure definitions embedded in
3448 * other structure definitions are processed.
3449 */
3450 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3451 decl_count);
3452
3453 unsigned i = 0;
3454 foreach_list_typed (ast_declarator_list, decl_list, link,
3455 &this->declarations) {
3456 const char *type_name;
3457
3458 decl_list->type->specifier->hir(instructions, state);
3459
3460 /* Section 10.9 of the GLSL ES 1.00 specification states that
3461 * embedded structure definitions have been removed from the language.
3462 */
3463 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3464 YYLTYPE loc = this->get_location();
3465 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3466 "not allowed in GLSL ES 1.00.");
3467 }
3468
3469 const glsl_type *decl_type =
3470 decl_list->type->specifier->glsl_type(& type_name, state);
3471
3472 foreach_list_typed (ast_declaration, decl, link,
3473 &decl_list->declarations) {
3474 const struct glsl_type *field_type = decl_type;
3475 if (decl->is_array) {
3476 YYLTYPE loc = decl->get_location();
3477 field_type = process_array_type(&loc, decl_type, decl->array_size,
3478 state);
3479 }
3480 fields[i].type = (field_type != NULL)
3481 ? field_type : glsl_type::error_type;
3482 fields[i].name = decl->identifier;
3483 i++;
3484 }
3485 }
3486
3487 assert(i == decl_count);
3488
3489 const glsl_type *t =
3490 glsl_type::get_record_instance(fields, decl_count, this->name);
3491
3492 YYLTYPE loc = this->get_location();
3493 if (!state->symbols->add_type(name, t)) {
3494 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3495 } else {
3496 const glsl_type **s = reralloc(state, state->user_structures,
3497 const glsl_type *,
3498 state->num_user_structures + 1);
3499 if (s != NULL) {
3500 s[state->num_user_structures] = t;
3501 state->user_structures = s;
3502 state->num_user_structures++;
3503 }
3504 }
3505
3506 /* Structure type definitions do not have r-values.
3507 */
3508 return NULL;
3509 }