nir: move to compiler/
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
295 *
296 * "There are no implicit array or structure conversions. For
297 * example, an array of int cannot be implicitly converted to an
298 * array of float.
299 */
300 if (!to->is_numeric() || !from->type->is_numeric())
301 return false;
302
303 /* We don't actually want the specific type `to`, we want a type
304 * with the same base type as `to`, but the same vector width as
305 * `from`.
306 */
307 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
308 from->type->matrix_columns);
309
310 ir_expression_operation op = get_conversion_operation(to, from->type, state);
311 if (op) {
312 from = new(ctx) ir_expression(op, to, from, NULL);
313 return true;
314 } else {
315 return false;
316 }
317 }
318
319
320 static const struct glsl_type *
321 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
322 bool multiply,
323 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
324 {
325 const glsl_type *type_a = value_a->type;
326 const glsl_type *type_b = value_b->type;
327
328 /* From GLSL 1.50 spec, page 56:
329 *
330 * "The arithmetic binary operators add (+), subtract (-),
331 * multiply (*), and divide (/) operate on integer and
332 * floating-point scalars, vectors, and matrices."
333 */
334 if (!type_a->is_numeric() || !type_b->is_numeric()) {
335 _mesa_glsl_error(loc, state,
336 "operands to arithmetic operators must be numeric");
337 return glsl_type::error_type;
338 }
339
340
341 /* "If one operand is floating-point based and the other is
342 * not, then the conversions from Section 4.1.10 "Implicit
343 * Conversions" are applied to the non-floating-point-based operand."
344 */
345 if (!apply_implicit_conversion(type_a, value_b, state)
346 && !apply_implicit_conversion(type_b, value_a, state)) {
347 _mesa_glsl_error(loc, state,
348 "could not implicitly convert operands to "
349 "arithmetic operator");
350 return glsl_type::error_type;
351 }
352 type_a = value_a->type;
353 type_b = value_b->type;
354
355 /* "If the operands are integer types, they must both be signed or
356 * both be unsigned."
357 *
358 * From this rule and the preceeding conversion it can be inferred that
359 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
360 * The is_numeric check above already filtered out the case where either
361 * type is not one of these, so now the base types need only be tested for
362 * equality.
363 */
364 if (type_a->base_type != type_b->base_type) {
365 _mesa_glsl_error(loc, state,
366 "base type mismatch for arithmetic operator");
367 return glsl_type::error_type;
368 }
369
370 /* "All arithmetic binary operators result in the same fundamental type
371 * (signed integer, unsigned integer, or floating-point) as the
372 * operands they operate on, after operand type conversion. After
373 * conversion, the following cases are valid
374 *
375 * * The two operands are scalars. In this case the operation is
376 * applied, resulting in a scalar."
377 */
378 if (type_a->is_scalar() && type_b->is_scalar())
379 return type_a;
380
381 /* "* One operand is a scalar, and the other is a vector or matrix.
382 * In this case, the scalar operation is applied independently to each
383 * component of the vector or matrix, resulting in the same size
384 * vector or matrix."
385 */
386 if (type_a->is_scalar()) {
387 if (!type_b->is_scalar())
388 return type_b;
389 } else if (type_b->is_scalar()) {
390 return type_a;
391 }
392
393 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
394 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
395 * handled.
396 */
397 assert(!type_a->is_scalar());
398 assert(!type_b->is_scalar());
399
400 /* "* The two operands are vectors of the same size. In this case, the
401 * operation is done component-wise resulting in the same size
402 * vector."
403 */
404 if (type_a->is_vector() && type_b->is_vector()) {
405 if (type_a == type_b) {
406 return type_a;
407 } else {
408 _mesa_glsl_error(loc, state,
409 "vector size mismatch for arithmetic operator");
410 return glsl_type::error_type;
411 }
412 }
413
414 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
415 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
416 * <vector, vector> have been handled. At least one of the operands must
417 * be matrix. Further, since there are no integer matrix types, the base
418 * type of both operands must be float.
419 */
420 assert(type_a->is_matrix() || type_b->is_matrix());
421 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
422 type_a->base_type == GLSL_TYPE_DOUBLE);
423 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
424 type_b->base_type == GLSL_TYPE_DOUBLE);
425
426 /* "* The operator is add (+), subtract (-), or divide (/), and the
427 * operands are matrices with the same number of rows and the same
428 * number of columns. In this case, the operation is done component-
429 * wise resulting in the same size matrix."
430 * * The operator is multiply (*), where both operands are matrices or
431 * one operand is a vector and the other a matrix. A right vector
432 * operand is treated as a column vector and a left vector operand as a
433 * row vector. In all these cases, it is required that the number of
434 * columns of the left operand is equal to the number of rows of the
435 * right operand. Then, the multiply (*) operation does a linear
436 * algebraic multiply, yielding an object that has the same number of
437 * rows as the left operand and the same number of columns as the right
438 * operand. Section 5.10 "Vector and Matrix Operations" explains in
439 * more detail how vectors and matrices are operated on."
440 */
441 if (! multiply) {
442 if (type_a == type_b)
443 return type_a;
444 } else {
445 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
446
447 if (type == glsl_type::error_type) {
448 _mesa_glsl_error(loc, state,
449 "size mismatch for matrix multiplication");
450 }
451
452 return type;
453 }
454
455
456 /* "All other cases are illegal."
457 */
458 _mesa_glsl_error(loc, state, "type mismatch");
459 return glsl_type::error_type;
460 }
461
462
463 static const struct glsl_type *
464 unary_arithmetic_result_type(const struct glsl_type *type,
465 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
466 {
467 /* From GLSL 1.50 spec, page 57:
468 *
469 * "The arithmetic unary operators negate (-), post- and pre-increment
470 * and decrement (-- and ++) operate on integer or floating-point
471 * values (including vectors and matrices). All unary operators work
472 * component-wise on their operands. These result with the same type
473 * they operated on."
474 */
475 if (!type->is_numeric()) {
476 _mesa_glsl_error(loc, state,
477 "operands to arithmetic operators must be numeric");
478 return glsl_type::error_type;
479 }
480
481 return type;
482 }
483
484 /**
485 * \brief Return the result type of a bit-logic operation.
486 *
487 * If the given types to the bit-logic operator are invalid, return
488 * glsl_type::error_type.
489 *
490 * \param value_a LHS of bit-logic op
491 * \param value_b RHS of bit-logic op
492 */
493 static const struct glsl_type *
494 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
495 ast_operators op,
496 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
497 {
498 const glsl_type *type_a = value_a->type;
499 const glsl_type *type_b = value_b->type;
500
501 if (!state->check_bitwise_operations_allowed(loc)) {
502 return glsl_type::error_type;
503 }
504
505 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
506 *
507 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
508 * (|). The operands must be of type signed or unsigned integers or
509 * integer vectors."
510 */
511 if (!type_a->is_integer()) {
512 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
513 ast_expression::operator_string(op));
514 return glsl_type::error_type;
515 }
516 if (!type_b->is_integer()) {
517 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521
522 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
523 * make sense for bitwise operations, as they don't operate on floats.
524 *
525 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
526 * here. It wasn't clear whether or not we should apply them to bitwise
527 * operations. However, Khronos has decided that they should in future
528 * language revisions. Applications also rely on this behavior. We opt
529 * to apply them in general, but issue a portability warning.
530 *
531 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
532 */
533 if (type_a->base_type != type_b->base_type) {
534 if (!apply_implicit_conversion(type_a, value_b, state)
535 && !apply_implicit_conversion(type_b, value_a, state)) {
536 _mesa_glsl_error(loc, state,
537 "could not implicitly convert operands to "
538 "`%s` operator",
539 ast_expression::operator_string(op));
540 return glsl_type::error_type;
541 } else {
542 _mesa_glsl_warning(loc, state,
543 "some implementations may not support implicit "
544 "int -> uint conversions for `%s' operators; "
545 "consider casting explicitly for portability",
546 ast_expression::operator_string(op));
547 }
548 type_a = value_a->type;
549 type_b = value_b->type;
550 }
551
552 /* "The fundamental types of the operands (signed or unsigned) must
553 * match,"
554 */
555 if (type_a->base_type != type_b->base_type) {
556 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
557 "base type", ast_expression::operator_string(op));
558 return glsl_type::error_type;
559 }
560
561 /* "The operands cannot be vectors of differing size." */
562 if (type_a->is_vector() &&
563 type_b->is_vector() &&
564 type_a->vector_elements != type_b->vector_elements) {
565 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
566 "different sizes", ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* "If one operand is a scalar and the other a vector, the scalar is
571 * applied component-wise to the vector, resulting in the same type as
572 * the vector. The fundamental types of the operands [...] will be the
573 * resulting fundamental type."
574 */
575 if (type_a->is_scalar())
576 return type_b;
577 else
578 return type_a;
579 }
580
581 static const struct glsl_type *
582 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
583 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
584 {
585 const glsl_type *type_a = value_a->type;
586 const glsl_type *type_b = value_b->type;
587
588 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
589 return glsl_type::error_type;
590 }
591
592 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
593 *
594 * "The operator modulus (%) operates on signed or unsigned integers or
595 * integer vectors."
596 */
597 if (!type_a->is_integer()) {
598 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
599 return glsl_type::error_type;
600 }
601 if (!type_b->is_integer()) {
602 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605
606 /* "If the fundamental types in the operands do not match, then the
607 * conversions from section 4.1.10 "Implicit Conversions" are applied
608 * to create matching types."
609 *
610 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
611 * int -> uint conversion rules. Prior to that, there were no implicit
612 * conversions. So it's harmless to apply them universally - no implicit
613 * conversions will exist. If the types don't match, we'll receive false,
614 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
615 *
616 * "The operand types must both be signed or unsigned."
617 */
618 if (!apply_implicit_conversion(type_a, value_b, state) &&
619 !apply_implicit_conversion(type_b, value_a, state)) {
620 _mesa_glsl_error(loc, state,
621 "could not implicitly convert operands to "
622 "modulus (%%) operator");
623 return glsl_type::error_type;
624 }
625 type_a = value_a->type;
626 type_b = value_b->type;
627
628 /* "The operands cannot be vectors of differing size. If one operand is
629 * a scalar and the other vector, then the scalar is applied component-
630 * wise to the vector, resulting in the same type as the vector. If both
631 * are vectors of the same size, the result is computed component-wise."
632 */
633 if (type_a->is_vector()) {
634 if (!type_b->is_vector()
635 || (type_a->vector_elements == type_b->vector_elements))
636 return type_a;
637 } else
638 return type_b;
639
640 /* "The operator modulus (%) is not defined for any other data types
641 * (non-integer types)."
642 */
643 _mesa_glsl_error(loc, state, "type mismatch");
644 return glsl_type::error_type;
645 }
646
647
648 static const struct glsl_type *
649 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
650 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
651 {
652 const glsl_type *type_a = value_a->type;
653 const glsl_type *type_b = value_b->type;
654
655 /* From GLSL 1.50 spec, page 56:
656 * "The relational operators greater than (>), less than (<), greater
657 * than or equal (>=), and less than or equal (<=) operate only on
658 * scalar integer and scalar floating-point expressions."
659 */
660 if (!type_a->is_numeric()
661 || !type_b->is_numeric()
662 || !type_a->is_scalar()
663 || !type_b->is_scalar()) {
664 _mesa_glsl_error(loc, state,
665 "operands to relational operators must be scalar and "
666 "numeric");
667 return glsl_type::error_type;
668 }
669
670 /* "Either the operands' types must match, or the conversions from
671 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
672 * operand, after which the types must match."
673 */
674 if (!apply_implicit_conversion(type_a, value_b, state)
675 && !apply_implicit_conversion(type_b, value_a, state)) {
676 _mesa_glsl_error(loc, state,
677 "could not implicitly convert operands to "
678 "relational operator");
679 return glsl_type::error_type;
680 }
681 type_a = value_a->type;
682 type_b = value_b->type;
683
684 if (type_a->base_type != type_b->base_type) {
685 _mesa_glsl_error(loc, state, "base type mismatch");
686 return glsl_type::error_type;
687 }
688
689 /* "The result is scalar Boolean."
690 */
691 return glsl_type::bool_type;
692 }
693
694 /**
695 * \brief Return the result type of a bit-shift operation.
696 *
697 * If the given types to the bit-shift operator are invalid, return
698 * glsl_type::error_type.
699 *
700 * \param type_a Type of LHS of bit-shift op
701 * \param type_b Type of RHS of bit-shift op
702 */
703 static const struct glsl_type *
704 shift_result_type(const struct glsl_type *type_a,
705 const struct glsl_type *type_b,
706 ast_operators op,
707 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
708 {
709 if (!state->check_bitwise_operations_allowed(loc)) {
710 return glsl_type::error_type;
711 }
712
713 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
714 *
715 * "The shift operators (<<) and (>>). For both operators, the operands
716 * must be signed or unsigned integers or integer vectors. One operand
717 * can be signed while the other is unsigned."
718 */
719 if (!type_a->is_integer()) {
720 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
721 "integer vector", ast_expression::operator_string(op));
722 return glsl_type::error_type;
723
724 }
725 if (!type_b->is_integer()) {
726 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
727 "integer vector", ast_expression::operator_string(op));
728 return glsl_type::error_type;
729 }
730
731 /* "If the first operand is a scalar, the second operand has to be
732 * a scalar as well."
733 */
734 if (type_a->is_scalar() && !type_b->is_scalar()) {
735 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
736 "second must be scalar as well",
737 ast_expression::operator_string(op));
738 return glsl_type::error_type;
739 }
740
741 /* If both operands are vectors, check that they have same number of
742 * elements.
743 */
744 if (type_a->is_vector() &&
745 type_b->is_vector() &&
746 type_a->vector_elements != type_b->vector_elements) {
747 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
748 "have same number of elements",
749 ast_expression::operator_string(op));
750 return glsl_type::error_type;
751 }
752
753 /* "In all cases, the resulting type will be the same type as the left
754 * operand."
755 */
756 return type_a;
757 }
758
759 /**
760 * Returns the innermost array index expression in an rvalue tree.
761 * This is the largest indexing level -- if an array of blocks, then
762 * it is the block index rather than an indexing expression for an
763 * array-typed member of an array of blocks.
764 */
765 static ir_rvalue *
766 find_innermost_array_index(ir_rvalue *rv)
767 {
768 ir_dereference_array *last = NULL;
769 while (rv) {
770 if (rv->as_dereference_array()) {
771 last = rv->as_dereference_array();
772 rv = last->array;
773 } else if (rv->as_dereference_record())
774 rv = rv->as_dereference_record()->record;
775 else if (rv->as_swizzle())
776 rv = rv->as_swizzle()->val;
777 else
778 rv = NULL;
779 }
780
781 if (last)
782 return last->array_index;
783
784 return NULL;
785 }
786
787 /**
788 * Validates that a value can be assigned to a location with a specified type
789 *
790 * Validates that \c rhs can be assigned to some location. If the types are
791 * not an exact match but an automatic conversion is possible, \c rhs will be
792 * converted.
793 *
794 * \return
795 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
796 * Otherwise the actual RHS to be assigned will be returned. This may be
797 * \c rhs, or it may be \c rhs after some type conversion.
798 *
799 * \note
800 * In addition to being used for assignments, this function is used to
801 * type-check return values.
802 */
803 static ir_rvalue *
804 validate_assignment(struct _mesa_glsl_parse_state *state,
805 YYLTYPE loc, ir_rvalue *lhs,
806 ir_rvalue *rhs, bool is_initializer)
807 {
808 /* If there is already some error in the RHS, just return it. Anything
809 * else will lead to an avalanche of error message back to the user.
810 */
811 if (rhs->type->is_error())
812 return rhs;
813
814 /* In the Tessellation Control Shader:
815 * If a per-vertex output variable is used as an l-value, it is an error
816 * if the expression indicating the vertex number is not the identifier
817 * `gl_InvocationID`.
818 */
819 if (state->stage == MESA_SHADER_TESS_CTRL) {
820 ir_variable *var = lhs->variable_referenced();
821 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
822 ir_rvalue *index = find_innermost_array_index(lhs);
823 ir_variable *index_var = index ? index->variable_referenced() : NULL;
824 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
825 _mesa_glsl_error(&loc, state,
826 "Tessellation control shader outputs can only "
827 "be indexed by gl_InvocationID");
828 return NULL;
829 }
830 }
831 }
832
833 /* If the types are identical, the assignment can trivially proceed.
834 */
835 if (rhs->type == lhs->type)
836 return rhs;
837
838 /* If the array element types are the same and the LHS is unsized,
839 * the assignment is okay for initializers embedded in variable
840 * declarations.
841 *
842 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
843 * is handled by ir_dereference::is_lvalue.
844 */
845 const glsl_type *lhs_t = lhs->type;
846 const glsl_type *rhs_t = rhs->type;
847 bool unsized_array = false;
848 while(lhs_t->is_array()) {
849 if (rhs_t == lhs_t)
850 break; /* the rest of the inner arrays match so break out early */
851 if (!rhs_t->is_array()) {
852 unsized_array = false;
853 break; /* number of dimensions mismatch */
854 }
855 if (lhs_t->length == rhs_t->length) {
856 lhs_t = lhs_t->fields.array;
857 rhs_t = rhs_t->fields.array;
858 continue;
859 } else if (lhs_t->is_unsized_array()) {
860 unsized_array = true;
861 } else {
862 unsized_array = false;
863 break; /* sized array mismatch */
864 }
865 lhs_t = lhs_t->fields.array;
866 rhs_t = rhs_t->fields.array;
867 }
868 if (unsized_array) {
869 if (is_initializer) {
870 return rhs;
871 } else {
872 _mesa_glsl_error(&loc, state,
873 "implicitly sized arrays cannot be assigned");
874 return NULL;
875 }
876 }
877
878 /* Check for implicit conversion in GLSL 1.20 */
879 if (apply_implicit_conversion(lhs->type, rhs, state)) {
880 if (rhs->type == lhs->type)
881 return rhs;
882 }
883
884 _mesa_glsl_error(&loc, state,
885 "%s of type %s cannot be assigned to "
886 "variable of type %s",
887 is_initializer ? "initializer" : "value",
888 rhs->type->name, lhs->type->name);
889
890 return NULL;
891 }
892
893 static void
894 mark_whole_array_access(ir_rvalue *access)
895 {
896 ir_dereference_variable *deref = access->as_dereference_variable();
897
898 if (deref && deref->var) {
899 deref->var->data.max_array_access = deref->type->length - 1;
900 }
901 }
902
903 static bool
904 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
905 const char *non_lvalue_description,
906 ir_rvalue *lhs, ir_rvalue *rhs,
907 ir_rvalue **out_rvalue, bool needs_rvalue,
908 bool is_initializer,
909 YYLTYPE lhs_loc)
910 {
911 void *ctx = state;
912 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
913
914 ir_variable *lhs_var = lhs->variable_referenced();
915 if (lhs_var)
916 lhs_var->data.assigned = true;
917
918 if (!error_emitted) {
919 if (non_lvalue_description != NULL) {
920 _mesa_glsl_error(&lhs_loc, state,
921 "assignment to %s",
922 non_lvalue_description);
923 error_emitted = true;
924 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
925 (lhs_var->data.mode == ir_var_shader_storage &&
926 lhs_var->data.image_read_only))) {
927 /* We can have image_read_only set on both images and buffer variables,
928 * but in the former there is a distinction between assignments to
929 * the variable itself (read_only) and to the memory they point to
930 * (image_read_only), while in the case of buffer variables there is
931 * no such distinction, that is why this check here is limited to
932 * buffer variables alone.
933 */
934 _mesa_glsl_error(&lhs_loc, state,
935 "assignment to read-only variable '%s'",
936 lhs_var->name);
937 error_emitted = true;
938 } else if (lhs->type->is_array() &&
939 !state->check_version(120, 300, &lhs_loc,
940 "whole array assignment forbidden")) {
941 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
942 *
943 * "Other binary or unary expressions, non-dereferenced
944 * arrays, function names, swizzles with repeated fields,
945 * and constants cannot be l-values."
946 *
947 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
948 */
949 error_emitted = true;
950 } else if (!lhs->is_lvalue()) {
951 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
952 error_emitted = true;
953 }
954 }
955
956 ir_rvalue *new_rhs =
957 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
958 if (new_rhs != NULL) {
959 rhs = new_rhs;
960
961 /* If the LHS array was not declared with a size, it takes it size from
962 * the RHS. If the LHS is an l-value and a whole array, it must be a
963 * dereference of a variable. Any other case would require that the LHS
964 * is either not an l-value or not a whole array.
965 */
966 if (lhs->type->is_unsized_array()) {
967 ir_dereference *const d = lhs->as_dereference();
968
969 assert(d != NULL);
970
971 ir_variable *const var = d->variable_referenced();
972
973 assert(var != NULL);
974
975 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
976 /* FINISHME: This should actually log the location of the RHS. */
977 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
978 "previous access",
979 var->data.max_array_access);
980 }
981
982 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
983 rhs->type->array_size());
984 d->type = var->type;
985 }
986 if (lhs->type->is_array()) {
987 mark_whole_array_access(rhs);
988 mark_whole_array_access(lhs);
989 }
990 }
991
992 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
993 * but not post_inc) need the converted assigned value as an rvalue
994 * to handle things like:
995 *
996 * i = j += 1;
997 */
998 if (needs_rvalue) {
999 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1000 ir_var_temporary);
1001 instructions->push_tail(var);
1002 instructions->push_tail(assign(var, rhs));
1003
1004 if (!error_emitted) {
1005 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1006 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1007 }
1008 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1009
1010 *out_rvalue = rvalue;
1011 } else {
1012 if (!error_emitted)
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1014 *out_rvalue = NULL;
1015 }
1016
1017 return error_emitted;
1018 }
1019
1020 static ir_rvalue *
1021 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1022 {
1023 void *ctx = ralloc_parent(lvalue);
1024 ir_variable *var;
1025
1026 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1027 ir_var_temporary);
1028 instructions->push_tail(var);
1029
1030 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1031 lvalue));
1032
1033 return new(ctx) ir_dereference_variable(var);
1034 }
1035
1036
1037 ir_rvalue *
1038 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1039 {
1040 (void) instructions;
1041 (void) state;
1042
1043 return NULL;
1044 }
1045
1046 bool
1047 ast_node::has_sequence_subexpression() const
1048 {
1049 return false;
1050 }
1051
1052 void
1053 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1054 struct _mesa_glsl_parse_state *state)
1055 {
1056 (void)hir(instructions, state);
1057 }
1058
1059 void
1060 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1061 struct _mesa_glsl_parse_state *state)
1062 {
1063 (void)hir(instructions, state);
1064 }
1065
1066 static ir_rvalue *
1067 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1068 {
1069 int join_op;
1070 ir_rvalue *cmp = NULL;
1071
1072 if (operation == ir_binop_all_equal)
1073 join_op = ir_binop_logic_and;
1074 else
1075 join_op = ir_binop_logic_or;
1076
1077 switch (op0->type->base_type) {
1078 case GLSL_TYPE_FLOAT:
1079 case GLSL_TYPE_UINT:
1080 case GLSL_TYPE_INT:
1081 case GLSL_TYPE_BOOL:
1082 case GLSL_TYPE_DOUBLE:
1083 return new(mem_ctx) ir_expression(operation, op0, op1);
1084
1085 case GLSL_TYPE_ARRAY: {
1086 for (unsigned int i = 0; i < op0->type->length; i++) {
1087 ir_rvalue *e0, *e1, *result;
1088
1089 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1090 new(mem_ctx) ir_constant(i));
1091 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1092 new(mem_ctx) ir_constant(i));
1093 result = do_comparison(mem_ctx, operation, e0, e1);
1094
1095 if (cmp) {
1096 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1097 } else {
1098 cmp = result;
1099 }
1100 }
1101
1102 mark_whole_array_access(op0);
1103 mark_whole_array_access(op1);
1104 break;
1105 }
1106
1107 case GLSL_TYPE_STRUCT: {
1108 for (unsigned int i = 0; i < op0->type->length; i++) {
1109 ir_rvalue *e0, *e1, *result;
1110 const char *field_name = op0->type->fields.structure[i].name;
1111
1112 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1113 field_name);
1114 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1115 field_name);
1116 result = do_comparison(mem_ctx, operation, e0, e1);
1117
1118 if (cmp) {
1119 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1120 } else {
1121 cmp = result;
1122 }
1123 }
1124 break;
1125 }
1126
1127 case GLSL_TYPE_ERROR:
1128 case GLSL_TYPE_VOID:
1129 case GLSL_TYPE_SAMPLER:
1130 case GLSL_TYPE_IMAGE:
1131 case GLSL_TYPE_INTERFACE:
1132 case GLSL_TYPE_ATOMIC_UINT:
1133 case GLSL_TYPE_SUBROUTINE:
1134 /* I assume a comparison of a struct containing a sampler just
1135 * ignores the sampler present in the type.
1136 */
1137 break;
1138 }
1139
1140 if (cmp == NULL)
1141 cmp = new(mem_ctx) ir_constant(true);
1142
1143 return cmp;
1144 }
1145
1146 /* For logical operations, we want to ensure that the operands are
1147 * scalar booleans. If it isn't, emit an error and return a constant
1148 * boolean to avoid triggering cascading error messages.
1149 */
1150 ir_rvalue *
1151 get_scalar_boolean_operand(exec_list *instructions,
1152 struct _mesa_glsl_parse_state *state,
1153 ast_expression *parent_expr,
1154 int operand,
1155 const char *operand_name,
1156 bool *error_emitted)
1157 {
1158 ast_expression *expr = parent_expr->subexpressions[operand];
1159 void *ctx = state;
1160 ir_rvalue *val = expr->hir(instructions, state);
1161
1162 if (val->type->is_boolean() && val->type->is_scalar())
1163 return val;
1164
1165 if (!*error_emitted) {
1166 YYLTYPE loc = expr->get_location();
1167 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1168 operand_name,
1169 parent_expr->operator_string(parent_expr->oper));
1170 *error_emitted = true;
1171 }
1172
1173 return new(ctx) ir_constant(true);
1174 }
1175
1176 /**
1177 * If name refers to a builtin array whose maximum allowed size is less than
1178 * size, report an error and return true. Otherwise return false.
1179 */
1180 void
1181 check_builtin_array_max_size(const char *name, unsigned size,
1182 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1183 {
1184 if ((strcmp("gl_TexCoord", name) == 0)
1185 && (size > state->Const.MaxTextureCoords)) {
1186 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1187 *
1188 * "The size [of gl_TexCoord] can be at most
1189 * gl_MaxTextureCoords."
1190 */
1191 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1192 "be larger than gl_MaxTextureCoords (%u)",
1193 state->Const.MaxTextureCoords);
1194 } else if (strcmp("gl_ClipDistance", name) == 0
1195 && size > state->Const.MaxClipPlanes) {
1196 /* From section 7.1 (Vertex Shader Special Variables) of the
1197 * GLSL 1.30 spec:
1198 *
1199 * "The gl_ClipDistance array is predeclared as unsized and
1200 * must be sized by the shader either redeclaring it with a
1201 * size or indexing it only with integral constant
1202 * expressions. ... The size can be at most
1203 * gl_MaxClipDistances."
1204 */
1205 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1206 "be larger than gl_MaxClipDistances (%u)",
1207 state->Const.MaxClipPlanes);
1208 }
1209 }
1210
1211 /**
1212 * Create the constant 1, of a which is appropriate for incrementing and
1213 * decrementing values of the given GLSL type. For example, if type is vec4,
1214 * this creates a constant value of 1.0 having type float.
1215 *
1216 * If the given type is invalid for increment and decrement operators, return
1217 * a floating point 1--the error will be detected later.
1218 */
1219 static ir_rvalue *
1220 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1221 {
1222 switch (type->base_type) {
1223 case GLSL_TYPE_UINT:
1224 return new(ctx) ir_constant((unsigned) 1);
1225 case GLSL_TYPE_INT:
1226 return new(ctx) ir_constant(1);
1227 default:
1228 case GLSL_TYPE_FLOAT:
1229 return new(ctx) ir_constant(1.0f);
1230 }
1231 }
1232
1233 ir_rvalue *
1234 ast_expression::hir(exec_list *instructions,
1235 struct _mesa_glsl_parse_state *state)
1236 {
1237 return do_hir(instructions, state, true);
1238 }
1239
1240 void
1241 ast_expression::hir_no_rvalue(exec_list *instructions,
1242 struct _mesa_glsl_parse_state *state)
1243 {
1244 do_hir(instructions, state, false);
1245 }
1246
1247 ir_rvalue *
1248 ast_expression::do_hir(exec_list *instructions,
1249 struct _mesa_glsl_parse_state *state,
1250 bool needs_rvalue)
1251 {
1252 void *ctx = state;
1253 static const int operations[AST_NUM_OPERATORS] = {
1254 -1, /* ast_assign doesn't convert to ir_expression. */
1255 -1, /* ast_plus doesn't convert to ir_expression. */
1256 ir_unop_neg,
1257 ir_binop_add,
1258 ir_binop_sub,
1259 ir_binop_mul,
1260 ir_binop_div,
1261 ir_binop_mod,
1262 ir_binop_lshift,
1263 ir_binop_rshift,
1264 ir_binop_less,
1265 ir_binop_greater,
1266 ir_binop_lequal,
1267 ir_binop_gequal,
1268 ir_binop_all_equal,
1269 ir_binop_any_nequal,
1270 ir_binop_bit_and,
1271 ir_binop_bit_xor,
1272 ir_binop_bit_or,
1273 ir_unop_bit_not,
1274 ir_binop_logic_and,
1275 ir_binop_logic_xor,
1276 ir_binop_logic_or,
1277 ir_unop_logic_not,
1278
1279 /* Note: The following block of expression types actually convert
1280 * to multiple IR instructions.
1281 */
1282 ir_binop_mul, /* ast_mul_assign */
1283 ir_binop_div, /* ast_div_assign */
1284 ir_binop_mod, /* ast_mod_assign */
1285 ir_binop_add, /* ast_add_assign */
1286 ir_binop_sub, /* ast_sub_assign */
1287 ir_binop_lshift, /* ast_ls_assign */
1288 ir_binop_rshift, /* ast_rs_assign */
1289 ir_binop_bit_and, /* ast_and_assign */
1290 ir_binop_bit_xor, /* ast_xor_assign */
1291 ir_binop_bit_or, /* ast_or_assign */
1292
1293 -1, /* ast_conditional doesn't convert to ir_expression. */
1294 ir_binop_add, /* ast_pre_inc. */
1295 ir_binop_sub, /* ast_pre_dec. */
1296 ir_binop_add, /* ast_post_inc. */
1297 ir_binop_sub, /* ast_post_dec. */
1298 -1, /* ast_field_selection doesn't conv to ir_expression. */
1299 -1, /* ast_array_index doesn't convert to ir_expression. */
1300 -1, /* ast_function_call doesn't conv to ir_expression. */
1301 -1, /* ast_identifier doesn't convert to ir_expression. */
1302 -1, /* ast_int_constant doesn't convert to ir_expression. */
1303 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1304 -1, /* ast_float_constant doesn't conv to ir_expression. */
1305 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1306 -1, /* ast_sequence doesn't convert to ir_expression. */
1307 };
1308 ir_rvalue *result = NULL;
1309 ir_rvalue *op[3];
1310 const struct glsl_type *type; /* a temporary variable for switch cases */
1311 bool error_emitted = false;
1312 YYLTYPE loc;
1313
1314 loc = this->get_location();
1315
1316 switch (this->oper) {
1317 case ast_aggregate:
1318 assert(!"ast_aggregate: Should never get here.");
1319 break;
1320
1321 case ast_assign: {
1322 op[0] = this->subexpressions[0]->hir(instructions, state);
1323 op[1] = this->subexpressions[1]->hir(instructions, state);
1324
1325 error_emitted =
1326 do_assignment(instructions, state,
1327 this->subexpressions[0]->non_lvalue_description,
1328 op[0], op[1], &result, needs_rvalue, false,
1329 this->subexpressions[0]->get_location());
1330 break;
1331 }
1332
1333 case ast_plus:
1334 op[0] = this->subexpressions[0]->hir(instructions, state);
1335
1336 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1337
1338 error_emitted = type->is_error();
1339
1340 result = op[0];
1341 break;
1342
1343 case ast_neg:
1344 op[0] = this->subexpressions[0]->hir(instructions, state);
1345
1346 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1347
1348 error_emitted = type->is_error();
1349
1350 result = new(ctx) ir_expression(operations[this->oper], type,
1351 op[0], NULL);
1352 break;
1353
1354 case ast_add:
1355 case ast_sub:
1356 case ast_mul:
1357 case ast_div:
1358 op[0] = this->subexpressions[0]->hir(instructions, state);
1359 op[1] = this->subexpressions[1]->hir(instructions, state);
1360
1361 type = arithmetic_result_type(op[0], op[1],
1362 (this->oper == ast_mul),
1363 state, & loc);
1364 error_emitted = type->is_error();
1365
1366 result = new(ctx) ir_expression(operations[this->oper], type,
1367 op[0], op[1]);
1368 break;
1369
1370 case ast_mod:
1371 op[0] = this->subexpressions[0]->hir(instructions, state);
1372 op[1] = this->subexpressions[1]->hir(instructions, state);
1373
1374 type = modulus_result_type(op[0], op[1], state, &loc);
1375
1376 assert(operations[this->oper] == ir_binop_mod);
1377
1378 result = new(ctx) ir_expression(operations[this->oper], type,
1379 op[0], op[1]);
1380 error_emitted = type->is_error();
1381 break;
1382
1383 case ast_lshift:
1384 case ast_rshift:
1385 if (!state->check_bitwise_operations_allowed(&loc)) {
1386 error_emitted = true;
1387 }
1388
1389 op[0] = this->subexpressions[0]->hir(instructions, state);
1390 op[1] = this->subexpressions[1]->hir(instructions, state);
1391 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1392 &loc);
1393 result = new(ctx) ir_expression(operations[this->oper], type,
1394 op[0], op[1]);
1395 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1396 break;
1397
1398 case ast_less:
1399 case ast_greater:
1400 case ast_lequal:
1401 case ast_gequal:
1402 op[0] = this->subexpressions[0]->hir(instructions, state);
1403 op[1] = this->subexpressions[1]->hir(instructions, state);
1404
1405 type = relational_result_type(op[0], op[1], state, & loc);
1406
1407 /* The relational operators must either generate an error or result
1408 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1409 */
1410 assert(type->is_error()
1411 || ((type->base_type == GLSL_TYPE_BOOL)
1412 && type->is_scalar()));
1413
1414 result = new(ctx) ir_expression(operations[this->oper], type,
1415 op[0], op[1]);
1416 error_emitted = type->is_error();
1417 break;
1418
1419 case ast_nequal:
1420 case ast_equal:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422 op[1] = this->subexpressions[1]->hir(instructions, state);
1423
1424 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1425 *
1426 * "The equality operators equal (==), and not equal (!=)
1427 * operate on all types. They result in a scalar Boolean. If
1428 * the operand types do not match, then there must be a
1429 * conversion from Section 4.1.10 "Implicit Conversions"
1430 * applied to one operand that can make them match, in which
1431 * case this conversion is done."
1432 */
1433
1434 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1435 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1436 "no operation `%1$s' exists that takes a left-hand "
1437 "operand of type 'void' or a right operand of type "
1438 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1439 error_emitted = true;
1440 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1441 && !apply_implicit_conversion(op[1]->type, op[0], state))
1442 || (op[0]->type != op[1]->type)) {
1443 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1444 "type", (this->oper == ast_equal) ? "==" : "!=");
1445 error_emitted = true;
1446 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1447 !state->check_version(120, 300, &loc,
1448 "array comparisons forbidden")) {
1449 error_emitted = true;
1450 } else if ((op[0]->type->contains_opaque() ||
1451 op[1]->type->contains_opaque())) {
1452 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1453 error_emitted = true;
1454 }
1455
1456 if (error_emitted) {
1457 result = new(ctx) ir_constant(false);
1458 } else {
1459 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1460 assert(result->type == glsl_type::bool_type);
1461 }
1462 break;
1463
1464 case ast_bit_and:
1465 case ast_bit_xor:
1466 case ast_bit_or:
1467 op[0] = this->subexpressions[0]->hir(instructions, state);
1468 op[1] = this->subexpressions[1]->hir(instructions, state);
1469 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_bit_not:
1476 op[0] = this->subexpressions[0]->hir(instructions, state);
1477
1478 if (!state->check_bitwise_operations_allowed(&loc)) {
1479 error_emitted = true;
1480 }
1481
1482 if (!op[0]->type->is_integer()) {
1483 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1484 error_emitted = true;
1485 }
1486
1487 type = error_emitted ? glsl_type::error_type : op[0]->type;
1488 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1489 break;
1490
1491 case ast_logic_and: {
1492 exec_list rhs_instructions;
1493 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1494 "LHS", &error_emitted);
1495 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1496 "RHS", &error_emitted);
1497
1498 if (rhs_instructions.is_empty()) {
1499 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1500 type = result->type;
1501 } else {
1502 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1503 "and_tmp",
1504 ir_var_temporary);
1505 instructions->push_tail(tmp);
1506
1507 ir_if *const stmt = new(ctx) ir_if(op[0]);
1508 instructions->push_tail(stmt);
1509
1510 stmt->then_instructions.append_list(&rhs_instructions);
1511 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1512 ir_assignment *const then_assign =
1513 new(ctx) ir_assignment(then_deref, op[1]);
1514 stmt->then_instructions.push_tail(then_assign);
1515
1516 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1517 ir_assignment *const else_assign =
1518 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1519 stmt->else_instructions.push_tail(else_assign);
1520
1521 result = new(ctx) ir_dereference_variable(tmp);
1522 type = tmp->type;
1523 }
1524 break;
1525 }
1526
1527 case ast_logic_or: {
1528 exec_list rhs_instructions;
1529 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1530 "LHS", &error_emitted);
1531 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1532 "RHS", &error_emitted);
1533
1534 if (rhs_instructions.is_empty()) {
1535 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1536 type = result->type;
1537 } else {
1538 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1539 "or_tmp",
1540 ir_var_temporary);
1541 instructions->push_tail(tmp);
1542
1543 ir_if *const stmt = new(ctx) ir_if(op[0]);
1544 instructions->push_tail(stmt);
1545
1546 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1547 ir_assignment *const then_assign =
1548 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1549 stmt->then_instructions.push_tail(then_assign);
1550
1551 stmt->else_instructions.append_list(&rhs_instructions);
1552 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1553 ir_assignment *const else_assign =
1554 new(ctx) ir_assignment(else_deref, op[1]);
1555 stmt->else_instructions.push_tail(else_assign);
1556
1557 result = new(ctx) ir_dereference_variable(tmp);
1558 type = tmp->type;
1559 }
1560 break;
1561 }
1562
1563 case ast_logic_xor:
1564 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1565 *
1566 * "The logical binary operators and (&&), or ( | | ), and
1567 * exclusive or (^^). They operate only on two Boolean
1568 * expressions and result in a Boolean expression."
1569 */
1570 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1571 &error_emitted);
1572 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1573 &error_emitted);
1574
1575 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1576 op[0], op[1]);
1577 break;
1578
1579 case ast_logic_not:
1580 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1581 "operand", &error_emitted);
1582
1583 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1584 op[0], NULL);
1585 break;
1586
1587 case ast_mul_assign:
1588 case ast_div_assign:
1589 case ast_add_assign:
1590 case ast_sub_assign: {
1591 op[0] = this->subexpressions[0]->hir(instructions, state);
1592 op[1] = this->subexpressions[1]->hir(instructions, state);
1593
1594 type = arithmetic_result_type(op[0], op[1],
1595 (this->oper == ast_mul_assign),
1596 state, & loc);
1597
1598 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1599 op[0], op[1]);
1600
1601 error_emitted =
1602 do_assignment(instructions, state,
1603 this->subexpressions[0]->non_lvalue_description,
1604 op[0]->clone(ctx, NULL), temp_rhs,
1605 &result, needs_rvalue, false,
1606 this->subexpressions[0]->get_location());
1607
1608 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1609 * explicitly test for this because none of the binary expression
1610 * operators allow array operands either.
1611 */
1612
1613 break;
1614 }
1615
1616 case ast_mod_assign: {
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = this->subexpressions[1]->hir(instructions, state);
1619
1620 type = modulus_result_type(op[0], op[1], state, &loc);
1621
1622 assert(operations[this->oper] == ir_binop_mod);
1623
1624 ir_rvalue *temp_rhs;
1625 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1626 op[0], op[1]);
1627
1628 error_emitted =
1629 do_assignment(instructions, state,
1630 this->subexpressions[0]->non_lvalue_description,
1631 op[0]->clone(ctx, NULL), temp_rhs,
1632 &result, needs_rvalue, false,
1633 this->subexpressions[0]->get_location());
1634 break;
1635 }
1636
1637 case ast_ls_assign:
1638 case ast_rs_assign: {
1639 op[0] = this->subexpressions[0]->hir(instructions, state);
1640 op[1] = this->subexpressions[1]->hir(instructions, state);
1641 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1642 &loc);
1643 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1644 type, op[0], op[1]);
1645 error_emitted =
1646 do_assignment(instructions, state,
1647 this->subexpressions[0]->non_lvalue_description,
1648 op[0]->clone(ctx, NULL), temp_rhs,
1649 &result, needs_rvalue, false,
1650 this->subexpressions[0]->get_location());
1651 break;
1652 }
1653
1654 case ast_and_assign:
1655 case ast_xor_assign:
1656 case ast_or_assign: {
1657 op[0] = this->subexpressions[0]->hir(instructions, state);
1658 op[1] = this->subexpressions[1]->hir(instructions, state);
1659 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1660 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1661 type, op[0], op[1]);
1662 error_emitted =
1663 do_assignment(instructions, state,
1664 this->subexpressions[0]->non_lvalue_description,
1665 op[0]->clone(ctx, NULL), temp_rhs,
1666 &result, needs_rvalue, false,
1667 this->subexpressions[0]->get_location());
1668 break;
1669 }
1670
1671 case ast_conditional: {
1672 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1673 *
1674 * "The ternary selection operator (?:). It operates on three
1675 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1676 * first expression, which must result in a scalar Boolean."
1677 */
1678 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1679 "condition", &error_emitted);
1680
1681 /* The :? operator is implemented by generating an anonymous temporary
1682 * followed by an if-statement. The last instruction in each branch of
1683 * the if-statement assigns a value to the anonymous temporary. This
1684 * temporary is the r-value of the expression.
1685 */
1686 exec_list then_instructions;
1687 exec_list else_instructions;
1688
1689 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1690 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1691
1692 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1693 *
1694 * "The second and third expressions can be any type, as
1695 * long their types match, or there is a conversion in
1696 * Section 4.1.10 "Implicit Conversions" that can be applied
1697 * to one of the expressions to make their types match. This
1698 * resulting matching type is the type of the entire
1699 * expression."
1700 */
1701 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1702 && !apply_implicit_conversion(op[2]->type, op[1], state))
1703 || (op[1]->type != op[2]->type)) {
1704 YYLTYPE loc = this->subexpressions[1]->get_location();
1705
1706 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1707 "operator must have matching types");
1708 error_emitted = true;
1709 type = glsl_type::error_type;
1710 } else {
1711 type = op[1]->type;
1712 }
1713
1714 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1715 *
1716 * "The second and third expressions must be the same type, but can
1717 * be of any type other than an array."
1718 */
1719 if (type->is_array() &&
1720 !state->check_version(120, 300, &loc,
1721 "second and third operands of ?: operator "
1722 "cannot be arrays")) {
1723 error_emitted = true;
1724 }
1725
1726 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1727 *
1728 * "Except for array indexing, structure member selection, and
1729 * parentheses, opaque variables are not allowed to be operands in
1730 * expressions; such use results in a compile-time error."
1731 */
1732 if (type->contains_opaque()) {
1733 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1734 "of the ?: operator");
1735 error_emitted = true;
1736 }
1737
1738 ir_constant *cond_val = op[0]->constant_expression_value();
1739
1740 if (then_instructions.is_empty()
1741 && else_instructions.is_empty()
1742 && cond_val != NULL) {
1743 result = cond_val->value.b[0] ? op[1] : op[2];
1744 } else {
1745 /* The copy to conditional_tmp reads the whole array. */
1746 if (type->is_array()) {
1747 mark_whole_array_access(op[1]);
1748 mark_whole_array_access(op[2]);
1749 }
1750
1751 ir_variable *const tmp =
1752 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1753 instructions->push_tail(tmp);
1754
1755 ir_if *const stmt = new(ctx) ir_if(op[0]);
1756 instructions->push_tail(stmt);
1757
1758 then_instructions.move_nodes_to(& stmt->then_instructions);
1759 ir_dereference *const then_deref =
1760 new(ctx) ir_dereference_variable(tmp);
1761 ir_assignment *const then_assign =
1762 new(ctx) ir_assignment(then_deref, op[1]);
1763 stmt->then_instructions.push_tail(then_assign);
1764
1765 else_instructions.move_nodes_to(& stmt->else_instructions);
1766 ir_dereference *const else_deref =
1767 new(ctx) ir_dereference_variable(tmp);
1768 ir_assignment *const else_assign =
1769 new(ctx) ir_assignment(else_deref, op[2]);
1770 stmt->else_instructions.push_tail(else_assign);
1771
1772 result = new(ctx) ir_dereference_variable(tmp);
1773 }
1774 break;
1775 }
1776
1777 case ast_pre_inc:
1778 case ast_pre_dec: {
1779 this->non_lvalue_description = (this->oper == ast_pre_inc)
1780 ? "pre-increment operation" : "pre-decrement operation";
1781
1782 op[0] = this->subexpressions[0]->hir(instructions, state);
1783 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1784
1785 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1786
1787 ir_rvalue *temp_rhs;
1788 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1789 op[0], op[1]);
1790
1791 error_emitted =
1792 do_assignment(instructions, state,
1793 this->subexpressions[0]->non_lvalue_description,
1794 op[0]->clone(ctx, NULL), temp_rhs,
1795 &result, needs_rvalue, false,
1796 this->subexpressions[0]->get_location());
1797 break;
1798 }
1799
1800 case ast_post_inc:
1801 case ast_post_dec: {
1802 this->non_lvalue_description = (this->oper == ast_post_inc)
1803 ? "post-increment operation" : "post-decrement operation";
1804 op[0] = this->subexpressions[0]->hir(instructions, state);
1805 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1806
1807 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1808
1809 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1810
1811 ir_rvalue *temp_rhs;
1812 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1813 op[0], op[1]);
1814
1815 /* Get a temporary of a copy of the lvalue before it's modified.
1816 * This may get thrown away later.
1817 */
1818 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1819
1820 ir_rvalue *junk_rvalue;
1821 error_emitted =
1822 do_assignment(instructions, state,
1823 this->subexpressions[0]->non_lvalue_description,
1824 op[0]->clone(ctx, NULL), temp_rhs,
1825 &junk_rvalue, false, false,
1826 this->subexpressions[0]->get_location());
1827
1828 break;
1829 }
1830
1831 case ast_field_selection:
1832 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1833 break;
1834
1835 case ast_array_index: {
1836 YYLTYPE index_loc = subexpressions[1]->get_location();
1837
1838 op[0] = subexpressions[0]->hir(instructions, state);
1839 op[1] = subexpressions[1]->hir(instructions, state);
1840
1841 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1842 loc, index_loc);
1843
1844 if (result->type->is_error())
1845 error_emitted = true;
1846
1847 break;
1848 }
1849
1850 case ast_unsized_array_dim:
1851 assert(!"ast_unsized_array_dim: Should never get here.");
1852 break;
1853
1854 case ast_function_call:
1855 /* Should *NEVER* get here. ast_function_call should always be handled
1856 * by ast_function_expression::hir.
1857 */
1858 assert(0);
1859 break;
1860
1861 case ast_identifier: {
1862 /* ast_identifier can appear several places in a full abstract syntax
1863 * tree. This particular use must be at location specified in the grammar
1864 * as 'variable_identifier'.
1865 */
1866 ir_variable *var =
1867 state->symbols->get_variable(this->primary_expression.identifier);
1868
1869 if (var != NULL) {
1870 var->data.used = true;
1871 result = new(ctx) ir_dereference_variable(var);
1872 } else {
1873 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1874 this->primary_expression.identifier);
1875
1876 result = ir_rvalue::error_value(ctx);
1877 error_emitted = true;
1878 }
1879 break;
1880 }
1881
1882 case ast_int_constant:
1883 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1884 break;
1885
1886 case ast_uint_constant:
1887 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1888 break;
1889
1890 case ast_float_constant:
1891 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1892 break;
1893
1894 case ast_bool_constant:
1895 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1896 break;
1897
1898 case ast_double_constant:
1899 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1900 break;
1901
1902 case ast_sequence: {
1903 /* It should not be possible to generate a sequence in the AST without
1904 * any expressions in it.
1905 */
1906 assert(!this->expressions.is_empty());
1907
1908 /* The r-value of a sequence is the last expression in the sequence. If
1909 * the other expressions in the sequence do not have side-effects (and
1910 * therefore add instructions to the instruction list), they get dropped
1911 * on the floor.
1912 */
1913 exec_node *previous_tail_pred = NULL;
1914 YYLTYPE previous_operand_loc = loc;
1915
1916 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1917 /* If one of the operands of comma operator does not generate any
1918 * code, we want to emit a warning. At each pass through the loop
1919 * previous_tail_pred will point to the last instruction in the
1920 * stream *before* processing the previous operand. Naturally,
1921 * instructions->tail_pred will point to the last instruction in the
1922 * stream *after* processing the previous operand. If the two
1923 * pointers match, then the previous operand had no effect.
1924 *
1925 * The warning behavior here differs slightly from GCC. GCC will
1926 * only emit a warning if none of the left-hand operands have an
1927 * effect. However, it will emit a warning for each. I believe that
1928 * there are some cases in C (especially with GCC extensions) where
1929 * it is useful to have an intermediate step in a sequence have no
1930 * effect, but I don't think these cases exist in GLSL. Either way,
1931 * it would be a giant hassle to replicate that behavior.
1932 */
1933 if (previous_tail_pred == instructions->tail_pred) {
1934 _mesa_glsl_warning(&previous_operand_loc, state,
1935 "left-hand operand of comma expression has "
1936 "no effect");
1937 }
1938
1939 /* tail_pred is directly accessed instead of using the get_tail()
1940 * method for performance reasons. get_tail() has extra code to
1941 * return NULL when the list is empty. We don't care about that
1942 * here, so using tail_pred directly is fine.
1943 */
1944 previous_tail_pred = instructions->tail_pred;
1945 previous_operand_loc = ast->get_location();
1946
1947 result = ast->hir(instructions, state);
1948 }
1949
1950 /* Any errors should have already been emitted in the loop above.
1951 */
1952 error_emitted = true;
1953 break;
1954 }
1955 }
1956 type = NULL; /* use result->type, not type. */
1957 assert(result != NULL || !needs_rvalue);
1958
1959 if (result && result->type->is_error() && !error_emitted)
1960 _mesa_glsl_error(& loc, state, "type mismatch");
1961
1962 return result;
1963 }
1964
1965 bool
1966 ast_expression::has_sequence_subexpression() const
1967 {
1968 switch (this->oper) {
1969 case ast_plus:
1970 case ast_neg:
1971 case ast_bit_not:
1972 case ast_logic_not:
1973 case ast_pre_inc:
1974 case ast_pre_dec:
1975 case ast_post_inc:
1976 case ast_post_dec:
1977 return this->subexpressions[0]->has_sequence_subexpression();
1978
1979 case ast_assign:
1980 case ast_add:
1981 case ast_sub:
1982 case ast_mul:
1983 case ast_div:
1984 case ast_mod:
1985 case ast_lshift:
1986 case ast_rshift:
1987 case ast_less:
1988 case ast_greater:
1989 case ast_lequal:
1990 case ast_gequal:
1991 case ast_nequal:
1992 case ast_equal:
1993 case ast_bit_and:
1994 case ast_bit_xor:
1995 case ast_bit_or:
1996 case ast_logic_and:
1997 case ast_logic_or:
1998 case ast_logic_xor:
1999 case ast_array_index:
2000 case ast_mul_assign:
2001 case ast_div_assign:
2002 case ast_add_assign:
2003 case ast_sub_assign:
2004 case ast_mod_assign:
2005 case ast_ls_assign:
2006 case ast_rs_assign:
2007 case ast_and_assign:
2008 case ast_xor_assign:
2009 case ast_or_assign:
2010 return this->subexpressions[0]->has_sequence_subexpression() ||
2011 this->subexpressions[1]->has_sequence_subexpression();
2012
2013 case ast_conditional:
2014 return this->subexpressions[0]->has_sequence_subexpression() ||
2015 this->subexpressions[1]->has_sequence_subexpression() ||
2016 this->subexpressions[2]->has_sequence_subexpression();
2017
2018 case ast_sequence:
2019 return true;
2020
2021 case ast_field_selection:
2022 case ast_identifier:
2023 case ast_int_constant:
2024 case ast_uint_constant:
2025 case ast_float_constant:
2026 case ast_bool_constant:
2027 case ast_double_constant:
2028 return false;
2029
2030 case ast_aggregate:
2031 unreachable("ast_aggregate: Should never get here.");
2032
2033 case ast_function_call:
2034 unreachable("should be handled by ast_function_expression::hir");
2035
2036 case ast_unsized_array_dim:
2037 unreachable("ast_unsized_array_dim: Should never get here.");
2038 }
2039
2040 return false;
2041 }
2042
2043 ir_rvalue *
2044 ast_expression_statement::hir(exec_list *instructions,
2045 struct _mesa_glsl_parse_state *state)
2046 {
2047 /* It is possible to have expression statements that don't have an
2048 * expression. This is the solitary semicolon:
2049 *
2050 * for (i = 0; i < 5; i++)
2051 * ;
2052 *
2053 * In this case the expression will be NULL. Test for NULL and don't do
2054 * anything in that case.
2055 */
2056 if (expression != NULL)
2057 expression->hir_no_rvalue(instructions, state);
2058
2059 /* Statements do not have r-values.
2060 */
2061 return NULL;
2062 }
2063
2064
2065 ir_rvalue *
2066 ast_compound_statement::hir(exec_list *instructions,
2067 struct _mesa_glsl_parse_state *state)
2068 {
2069 if (new_scope)
2070 state->symbols->push_scope();
2071
2072 foreach_list_typed (ast_node, ast, link, &this->statements)
2073 ast->hir(instructions, state);
2074
2075 if (new_scope)
2076 state->symbols->pop_scope();
2077
2078 /* Compound statements do not have r-values.
2079 */
2080 return NULL;
2081 }
2082
2083 /**
2084 * Evaluate the given exec_node (which should be an ast_node representing
2085 * a single array dimension) and return its integer value.
2086 */
2087 static unsigned
2088 process_array_size(exec_node *node,
2089 struct _mesa_glsl_parse_state *state)
2090 {
2091 exec_list dummy_instructions;
2092
2093 ast_node *array_size = exec_node_data(ast_node, node, link);
2094
2095 /**
2096 * Dimensions other than the outermost dimension can by unsized if they
2097 * are immediately sized by a constructor or initializer.
2098 */
2099 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2100 return 0;
2101
2102 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2103 YYLTYPE loc = array_size->get_location();
2104
2105 if (ir == NULL) {
2106 _mesa_glsl_error(& loc, state,
2107 "array size could not be resolved");
2108 return 0;
2109 }
2110
2111 if (!ir->type->is_integer()) {
2112 _mesa_glsl_error(& loc, state,
2113 "array size must be integer type");
2114 return 0;
2115 }
2116
2117 if (!ir->type->is_scalar()) {
2118 _mesa_glsl_error(& loc, state,
2119 "array size must be scalar type");
2120 return 0;
2121 }
2122
2123 ir_constant *const size = ir->constant_expression_value();
2124 if (size == NULL || array_size->has_sequence_subexpression()) {
2125 _mesa_glsl_error(& loc, state, "array size must be a "
2126 "constant valued expression");
2127 return 0;
2128 }
2129
2130 if (size->value.i[0] <= 0) {
2131 _mesa_glsl_error(& loc, state, "array size must be > 0");
2132 return 0;
2133 }
2134
2135 assert(size->type == ir->type);
2136
2137 /* If the array size is const (and we've verified that
2138 * it is) then no instructions should have been emitted
2139 * when we converted it to HIR. If they were emitted,
2140 * then either the array size isn't const after all, or
2141 * we are emitting unnecessary instructions.
2142 */
2143 assert(dummy_instructions.is_empty());
2144
2145 return size->value.u[0];
2146 }
2147
2148 static const glsl_type *
2149 process_array_type(YYLTYPE *loc, const glsl_type *base,
2150 ast_array_specifier *array_specifier,
2151 struct _mesa_glsl_parse_state *state)
2152 {
2153 const glsl_type *array_type = base;
2154
2155 if (array_specifier != NULL) {
2156 if (base->is_array()) {
2157
2158 /* From page 19 (page 25) of the GLSL 1.20 spec:
2159 *
2160 * "Only one-dimensional arrays may be declared."
2161 */
2162 if (!state->check_arrays_of_arrays_allowed(loc)) {
2163 return glsl_type::error_type;
2164 }
2165 }
2166
2167 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2168 !node->is_head_sentinel(); node = node->prev) {
2169 unsigned array_size = process_array_size(node, state);
2170 array_type = glsl_type::get_array_instance(array_type, array_size);
2171 }
2172 }
2173
2174 return array_type;
2175 }
2176
2177 static bool
2178 precision_qualifier_allowed(const glsl_type *type)
2179 {
2180 /* Precision qualifiers apply to floating point, integer and opaque
2181 * types.
2182 *
2183 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2184 * "Any floating point or any integer declaration can have the type
2185 * preceded by one of these precision qualifiers [...] Literal
2186 * constants do not have precision qualifiers. Neither do Boolean
2187 * variables.
2188 *
2189 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2190 * spec also says:
2191 *
2192 * "Precision qualifiers are added for code portability with OpenGL
2193 * ES, not for functionality. They have the same syntax as in OpenGL
2194 * ES."
2195 *
2196 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2197 *
2198 * "uniform lowp sampler2D sampler;
2199 * highp vec2 coord;
2200 * ...
2201 * lowp vec4 col = texture2D (sampler, coord);
2202 * // texture2D returns lowp"
2203 *
2204 * From this, we infer that GLSL 1.30 (and later) should allow precision
2205 * qualifiers on sampler types just like float and integer types.
2206 */
2207 return (type->is_float()
2208 || type->is_integer()
2209 || type->contains_opaque())
2210 && !type->without_array()->is_record();
2211 }
2212
2213 const glsl_type *
2214 ast_type_specifier::glsl_type(const char **name,
2215 struct _mesa_glsl_parse_state *state) const
2216 {
2217 const struct glsl_type *type;
2218
2219 type = state->symbols->get_type(this->type_name);
2220 *name = this->type_name;
2221
2222 YYLTYPE loc = this->get_location();
2223 type = process_array_type(&loc, type, this->array_specifier, state);
2224
2225 return type;
2226 }
2227
2228 /**
2229 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2230 *
2231 * "The precision statement
2232 *
2233 * precision precision-qualifier type;
2234 *
2235 * can be used to establish a default precision qualifier. The type field can
2236 * be either int or float or any of the sampler types, (...) If type is float,
2237 * the directive applies to non-precision-qualified floating point type
2238 * (scalar, vector, and matrix) declarations. If type is int, the directive
2239 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2240 * and unsigned) declarations."
2241 *
2242 * We use the symbol table to keep the values of the default precisions for
2243 * each 'type' in each scope and we use the 'type' string from the precision
2244 * statement as key in the symbol table. When we want to retrieve the default
2245 * precision associated with a given glsl_type we need to know the type string
2246 * associated with it. This is what this function returns.
2247 */
2248 static const char *
2249 get_type_name_for_precision_qualifier(const glsl_type *type)
2250 {
2251 switch (type->base_type) {
2252 case GLSL_TYPE_FLOAT:
2253 return "float";
2254 case GLSL_TYPE_UINT:
2255 case GLSL_TYPE_INT:
2256 return "int";
2257 case GLSL_TYPE_ATOMIC_UINT:
2258 return "atomic_uint";
2259 case GLSL_TYPE_IMAGE:
2260 /* fallthrough */
2261 case GLSL_TYPE_SAMPLER: {
2262 const unsigned type_idx =
2263 type->sampler_array + 2 * type->sampler_shadow;
2264 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2265 assert(type_idx < 4);
2266 switch (type->sampler_type) {
2267 case GLSL_TYPE_FLOAT:
2268 switch (type->sampler_dimensionality) {
2269 case GLSL_SAMPLER_DIM_1D: {
2270 assert(type->base_type == GLSL_TYPE_SAMPLER);
2271 static const char *const names[4] = {
2272 "sampler1D", "sampler1DArray",
2273 "sampler1DShadow", "sampler1DArrayShadow"
2274 };
2275 return names[type_idx];
2276 }
2277 case GLSL_SAMPLER_DIM_2D: {
2278 static const char *const names[8] = {
2279 "sampler2D", "sampler2DArray",
2280 "sampler2DShadow", "sampler2DArrayShadow",
2281 "image2D", "image2DArray", NULL, NULL
2282 };
2283 return names[offset + type_idx];
2284 }
2285 case GLSL_SAMPLER_DIM_3D: {
2286 static const char *const names[8] = {
2287 "sampler3D", NULL, NULL, NULL,
2288 "image3D", NULL, NULL, NULL
2289 };
2290 return names[offset + type_idx];
2291 }
2292 case GLSL_SAMPLER_DIM_CUBE: {
2293 static const char *const names[8] = {
2294 "samplerCube", "samplerCubeArray",
2295 "samplerCubeShadow", "samplerCubeArrayShadow",
2296 "imageCube", NULL, NULL, NULL
2297 };
2298 return names[offset + type_idx];
2299 }
2300 case GLSL_SAMPLER_DIM_MS: {
2301 assert(type->base_type == GLSL_TYPE_SAMPLER);
2302 static const char *const names[4] = {
2303 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2304 };
2305 return names[type_idx];
2306 }
2307 case GLSL_SAMPLER_DIM_RECT: {
2308 assert(type->base_type == GLSL_TYPE_SAMPLER);
2309 static const char *const names[4] = {
2310 "samplerRect", NULL, "samplerRectShadow", NULL
2311 };
2312 return names[type_idx];
2313 }
2314 case GLSL_SAMPLER_DIM_BUF: {
2315 assert(type->base_type == GLSL_TYPE_SAMPLER);
2316 static const char *const names[4] = {
2317 "samplerBuffer", NULL, NULL, NULL
2318 };
2319 return names[type_idx];
2320 }
2321 case GLSL_SAMPLER_DIM_EXTERNAL: {
2322 assert(type->base_type == GLSL_TYPE_SAMPLER);
2323 static const char *const names[4] = {
2324 "samplerExternalOES", NULL, NULL, NULL
2325 };
2326 return names[type_idx];
2327 }
2328 default:
2329 unreachable("Unsupported sampler/image dimensionality");
2330 } /* sampler/image float dimensionality */
2331 break;
2332 case GLSL_TYPE_INT:
2333 switch (type->sampler_dimensionality) {
2334 case GLSL_SAMPLER_DIM_1D: {
2335 assert(type->base_type == GLSL_TYPE_SAMPLER);
2336 static const char *const names[4] = {
2337 "isampler1D", "isampler1DArray", NULL, NULL
2338 };
2339 return names[type_idx];
2340 }
2341 case GLSL_SAMPLER_DIM_2D: {
2342 static const char *const names[8] = {
2343 "isampler2D", "isampler2DArray", NULL, NULL,
2344 "iimage2D", "iimage2DArray", NULL, NULL
2345 };
2346 return names[offset + type_idx];
2347 }
2348 case GLSL_SAMPLER_DIM_3D: {
2349 static const char *const names[8] = {
2350 "isampler3D", NULL, NULL, NULL,
2351 "iimage3D", NULL, NULL, NULL
2352 };
2353 return names[offset + type_idx];
2354 }
2355 case GLSL_SAMPLER_DIM_CUBE: {
2356 static const char *const names[8] = {
2357 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2358 "iimageCube", NULL, NULL, NULL
2359 };
2360 return names[offset + type_idx];
2361 }
2362 case GLSL_SAMPLER_DIM_MS: {
2363 assert(type->base_type == GLSL_TYPE_SAMPLER);
2364 static const char *const names[4] = {
2365 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2366 };
2367 return names[type_idx];
2368 }
2369 case GLSL_SAMPLER_DIM_RECT: {
2370 assert(type->base_type == GLSL_TYPE_SAMPLER);
2371 static const char *const names[4] = {
2372 "isamplerRect", NULL, "isamplerRectShadow", NULL
2373 };
2374 return names[type_idx];
2375 }
2376 case GLSL_SAMPLER_DIM_BUF: {
2377 assert(type->base_type == GLSL_TYPE_SAMPLER);
2378 static const char *const names[4] = {
2379 "isamplerBuffer", NULL, NULL, NULL
2380 };
2381 return names[type_idx];
2382 }
2383 default:
2384 unreachable("Unsupported isampler/iimage dimensionality");
2385 } /* sampler/image int dimensionality */
2386 break;
2387 case GLSL_TYPE_UINT:
2388 switch (type->sampler_dimensionality) {
2389 case GLSL_SAMPLER_DIM_1D: {
2390 assert(type->base_type == GLSL_TYPE_SAMPLER);
2391 static const char *const names[4] = {
2392 "usampler1D", "usampler1DArray", NULL, NULL
2393 };
2394 return names[type_idx];
2395 }
2396 case GLSL_SAMPLER_DIM_2D: {
2397 static const char *const names[8] = {
2398 "usampler2D", "usampler2DArray", NULL, NULL,
2399 "uimage2D", "uimage2DArray", NULL, NULL
2400 };
2401 return names[offset + type_idx];
2402 }
2403 case GLSL_SAMPLER_DIM_3D: {
2404 static const char *const names[8] = {
2405 "usampler3D", NULL, NULL, NULL,
2406 "uimage3D", NULL, NULL, NULL
2407 };
2408 return names[offset + type_idx];
2409 }
2410 case GLSL_SAMPLER_DIM_CUBE: {
2411 static const char *const names[8] = {
2412 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2413 "uimageCube", NULL, NULL, NULL
2414 };
2415 return names[offset + type_idx];
2416 }
2417 case GLSL_SAMPLER_DIM_MS: {
2418 assert(type->base_type == GLSL_TYPE_SAMPLER);
2419 static const char *const names[4] = {
2420 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2421 };
2422 return names[type_idx];
2423 }
2424 case GLSL_SAMPLER_DIM_RECT: {
2425 assert(type->base_type == GLSL_TYPE_SAMPLER);
2426 static const char *const names[4] = {
2427 "usamplerRect", NULL, "usamplerRectShadow", NULL
2428 };
2429 return names[type_idx];
2430 }
2431 case GLSL_SAMPLER_DIM_BUF: {
2432 assert(type->base_type == GLSL_TYPE_SAMPLER);
2433 static const char *const names[4] = {
2434 "usamplerBuffer", NULL, NULL, NULL
2435 };
2436 return names[type_idx];
2437 }
2438 default:
2439 unreachable("Unsupported usampler/uimage dimensionality");
2440 } /* sampler/image uint dimensionality */
2441 break;
2442 default:
2443 unreachable("Unsupported sampler/image type");
2444 } /* sampler/image type */
2445 break;
2446 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2447 break;
2448 default:
2449 unreachable("Unsupported type");
2450 } /* base type */
2451 }
2452
2453 static unsigned
2454 select_gles_precision(unsigned qual_precision,
2455 const glsl_type *type,
2456 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2457 {
2458 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2459 * In GLES we take the precision from the type qualifier if present,
2460 * otherwise, if the type of the variable allows precision qualifiers at
2461 * all, we look for the default precision qualifier for that type in the
2462 * current scope.
2463 */
2464 assert(state->es_shader);
2465
2466 unsigned precision = GLSL_PRECISION_NONE;
2467 if (qual_precision) {
2468 precision = qual_precision;
2469 } else if (precision_qualifier_allowed(type)) {
2470 const char *type_name =
2471 get_type_name_for_precision_qualifier(type->without_array());
2472 assert(type_name != NULL);
2473
2474 precision =
2475 state->symbols->get_default_precision_qualifier(type_name);
2476 if (precision == ast_precision_none) {
2477 _mesa_glsl_error(loc, state,
2478 "No precision specified in this scope for type `%s'",
2479 type->name);
2480 }
2481 }
2482 return precision;
2483 }
2484
2485 const glsl_type *
2486 ast_fully_specified_type::glsl_type(const char **name,
2487 struct _mesa_glsl_parse_state *state) const
2488 {
2489 return this->specifier->glsl_type(name, state);
2490 }
2491
2492 /**
2493 * Determine whether a toplevel variable declaration declares a varying. This
2494 * function operates by examining the variable's mode and the shader target,
2495 * so it correctly identifies linkage variables regardless of whether they are
2496 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2497 *
2498 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2499 * this function will produce undefined results.
2500 */
2501 static bool
2502 is_varying_var(ir_variable *var, gl_shader_stage target)
2503 {
2504 switch (target) {
2505 case MESA_SHADER_VERTEX:
2506 return var->data.mode == ir_var_shader_out;
2507 case MESA_SHADER_FRAGMENT:
2508 return var->data.mode == ir_var_shader_in;
2509 default:
2510 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2511 }
2512 }
2513
2514
2515 /**
2516 * Matrix layout qualifiers are only allowed on certain types
2517 */
2518 static void
2519 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2520 YYLTYPE *loc,
2521 const glsl_type *type,
2522 ir_variable *var)
2523 {
2524 if (var && !var->is_in_buffer_block()) {
2525 /* Layout qualifiers may only apply to interface blocks and fields in
2526 * them.
2527 */
2528 _mesa_glsl_error(loc, state,
2529 "uniform block layout qualifiers row_major and "
2530 "column_major may not be applied to variables "
2531 "outside of uniform blocks");
2532 } else if (!type->without_array()->is_matrix()) {
2533 /* The OpenGL ES 3.0 conformance tests did not originally allow
2534 * matrix layout qualifiers on non-matrices. However, the OpenGL
2535 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2536 * amended to specifically allow these layouts on all types. Emit
2537 * a warning so that people know their code may not be portable.
2538 */
2539 _mesa_glsl_warning(loc, state,
2540 "uniform block layout qualifiers row_major and "
2541 "column_major applied to non-matrix types may "
2542 "be rejected by older compilers");
2543 }
2544 }
2545
2546 static bool
2547 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2548 YYLTYPE *loc,
2549 const char *qual_indentifier,
2550 ast_expression *const_expression,
2551 unsigned *value)
2552 {
2553 exec_list dummy_instructions;
2554
2555 if (const_expression == NULL) {
2556 *value = 0;
2557 return true;
2558 }
2559
2560 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2561
2562 ir_constant *const const_int = ir->constant_expression_value();
2563 if (const_int == NULL || !const_int->type->is_integer()) {
2564 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2565 "expression", qual_indentifier);
2566 return false;
2567 }
2568
2569 if (const_int->value.i[0] < 0) {
2570 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2571 qual_indentifier, const_int->value.u[0]);
2572 return false;
2573 }
2574
2575 /* If the location is const (and we've verified that
2576 * it is) then no instructions should have been emitted
2577 * when we converted it to HIR. If they were emitted,
2578 * then either the location isn't const after all, or
2579 * we are emitting unnecessary instructions.
2580 */
2581 assert(dummy_instructions.is_empty());
2582
2583 *value = const_int->value.u[0];
2584 return true;
2585 }
2586
2587 static bool
2588 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2589 unsigned stream)
2590 {
2591 if (stream >= state->ctx->Const.MaxVertexStreams) {
2592 _mesa_glsl_error(loc, state,
2593 "invalid stream specified %d is larger than "
2594 "MAX_VERTEX_STREAMS - 1 (%d).",
2595 stream, state->ctx->Const.MaxVertexStreams - 1);
2596 return false;
2597 }
2598
2599 return true;
2600 }
2601
2602 static void
2603 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2604 YYLTYPE *loc,
2605 ir_variable *var,
2606 const glsl_type *type,
2607 const ast_type_qualifier *qual)
2608 {
2609 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2610 _mesa_glsl_error(loc, state,
2611 "the \"binding\" qualifier only applies to uniforms and "
2612 "shader storage buffer objects");
2613 return;
2614 }
2615
2616 unsigned qual_binding;
2617 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2618 &qual_binding)) {
2619 return;
2620 }
2621
2622 const struct gl_context *const ctx = state->ctx;
2623 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2624 unsigned max_index = qual_binding + elements - 1;
2625 const glsl_type *base_type = type->without_array();
2626
2627 if (base_type->is_interface()) {
2628 /* UBOs. From page 60 of the GLSL 4.20 specification:
2629 * "If the binding point for any uniform block instance is less than zero,
2630 * or greater than or equal to the implementation-dependent maximum
2631 * number of uniform buffer bindings, a compilation error will occur.
2632 * When the binding identifier is used with a uniform block instanced as
2633 * an array of size N, all elements of the array from binding through
2634 * binding + N – 1 must be within this range."
2635 *
2636 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2637 */
2638 if (qual->flags.q.uniform &&
2639 max_index >= ctx->Const.MaxUniformBufferBindings) {
2640 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2641 "the maximum number of UBO binding points (%d)",
2642 qual_binding, elements,
2643 ctx->Const.MaxUniformBufferBindings);
2644 return;
2645 }
2646
2647 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2648 * "If the binding point for any uniform or shader storage block instance
2649 * is less than zero, or greater than or equal to the
2650 * implementation-dependent maximum number of uniform buffer bindings, a
2651 * compile-time error will occur. When the binding identifier is used
2652 * with a uniform or shader storage block instanced as an array of size
2653 * N, all elements of the array from binding through binding + N – 1 must
2654 * be within this range."
2655 */
2656 if (qual->flags.q.buffer &&
2657 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2658 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2659 "the maximum number of SSBO binding points (%d)",
2660 qual_binding, elements,
2661 ctx->Const.MaxShaderStorageBufferBindings);
2662 return;
2663 }
2664 } else if (base_type->is_sampler()) {
2665 /* Samplers. From page 63 of the GLSL 4.20 specification:
2666 * "If the binding is less than zero, or greater than or equal to the
2667 * implementation-dependent maximum supported number of units, a
2668 * compilation error will occur. When the binding identifier is used
2669 * with an array of size N, all elements of the array from binding
2670 * through binding + N - 1 must be within this range."
2671 */
2672 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2673
2674 if (max_index >= limit) {
2675 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2676 "exceeds the maximum number of texture image units "
2677 "(%u)", qual_binding, elements, limit);
2678
2679 return;
2680 }
2681 } else if (base_type->contains_atomic()) {
2682 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2683 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2684 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2685 " maximum number of atomic counter buffer bindings"
2686 "(%u)", qual_binding,
2687 ctx->Const.MaxAtomicBufferBindings);
2688
2689 return;
2690 }
2691 } else if ((state->is_version(420, 310) ||
2692 state->ARB_shading_language_420pack_enable) &&
2693 base_type->is_image()) {
2694 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2695 if (max_index >= ctx->Const.MaxImageUnits) {
2696 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2697 " maximum number of image units (%d)", max_index,
2698 ctx->Const.MaxImageUnits);
2699 return;
2700 }
2701
2702 } else {
2703 _mesa_glsl_error(loc, state,
2704 "the \"binding\" qualifier only applies to uniform "
2705 "blocks, opaque variables, or arrays thereof");
2706 return;
2707 }
2708
2709 var->data.explicit_binding = true;
2710 var->data.binding = qual_binding;
2711
2712 return;
2713 }
2714
2715
2716 static glsl_interp_qualifier
2717 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2718 ir_variable_mode mode,
2719 struct _mesa_glsl_parse_state *state,
2720 YYLTYPE *loc)
2721 {
2722 glsl_interp_qualifier interpolation;
2723 if (qual->flags.q.flat)
2724 interpolation = INTERP_QUALIFIER_FLAT;
2725 else if (qual->flags.q.noperspective)
2726 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2727 else if (qual->flags.q.smooth)
2728 interpolation = INTERP_QUALIFIER_SMOOTH;
2729 else
2730 interpolation = INTERP_QUALIFIER_NONE;
2731
2732 if (interpolation != INTERP_QUALIFIER_NONE) {
2733 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2734 _mesa_glsl_error(loc, state,
2735 "interpolation qualifier `%s' can only be applied to "
2736 "shader inputs or outputs.",
2737 interpolation_string(interpolation));
2738
2739 }
2740
2741 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2742 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2743 _mesa_glsl_error(loc, state,
2744 "interpolation qualifier `%s' cannot be applied to "
2745 "vertex shader inputs or fragment shader outputs",
2746 interpolation_string(interpolation));
2747 }
2748 }
2749
2750 return interpolation;
2751 }
2752
2753
2754 static void
2755 apply_explicit_location(const struct ast_type_qualifier *qual,
2756 ir_variable *var,
2757 struct _mesa_glsl_parse_state *state,
2758 YYLTYPE *loc)
2759 {
2760 bool fail = false;
2761
2762 unsigned qual_location;
2763 if (!process_qualifier_constant(state, loc, "location", qual->location,
2764 &qual_location)) {
2765 return;
2766 }
2767
2768 /* Checks for GL_ARB_explicit_uniform_location. */
2769 if (qual->flags.q.uniform) {
2770 if (!state->check_explicit_uniform_location_allowed(loc, var))
2771 return;
2772
2773 const struct gl_context *const ctx = state->ctx;
2774 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2775
2776 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2777 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2778 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2779 ctx->Const.MaxUserAssignableUniformLocations);
2780 return;
2781 }
2782
2783 var->data.explicit_location = true;
2784 var->data.location = qual_location;
2785 return;
2786 }
2787
2788 /* Between GL_ARB_explicit_attrib_location an
2789 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2790 * stage can be assigned explicit locations. The checking here associates
2791 * the correct extension with the correct stage's input / output:
2792 *
2793 * input output
2794 * ----- ------
2795 * vertex explicit_loc sso
2796 * tess control sso sso
2797 * tess eval sso sso
2798 * geometry sso sso
2799 * fragment sso explicit_loc
2800 */
2801 switch (state->stage) {
2802 case MESA_SHADER_VERTEX:
2803 if (var->data.mode == ir_var_shader_in) {
2804 if (!state->check_explicit_attrib_location_allowed(loc, var))
2805 return;
2806
2807 break;
2808 }
2809
2810 if (var->data.mode == ir_var_shader_out) {
2811 if (!state->check_separate_shader_objects_allowed(loc, var))
2812 return;
2813
2814 break;
2815 }
2816
2817 fail = true;
2818 break;
2819
2820 case MESA_SHADER_TESS_CTRL:
2821 case MESA_SHADER_TESS_EVAL:
2822 case MESA_SHADER_GEOMETRY:
2823 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2824 if (!state->check_separate_shader_objects_allowed(loc, var))
2825 return;
2826
2827 break;
2828 }
2829
2830 fail = true;
2831 break;
2832
2833 case MESA_SHADER_FRAGMENT:
2834 if (var->data.mode == ir_var_shader_in) {
2835 if (!state->check_separate_shader_objects_allowed(loc, var))
2836 return;
2837
2838 break;
2839 }
2840
2841 if (var->data.mode == ir_var_shader_out) {
2842 if (!state->check_explicit_attrib_location_allowed(loc, var))
2843 return;
2844
2845 break;
2846 }
2847
2848 fail = true;
2849 break;
2850
2851 case MESA_SHADER_COMPUTE:
2852 _mesa_glsl_error(loc, state,
2853 "compute shader variables cannot be given "
2854 "explicit locations");
2855 return;
2856 };
2857
2858 if (fail) {
2859 _mesa_glsl_error(loc, state,
2860 "%s cannot be given an explicit location in %s shader",
2861 mode_string(var),
2862 _mesa_shader_stage_to_string(state->stage));
2863 } else {
2864 var->data.explicit_location = true;
2865
2866 switch (state->stage) {
2867 case MESA_SHADER_VERTEX:
2868 var->data.location = (var->data.mode == ir_var_shader_in)
2869 ? (qual_location + VERT_ATTRIB_GENERIC0)
2870 : (qual_location + VARYING_SLOT_VAR0);
2871 break;
2872
2873 case MESA_SHADER_TESS_CTRL:
2874 case MESA_SHADER_TESS_EVAL:
2875 case MESA_SHADER_GEOMETRY:
2876 if (var->data.patch)
2877 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2878 else
2879 var->data.location = qual_location + VARYING_SLOT_VAR0;
2880 break;
2881
2882 case MESA_SHADER_FRAGMENT:
2883 var->data.location = (var->data.mode == ir_var_shader_out)
2884 ? (qual_location + FRAG_RESULT_DATA0)
2885 : (qual_location + VARYING_SLOT_VAR0);
2886 break;
2887 case MESA_SHADER_COMPUTE:
2888 assert(!"Unexpected shader type");
2889 break;
2890 }
2891
2892 /* Check if index was set for the uniform instead of the function */
2893 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2894 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2895 "used with subroutine functions");
2896 return;
2897 }
2898
2899 unsigned qual_index;
2900 if (qual->flags.q.explicit_index &&
2901 process_qualifier_constant(state, loc, "index", qual->index,
2902 &qual_index)) {
2903 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2904 * Layout Qualifiers):
2905 *
2906 * "It is also a compile-time error if a fragment shader
2907 * sets a layout index to less than 0 or greater than 1."
2908 *
2909 * Older specifications don't mandate a behavior; we take
2910 * this as a clarification and always generate the error.
2911 */
2912 if (qual_index > 1) {
2913 _mesa_glsl_error(loc, state,
2914 "explicit index may only be 0 or 1");
2915 } else {
2916 var->data.explicit_index = true;
2917 var->data.index = qual_index;
2918 }
2919 }
2920 }
2921 }
2922
2923 static void
2924 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2925 ir_variable *var,
2926 struct _mesa_glsl_parse_state *state,
2927 YYLTYPE *loc)
2928 {
2929 const glsl_type *base_type = var->type->without_array();
2930
2931 if (base_type->is_image()) {
2932 if (var->data.mode != ir_var_uniform &&
2933 var->data.mode != ir_var_function_in) {
2934 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2935 "function parameters or uniform-qualified "
2936 "global variables");
2937 }
2938
2939 var->data.image_read_only |= qual->flags.q.read_only;
2940 var->data.image_write_only |= qual->flags.q.write_only;
2941 var->data.image_coherent |= qual->flags.q.coherent;
2942 var->data.image_volatile |= qual->flags.q._volatile;
2943 var->data.image_restrict |= qual->flags.q.restrict_flag;
2944 var->data.read_only = true;
2945
2946 if (qual->flags.q.explicit_image_format) {
2947 if (var->data.mode == ir_var_function_in) {
2948 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2949 "used on image function parameters");
2950 }
2951
2952 if (qual->image_base_type != base_type->sampler_type) {
2953 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2954 "base data type of the image");
2955 }
2956
2957 var->data.image_format = qual->image_format;
2958 } else {
2959 if (var->data.mode == ir_var_uniform) {
2960 if (state->es_shader) {
2961 _mesa_glsl_error(loc, state, "all image uniforms "
2962 "must have a format layout qualifier");
2963
2964 } else if (!qual->flags.q.write_only) {
2965 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2966 "`writeonly' must have a format layout "
2967 "qualifier");
2968 }
2969 }
2970
2971 var->data.image_format = GL_NONE;
2972 }
2973
2974 /* From page 70 of the GLSL ES 3.1 specification:
2975 *
2976 * "Except for image variables qualified with the format qualifiers
2977 * r32f, r32i, and r32ui, image variables must specify either memory
2978 * qualifier readonly or the memory qualifier writeonly."
2979 */
2980 if (state->es_shader &&
2981 var->data.image_format != GL_R32F &&
2982 var->data.image_format != GL_R32I &&
2983 var->data.image_format != GL_R32UI &&
2984 !var->data.image_read_only &&
2985 !var->data.image_write_only) {
2986 _mesa_glsl_error(loc, state, "image variables of format other than "
2987 "r32f, r32i or r32ui must be qualified `readonly' or "
2988 "`writeonly'");
2989 }
2990
2991 } else if (qual->flags.q.read_only ||
2992 qual->flags.q.write_only ||
2993 qual->flags.q.coherent ||
2994 qual->flags.q._volatile ||
2995 qual->flags.q.restrict_flag ||
2996 qual->flags.q.explicit_image_format) {
2997 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2998 "images");
2999 }
3000 }
3001
3002 static inline const char*
3003 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3004 {
3005 if (origin_upper_left && pixel_center_integer)
3006 return "origin_upper_left, pixel_center_integer";
3007 else if (origin_upper_left)
3008 return "origin_upper_left";
3009 else if (pixel_center_integer)
3010 return "pixel_center_integer";
3011 else
3012 return " ";
3013 }
3014
3015 static inline bool
3016 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3017 const struct ast_type_qualifier *qual)
3018 {
3019 /* If gl_FragCoord was previously declared, and the qualifiers were
3020 * different in any way, return true.
3021 */
3022 if (state->fs_redeclares_gl_fragcoord) {
3023 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3024 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3025 }
3026
3027 return false;
3028 }
3029
3030 static inline void
3031 validate_array_dimensions(const glsl_type *t,
3032 struct _mesa_glsl_parse_state *state,
3033 YYLTYPE *loc) {
3034 if (t->is_array()) {
3035 t = t->fields.array;
3036 while (t->is_array()) {
3037 if (t->is_unsized_array()) {
3038 _mesa_glsl_error(loc, state,
3039 "only the outermost array dimension can "
3040 "be unsized",
3041 t->name);
3042 break;
3043 }
3044 t = t->fields.array;
3045 }
3046 }
3047 }
3048
3049 static void
3050 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3051 ir_variable *var,
3052 struct _mesa_glsl_parse_state *state,
3053 YYLTYPE *loc)
3054 {
3055 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3056
3057 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3058 *
3059 * "Within any shader, the first redeclarations of gl_FragCoord
3060 * must appear before any use of gl_FragCoord."
3061 *
3062 * Generate a compiler error if above condition is not met by the
3063 * fragment shader.
3064 */
3065 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3066 if (earlier != NULL &&
3067 earlier->data.used &&
3068 !state->fs_redeclares_gl_fragcoord) {
3069 _mesa_glsl_error(loc, state,
3070 "gl_FragCoord used before its first redeclaration "
3071 "in fragment shader");
3072 }
3073
3074 /* Make sure all gl_FragCoord redeclarations specify the same layout
3075 * qualifiers.
3076 */
3077 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3078 const char *const qual_string =
3079 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3080 qual->flags.q.pixel_center_integer);
3081
3082 const char *const state_string =
3083 get_layout_qualifier_string(state->fs_origin_upper_left,
3084 state->fs_pixel_center_integer);
3085
3086 _mesa_glsl_error(loc, state,
3087 "gl_FragCoord redeclared with different layout "
3088 "qualifiers (%s) and (%s) ",
3089 state_string,
3090 qual_string);
3091 }
3092 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3093 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3094 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3095 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3096 state->fs_redeclares_gl_fragcoord =
3097 state->fs_origin_upper_left ||
3098 state->fs_pixel_center_integer ||
3099 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3100 }
3101
3102 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3103 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3104 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3105 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3106 const char *const qual_string = (qual->flags.q.origin_upper_left)
3107 ? "origin_upper_left" : "pixel_center_integer";
3108
3109 _mesa_glsl_error(loc, state,
3110 "layout qualifier `%s' can only be applied to "
3111 "fragment shader input `gl_FragCoord'",
3112 qual_string);
3113 }
3114
3115 if (qual->flags.q.explicit_location) {
3116 apply_explicit_location(qual, var, state, loc);
3117 } else if (qual->flags.q.explicit_index) {
3118 if (!qual->flags.q.subroutine_def)
3119 _mesa_glsl_error(loc, state,
3120 "explicit index requires explicit location");
3121 }
3122
3123 if (qual->flags.q.explicit_binding) {
3124 apply_explicit_binding(state, loc, var, var->type, qual);
3125 }
3126
3127 if (state->stage == MESA_SHADER_GEOMETRY &&
3128 qual->flags.q.out && qual->flags.q.stream) {
3129 unsigned qual_stream;
3130 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3131 &qual_stream) &&
3132 validate_stream_qualifier(loc, state, qual_stream)) {
3133 var->data.stream = qual_stream;
3134 }
3135 }
3136
3137 if (var->type->contains_atomic()) {
3138 if (var->data.mode == ir_var_uniform) {
3139 if (var->data.explicit_binding) {
3140 unsigned *offset =
3141 &state->atomic_counter_offsets[var->data.binding];
3142
3143 if (*offset % ATOMIC_COUNTER_SIZE)
3144 _mesa_glsl_error(loc, state,
3145 "misaligned atomic counter offset");
3146
3147 var->data.offset = *offset;
3148 *offset += var->type->atomic_size();
3149
3150 } else {
3151 _mesa_glsl_error(loc, state,
3152 "atomic counters require explicit binding point");
3153 }
3154 } else if (var->data.mode != ir_var_function_in) {
3155 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3156 "function parameters or uniform-qualified "
3157 "global variables");
3158 }
3159 }
3160
3161 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3162 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3163 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3164 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3165 * These extensions and all following extensions that add the 'layout'
3166 * keyword have been modified to require the use of 'in' or 'out'.
3167 *
3168 * The following extension do not allow the deprecated keywords:
3169 *
3170 * GL_AMD_conservative_depth
3171 * GL_ARB_conservative_depth
3172 * GL_ARB_gpu_shader5
3173 * GL_ARB_separate_shader_objects
3174 * GL_ARB_tessellation_shader
3175 * GL_ARB_transform_feedback3
3176 * GL_ARB_uniform_buffer_object
3177 *
3178 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3179 * allow layout with the deprecated keywords.
3180 */
3181 const bool relaxed_layout_qualifier_checking =
3182 state->ARB_fragment_coord_conventions_enable;
3183
3184 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3185 || qual->flags.q.varying;
3186 if (qual->has_layout() && uses_deprecated_qualifier) {
3187 if (relaxed_layout_qualifier_checking) {
3188 _mesa_glsl_warning(loc, state,
3189 "`layout' qualifier may not be used with "
3190 "`attribute' or `varying'");
3191 } else {
3192 _mesa_glsl_error(loc, state,
3193 "`layout' qualifier may not be used with "
3194 "`attribute' or `varying'");
3195 }
3196 }
3197
3198 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3199 * AMD_conservative_depth.
3200 */
3201 int depth_layout_count = qual->flags.q.depth_any
3202 + qual->flags.q.depth_greater
3203 + qual->flags.q.depth_less
3204 + qual->flags.q.depth_unchanged;
3205 if (depth_layout_count > 0
3206 && !state->AMD_conservative_depth_enable
3207 && !state->ARB_conservative_depth_enable) {
3208 _mesa_glsl_error(loc, state,
3209 "extension GL_AMD_conservative_depth or "
3210 "GL_ARB_conservative_depth must be enabled "
3211 "to use depth layout qualifiers");
3212 } else if (depth_layout_count > 0
3213 && strcmp(var->name, "gl_FragDepth") != 0) {
3214 _mesa_glsl_error(loc, state,
3215 "depth layout qualifiers can be applied only to "
3216 "gl_FragDepth");
3217 } else if (depth_layout_count > 1
3218 && strcmp(var->name, "gl_FragDepth") == 0) {
3219 _mesa_glsl_error(loc, state,
3220 "at most one depth layout qualifier can be applied to "
3221 "gl_FragDepth");
3222 }
3223 if (qual->flags.q.depth_any)
3224 var->data.depth_layout = ir_depth_layout_any;
3225 else if (qual->flags.q.depth_greater)
3226 var->data.depth_layout = ir_depth_layout_greater;
3227 else if (qual->flags.q.depth_less)
3228 var->data.depth_layout = ir_depth_layout_less;
3229 else if (qual->flags.q.depth_unchanged)
3230 var->data.depth_layout = ir_depth_layout_unchanged;
3231 else
3232 var->data.depth_layout = ir_depth_layout_none;
3233
3234 if (qual->flags.q.std140 ||
3235 qual->flags.q.std430 ||
3236 qual->flags.q.packed ||
3237 qual->flags.q.shared) {
3238 _mesa_glsl_error(loc, state,
3239 "uniform and shader storage block layout qualifiers "
3240 "std140, std430, packed, and shared can only be "
3241 "applied to uniform or shader storage blocks, not "
3242 "members");
3243 }
3244
3245 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3246 validate_matrix_layout_for_type(state, loc, var->type, var);
3247 }
3248
3249 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3250 * Inputs):
3251 *
3252 * "Fragment shaders also allow the following layout qualifier on in only
3253 * (not with variable declarations)
3254 * layout-qualifier-id
3255 * early_fragment_tests
3256 * [...]"
3257 */
3258 if (qual->flags.q.early_fragment_tests) {
3259 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3260 "valid in fragment shader input layout declaration.");
3261 }
3262 }
3263
3264 static void
3265 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3266 ir_variable *var,
3267 struct _mesa_glsl_parse_state *state,
3268 YYLTYPE *loc,
3269 bool is_parameter)
3270 {
3271 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3272
3273 if (qual->flags.q.invariant) {
3274 if (var->data.used) {
3275 _mesa_glsl_error(loc, state,
3276 "variable `%s' may not be redeclared "
3277 "`invariant' after being used",
3278 var->name);
3279 } else {
3280 var->data.invariant = 1;
3281 }
3282 }
3283
3284 if (qual->flags.q.precise) {
3285 if (var->data.used) {
3286 _mesa_glsl_error(loc, state,
3287 "variable `%s' may not be redeclared "
3288 "`precise' after being used",
3289 var->name);
3290 } else {
3291 var->data.precise = 1;
3292 }
3293 }
3294
3295 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3296 _mesa_glsl_error(loc, state,
3297 "`subroutine' may only be applied to uniforms, "
3298 "subroutine type declarations, or function definitions");
3299 }
3300
3301 if (qual->flags.q.constant || qual->flags.q.attribute
3302 || qual->flags.q.uniform
3303 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3304 var->data.read_only = 1;
3305
3306 if (qual->flags.q.centroid)
3307 var->data.centroid = 1;
3308
3309 if (qual->flags.q.sample)
3310 var->data.sample = 1;
3311
3312 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3313 if (state->es_shader) {
3314 var->data.precision =
3315 select_gles_precision(qual->precision, var->type, state, loc);
3316 }
3317
3318 if (qual->flags.q.patch)
3319 var->data.patch = 1;
3320
3321 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3322 var->type = glsl_type::error_type;
3323 _mesa_glsl_error(loc, state,
3324 "`attribute' variables may not be declared in the "
3325 "%s shader",
3326 _mesa_shader_stage_to_string(state->stage));
3327 }
3328
3329 /* Disallow layout qualifiers which may only appear on layout declarations. */
3330 if (qual->flags.q.prim_type) {
3331 _mesa_glsl_error(loc, state,
3332 "Primitive type may only be specified on GS input or output "
3333 "layout declaration, not on variables.");
3334 }
3335
3336 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3337 *
3338 * "However, the const qualifier cannot be used with out or inout."
3339 *
3340 * The same section of the GLSL 4.40 spec further clarifies this saying:
3341 *
3342 * "The const qualifier cannot be used with out or inout, or a
3343 * compile-time error results."
3344 */
3345 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3346 _mesa_glsl_error(loc, state,
3347 "`const' may not be applied to `out' or `inout' "
3348 "function parameters");
3349 }
3350
3351 /* If there is no qualifier that changes the mode of the variable, leave
3352 * the setting alone.
3353 */
3354 assert(var->data.mode != ir_var_temporary);
3355 if (qual->flags.q.in && qual->flags.q.out)
3356 var->data.mode = ir_var_function_inout;
3357 else if (qual->flags.q.in)
3358 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3359 else if (qual->flags.q.attribute
3360 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3361 var->data.mode = ir_var_shader_in;
3362 else if (qual->flags.q.out)
3363 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3364 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3365 var->data.mode = ir_var_shader_out;
3366 else if (qual->flags.q.uniform)
3367 var->data.mode = ir_var_uniform;
3368 else if (qual->flags.q.buffer)
3369 var->data.mode = ir_var_shader_storage;
3370 else if (qual->flags.q.shared_storage)
3371 var->data.mode = ir_var_shader_shared;
3372
3373 if (!is_parameter && is_varying_var(var, state->stage)) {
3374 /* User-defined ins/outs are not permitted in compute shaders. */
3375 if (state->stage == MESA_SHADER_COMPUTE) {
3376 _mesa_glsl_error(loc, state,
3377 "user-defined input and output variables are not "
3378 "permitted in compute shaders");
3379 }
3380
3381 /* This variable is being used to link data between shader stages (in
3382 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3383 * that is allowed for such purposes.
3384 *
3385 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3386 *
3387 * "The varying qualifier can be used only with the data types
3388 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3389 * these."
3390 *
3391 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3392 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3393 *
3394 * "Fragment inputs can only be signed and unsigned integers and
3395 * integer vectors, float, floating-point vectors, matrices, or
3396 * arrays of these. Structures cannot be input.
3397 *
3398 * Similar text exists in the section on vertex shader outputs.
3399 *
3400 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3401 * 3.00 spec allows structs as well. Varying structs are also allowed
3402 * in GLSL 1.50.
3403 */
3404 switch (var->type->get_scalar_type()->base_type) {
3405 case GLSL_TYPE_FLOAT:
3406 /* Ok in all GLSL versions */
3407 break;
3408 case GLSL_TYPE_UINT:
3409 case GLSL_TYPE_INT:
3410 if (state->is_version(130, 300))
3411 break;
3412 _mesa_glsl_error(loc, state,
3413 "varying variables must be of base type float in %s",
3414 state->get_version_string());
3415 break;
3416 case GLSL_TYPE_STRUCT:
3417 if (state->is_version(150, 300))
3418 break;
3419 _mesa_glsl_error(loc, state,
3420 "varying variables may not be of type struct");
3421 break;
3422 case GLSL_TYPE_DOUBLE:
3423 break;
3424 default:
3425 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3426 break;
3427 }
3428 }
3429
3430 if (state->all_invariant && (state->current_function == NULL)) {
3431 switch (state->stage) {
3432 case MESA_SHADER_VERTEX:
3433 if (var->data.mode == ir_var_shader_out)
3434 var->data.invariant = true;
3435 break;
3436 case MESA_SHADER_TESS_CTRL:
3437 case MESA_SHADER_TESS_EVAL:
3438 case MESA_SHADER_GEOMETRY:
3439 if ((var->data.mode == ir_var_shader_in)
3440 || (var->data.mode == ir_var_shader_out))
3441 var->data.invariant = true;
3442 break;
3443 case MESA_SHADER_FRAGMENT:
3444 if (var->data.mode == ir_var_shader_in)
3445 var->data.invariant = true;
3446 break;
3447 case MESA_SHADER_COMPUTE:
3448 /* Invariance isn't meaningful in compute shaders. */
3449 break;
3450 }
3451 }
3452
3453 var->data.interpolation =
3454 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3455 state, loc);
3456
3457 /* Does the declaration use the deprecated 'attribute' or 'varying'
3458 * keywords?
3459 */
3460 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3461 || qual->flags.q.varying;
3462
3463
3464 /* Validate auxiliary storage qualifiers */
3465
3466 /* From section 4.3.4 of the GLSL 1.30 spec:
3467 * "It is an error to use centroid in in a vertex shader."
3468 *
3469 * From section 4.3.4 of the GLSL ES 3.00 spec:
3470 * "It is an error to use centroid in or interpolation qualifiers in
3471 * a vertex shader input."
3472 */
3473
3474 /* Section 4.3.6 of the GLSL 1.30 specification states:
3475 * "It is an error to use centroid out in a fragment shader."
3476 *
3477 * The GL_ARB_shading_language_420pack extension specification states:
3478 * "It is an error to use auxiliary storage qualifiers or interpolation
3479 * qualifiers on an output in a fragment shader."
3480 */
3481 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3482 _mesa_glsl_error(loc, state,
3483 "sample qualifier may only be used on `in` or `out` "
3484 "variables between shader stages");
3485 }
3486 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3487 _mesa_glsl_error(loc, state,
3488 "centroid qualifier may only be used with `in', "
3489 "`out' or `varying' variables between shader stages");
3490 }
3491
3492 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3493 _mesa_glsl_error(loc, state,
3494 "the shared storage qualifiers can only be used with "
3495 "compute shaders");
3496 }
3497
3498 apply_image_qualifier_to_variable(qual, var, state, loc);
3499 }
3500
3501 /**
3502 * Get the variable that is being redeclared by this declaration
3503 *
3504 * Semantic checks to verify the validity of the redeclaration are also
3505 * performed. If semantic checks fail, compilation error will be emitted via
3506 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3507 *
3508 * \returns
3509 * A pointer to an existing variable in the current scope if the declaration
3510 * is a redeclaration, \c NULL otherwise.
3511 */
3512 static ir_variable *
3513 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3514 struct _mesa_glsl_parse_state *state,
3515 bool allow_all_redeclarations)
3516 {
3517 /* Check if this declaration is actually a re-declaration, either to
3518 * resize an array or add qualifiers to an existing variable.
3519 *
3520 * This is allowed for variables in the current scope, or when at
3521 * global scope (for built-ins in the implicit outer scope).
3522 */
3523 ir_variable *earlier = state->symbols->get_variable(var->name);
3524 if (earlier == NULL ||
3525 (state->current_function != NULL &&
3526 !state->symbols->name_declared_this_scope(var->name))) {
3527 return NULL;
3528 }
3529
3530
3531 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3532 *
3533 * "It is legal to declare an array without a size and then
3534 * later re-declare the same name as an array of the same
3535 * type and specify a size."
3536 */
3537 if (earlier->type->is_unsized_array() && var->type->is_array()
3538 && (var->type->fields.array == earlier->type->fields.array)) {
3539 /* FINISHME: This doesn't match the qualifiers on the two
3540 * FINISHME: declarations. It's not 100% clear whether this is
3541 * FINISHME: required or not.
3542 */
3543
3544 const unsigned size = unsigned(var->type->array_size());
3545 check_builtin_array_max_size(var->name, size, loc, state);
3546 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3547 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3548 "previous access",
3549 earlier->data.max_array_access);
3550 }
3551
3552 earlier->type = var->type;
3553 delete var;
3554 var = NULL;
3555 } else if ((state->ARB_fragment_coord_conventions_enable ||
3556 state->is_version(150, 0))
3557 && strcmp(var->name, "gl_FragCoord") == 0
3558 && earlier->type == var->type
3559 && var->data.mode == ir_var_shader_in) {
3560 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3561 * qualifiers.
3562 */
3563 earlier->data.origin_upper_left = var->data.origin_upper_left;
3564 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3565
3566 /* According to section 4.3.7 of the GLSL 1.30 spec,
3567 * the following built-in varaibles can be redeclared with an
3568 * interpolation qualifier:
3569 * * gl_FrontColor
3570 * * gl_BackColor
3571 * * gl_FrontSecondaryColor
3572 * * gl_BackSecondaryColor
3573 * * gl_Color
3574 * * gl_SecondaryColor
3575 */
3576 } else if (state->is_version(130, 0)
3577 && (strcmp(var->name, "gl_FrontColor") == 0
3578 || strcmp(var->name, "gl_BackColor") == 0
3579 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3580 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3581 || strcmp(var->name, "gl_Color") == 0
3582 || strcmp(var->name, "gl_SecondaryColor") == 0)
3583 && earlier->type == var->type
3584 && earlier->data.mode == var->data.mode) {
3585 earlier->data.interpolation = var->data.interpolation;
3586
3587 /* Layout qualifiers for gl_FragDepth. */
3588 } else if ((state->AMD_conservative_depth_enable ||
3589 state->ARB_conservative_depth_enable)
3590 && strcmp(var->name, "gl_FragDepth") == 0
3591 && earlier->type == var->type
3592 && earlier->data.mode == var->data.mode) {
3593
3594 /** From the AMD_conservative_depth spec:
3595 * Within any shader, the first redeclarations of gl_FragDepth
3596 * must appear before any use of gl_FragDepth.
3597 */
3598 if (earlier->data.used) {
3599 _mesa_glsl_error(&loc, state,
3600 "the first redeclaration of gl_FragDepth "
3601 "must appear before any use of gl_FragDepth");
3602 }
3603
3604 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3605 if (earlier->data.depth_layout != ir_depth_layout_none
3606 && earlier->data.depth_layout != var->data.depth_layout) {
3607 _mesa_glsl_error(&loc, state,
3608 "gl_FragDepth: depth layout is declared here "
3609 "as '%s, but it was previously declared as "
3610 "'%s'",
3611 depth_layout_string(var->data.depth_layout),
3612 depth_layout_string(earlier->data.depth_layout));
3613 }
3614
3615 earlier->data.depth_layout = var->data.depth_layout;
3616
3617 } else if (allow_all_redeclarations) {
3618 if (earlier->data.mode != var->data.mode) {
3619 _mesa_glsl_error(&loc, state,
3620 "redeclaration of `%s' with incorrect qualifiers",
3621 var->name);
3622 } else if (earlier->type != var->type) {
3623 _mesa_glsl_error(&loc, state,
3624 "redeclaration of `%s' has incorrect type",
3625 var->name);
3626 }
3627 } else {
3628 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3629 }
3630
3631 return earlier;
3632 }
3633
3634 /**
3635 * Generate the IR for an initializer in a variable declaration
3636 */
3637 ir_rvalue *
3638 process_initializer(ir_variable *var, ast_declaration *decl,
3639 ast_fully_specified_type *type,
3640 exec_list *initializer_instructions,
3641 struct _mesa_glsl_parse_state *state)
3642 {
3643 ir_rvalue *result = NULL;
3644
3645 YYLTYPE initializer_loc = decl->initializer->get_location();
3646
3647 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3648 *
3649 * "All uniform variables are read-only and are initialized either
3650 * directly by an application via API commands, or indirectly by
3651 * OpenGL."
3652 */
3653 if (var->data.mode == ir_var_uniform) {
3654 state->check_version(120, 0, &initializer_loc,
3655 "cannot initialize uniform %s",
3656 var->name);
3657 }
3658
3659 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3660 *
3661 * "Buffer variables cannot have initializers."
3662 */
3663 if (var->data.mode == ir_var_shader_storage) {
3664 _mesa_glsl_error(&initializer_loc, state,
3665 "cannot initialize buffer variable %s",
3666 var->name);
3667 }
3668
3669 /* From section 4.1.7 of the GLSL 4.40 spec:
3670 *
3671 * "Opaque variables [...] are initialized only through the
3672 * OpenGL API; they cannot be declared with an initializer in a
3673 * shader."
3674 */
3675 if (var->type->contains_opaque()) {
3676 _mesa_glsl_error(&initializer_loc, state,
3677 "cannot initialize opaque variable %s",
3678 var->name);
3679 }
3680
3681 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3682 _mesa_glsl_error(&initializer_loc, state,
3683 "cannot initialize %s shader input / %s %s",
3684 _mesa_shader_stage_to_string(state->stage),
3685 (state->stage == MESA_SHADER_VERTEX)
3686 ? "attribute" : "varying",
3687 var->name);
3688 }
3689
3690 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3691 _mesa_glsl_error(&initializer_loc, state,
3692 "cannot initialize %s shader output %s",
3693 _mesa_shader_stage_to_string(state->stage),
3694 var->name);
3695 }
3696
3697 /* If the initializer is an ast_aggregate_initializer, recursively store
3698 * type information from the LHS into it, so that its hir() function can do
3699 * type checking.
3700 */
3701 if (decl->initializer->oper == ast_aggregate)
3702 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3703
3704 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3705 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3706
3707 /* Calculate the constant value if this is a const or uniform
3708 * declaration.
3709 *
3710 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3711 *
3712 * "Declarations of globals without a storage qualifier, or with
3713 * just the const qualifier, may include initializers, in which case
3714 * they will be initialized before the first line of main() is
3715 * executed. Such initializers must be a constant expression."
3716 *
3717 * The same section of the GLSL ES 3.00.4 spec has similar language.
3718 */
3719 if (type->qualifier.flags.q.constant
3720 || type->qualifier.flags.q.uniform
3721 || (state->es_shader && state->current_function == NULL)) {
3722 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3723 lhs, rhs, true);
3724 if (new_rhs != NULL) {
3725 rhs = new_rhs;
3726
3727 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3728 * says:
3729 *
3730 * "A constant expression is one of
3731 *
3732 * ...
3733 *
3734 * - an expression formed by an operator on operands that are
3735 * all constant expressions, including getting an element of
3736 * a constant array, or a field of a constant structure, or
3737 * components of a constant vector. However, the sequence
3738 * operator ( , ) and the assignment operators ( =, +=, ...)
3739 * are not included in the operators that can create a
3740 * constant expression."
3741 *
3742 * Section 12.43 (Sequence operator and constant expressions) says:
3743 *
3744 * "Should the following construct be allowed?
3745 *
3746 * float a[2,3];
3747 *
3748 * The expression within the brackets uses the sequence operator
3749 * (',') and returns the integer 3 so the construct is declaring
3750 * a single-dimensional array of size 3. In some languages, the
3751 * construct declares a two-dimensional array. It would be
3752 * preferable to make this construct illegal to avoid confusion.
3753 *
3754 * One possibility is to change the definition of the sequence
3755 * operator so that it does not return a constant-expression and
3756 * hence cannot be used to declare an array size.
3757 *
3758 * RESOLUTION: The result of a sequence operator is not a
3759 * constant-expression."
3760 *
3761 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3762 * contains language almost identical to the section 4.3.3 in the
3763 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3764 * versions.
3765 */
3766 ir_constant *constant_value = rhs->constant_expression_value();
3767 if (!constant_value ||
3768 (state->is_version(430, 300) &&
3769 decl->initializer->has_sequence_subexpression())) {
3770 const char *const variable_mode =
3771 (type->qualifier.flags.q.constant)
3772 ? "const"
3773 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3774
3775 /* If ARB_shading_language_420pack is enabled, initializers of
3776 * const-qualified local variables do not have to be constant
3777 * expressions. Const-qualified global variables must still be
3778 * initialized with constant expressions.
3779 */
3780 if (!state->has_420pack()
3781 || state->current_function == NULL) {
3782 _mesa_glsl_error(& initializer_loc, state,
3783 "initializer of %s variable `%s' must be a "
3784 "constant expression",
3785 variable_mode,
3786 decl->identifier);
3787 if (var->type->is_numeric()) {
3788 /* Reduce cascading errors. */
3789 var->constant_value = type->qualifier.flags.q.constant
3790 ? ir_constant::zero(state, var->type) : NULL;
3791 }
3792 }
3793 } else {
3794 rhs = constant_value;
3795 var->constant_value = type->qualifier.flags.q.constant
3796 ? constant_value : NULL;
3797 }
3798 } else {
3799 if (var->type->is_numeric()) {
3800 /* Reduce cascading errors. */
3801 var->constant_value = type->qualifier.flags.q.constant
3802 ? ir_constant::zero(state, var->type) : NULL;
3803 }
3804 }
3805 }
3806
3807 if (rhs && !rhs->type->is_error()) {
3808 bool temp = var->data.read_only;
3809 if (type->qualifier.flags.q.constant)
3810 var->data.read_only = false;
3811
3812 /* Never emit code to initialize a uniform.
3813 */
3814 const glsl_type *initializer_type;
3815 if (!type->qualifier.flags.q.uniform) {
3816 do_assignment(initializer_instructions, state,
3817 NULL,
3818 lhs, rhs,
3819 &result, true,
3820 true,
3821 type->get_location());
3822 initializer_type = result->type;
3823 } else
3824 initializer_type = rhs->type;
3825
3826 var->constant_initializer = rhs->constant_expression_value();
3827 var->data.has_initializer = true;
3828
3829 /* If the declared variable is an unsized array, it must inherrit
3830 * its full type from the initializer. A declaration such as
3831 *
3832 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3833 *
3834 * becomes
3835 *
3836 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3837 *
3838 * The assignment generated in the if-statement (below) will also
3839 * automatically handle this case for non-uniforms.
3840 *
3841 * If the declared variable is not an array, the types must
3842 * already match exactly. As a result, the type assignment
3843 * here can be done unconditionally. For non-uniforms the call
3844 * to do_assignment can change the type of the initializer (via
3845 * the implicit conversion rules). For uniforms the initializer
3846 * must be a constant expression, and the type of that expression
3847 * was validated above.
3848 */
3849 var->type = initializer_type;
3850
3851 var->data.read_only = temp;
3852 }
3853
3854 return result;
3855 }
3856
3857 static void
3858 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3859 YYLTYPE loc, ir_variable *var,
3860 unsigned num_vertices,
3861 unsigned *size,
3862 const char *var_category)
3863 {
3864 if (var->type->is_unsized_array()) {
3865 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3866 *
3867 * All geometry shader input unsized array declarations will be
3868 * sized by an earlier input layout qualifier, when present, as per
3869 * the following table.
3870 *
3871 * Followed by a table mapping each allowed input layout qualifier to
3872 * the corresponding input length.
3873 *
3874 * Similarly for tessellation control shader outputs.
3875 */
3876 if (num_vertices != 0)
3877 var->type = glsl_type::get_array_instance(var->type->fields.array,
3878 num_vertices);
3879 } else {
3880 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3881 * includes the following examples of compile-time errors:
3882 *
3883 * // code sequence within one shader...
3884 * in vec4 Color1[]; // size unknown
3885 * ...Color1.length()...// illegal, length() unknown
3886 * in vec4 Color2[2]; // size is 2
3887 * ...Color1.length()...// illegal, Color1 still has no size
3888 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3889 * layout(lines) in; // legal, input size is 2, matching
3890 * in vec4 Color4[3]; // illegal, contradicts layout
3891 * ...
3892 *
3893 * To detect the case illustrated by Color3, we verify that the size of
3894 * an explicitly-sized array matches the size of any previously declared
3895 * explicitly-sized array. To detect the case illustrated by Color4, we
3896 * verify that the size of an explicitly-sized array is consistent with
3897 * any previously declared input layout.
3898 */
3899 if (num_vertices != 0 && var->type->length != num_vertices) {
3900 _mesa_glsl_error(&loc, state,
3901 "%s size contradicts previously declared layout "
3902 "(size is %u, but layout requires a size of %u)",
3903 var_category, var->type->length, num_vertices);
3904 } else if (*size != 0 && var->type->length != *size) {
3905 _mesa_glsl_error(&loc, state,
3906 "%s sizes are inconsistent (size is %u, but a "
3907 "previous declaration has size %u)",
3908 var_category, var->type->length, *size);
3909 } else {
3910 *size = var->type->length;
3911 }
3912 }
3913 }
3914
3915 static void
3916 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3917 YYLTYPE loc, ir_variable *var)
3918 {
3919 unsigned num_vertices = 0;
3920
3921 if (state->tcs_output_vertices_specified) {
3922 if (!state->out_qualifier->vertices->
3923 process_qualifier_constant(state, "vertices",
3924 &num_vertices, false)) {
3925 return;
3926 }
3927
3928 if (num_vertices > state->Const.MaxPatchVertices) {
3929 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3930 "GL_MAX_PATCH_VERTICES", num_vertices);
3931 return;
3932 }
3933 }
3934
3935 if (!var->type->is_array() && !var->data.patch) {
3936 _mesa_glsl_error(&loc, state,
3937 "tessellation control shader outputs must be arrays");
3938
3939 /* To avoid cascading failures, short circuit the checks below. */
3940 return;
3941 }
3942
3943 if (var->data.patch)
3944 return;
3945
3946 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3947 &state->tcs_output_size,
3948 "tessellation control shader output");
3949 }
3950
3951 /**
3952 * Do additional processing necessary for tessellation control/evaluation shader
3953 * input declarations. This covers both interface block arrays and bare input
3954 * variables.
3955 */
3956 static void
3957 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3958 YYLTYPE loc, ir_variable *var)
3959 {
3960 if (!var->type->is_array() && !var->data.patch) {
3961 _mesa_glsl_error(&loc, state,
3962 "per-vertex tessellation shader inputs must be arrays");
3963 /* Avoid cascading failures. */
3964 return;
3965 }
3966
3967 if (var->data.patch)
3968 return;
3969
3970 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3971 if (var->type->is_unsized_array()) {
3972 var->type = glsl_type::get_array_instance(var->type->fields.array,
3973 state->Const.MaxPatchVertices);
3974 }
3975 }
3976
3977
3978 /**
3979 * Do additional processing necessary for geometry shader input declarations
3980 * (this covers both interface blocks arrays and bare input variables).
3981 */
3982 static void
3983 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3984 YYLTYPE loc, ir_variable *var)
3985 {
3986 unsigned num_vertices = 0;
3987
3988 if (state->gs_input_prim_type_specified) {
3989 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3990 }
3991
3992 /* Geometry shader input variables must be arrays. Caller should have
3993 * reported an error for this.
3994 */
3995 if (!var->type->is_array()) {
3996 assert(state->error);
3997
3998 /* To avoid cascading failures, short circuit the checks below. */
3999 return;
4000 }
4001
4002 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4003 &state->gs_input_size,
4004 "geometry shader input");
4005 }
4006
4007 void
4008 validate_identifier(const char *identifier, YYLTYPE loc,
4009 struct _mesa_glsl_parse_state *state)
4010 {
4011 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4012 *
4013 * "Identifiers starting with "gl_" are reserved for use by
4014 * OpenGL, and may not be declared in a shader as either a
4015 * variable or a function."
4016 */
4017 if (is_gl_identifier(identifier)) {
4018 _mesa_glsl_error(&loc, state,
4019 "identifier `%s' uses reserved `gl_' prefix",
4020 identifier);
4021 } else if (strstr(identifier, "__")) {
4022 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4023 * spec:
4024 *
4025 * "In addition, all identifiers containing two
4026 * consecutive underscores (__) are reserved as
4027 * possible future keywords."
4028 *
4029 * The intention is that names containing __ are reserved for internal
4030 * use by the implementation, and names prefixed with GL_ are reserved
4031 * for use by Khronos. Names simply containing __ are dangerous to use,
4032 * but should be allowed.
4033 *
4034 * A future version of the GLSL specification will clarify this.
4035 */
4036 _mesa_glsl_warning(&loc, state,
4037 "identifier `%s' uses reserved `__' string",
4038 identifier);
4039 }
4040 }
4041
4042 ir_rvalue *
4043 ast_declarator_list::hir(exec_list *instructions,
4044 struct _mesa_glsl_parse_state *state)
4045 {
4046 void *ctx = state;
4047 const struct glsl_type *decl_type;
4048 const char *type_name = NULL;
4049 ir_rvalue *result = NULL;
4050 YYLTYPE loc = this->get_location();
4051
4052 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4053 *
4054 * "To ensure that a particular output variable is invariant, it is
4055 * necessary to use the invariant qualifier. It can either be used to
4056 * qualify a previously declared variable as being invariant
4057 *
4058 * invariant gl_Position; // make existing gl_Position be invariant"
4059 *
4060 * In these cases the parser will set the 'invariant' flag in the declarator
4061 * list, and the type will be NULL.
4062 */
4063 if (this->invariant) {
4064 assert(this->type == NULL);
4065
4066 if (state->current_function != NULL) {
4067 _mesa_glsl_error(& loc, state,
4068 "all uses of `invariant' keyword must be at global "
4069 "scope");
4070 }
4071
4072 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4073 assert(decl->array_specifier == NULL);
4074 assert(decl->initializer == NULL);
4075
4076 ir_variable *const earlier =
4077 state->symbols->get_variable(decl->identifier);
4078 if (earlier == NULL) {
4079 _mesa_glsl_error(& loc, state,
4080 "undeclared variable `%s' cannot be marked "
4081 "invariant", decl->identifier);
4082 } else if (!is_varying_var(earlier, state->stage)) {
4083 _mesa_glsl_error(&loc, state,
4084 "`%s' cannot be marked invariant; interfaces between "
4085 "shader stages only.", decl->identifier);
4086 } else if (earlier->data.used) {
4087 _mesa_glsl_error(& loc, state,
4088 "variable `%s' may not be redeclared "
4089 "`invariant' after being used",
4090 earlier->name);
4091 } else {
4092 earlier->data.invariant = true;
4093 }
4094 }
4095
4096 /* Invariant redeclarations do not have r-values.
4097 */
4098 return NULL;
4099 }
4100
4101 if (this->precise) {
4102 assert(this->type == NULL);
4103
4104 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4105 assert(decl->array_specifier == NULL);
4106 assert(decl->initializer == NULL);
4107
4108 ir_variable *const earlier =
4109 state->symbols->get_variable(decl->identifier);
4110 if (earlier == NULL) {
4111 _mesa_glsl_error(& loc, state,
4112 "undeclared variable `%s' cannot be marked "
4113 "precise", decl->identifier);
4114 } else if (state->current_function != NULL &&
4115 !state->symbols->name_declared_this_scope(decl->identifier)) {
4116 /* Note: we have to check if we're in a function, since
4117 * builtins are treated as having come from another scope.
4118 */
4119 _mesa_glsl_error(& loc, state,
4120 "variable `%s' from an outer scope may not be "
4121 "redeclared `precise' in this scope",
4122 earlier->name);
4123 } else if (earlier->data.used) {
4124 _mesa_glsl_error(& loc, state,
4125 "variable `%s' may not be redeclared "
4126 "`precise' after being used",
4127 earlier->name);
4128 } else {
4129 earlier->data.precise = true;
4130 }
4131 }
4132
4133 /* Precise redeclarations do not have r-values either. */
4134 return NULL;
4135 }
4136
4137 assert(this->type != NULL);
4138 assert(!this->invariant);
4139 assert(!this->precise);
4140
4141 /* The type specifier may contain a structure definition. Process that
4142 * before any of the variable declarations.
4143 */
4144 (void) this->type->specifier->hir(instructions, state);
4145
4146 decl_type = this->type->glsl_type(& type_name, state);
4147
4148 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4149 * "Buffer variables may only be declared inside interface blocks
4150 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4151 * shader storage blocks. It is a compile-time error to declare buffer
4152 * variables at global scope (outside a block)."
4153 */
4154 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4155 _mesa_glsl_error(&loc, state,
4156 "buffer variables cannot be declared outside "
4157 "interface blocks");
4158 }
4159
4160 /* An offset-qualified atomic counter declaration sets the default
4161 * offset for the next declaration within the same atomic counter
4162 * buffer.
4163 */
4164 if (decl_type && decl_type->contains_atomic()) {
4165 if (type->qualifier.flags.q.explicit_binding &&
4166 type->qualifier.flags.q.explicit_offset) {
4167 unsigned qual_binding;
4168 unsigned qual_offset;
4169 if (process_qualifier_constant(state, &loc, "binding",
4170 type->qualifier.binding,
4171 &qual_binding)
4172 && process_qualifier_constant(state, &loc, "offset",
4173 type->qualifier.offset,
4174 &qual_offset)) {
4175 state->atomic_counter_offsets[qual_binding] = qual_offset;
4176 }
4177 }
4178 }
4179
4180 if (this->declarations.is_empty()) {
4181 /* If there is no structure involved in the program text, there are two
4182 * possible scenarios:
4183 *
4184 * - The program text contained something like 'vec4;'. This is an
4185 * empty declaration. It is valid but weird. Emit a warning.
4186 *
4187 * - The program text contained something like 'S;' and 'S' is not the
4188 * name of a known structure type. This is both invalid and weird.
4189 * Emit an error.
4190 *
4191 * - The program text contained something like 'mediump float;'
4192 * when the programmer probably meant 'precision mediump
4193 * float;' Emit a warning with a description of what they
4194 * probably meant to do.
4195 *
4196 * Note that if decl_type is NULL and there is a structure involved,
4197 * there must have been some sort of error with the structure. In this
4198 * case we assume that an error was already generated on this line of
4199 * code for the structure. There is no need to generate an additional,
4200 * confusing error.
4201 */
4202 assert(this->type->specifier->structure == NULL || decl_type != NULL
4203 || state->error);
4204
4205 if (decl_type == NULL) {
4206 _mesa_glsl_error(&loc, state,
4207 "invalid type `%s' in empty declaration",
4208 type_name);
4209 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4210 /* Empty atomic counter declarations are allowed and useful
4211 * to set the default offset qualifier.
4212 */
4213 return NULL;
4214 } else if (this->type->qualifier.precision != ast_precision_none) {
4215 if (this->type->specifier->structure != NULL) {
4216 _mesa_glsl_error(&loc, state,
4217 "precision qualifiers can't be applied "
4218 "to structures");
4219 } else {
4220 static const char *const precision_names[] = {
4221 "highp",
4222 "highp",
4223 "mediump",
4224 "lowp"
4225 };
4226
4227 _mesa_glsl_warning(&loc, state,
4228 "empty declaration with precision qualifier, "
4229 "to set the default precision, use "
4230 "`precision %s %s;'",
4231 precision_names[this->type->qualifier.precision],
4232 type_name);
4233 }
4234 } else if (this->type->specifier->structure == NULL) {
4235 _mesa_glsl_warning(&loc, state, "empty declaration");
4236 }
4237 }
4238
4239 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4240 const struct glsl_type *var_type;
4241 ir_variable *var;
4242 const char *identifier = decl->identifier;
4243 /* FINISHME: Emit a warning if a variable declaration shadows a
4244 * FINISHME: declaration at a higher scope.
4245 */
4246
4247 if ((decl_type == NULL) || decl_type->is_void()) {
4248 if (type_name != NULL) {
4249 _mesa_glsl_error(& loc, state,
4250 "invalid type `%s' in declaration of `%s'",
4251 type_name, decl->identifier);
4252 } else {
4253 _mesa_glsl_error(& loc, state,
4254 "invalid type in declaration of `%s'",
4255 decl->identifier);
4256 }
4257 continue;
4258 }
4259
4260 if (this->type->qualifier.flags.q.subroutine) {
4261 const glsl_type *t;
4262 const char *name;
4263
4264 t = state->symbols->get_type(this->type->specifier->type_name);
4265 if (!t)
4266 _mesa_glsl_error(& loc, state,
4267 "invalid type in declaration of `%s'",
4268 decl->identifier);
4269 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4270
4271 identifier = name;
4272
4273 }
4274 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4275 state);
4276
4277 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4278
4279 /* The 'varying in' and 'varying out' qualifiers can only be used with
4280 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4281 * yet.
4282 */
4283 if (this->type->qualifier.flags.q.varying) {
4284 if (this->type->qualifier.flags.q.in) {
4285 _mesa_glsl_error(& loc, state,
4286 "`varying in' qualifier in declaration of "
4287 "`%s' only valid for geometry shaders using "
4288 "ARB_geometry_shader4 or EXT_geometry_shader4",
4289 decl->identifier);
4290 } else if (this->type->qualifier.flags.q.out) {
4291 _mesa_glsl_error(& loc, state,
4292 "`varying out' qualifier in declaration of "
4293 "`%s' only valid for geometry shaders using "
4294 "ARB_geometry_shader4 or EXT_geometry_shader4",
4295 decl->identifier);
4296 }
4297 }
4298
4299 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4300 *
4301 * "Global variables can only use the qualifiers const,
4302 * attribute, uniform, or varying. Only one may be
4303 * specified.
4304 *
4305 * Local variables can only use the qualifier const."
4306 *
4307 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4308 * any extension that adds the 'layout' keyword.
4309 */
4310 if (!state->is_version(130, 300)
4311 && !state->has_explicit_attrib_location()
4312 && !state->has_separate_shader_objects()
4313 && !state->ARB_fragment_coord_conventions_enable) {
4314 if (this->type->qualifier.flags.q.out) {
4315 _mesa_glsl_error(& loc, state,
4316 "`out' qualifier in declaration of `%s' "
4317 "only valid for function parameters in %s",
4318 decl->identifier, state->get_version_string());
4319 }
4320 if (this->type->qualifier.flags.q.in) {
4321 _mesa_glsl_error(& loc, state,
4322 "`in' qualifier in declaration of `%s' "
4323 "only valid for function parameters in %s",
4324 decl->identifier, state->get_version_string());
4325 }
4326 /* FINISHME: Test for other invalid qualifiers. */
4327 }
4328
4329 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4330 & loc, false);
4331 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4332 &loc);
4333
4334 if (this->type->qualifier.flags.q.invariant) {
4335 if (!is_varying_var(var, state->stage)) {
4336 _mesa_glsl_error(&loc, state,
4337 "`%s' cannot be marked invariant; interfaces between "
4338 "shader stages only", var->name);
4339 }
4340 }
4341
4342 if (state->current_function != NULL) {
4343 const char *mode = NULL;
4344 const char *extra = "";
4345
4346 /* There is no need to check for 'inout' here because the parser will
4347 * only allow that in function parameter lists.
4348 */
4349 if (this->type->qualifier.flags.q.attribute) {
4350 mode = "attribute";
4351 } else if (this->type->qualifier.flags.q.subroutine) {
4352 mode = "subroutine uniform";
4353 } else if (this->type->qualifier.flags.q.uniform) {
4354 mode = "uniform";
4355 } else if (this->type->qualifier.flags.q.varying) {
4356 mode = "varying";
4357 } else if (this->type->qualifier.flags.q.in) {
4358 mode = "in";
4359 extra = " or in function parameter list";
4360 } else if (this->type->qualifier.flags.q.out) {
4361 mode = "out";
4362 extra = " or in function parameter list";
4363 }
4364
4365 if (mode) {
4366 _mesa_glsl_error(& loc, state,
4367 "%s variable `%s' must be declared at "
4368 "global scope%s",
4369 mode, var->name, extra);
4370 }
4371 } else if (var->data.mode == ir_var_shader_in) {
4372 var->data.read_only = true;
4373
4374 if (state->stage == MESA_SHADER_VERTEX) {
4375 bool error_emitted = false;
4376
4377 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4378 *
4379 * "Vertex shader inputs can only be float, floating-point
4380 * vectors, matrices, signed and unsigned integers and integer
4381 * vectors. Vertex shader inputs can also form arrays of these
4382 * types, but not structures."
4383 *
4384 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4385 *
4386 * "Vertex shader inputs can only be float, floating-point
4387 * vectors, matrices, signed and unsigned integers and integer
4388 * vectors. They cannot be arrays or structures."
4389 *
4390 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4391 *
4392 * "The attribute qualifier can be used only with float,
4393 * floating-point vectors, and matrices. Attribute variables
4394 * cannot be declared as arrays or structures."
4395 *
4396 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4397 *
4398 * "Vertex shader inputs can only be float, floating-point
4399 * vectors, matrices, signed and unsigned integers and integer
4400 * vectors. Vertex shader inputs cannot be arrays or
4401 * structures."
4402 */
4403 const glsl_type *check_type = var->type->without_array();
4404
4405 switch (check_type->base_type) {
4406 case GLSL_TYPE_FLOAT:
4407 break;
4408 case GLSL_TYPE_UINT:
4409 case GLSL_TYPE_INT:
4410 if (state->is_version(120, 300))
4411 break;
4412 case GLSL_TYPE_DOUBLE:
4413 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4414 break;
4415 /* FALLTHROUGH */
4416 default:
4417 _mesa_glsl_error(& loc, state,
4418 "vertex shader input / attribute cannot have "
4419 "type %s`%s'",
4420 var->type->is_array() ? "array of " : "",
4421 check_type->name);
4422 error_emitted = true;
4423 }
4424
4425 if (!error_emitted && var->type->is_array() &&
4426 !state->check_version(150, 0, &loc,
4427 "vertex shader input / attribute "
4428 "cannot have array type")) {
4429 error_emitted = true;
4430 }
4431 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4432 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4433 *
4434 * Geometry shader input variables get the per-vertex values
4435 * written out by vertex shader output variables of the same
4436 * names. Since a geometry shader operates on a set of
4437 * vertices, each input varying variable (or input block, see
4438 * interface blocks below) needs to be declared as an array.
4439 */
4440 if (!var->type->is_array()) {
4441 _mesa_glsl_error(&loc, state,
4442 "geometry shader inputs must be arrays");
4443 }
4444
4445 handle_geometry_shader_input_decl(state, loc, var);
4446 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4447 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4448 *
4449 * It is a compile-time error to declare a fragment shader
4450 * input with, or that contains, any of the following types:
4451 *
4452 * * A boolean type
4453 * * An opaque type
4454 * * An array of arrays
4455 * * An array of structures
4456 * * A structure containing an array
4457 * * A structure containing a structure
4458 */
4459 if (state->es_shader) {
4460 const glsl_type *check_type = var->type->without_array();
4461 if (check_type->is_boolean() ||
4462 check_type->contains_opaque()) {
4463 _mesa_glsl_error(&loc, state,
4464 "fragment shader input cannot have type %s",
4465 check_type->name);
4466 }
4467 if (var->type->is_array() &&
4468 var->type->fields.array->is_array()) {
4469 _mesa_glsl_error(&loc, state,
4470 "%s shader output "
4471 "cannot have an array of arrays",
4472 _mesa_shader_stage_to_string(state->stage));
4473 }
4474 if (var->type->is_array() &&
4475 var->type->fields.array->is_record()) {
4476 _mesa_glsl_error(&loc, state,
4477 "fragment shader input "
4478 "cannot have an array of structs");
4479 }
4480 if (var->type->is_record()) {
4481 for (unsigned i = 0; i < var->type->length; i++) {
4482 if (var->type->fields.structure[i].type->is_array() ||
4483 var->type->fields.structure[i].type->is_record())
4484 _mesa_glsl_error(&loc, state,
4485 "fragement shader input cannot have "
4486 "a struct that contains an "
4487 "array or struct");
4488 }
4489 }
4490 }
4491 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4492 state->stage == MESA_SHADER_TESS_EVAL) {
4493 handle_tess_shader_input_decl(state, loc, var);
4494 }
4495 } else if (var->data.mode == ir_var_shader_out) {
4496 const glsl_type *check_type = var->type->without_array();
4497
4498 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4499 *
4500 * It is a compile-time error to declare a vertex, tessellation
4501 * evaluation, tessellation control, or geometry shader output
4502 * that contains any of the following:
4503 *
4504 * * A Boolean type (bool, bvec2 ...)
4505 * * An opaque type
4506 */
4507 if (check_type->is_boolean() || check_type->contains_opaque())
4508 _mesa_glsl_error(&loc, state,
4509 "%s shader output cannot have type %s",
4510 _mesa_shader_stage_to_string(state->stage),
4511 check_type->name);
4512
4513 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4514 *
4515 * It is a compile-time error to declare a fragment shader output
4516 * that contains any of the following:
4517 *
4518 * * A Boolean type (bool, bvec2 ...)
4519 * * A double-precision scalar or vector (double, dvec2 ...)
4520 * * An opaque type
4521 * * Any matrix type
4522 * * A structure
4523 */
4524 if (state->stage == MESA_SHADER_FRAGMENT) {
4525 if (check_type->is_record() || check_type->is_matrix())
4526 _mesa_glsl_error(&loc, state,
4527 "fragment shader output "
4528 "cannot have struct or matrix type");
4529 switch (check_type->base_type) {
4530 case GLSL_TYPE_UINT:
4531 case GLSL_TYPE_INT:
4532 case GLSL_TYPE_FLOAT:
4533 break;
4534 default:
4535 _mesa_glsl_error(&loc, state,
4536 "fragment shader output cannot have "
4537 "type %s", check_type->name);
4538 }
4539 }
4540
4541 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4542 *
4543 * It is a compile-time error to declare a vertex shader output
4544 * with, or that contains, any of the following types:
4545 *
4546 * * A boolean type
4547 * * An opaque type
4548 * * An array of arrays
4549 * * An array of structures
4550 * * A structure containing an array
4551 * * A structure containing a structure
4552 *
4553 * It is a compile-time error to declare a fragment shader output
4554 * with, or that contains, any of the following types:
4555 *
4556 * * A boolean type
4557 * * An opaque type
4558 * * A matrix
4559 * * A structure
4560 * * An array of array
4561 */
4562 if (state->es_shader) {
4563 if (var->type->is_array() &&
4564 var->type->fields.array->is_array()) {
4565 _mesa_glsl_error(&loc, state,
4566 "%s shader output "
4567 "cannot have an array of arrays",
4568 _mesa_shader_stage_to_string(state->stage));
4569 }
4570 if (state->stage == MESA_SHADER_VERTEX) {
4571 if (var->type->is_array() &&
4572 var->type->fields.array->is_record()) {
4573 _mesa_glsl_error(&loc, state,
4574 "vertex shader output "
4575 "cannot have an array of structs");
4576 }
4577 if (var->type->is_record()) {
4578 for (unsigned i = 0; i < var->type->length; i++) {
4579 if (var->type->fields.structure[i].type->is_array() ||
4580 var->type->fields.structure[i].type->is_record())
4581 _mesa_glsl_error(&loc, state,
4582 "vertex shader output cannot have a "
4583 "struct that contains an "
4584 "array or struct");
4585 }
4586 }
4587 }
4588 }
4589
4590 if (state->stage == MESA_SHADER_TESS_CTRL) {
4591 handle_tess_ctrl_shader_output_decl(state, loc, var);
4592 }
4593 } else if (var->type->contains_subroutine()) {
4594 /* declare subroutine uniforms as hidden */
4595 var->data.how_declared = ir_var_hidden;
4596 }
4597
4598 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4599 * so must integer vertex outputs.
4600 *
4601 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4602 * "Fragment shader inputs that are signed or unsigned integers or
4603 * integer vectors must be qualified with the interpolation qualifier
4604 * flat."
4605 *
4606 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4607 * "Fragment shader inputs that are, or contain, signed or unsigned
4608 * integers or integer vectors must be qualified with the
4609 * interpolation qualifier flat."
4610 *
4611 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4612 * "Vertex shader outputs that are, or contain, signed or unsigned
4613 * integers or integer vectors must be qualified with the
4614 * interpolation qualifier flat."
4615 *
4616 * Note that prior to GLSL 1.50, this requirement applied to vertex
4617 * outputs rather than fragment inputs. That creates problems in the
4618 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4619 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4620 * apply the restriction to both vertex outputs and fragment inputs.
4621 *
4622 * Note also that the desktop GLSL specs are missing the text "or
4623 * contain"; this is presumably an oversight, since there is no
4624 * reasonable way to interpolate a fragment shader input that contains
4625 * an integer.
4626 */
4627 if (state->is_version(130, 300) &&
4628 var->type->contains_integer() &&
4629 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4630 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4631 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4632 && state->es_shader))) {
4633 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4634 "vertex output" : "fragment input";
4635 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4636 "an integer, then it must be qualified with 'flat'",
4637 var_type);
4638 }
4639
4640 /* Double fragment inputs must be qualified with 'flat'. */
4641 if (var->type->contains_double() &&
4642 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4643 state->stage == MESA_SHADER_FRAGMENT &&
4644 var->data.mode == ir_var_shader_in) {
4645 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4646 "a double, then it must be qualified with 'flat'",
4647 var_type);
4648 }
4649
4650 /* Interpolation qualifiers cannot be applied to 'centroid' and
4651 * 'centroid varying'.
4652 *
4653 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4654 * "interpolation qualifiers may only precede the qualifiers in,
4655 * centroid in, out, or centroid out in a declaration. They do not apply
4656 * to the deprecated storage qualifiers varying or centroid varying."
4657 *
4658 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4659 */
4660 if (state->is_version(130, 0)
4661 && this->type->qualifier.has_interpolation()
4662 && this->type->qualifier.flags.q.varying) {
4663
4664 const char *i = this->type->qualifier.interpolation_string();
4665 assert(i != NULL);
4666 const char *s;
4667 if (this->type->qualifier.flags.q.centroid)
4668 s = "centroid varying";
4669 else
4670 s = "varying";
4671
4672 _mesa_glsl_error(&loc, state,
4673 "qualifier '%s' cannot be applied to the "
4674 "deprecated storage qualifier '%s'", i, s);
4675 }
4676
4677
4678 /* Interpolation qualifiers can only apply to vertex shader outputs and
4679 * fragment shader inputs.
4680 *
4681 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4682 * "Outputs from a vertex shader (out) and inputs to a fragment
4683 * shader (in) can be further qualified with one or more of these
4684 * interpolation qualifiers"
4685 *
4686 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4687 * "These interpolation qualifiers may only precede the qualifiers
4688 * in, centroid in, out, or centroid out in a declaration. They do
4689 * not apply to inputs into a vertex shader or outputs from a
4690 * fragment shader."
4691 */
4692 if (state->is_version(130, 300)
4693 && this->type->qualifier.has_interpolation()) {
4694
4695 const char *i = this->type->qualifier.interpolation_string();
4696 assert(i != NULL);
4697
4698 switch (state->stage) {
4699 case MESA_SHADER_VERTEX:
4700 if (this->type->qualifier.flags.q.in) {
4701 _mesa_glsl_error(&loc, state,
4702 "qualifier '%s' cannot be applied to vertex "
4703 "shader inputs", i);
4704 }
4705 break;
4706 case MESA_SHADER_FRAGMENT:
4707 if (this->type->qualifier.flags.q.out) {
4708 _mesa_glsl_error(&loc, state,
4709 "qualifier '%s' cannot be applied to fragment "
4710 "shader outputs", i);
4711 }
4712 break;
4713 default:
4714 break;
4715 }
4716 }
4717
4718
4719 /* From section 4.3.4 of the GLSL 4.00 spec:
4720 * "Input variables may not be declared using the patch in qualifier
4721 * in tessellation control or geometry shaders."
4722 *
4723 * From section 4.3.6 of the GLSL 4.00 spec:
4724 * "It is an error to use patch out in a vertex, tessellation
4725 * evaluation, or geometry shader."
4726 *
4727 * This doesn't explicitly forbid using them in a fragment shader, but
4728 * that's probably just an oversight.
4729 */
4730 if (state->stage != MESA_SHADER_TESS_EVAL
4731 && this->type->qualifier.flags.q.patch
4732 && this->type->qualifier.flags.q.in) {
4733
4734 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4735 "tessellation evaluation shader");
4736 }
4737
4738 if (state->stage != MESA_SHADER_TESS_CTRL
4739 && this->type->qualifier.flags.q.patch
4740 && this->type->qualifier.flags.q.out) {
4741
4742 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4743 "tessellation control shader");
4744 }
4745
4746 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4747 */
4748 if (this->type->qualifier.precision != ast_precision_none) {
4749 state->check_precision_qualifiers_allowed(&loc);
4750 }
4751
4752
4753 /* If a precision qualifier is allowed on a type, it is allowed on
4754 * an array of that type.
4755 */
4756 if (!(this->type->qualifier.precision == ast_precision_none
4757 || precision_qualifier_allowed(var->type->without_array()))) {
4758
4759 _mesa_glsl_error(&loc, state,
4760 "precision qualifiers apply only to floating point"
4761 ", integer and opaque types");
4762 }
4763
4764 /* From section 4.1.7 of the GLSL 4.40 spec:
4765 *
4766 * "[Opaque types] can only be declared as function
4767 * parameters or uniform-qualified variables."
4768 */
4769 if (var_type->contains_opaque() &&
4770 !this->type->qualifier.flags.q.uniform) {
4771 _mesa_glsl_error(&loc, state,
4772 "opaque variables must be declared uniform");
4773 }
4774
4775 /* Process the initializer and add its instructions to a temporary
4776 * list. This list will be added to the instruction stream (below) after
4777 * the declaration is added. This is done because in some cases (such as
4778 * redeclarations) the declaration may not actually be added to the
4779 * instruction stream.
4780 */
4781 exec_list initializer_instructions;
4782
4783 /* Examine var name here since var may get deleted in the next call */
4784 bool var_is_gl_id = is_gl_identifier(var->name);
4785
4786 ir_variable *earlier =
4787 get_variable_being_redeclared(var, decl->get_location(), state,
4788 false /* allow_all_redeclarations */);
4789 if (earlier != NULL) {
4790 if (var_is_gl_id &&
4791 earlier->data.how_declared == ir_var_declared_in_block) {
4792 _mesa_glsl_error(&loc, state,
4793 "`%s' has already been redeclared using "
4794 "gl_PerVertex", earlier->name);
4795 }
4796 earlier->data.how_declared = ir_var_declared_normally;
4797 }
4798
4799 if (decl->initializer != NULL) {
4800 result = process_initializer((earlier == NULL) ? var : earlier,
4801 decl, this->type,
4802 &initializer_instructions, state);
4803 } else {
4804 validate_array_dimensions(var_type, state, &loc);
4805 }
4806
4807 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4808 *
4809 * "It is an error to write to a const variable outside of
4810 * its declaration, so they must be initialized when
4811 * declared."
4812 */
4813 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4814 _mesa_glsl_error(& loc, state,
4815 "const declaration of `%s' must be initialized",
4816 decl->identifier);
4817 }
4818
4819 if (state->es_shader) {
4820 const glsl_type *const t = (earlier == NULL)
4821 ? var->type : earlier->type;
4822
4823 if (t->is_unsized_array())
4824 /* Section 10.17 of the GLSL ES 1.00 specification states that
4825 * unsized array declarations have been removed from the language.
4826 * Arrays that are sized using an initializer are still explicitly
4827 * sized. However, GLSL ES 1.00 does not allow array
4828 * initializers. That is only allowed in GLSL ES 3.00.
4829 *
4830 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4831 *
4832 * "An array type can also be formed without specifying a size
4833 * if the definition includes an initializer:
4834 *
4835 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4836 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4837 *
4838 * float a[5];
4839 * float b[] = a;"
4840 */
4841 _mesa_glsl_error(& loc, state,
4842 "unsized array declarations are not allowed in "
4843 "GLSL ES");
4844 }
4845
4846 /* If the declaration is not a redeclaration, there are a few additional
4847 * semantic checks that must be applied. In addition, variable that was
4848 * created for the declaration should be added to the IR stream.
4849 */
4850 if (earlier == NULL) {
4851 validate_identifier(decl->identifier, loc, state);
4852
4853 /* Add the variable to the symbol table. Note that the initializer's
4854 * IR was already processed earlier (though it hasn't been emitted
4855 * yet), without the variable in scope.
4856 *
4857 * This differs from most C-like languages, but it follows the GLSL
4858 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4859 * spec:
4860 *
4861 * "Within a declaration, the scope of a name starts immediately
4862 * after the initializer if present or immediately after the name
4863 * being declared if not."
4864 */
4865 if (!state->symbols->add_variable(var)) {
4866 YYLTYPE loc = this->get_location();
4867 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4868 "current scope", decl->identifier);
4869 continue;
4870 }
4871
4872 /* Push the variable declaration to the top. It means that all the
4873 * variable declarations will appear in a funny last-to-first order,
4874 * but otherwise we run into trouble if a function is prototyped, a
4875 * global var is decled, then the function is defined with usage of
4876 * the global var. See glslparsertest's CorrectModule.frag.
4877 */
4878 instructions->push_head(var);
4879 }
4880
4881 instructions->append_list(&initializer_instructions);
4882 }
4883
4884
4885 /* Generally, variable declarations do not have r-values. However,
4886 * one is used for the declaration in
4887 *
4888 * while (bool b = some_condition()) {
4889 * ...
4890 * }
4891 *
4892 * so we return the rvalue from the last seen declaration here.
4893 */
4894 return result;
4895 }
4896
4897
4898 ir_rvalue *
4899 ast_parameter_declarator::hir(exec_list *instructions,
4900 struct _mesa_glsl_parse_state *state)
4901 {
4902 void *ctx = state;
4903 const struct glsl_type *type;
4904 const char *name = NULL;
4905 YYLTYPE loc = this->get_location();
4906
4907 type = this->type->glsl_type(& name, state);
4908
4909 if (type == NULL) {
4910 if (name != NULL) {
4911 _mesa_glsl_error(& loc, state,
4912 "invalid type `%s' in declaration of `%s'",
4913 name, this->identifier);
4914 } else {
4915 _mesa_glsl_error(& loc, state,
4916 "invalid type in declaration of `%s'",
4917 this->identifier);
4918 }
4919
4920 type = glsl_type::error_type;
4921 }
4922
4923 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4924 *
4925 * "Functions that accept no input arguments need not use void in the
4926 * argument list because prototypes (or definitions) are required and
4927 * therefore there is no ambiguity when an empty argument list "( )" is
4928 * declared. The idiom "(void)" as a parameter list is provided for
4929 * convenience."
4930 *
4931 * Placing this check here prevents a void parameter being set up
4932 * for a function, which avoids tripping up checks for main taking
4933 * parameters and lookups of an unnamed symbol.
4934 */
4935 if (type->is_void()) {
4936 if (this->identifier != NULL)
4937 _mesa_glsl_error(& loc, state,
4938 "named parameter cannot have type `void'");
4939
4940 is_void = true;
4941 return NULL;
4942 }
4943
4944 if (formal_parameter && (this->identifier == NULL)) {
4945 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4946 return NULL;
4947 }
4948
4949 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4950 * call already handled the "vec4[..] foo" case.
4951 */
4952 type = process_array_type(&loc, type, this->array_specifier, state);
4953
4954 if (!type->is_error() && type->is_unsized_array()) {
4955 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4956 "a declared size");
4957 type = glsl_type::error_type;
4958 }
4959
4960 is_void = false;
4961 ir_variable *var = new(ctx)
4962 ir_variable(type, this->identifier, ir_var_function_in);
4963
4964 /* Apply any specified qualifiers to the parameter declaration. Note that
4965 * for function parameters the default mode is 'in'.
4966 */
4967 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4968 true);
4969
4970 /* From section 4.1.7 of the GLSL 4.40 spec:
4971 *
4972 * "Opaque variables cannot be treated as l-values; hence cannot
4973 * be used as out or inout function parameters, nor can they be
4974 * assigned into."
4975 */
4976 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4977 && type->contains_opaque()) {
4978 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4979 "contain opaque variables");
4980 type = glsl_type::error_type;
4981 }
4982
4983 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4984 *
4985 * "When calling a function, expressions that do not evaluate to
4986 * l-values cannot be passed to parameters declared as out or inout."
4987 *
4988 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4989 *
4990 * "Other binary or unary expressions, non-dereferenced arrays,
4991 * function names, swizzles with repeated fields, and constants
4992 * cannot be l-values."
4993 *
4994 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4995 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4996 */
4997 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4998 && type->is_array()
4999 && !state->check_version(120, 100, &loc,
5000 "arrays cannot be out or inout parameters")) {
5001 type = glsl_type::error_type;
5002 }
5003
5004 instructions->push_tail(var);
5005
5006 /* Parameter declarations do not have r-values.
5007 */
5008 return NULL;
5009 }
5010
5011
5012 void
5013 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5014 bool formal,
5015 exec_list *ir_parameters,
5016 _mesa_glsl_parse_state *state)
5017 {
5018 ast_parameter_declarator *void_param = NULL;
5019 unsigned count = 0;
5020
5021 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5022 param->formal_parameter = formal;
5023 param->hir(ir_parameters, state);
5024
5025 if (param->is_void)
5026 void_param = param;
5027
5028 count++;
5029 }
5030
5031 if ((void_param != NULL) && (count > 1)) {
5032 YYLTYPE loc = void_param->get_location();
5033
5034 _mesa_glsl_error(& loc, state,
5035 "`void' parameter must be only parameter");
5036 }
5037 }
5038
5039
5040 void
5041 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5042 {
5043 /* IR invariants disallow function declarations or definitions
5044 * nested within other function definitions. But there is no
5045 * requirement about the relative order of function declarations
5046 * and definitions with respect to one another. So simply insert
5047 * the new ir_function block at the end of the toplevel instruction
5048 * list.
5049 */
5050 state->toplevel_ir->push_tail(f);
5051 }
5052
5053
5054 ir_rvalue *
5055 ast_function::hir(exec_list *instructions,
5056 struct _mesa_glsl_parse_state *state)
5057 {
5058 void *ctx = state;
5059 ir_function *f = NULL;
5060 ir_function_signature *sig = NULL;
5061 exec_list hir_parameters;
5062 YYLTYPE loc = this->get_location();
5063
5064 const char *const name = identifier;
5065
5066 /* New functions are always added to the top-level IR instruction stream,
5067 * so this instruction list pointer is ignored. See also emit_function
5068 * (called below).
5069 */
5070 (void) instructions;
5071
5072 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5073 *
5074 * "Function declarations (prototypes) cannot occur inside of functions;
5075 * they must be at global scope, or for the built-in functions, outside
5076 * the global scope."
5077 *
5078 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5079 *
5080 * "User defined functions may only be defined within the global scope."
5081 *
5082 * Note that this language does not appear in GLSL 1.10.
5083 */
5084 if ((state->current_function != NULL) &&
5085 state->is_version(120, 100)) {
5086 YYLTYPE loc = this->get_location();
5087 _mesa_glsl_error(&loc, state,
5088 "declaration of function `%s' not allowed within "
5089 "function body", name);
5090 }
5091
5092 validate_identifier(name, this->get_location(), state);
5093
5094 /* Convert the list of function parameters to HIR now so that they can be
5095 * used below to compare this function's signature with previously seen
5096 * signatures for functions with the same name.
5097 */
5098 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5099 is_definition,
5100 & hir_parameters, state);
5101
5102 const char *return_type_name;
5103 const glsl_type *return_type =
5104 this->return_type->glsl_type(& return_type_name, state);
5105
5106 if (!return_type) {
5107 YYLTYPE loc = this->get_location();
5108 _mesa_glsl_error(&loc, state,
5109 "function `%s' has undeclared return type `%s'",
5110 name, return_type_name);
5111 return_type = glsl_type::error_type;
5112 }
5113
5114 /* ARB_shader_subroutine states:
5115 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5116 * subroutine(...) to a function declaration."
5117 */
5118 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5119 YYLTYPE loc = this->get_location();
5120 _mesa_glsl_error(&loc, state,
5121 "function declaration `%s' cannot have subroutine prepended",
5122 name);
5123 }
5124
5125 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5126 * "No qualifier is allowed on the return type of a function."
5127 */
5128 if (this->return_type->has_qualifiers(state)) {
5129 YYLTYPE loc = this->get_location();
5130 _mesa_glsl_error(& loc, state,
5131 "function `%s' return type has qualifiers", name);
5132 }
5133
5134 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5135 *
5136 * "Arrays are allowed as arguments and as the return type. In both
5137 * cases, the array must be explicitly sized."
5138 */
5139 if (return_type->is_unsized_array()) {
5140 YYLTYPE loc = this->get_location();
5141 _mesa_glsl_error(& loc, state,
5142 "function `%s' return type array must be explicitly "
5143 "sized", name);
5144 }
5145
5146 /* From section 4.1.7 of the GLSL 4.40 spec:
5147 *
5148 * "[Opaque types] can only be declared as function parameters
5149 * or uniform-qualified variables."
5150 */
5151 if (return_type->contains_opaque()) {
5152 YYLTYPE loc = this->get_location();
5153 _mesa_glsl_error(&loc, state,
5154 "function `%s' return type can't contain an opaque type",
5155 name);
5156 }
5157
5158 /* Create an ir_function if one doesn't already exist. */
5159 f = state->symbols->get_function(name);
5160 if (f == NULL) {
5161 f = new(ctx) ir_function(name);
5162 if (!this->return_type->qualifier.flags.q.subroutine) {
5163 if (!state->symbols->add_function(f)) {
5164 /* This function name shadows a non-function use of the same name. */
5165 YYLTYPE loc = this->get_location();
5166 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5167 "non-function", name);
5168 return NULL;
5169 }
5170 }
5171 emit_function(state, f);
5172 }
5173
5174 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5175 *
5176 * "A shader cannot redefine or overload built-in functions."
5177 *
5178 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5179 *
5180 * "User code can overload the built-in functions but cannot redefine
5181 * them."
5182 */
5183 if (state->es_shader && state->language_version >= 300) {
5184 /* Local shader has no exact candidates; check the built-ins. */
5185 _mesa_glsl_initialize_builtin_functions();
5186 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5187 YYLTYPE loc = this->get_location();
5188 _mesa_glsl_error(& loc, state,
5189 "A shader cannot redefine or overload built-in "
5190 "function `%s' in GLSL ES 3.00", name);
5191 return NULL;
5192 }
5193 }
5194
5195 /* Verify that this function's signature either doesn't match a previously
5196 * seen signature for a function with the same name, or, if a match is found,
5197 * that the previously seen signature does not have an associated definition.
5198 */
5199 if (state->es_shader || f->has_user_signature()) {
5200 sig = f->exact_matching_signature(state, &hir_parameters);
5201 if (sig != NULL) {
5202 const char *badvar = sig->qualifiers_match(&hir_parameters);
5203 if (badvar != NULL) {
5204 YYLTYPE loc = this->get_location();
5205
5206 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5207 "qualifiers don't match prototype", name, badvar);
5208 }
5209
5210 if (sig->return_type != return_type) {
5211 YYLTYPE loc = this->get_location();
5212
5213 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5214 "match prototype", name);
5215 }
5216
5217 if (sig->is_defined) {
5218 if (is_definition) {
5219 YYLTYPE loc = this->get_location();
5220 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5221 } else {
5222 /* We just encountered a prototype that exactly matches a
5223 * function that's already been defined. This is redundant,
5224 * and we should ignore it.
5225 */
5226 return NULL;
5227 }
5228 }
5229 }
5230 }
5231
5232 /* Verify the return type of main() */
5233 if (strcmp(name, "main") == 0) {
5234 if (! return_type->is_void()) {
5235 YYLTYPE loc = this->get_location();
5236
5237 _mesa_glsl_error(& loc, state, "main() must return void");
5238 }
5239
5240 if (!hir_parameters.is_empty()) {
5241 YYLTYPE loc = this->get_location();
5242
5243 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5244 }
5245 }
5246
5247 /* Finish storing the information about this new function in its signature.
5248 */
5249 if (sig == NULL) {
5250 sig = new(ctx) ir_function_signature(return_type);
5251 f->add_signature(sig);
5252 }
5253
5254 sig->replace_parameters(&hir_parameters);
5255 signature = sig;
5256
5257 if (this->return_type->qualifier.flags.q.subroutine_def) {
5258 int idx;
5259
5260 if (this->return_type->qualifier.flags.q.explicit_index) {
5261 unsigned qual_index;
5262 if (process_qualifier_constant(state, &loc, "index",
5263 this->return_type->qualifier.index,
5264 &qual_index)) {
5265 if (!state->has_explicit_uniform_location()) {
5266 _mesa_glsl_error(&loc, state, "subroutine index requires "
5267 "GL_ARB_explicit_uniform_location or "
5268 "GLSL 4.30");
5269 } else if (qual_index >= MAX_SUBROUTINES) {
5270 _mesa_glsl_error(&loc, state,
5271 "invalid subroutine index (%d) index must "
5272 "be a number between 0 and "
5273 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5274 MAX_SUBROUTINES - 1);
5275 } else {
5276 f->subroutine_index = qual_index;
5277 }
5278 }
5279 }
5280
5281 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5282 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5283 f->num_subroutine_types);
5284 idx = 0;
5285 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5286 const struct glsl_type *type;
5287 /* the subroutine type must be already declared */
5288 type = state->symbols->get_type(decl->identifier);
5289 if (!type) {
5290 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5291 }
5292 f->subroutine_types[idx++] = type;
5293 }
5294 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5295 ir_function *,
5296 state->num_subroutines + 1);
5297 state->subroutines[state->num_subroutines] = f;
5298 state->num_subroutines++;
5299
5300 }
5301
5302 if (this->return_type->qualifier.flags.q.subroutine) {
5303 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5304 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5305 return NULL;
5306 }
5307 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5308 ir_function *,
5309 state->num_subroutine_types + 1);
5310 state->subroutine_types[state->num_subroutine_types] = f;
5311 state->num_subroutine_types++;
5312
5313 f->is_subroutine = true;
5314 }
5315
5316 /* Function declarations (prototypes) do not have r-values.
5317 */
5318 return NULL;
5319 }
5320
5321
5322 ir_rvalue *
5323 ast_function_definition::hir(exec_list *instructions,
5324 struct _mesa_glsl_parse_state *state)
5325 {
5326 prototype->is_definition = true;
5327 prototype->hir(instructions, state);
5328
5329 ir_function_signature *signature = prototype->signature;
5330 if (signature == NULL)
5331 return NULL;
5332
5333 assert(state->current_function == NULL);
5334 state->current_function = signature;
5335 state->found_return = false;
5336
5337 /* Duplicate parameters declared in the prototype as concrete variables.
5338 * Add these to the symbol table.
5339 */
5340 state->symbols->push_scope();
5341 foreach_in_list(ir_variable, var, &signature->parameters) {
5342 assert(var->as_variable() != NULL);
5343
5344 /* The only way a parameter would "exist" is if two parameters have
5345 * the same name.
5346 */
5347 if (state->symbols->name_declared_this_scope(var->name)) {
5348 YYLTYPE loc = this->get_location();
5349
5350 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5351 } else {
5352 state->symbols->add_variable(var);
5353 }
5354 }
5355
5356 /* Convert the body of the function to HIR. */
5357 this->body->hir(&signature->body, state);
5358 signature->is_defined = true;
5359
5360 state->symbols->pop_scope();
5361
5362 assert(state->current_function == signature);
5363 state->current_function = NULL;
5364
5365 if (!signature->return_type->is_void() && !state->found_return) {
5366 YYLTYPE loc = this->get_location();
5367 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5368 "%s, but no return statement",
5369 signature->function_name(),
5370 signature->return_type->name);
5371 }
5372
5373 /* Function definitions do not have r-values.
5374 */
5375 return NULL;
5376 }
5377
5378
5379 ir_rvalue *
5380 ast_jump_statement::hir(exec_list *instructions,
5381 struct _mesa_glsl_parse_state *state)
5382 {
5383 void *ctx = state;
5384
5385 switch (mode) {
5386 case ast_return: {
5387 ir_return *inst;
5388 assert(state->current_function);
5389
5390 if (opt_return_value) {
5391 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5392
5393 /* The value of the return type can be NULL if the shader says
5394 * 'return foo();' and foo() is a function that returns void.
5395 *
5396 * NOTE: The GLSL spec doesn't say that this is an error. The type
5397 * of the return value is void. If the return type of the function is
5398 * also void, then this should compile without error. Seriously.
5399 */
5400 const glsl_type *const ret_type =
5401 (ret == NULL) ? glsl_type::void_type : ret->type;
5402
5403 /* Implicit conversions are not allowed for return values prior to
5404 * ARB_shading_language_420pack.
5405 */
5406 if (state->current_function->return_type != ret_type) {
5407 YYLTYPE loc = this->get_location();
5408
5409 if (state->has_420pack()) {
5410 if (!apply_implicit_conversion(state->current_function->return_type,
5411 ret, state)) {
5412 _mesa_glsl_error(& loc, state,
5413 "could not implicitly convert return value "
5414 "to %s, in function `%s'",
5415 state->current_function->return_type->name,
5416 state->current_function->function_name());
5417 }
5418 } else {
5419 _mesa_glsl_error(& loc, state,
5420 "`return' with wrong type %s, in function `%s' "
5421 "returning %s",
5422 ret_type->name,
5423 state->current_function->function_name(),
5424 state->current_function->return_type->name);
5425 }
5426 } else if (state->current_function->return_type->base_type ==
5427 GLSL_TYPE_VOID) {
5428 YYLTYPE loc = this->get_location();
5429
5430 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5431 * specs add a clarification:
5432 *
5433 * "A void function can only use return without a return argument, even if
5434 * the return argument has void type. Return statements only accept values:
5435 *
5436 * void func1() { }
5437 * void func2() { return func1(); } // illegal return statement"
5438 */
5439 _mesa_glsl_error(& loc, state,
5440 "void functions can only use `return' without a "
5441 "return argument");
5442 }
5443
5444 inst = new(ctx) ir_return(ret);
5445 } else {
5446 if (state->current_function->return_type->base_type !=
5447 GLSL_TYPE_VOID) {
5448 YYLTYPE loc = this->get_location();
5449
5450 _mesa_glsl_error(& loc, state,
5451 "`return' with no value, in function %s returning "
5452 "non-void",
5453 state->current_function->function_name());
5454 }
5455 inst = new(ctx) ir_return;
5456 }
5457
5458 state->found_return = true;
5459 instructions->push_tail(inst);
5460 break;
5461 }
5462
5463 case ast_discard:
5464 if (state->stage != MESA_SHADER_FRAGMENT) {
5465 YYLTYPE loc = this->get_location();
5466
5467 _mesa_glsl_error(& loc, state,
5468 "`discard' may only appear in a fragment shader");
5469 }
5470 instructions->push_tail(new(ctx) ir_discard);
5471 break;
5472
5473 case ast_break:
5474 case ast_continue:
5475 if (mode == ast_continue &&
5476 state->loop_nesting_ast == NULL) {
5477 YYLTYPE loc = this->get_location();
5478
5479 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5480 } else if (mode == ast_break &&
5481 state->loop_nesting_ast == NULL &&
5482 state->switch_state.switch_nesting_ast == NULL) {
5483 YYLTYPE loc = this->get_location();
5484
5485 _mesa_glsl_error(& loc, state,
5486 "break may only appear in a loop or a switch");
5487 } else {
5488 /* For a loop, inline the for loop expression again, since we don't
5489 * know where near the end of the loop body the normal copy of it is
5490 * going to be placed. Same goes for the condition for a do-while
5491 * loop.
5492 */
5493 if (state->loop_nesting_ast != NULL &&
5494 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5495 if (state->loop_nesting_ast->rest_expression) {
5496 state->loop_nesting_ast->rest_expression->hir(instructions,
5497 state);
5498 }
5499 if (state->loop_nesting_ast->mode ==
5500 ast_iteration_statement::ast_do_while) {
5501 state->loop_nesting_ast->condition_to_hir(instructions, state);
5502 }
5503 }
5504
5505 if (state->switch_state.is_switch_innermost &&
5506 mode == ast_continue) {
5507 /* Set 'continue_inside' to true. */
5508 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5509 ir_dereference_variable *deref_continue_inside_var =
5510 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5511 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5512 true_val));
5513
5514 /* Break out from the switch, continue for the loop will
5515 * be called right after switch. */
5516 ir_loop_jump *const jump =
5517 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5518 instructions->push_tail(jump);
5519
5520 } else if (state->switch_state.is_switch_innermost &&
5521 mode == ast_break) {
5522 /* Force break out of switch by inserting a break. */
5523 ir_loop_jump *const jump =
5524 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5525 instructions->push_tail(jump);
5526 } else {
5527 ir_loop_jump *const jump =
5528 new(ctx) ir_loop_jump((mode == ast_break)
5529 ? ir_loop_jump::jump_break
5530 : ir_loop_jump::jump_continue);
5531 instructions->push_tail(jump);
5532 }
5533 }
5534
5535 break;
5536 }
5537
5538 /* Jump instructions do not have r-values.
5539 */
5540 return NULL;
5541 }
5542
5543
5544 ir_rvalue *
5545 ast_selection_statement::hir(exec_list *instructions,
5546 struct _mesa_glsl_parse_state *state)
5547 {
5548 void *ctx = state;
5549
5550 ir_rvalue *const condition = this->condition->hir(instructions, state);
5551
5552 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5553 *
5554 * "Any expression whose type evaluates to a Boolean can be used as the
5555 * conditional expression bool-expression. Vector types are not accepted
5556 * as the expression to if."
5557 *
5558 * The checks are separated so that higher quality diagnostics can be
5559 * generated for cases where both rules are violated.
5560 */
5561 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5562 YYLTYPE loc = this->condition->get_location();
5563
5564 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5565 "boolean");
5566 }
5567
5568 ir_if *const stmt = new(ctx) ir_if(condition);
5569
5570 if (then_statement != NULL) {
5571 state->symbols->push_scope();
5572 then_statement->hir(& stmt->then_instructions, state);
5573 state->symbols->pop_scope();
5574 }
5575
5576 if (else_statement != NULL) {
5577 state->symbols->push_scope();
5578 else_statement->hir(& stmt->else_instructions, state);
5579 state->symbols->pop_scope();
5580 }
5581
5582 instructions->push_tail(stmt);
5583
5584 /* if-statements do not have r-values.
5585 */
5586 return NULL;
5587 }
5588
5589
5590 ir_rvalue *
5591 ast_switch_statement::hir(exec_list *instructions,
5592 struct _mesa_glsl_parse_state *state)
5593 {
5594 void *ctx = state;
5595
5596 ir_rvalue *const test_expression =
5597 this->test_expression->hir(instructions, state);
5598
5599 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5600 *
5601 * "The type of init-expression in a switch statement must be a
5602 * scalar integer."
5603 */
5604 if (!test_expression->type->is_scalar() ||
5605 !test_expression->type->is_integer()) {
5606 YYLTYPE loc = this->test_expression->get_location();
5607
5608 _mesa_glsl_error(& loc,
5609 state,
5610 "switch-statement expression must be scalar "
5611 "integer");
5612 }
5613
5614 /* Track the switch-statement nesting in a stack-like manner.
5615 */
5616 struct glsl_switch_state saved = state->switch_state;
5617
5618 state->switch_state.is_switch_innermost = true;
5619 state->switch_state.switch_nesting_ast = this;
5620 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5621 hash_table_pointer_compare);
5622 state->switch_state.previous_default = NULL;
5623
5624 /* Initalize is_fallthru state to false.
5625 */
5626 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5627 state->switch_state.is_fallthru_var =
5628 new(ctx) ir_variable(glsl_type::bool_type,
5629 "switch_is_fallthru_tmp",
5630 ir_var_temporary);
5631 instructions->push_tail(state->switch_state.is_fallthru_var);
5632
5633 ir_dereference_variable *deref_is_fallthru_var =
5634 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5635 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5636 is_fallthru_val));
5637
5638 /* Initialize continue_inside state to false.
5639 */
5640 state->switch_state.continue_inside =
5641 new(ctx) ir_variable(glsl_type::bool_type,
5642 "continue_inside_tmp",
5643 ir_var_temporary);
5644 instructions->push_tail(state->switch_state.continue_inside);
5645
5646 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5647 ir_dereference_variable *deref_continue_inside_var =
5648 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5649 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5650 false_val));
5651
5652 state->switch_state.run_default =
5653 new(ctx) ir_variable(glsl_type::bool_type,
5654 "run_default_tmp",
5655 ir_var_temporary);
5656 instructions->push_tail(state->switch_state.run_default);
5657
5658 /* Loop around the switch is used for flow control. */
5659 ir_loop * loop = new(ctx) ir_loop();
5660 instructions->push_tail(loop);
5661
5662 /* Cache test expression.
5663 */
5664 test_to_hir(&loop->body_instructions, state);
5665
5666 /* Emit code for body of switch stmt.
5667 */
5668 body->hir(&loop->body_instructions, state);
5669
5670 /* Insert a break at the end to exit loop. */
5671 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5672 loop->body_instructions.push_tail(jump);
5673
5674 /* If we are inside loop, check if continue got called inside switch. */
5675 if (state->loop_nesting_ast != NULL) {
5676 ir_dereference_variable *deref_continue_inside =
5677 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5678 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5679 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5680
5681 if (state->loop_nesting_ast != NULL) {
5682 if (state->loop_nesting_ast->rest_expression) {
5683 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5684 state);
5685 }
5686 if (state->loop_nesting_ast->mode ==
5687 ast_iteration_statement::ast_do_while) {
5688 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5689 }
5690 }
5691 irif->then_instructions.push_tail(jump);
5692 instructions->push_tail(irif);
5693 }
5694
5695 hash_table_dtor(state->switch_state.labels_ht);
5696
5697 state->switch_state = saved;
5698
5699 /* Switch statements do not have r-values. */
5700 return NULL;
5701 }
5702
5703
5704 void
5705 ast_switch_statement::test_to_hir(exec_list *instructions,
5706 struct _mesa_glsl_parse_state *state)
5707 {
5708 void *ctx = state;
5709
5710 /* Cache value of test expression. */
5711 ir_rvalue *const test_val =
5712 test_expression->hir(instructions,
5713 state);
5714
5715 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5716 "switch_test_tmp",
5717 ir_var_temporary);
5718 ir_dereference_variable *deref_test_var =
5719 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5720
5721 instructions->push_tail(state->switch_state.test_var);
5722 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5723 }
5724
5725
5726 ir_rvalue *
5727 ast_switch_body::hir(exec_list *instructions,
5728 struct _mesa_glsl_parse_state *state)
5729 {
5730 if (stmts != NULL)
5731 stmts->hir(instructions, state);
5732
5733 /* Switch bodies do not have r-values. */
5734 return NULL;
5735 }
5736
5737 ir_rvalue *
5738 ast_case_statement_list::hir(exec_list *instructions,
5739 struct _mesa_glsl_parse_state *state)
5740 {
5741 exec_list default_case, after_default, tmp;
5742
5743 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5744 case_stmt->hir(&tmp, state);
5745
5746 /* Default case. */
5747 if (state->switch_state.previous_default && default_case.is_empty()) {
5748 default_case.append_list(&tmp);
5749 continue;
5750 }
5751
5752 /* If default case found, append 'after_default' list. */
5753 if (!default_case.is_empty())
5754 after_default.append_list(&tmp);
5755 else
5756 instructions->append_list(&tmp);
5757 }
5758
5759 /* Handle the default case. This is done here because default might not be
5760 * the last case. We need to add checks against following cases first to see
5761 * if default should be chosen or not.
5762 */
5763 if (!default_case.is_empty()) {
5764
5765 ir_rvalue *const true_val = new (state) ir_constant(true);
5766 ir_dereference_variable *deref_run_default_var =
5767 new(state) ir_dereference_variable(state->switch_state.run_default);
5768
5769 /* Choose to run default case initially, following conditional
5770 * assignments might change this.
5771 */
5772 ir_assignment *const init_var =
5773 new(state) ir_assignment(deref_run_default_var, true_val);
5774 instructions->push_tail(init_var);
5775
5776 /* Default case was the last one, no checks required. */
5777 if (after_default.is_empty()) {
5778 instructions->append_list(&default_case);
5779 return NULL;
5780 }
5781
5782 foreach_in_list(ir_instruction, ir, &after_default) {
5783 ir_assignment *assign = ir->as_assignment();
5784
5785 if (!assign)
5786 continue;
5787
5788 /* Clone the check between case label and init expression. */
5789 ir_expression *exp = (ir_expression*) assign->condition;
5790 ir_expression *clone = exp->clone(state, NULL);
5791
5792 ir_dereference_variable *deref_var =
5793 new(state) ir_dereference_variable(state->switch_state.run_default);
5794 ir_rvalue *const false_val = new (state) ir_constant(false);
5795
5796 ir_assignment *const set_false =
5797 new(state) ir_assignment(deref_var, false_val, clone);
5798
5799 instructions->push_tail(set_false);
5800 }
5801
5802 /* Append default case and all cases after it. */
5803 instructions->append_list(&default_case);
5804 instructions->append_list(&after_default);
5805 }
5806
5807 /* Case statements do not have r-values. */
5808 return NULL;
5809 }
5810
5811 ir_rvalue *
5812 ast_case_statement::hir(exec_list *instructions,
5813 struct _mesa_glsl_parse_state *state)
5814 {
5815 labels->hir(instructions, state);
5816
5817 /* Guard case statements depending on fallthru state. */
5818 ir_dereference_variable *const deref_fallthru_guard =
5819 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5820 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5821
5822 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5823 stmt->hir(& test_fallthru->then_instructions, state);
5824
5825 instructions->push_tail(test_fallthru);
5826
5827 /* Case statements do not have r-values. */
5828 return NULL;
5829 }
5830
5831
5832 ir_rvalue *
5833 ast_case_label_list::hir(exec_list *instructions,
5834 struct _mesa_glsl_parse_state *state)
5835 {
5836 foreach_list_typed (ast_case_label, label, link, & this->labels)
5837 label->hir(instructions, state);
5838
5839 /* Case labels do not have r-values. */
5840 return NULL;
5841 }
5842
5843 ir_rvalue *
5844 ast_case_label::hir(exec_list *instructions,
5845 struct _mesa_glsl_parse_state *state)
5846 {
5847 void *ctx = state;
5848
5849 ir_dereference_variable *deref_fallthru_var =
5850 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5851
5852 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5853
5854 /* If not default case, ... */
5855 if (this->test_value != NULL) {
5856 /* Conditionally set fallthru state based on
5857 * comparison of cached test expression value to case label.
5858 */
5859 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5860 ir_constant *label_const = label_rval->constant_expression_value();
5861
5862 if (!label_const) {
5863 YYLTYPE loc = this->test_value->get_location();
5864
5865 _mesa_glsl_error(& loc, state,
5866 "switch statement case label must be a "
5867 "constant expression");
5868
5869 /* Stuff a dummy value in to allow processing to continue. */
5870 label_const = new(ctx) ir_constant(0);
5871 } else {
5872 ast_expression *previous_label = (ast_expression *)
5873 hash_table_find(state->switch_state.labels_ht,
5874 (void *)(uintptr_t)label_const->value.u[0]);
5875
5876 if (previous_label) {
5877 YYLTYPE loc = this->test_value->get_location();
5878 _mesa_glsl_error(& loc, state, "duplicate case value");
5879
5880 loc = previous_label->get_location();
5881 _mesa_glsl_error(& loc, state, "this is the previous case label");
5882 } else {
5883 hash_table_insert(state->switch_state.labels_ht,
5884 this->test_value,
5885 (void *)(uintptr_t)label_const->value.u[0]);
5886 }
5887 }
5888
5889 ir_dereference_variable *deref_test_var =
5890 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5891
5892 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5893 label_const,
5894 deref_test_var);
5895
5896 /*
5897 * From GLSL 4.40 specification section 6.2 ("Selection"):
5898 *
5899 * "The type of the init-expression value in a switch statement must
5900 * be a scalar int or uint. The type of the constant-expression value
5901 * in a case label also must be a scalar int or uint. When any pair
5902 * of these values is tested for "equal value" and the types do not
5903 * match, an implicit conversion will be done to convert the int to a
5904 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5905 * is done."
5906 */
5907 if (label_const->type != state->switch_state.test_var->type) {
5908 YYLTYPE loc = this->test_value->get_location();
5909
5910 const glsl_type *type_a = label_const->type;
5911 const glsl_type *type_b = state->switch_state.test_var->type;
5912
5913 /* Check if int->uint implicit conversion is supported. */
5914 bool integer_conversion_supported =
5915 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5916 state);
5917
5918 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5919 !integer_conversion_supported) {
5920 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5921 "init-expression and case label (%s != %s)",
5922 type_a->name, type_b->name);
5923 } else {
5924 /* Conversion of the case label. */
5925 if (type_a->base_type == GLSL_TYPE_INT) {
5926 if (!apply_implicit_conversion(glsl_type::uint_type,
5927 test_cond->operands[0], state))
5928 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5929 } else {
5930 /* Conversion of the init-expression value. */
5931 if (!apply_implicit_conversion(glsl_type::uint_type,
5932 test_cond->operands[1], state))
5933 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5934 }
5935 }
5936 }
5937
5938 ir_assignment *set_fallthru_on_test =
5939 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5940
5941 instructions->push_tail(set_fallthru_on_test);
5942 } else { /* default case */
5943 if (state->switch_state.previous_default) {
5944 YYLTYPE loc = this->get_location();
5945 _mesa_glsl_error(& loc, state,
5946 "multiple default labels in one switch");
5947
5948 loc = state->switch_state.previous_default->get_location();
5949 _mesa_glsl_error(& loc, state, "this is the first default label");
5950 }
5951 state->switch_state.previous_default = this;
5952
5953 /* Set fallthru condition on 'run_default' bool. */
5954 ir_dereference_variable *deref_run_default =
5955 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5956 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5957 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5958 cond_true,
5959 deref_run_default);
5960
5961 /* Set falltrhu state. */
5962 ir_assignment *set_fallthru =
5963 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5964
5965 instructions->push_tail(set_fallthru);
5966 }
5967
5968 /* Case statements do not have r-values. */
5969 return NULL;
5970 }
5971
5972 void
5973 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5974 struct _mesa_glsl_parse_state *state)
5975 {
5976 void *ctx = state;
5977
5978 if (condition != NULL) {
5979 ir_rvalue *const cond =
5980 condition->hir(instructions, state);
5981
5982 if ((cond == NULL)
5983 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5984 YYLTYPE loc = condition->get_location();
5985
5986 _mesa_glsl_error(& loc, state,
5987 "loop condition must be scalar boolean");
5988 } else {
5989 /* As the first code in the loop body, generate a block that looks
5990 * like 'if (!condition) break;' as the loop termination condition.
5991 */
5992 ir_rvalue *const not_cond =
5993 new(ctx) ir_expression(ir_unop_logic_not, cond);
5994
5995 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5996
5997 ir_jump *const break_stmt =
5998 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5999
6000 if_stmt->then_instructions.push_tail(break_stmt);
6001 instructions->push_tail(if_stmt);
6002 }
6003 }
6004 }
6005
6006
6007 ir_rvalue *
6008 ast_iteration_statement::hir(exec_list *instructions,
6009 struct _mesa_glsl_parse_state *state)
6010 {
6011 void *ctx = state;
6012
6013 /* For-loops and while-loops start a new scope, but do-while loops do not.
6014 */
6015 if (mode != ast_do_while)
6016 state->symbols->push_scope();
6017
6018 if (init_statement != NULL)
6019 init_statement->hir(instructions, state);
6020
6021 ir_loop *const stmt = new(ctx) ir_loop();
6022 instructions->push_tail(stmt);
6023
6024 /* Track the current loop nesting. */
6025 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6026
6027 state->loop_nesting_ast = this;
6028
6029 /* Likewise, indicate that following code is closest to a loop,
6030 * NOT closest to a switch.
6031 */
6032 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6033 state->switch_state.is_switch_innermost = false;
6034
6035 if (mode != ast_do_while)
6036 condition_to_hir(&stmt->body_instructions, state);
6037
6038 if (body != NULL)
6039 body->hir(& stmt->body_instructions, state);
6040
6041 if (rest_expression != NULL)
6042 rest_expression->hir(& stmt->body_instructions, state);
6043
6044 if (mode == ast_do_while)
6045 condition_to_hir(&stmt->body_instructions, state);
6046
6047 if (mode != ast_do_while)
6048 state->symbols->pop_scope();
6049
6050 /* Restore previous nesting before returning. */
6051 state->loop_nesting_ast = nesting_ast;
6052 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6053
6054 /* Loops do not have r-values.
6055 */
6056 return NULL;
6057 }
6058
6059
6060 /**
6061 * Determine if the given type is valid for establishing a default precision
6062 * qualifier.
6063 *
6064 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6065 *
6066 * "The precision statement
6067 *
6068 * precision precision-qualifier type;
6069 *
6070 * can be used to establish a default precision qualifier. The type field
6071 * can be either int or float or any of the sampler types, and the
6072 * precision-qualifier can be lowp, mediump, or highp."
6073 *
6074 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6075 * qualifiers on sampler types, but this seems like an oversight (since the
6076 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6077 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6078 * version.
6079 */
6080 static bool
6081 is_valid_default_precision_type(const struct glsl_type *const type)
6082 {
6083 if (type == NULL)
6084 return false;
6085
6086 switch (type->base_type) {
6087 case GLSL_TYPE_INT:
6088 case GLSL_TYPE_FLOAT:
6089 /* "int" and "float" are valid, but vectors and matrices are not. */
6090 return type->vector_elements == 1 && type->matrix_columns == 1;
6091 case GLSL_TYPE_SAMPLER:
6092 case GLSL_TYPE_IMAGE:
6093 case GLSL_TYPE_ATOMIC_UINT:
6094 return true;
6095 default:
6096 return false;
6097 }
6098 }
6099
6100
6101 ir_rvalue *
6102 ast_type_specifier::hir(exec_list *instructions,
6103 struct _mesa_glsl_parse_state *state)
6104 {
6105 if (this->default_precision == ast_precision_none && this->structure == NULL)
6106 return NULL;
6107
6108 YYLTYPE loc = this->get_location();
6109
6110 /* If this is a precision statement, check that the type to which it is
6111 * applied is either float or int.
6112 *
6113 * From section 4.5.3 of the GLSL 1.30 spec:
6114 * "The precision statement
6115 * precision precision-qualifier type;
6116 * can be used to establish a default precision qualifier. The type
6117 * field can be either int or float [...]. Any other types or
6118 * qualifiers will result in an error.
6119 */
6120 if (this->default_precision != ast_precision_none) {
6121 if (!state->check_precision_qualifiers_allowed(&loc))
6122 return NULL;
6123
6124 if (this->structure != NULL) {
6125 _mesa_glsl_error(&loc, state,
6126 "precision qualifiers do not apply to structures");
6127 return NULL;
6128 }
6129
6130 if (this->array_specifier != NULL) {
6131 _mesa_glsl_error(&loc, state,
6132 "default precision statements do not apply to "
6133 "arrays");
6134 return NULL;
6135 }
6136
6137 const struct glsl_type *const type =
6138 state->symbols->get_type(this->type_name);
6139 if (!is_valid_default_precision_type(type)) {
6140 _mesa_glsl_error(&loc, state,
6141 "default precision statements apply only to "
6142 "float, int, and opaque types");
6143 return NULL;
6144 }
6145
6146 if (state->es_shader) {
6147 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6148 * spec says:
6149 *
6150 * "Non-precision qualified declarations will use the precision
6151 * qualifier specified in the most recent precision statement
6152 * that is still in scope. The precision statement has the same
6153 * scoping rules as variable declarations. If it is declared
6154 * inside a compound statement, its effect stops at the end of
6155 * the innermost statement it was declared in. Precision
6156 * statements in nested scopes override precision statements in
6157 * outer scopes. Multiple precision statements for the same basic
6158 * type can appear inside the same scope, with later statements
6159 * overriding earlier statements within that scope."
6160 *
6161 * Default precision specifications follow the same scope rules as
6162 * variables. So, we can track the state of the default precision
6163 * qualifiers in the symbol table, and the rules will just work. This
6164 * is a slight abuse of the symbol table, but it has the semantics
6165 * that we want.
6166 */
6167 state->symbols->add_default_precision_qualifier(this->type_name,
6168 this->default_precision);
6169 }
6170
6171 /* FINISHME: Translate precision statements into IR. */
6172 return NULL;
6173 }
6174
6175 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6176 * process_record_constructor() can do type-checking on C-style initializer
6177 * expressions of structs, but ast_struct_specifier should only be translated
6178 * to HIR if it is declaring the type of a structure.
6179 *
6180 * The ->is_declaration field is false for initializers of variables
6181 * declared separately from the struct's type definition.
6182 *
6183 * struct S { ... }; (is_declaration = true)
6184 * struct T { ... } t = { ... }; (is_declaration = true)
6185 * S s = { ... }; (is_declaration = false)
6186 */
6187 if (this->structure != NULL && this->structure->is_declaration)
6188 return this->structure->hir(instructions, state);
6189
6190 return NULL;
6191 }
6192
6193
6194 /**
6195 * Process a structure or interface block tree into an array of structure fields
6196 *
6197 * After parsing, where there are some syntax differnces, structures and
6198 * interface blocks are almost identical. They are similar enough that the
6199 * AST for each can be processed the same way into a set of
6200 * \c glsl_struct_field to describe the members.
6201 *
6202 * If we're processing an interface block, var_mode should be the type of the
6203 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6204 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6205 * ir_var_auto.
6206 *
6207 * \return
6208 * The number of fields processed. A pointer to the array structure fields is
6209 * stored in \c *fields_ret.
6210 */
6211 static unsigned
6212 ast_process_struct_or_iface_block_members(exec_list *instructions,
6213 struct _mesa_glsl_parse_state *state,
6214 exec_list *declarations,
6215 glsl_struct_field **fields_ret,
6216 bool is_interface,
6217 enum glsl_matrix_layout matrix_layout,
6218 bool allow_reserved_names,
6219 ir_variable_mode var_mode,
6220 ast_type_qualifier *layout,
6221 unsigned block_stream,
6222 unsigned expl_location)
6223 {
6224 unsigned decl_count = 0;
6225
6226 /* Make an initial pass over the list of fields to determine how
6227 * many there are. Each element in this list is an ast_declarator_list.
6228 * This means that we actually need to count the number of elements in the
6229 * 'declarations' list in each of the elements.
6230 */
6231 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6232 decl_count += decl_list->declarations.length();
6233 }
6234
6235 /* Allocate storage for the fields and process the field
6236 * declarations. As the declarations are processed, try to also convert
6237 * the types to HIR. This ensures that structure definitions embedded in
6238 * other structure definitions or in interface blocks are processed.
6239 */
6240 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6241 decl_count);
6242
6243 bool first_member = true;
6244 bool first_member_has_explicit_location;
6245
6246 unsigned i = 0;
6247 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6248 const char *type_name;
6249 YYLTYPE loc = decl_list->get_location();
6250
6251 decl_list->type->specifier->hir(instructions, state);
6252
6253 /* Section 10.9 of the GLSL ES 1.00 specification states that
6254 * embedded structure definitions have been removed from the language.
6255 */
6256 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6257 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6258 "not allowed in GLSL ES 1.00");
6259 }
6260
6261 const glsl_type *decl_type =
6262 decl_list->type->glsl_type(& type_name, state);
6263
6264 const struct ast_type_qualifier *const qual =
6265 &decl_list->type->qualifier;
6266
6267 /* From section 4.3.9 of the GLSL 4.40 spec:
6268 *
6269 * "[In interface blocks] opaque types are not allowed."
6270 *
6271 * It should be impossible for decl_type to be NULL here. Cases that
6272 * might naturally lead to decl_type being NULL, especially for the
6273 * is_interface case, will have resulted in compilation having
6274 * already halted due to a syntax error.
6275 */
6276 assert(decl_type);
6277
6278 if (is_interface && decl_type->contains_opaque()) {
6279 _mesa_glsl_error(&loc, state,
6280 "uniform/buffer in non-default interface block contains "
6281 "opaque variable");
6282 }
6283
6284 if (decl_type->contains_atomic()) {
6285 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6286 *
6287 * "Members of structures cannot be declared as atomic counter
6288 * types."
6289 */
6290 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6291 "shader storage block or uniform block");
6292 }
6293
6294 if (decl_type->contains_image()) {
6295 /* FINISHME: Same problem as with atomic counters.
6296 * FINISHME: Request clarification from Khronos and add
6297 * FINISHME: spec quotation here.
6298 */
6299 _mesa_glsl_error(&loc, state,
6300 "image in structure, shader storage block or "
6301 "uniform block");
6302 }
6303
6304 if (qual->flags.q.explicit_binding) {
6305 _mesa_glsl_error(&loc, state,
6306 "binding layout qualifier cannot be applied "
6307 "to struct or interface block members");
6308 }
6309
6310 if (is_interface) {
6311 if (!first_member) {
6312 if (!layout->flags.q.explicit_location &&
6313 ((first_member_has_explicit_location &&
6314 !qual->flags.q.explicit_location) ||
6315 (!first_member_has_explicit_location &&
6316 qual->flags.q.explicit_location))) {
6317 _mesa_glsl_error(&loc, state,
6318 "when block-level location layout qualifier "
6319 "is not supplied either all members must "
6320 "have a location layout qualifier or all "
6321 "members must not have a location layout "
6322 "qualifier");
6323 }
6324 } else {
6325 first_member = false;
6326 first_member_has_explicit_location =
6327 qual->flags.q.explicit_location;
6328 }
6329 }
6330
6331 if (qual->flags.q.std140 ||
6332 qual->flags.q.std430 ||
6333 qual->flags.q.packed ||
6334 qual->flags.q.shared) {
6335 _mesa_glsl_error(&loc, state,
6336 "uniform/shader storage block layout qualifiers "
6337 "std140, std430, packed, and shared can only be "
6338 "applied to uniform/shader storage blocks, not "
6339 "members");
6340 }
6341
6342 if (qual->flags.q.constant) {
6343 _mesa_glsl_error(&loc, state,
6344 "const storage qualifier cannot be applied "
6345 "to struct or interface block members");
6346 }
6347
6348 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6349 *
6350 * "A block member may be declared with a stream identifier, but
6351 * the specified stream must match the stream associated with the
6352 * containing block."
6353 */
6354 if (qual->flags.q.explicit_stream) {
6355 unsigned qual_stream;
6356 if (process_qualifier_constant(state, &loc, "stream",
6357 qual->stream, &qual_stream) &&
6358 qual_stream != block_stream) {
6359 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6360 "interface block member does not match "
6361 "the interface block (%u vs %u)", qual_stream,
6362 block_stream);
6363 }
6364 }
6365
6366 if (qual->flags.q.uniform && qual->has_interpolation()) {
6367 _mesa_glsl_error(&loc, state,
6368 "interpolation qualifiers cannot be used "
6369 "with uniform interface blocks");
6370 }
6371
6372 if ((qual->flags.q.uniform || !is_interface) &&
6373 qual->has_auxiliary_storage()) {
6374 _mesa_glsl_error(&loc, state,
6375 "auxiliary storage qualifiers cannot be used "
6376 "in uniform blocks or structures.");
6377 }
6378
6379 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6380 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6381 _mesa_glsl_error(&loc, state,
6382 "row_major and column_major can only be "
6383 "applied to interface blocks");
6384 } else
6385 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6386 }
6387
6388 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6389 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6390 "readonly and writeonly.");
6391 }
6392
6393 foreach_list_typed (ast_declaration, decl, link,
6394 &decl_list->declarations) {
6395 YYLTYPE loc = decl->get_location();
6396
6397 if (!allow_reserved_names)
6398 validate_identifier(decl->identifier, loc, state);
6399
6400 const struct glsl_type *field_type =
6401 process_array_type(&loc, decl_type, decl->array_specifier, state);
6402 validate_array_dimensions(field_type, state, &loc);
6403 fields[i].type = field_type;
6404 fields[i].name = decl->identifier;
6405 fields[i].interpolation =
6406 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6407 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6408 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6409 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6410 fields[i].precision = qual->precision;
6411
6412 if (qual->flags.q.explicit_location) {
6413 unsigned qual_location;
6414 if (process_qualifier_constant(state, &loc, "location",
6415 qual->location, &qual_location)) {
6416 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6417 expl_location = fields[i].location +
6418 fields[i].type->count_attribute_slots(false);
6419 }
6420 } else {
6421 if (layout && layout->flags.q.explicit_location) {
6422 fields[i].location = expl_location;
6423 expl_location += fields[i].type->count_attribute_slots(false);
6424 } else {
6425 fields[i].location = -1;
6426 }
6427 }
6428
6429 /* Propogate row- / column-major information down the fields of the
6430 * structure or interface block. Structures need this data because
6431 * the structure may contain a structure that contains ... a matrix
6432 * that need the proper layout.
6433 */
6434 if (field_type->without_array()->is_matrix()
6435 || field_type->without_array()->is_record()) {
6436 /* If no layout is specified for the field, inherit the layout
6437 * from the block.
6438 */
6439 fields[i].matrix_layout = matrix_layout;
6440
6441 if (qual->flags.q.row_major)
6442 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6443 else if (qual->flags.q.column_major)
6444 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6445
6446 /* If we're processing an interface block, the matrix layout must
6447 * be decided by this point.
6448 */
6449 assert(!is_interface
6450 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6451 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6452 }
6453
6454 /* Image qualifiers are allowed on buffer variables, which can only
6455 * be defined inside shader storage buffer objects
6456 */
6457 if (layout && var_mode == ir_var_shader_storage) {
6458 /* For readonly and writeonly qualifiers the field definition,
6459 * if set, overwrites the layout qualifier.
6460 */
6461 if (qual->flags.q.read_only) {
6462 fields[i].image_read_only = true;
6463 fields[i].image_write_only = false;
6464 } else if (qual->flags.q.write_only) {
6465 fields[i].image_read_only = false;
6466 fields[i].image_write_only = true;
6467 } else {
6468 fields[i].image_read_only = layout->flags.q.read_only;
6469 fields[i].image_write_only = layout->flags.q.write_only;
6470 }
6471
6472 /* For other qualifiers, we set the flag if either the layout
6473 * qualifier or the field qualifier are set
6474 */
6475 fields[i].image_coherent = qual->flags.q.coherent ||
6476 layout->flags.q.coherent;
6477 fields[i].image_volatile = qual->flags.q._volatile ||
6478 layout->flags.q._volatile;
6479 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6480 layout->flags.q.restrict_flag;
6481 }
6482
6483 i++;
6484 }
6485 }
6486
6487 assert(i == decl_count);
6488
6489 *fields_ret = fields;
6490 return decl_count;
6491 }
6492
6493
6494 ir_rvalue *
6495 ast_struct_specifier::hir(exec_list *instructions,
6496 struct _mesa_glsl_parse_state *state)
6497 {
6498 YYLTYPE loc = this->get_location();
6499
6500 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6501 *
6502 * "Anonymous structures are not supported; so embedded structures must
6503 * have a declarator. A name given to an embedded struct is scoped at
6504 * the same level as the struct it is embedded in."
6505 *
6506 * The same section of the GLSL 1.20 spec says:
6507 *
6508 * "Anonymous structures are not supported. Embedded structures are not
6509 * supported.
6510 *
6511 * struct S { float f; };
6512 * struct T {
6513 * S; // Error: anonymous structures disallowed
6514 * struct { ... }; // Error: embedded structures disallowed
6515 * S s; // Okay: nested structures with name are allowed
6516 * };"
6517 *
6518 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6519 * we allow embedded structures in 1.10 only.
6520 */
6521 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6522 _mesa_glsl_error(&loc, state,
6523 "embedded structure declarations are not allowed");
6524
6525 state->struct_specifier_depth++;
6526
6527 unsigned expl_location = 0;
6528 if (layout && layout->flags.q.explicit_location) {
6529 if (!process_qualifier_constant(state, &loc, "location",
6530 layout->location, &expl_location)) {
6531 return NULL;
6532 } else {
6533 expl_location = VARYING_SLOT_VAR0 + expl_location;
6534 }
6535 }
6536
6537 glsl_struct_field *fields;
6538 unsigned decl_count =
6539 ast_process_struct_or_iface_block_members(instructions,
6540 state,
6541 &this->declarations,
6542 &fields,
6543 false,
6544 GLSL_MATRIX_LAYOUT_INHERITED,
6545 false /* allow_reserved_names */,
6546 ir_var_auto,
6547 layout,
6548 0, /* for interface only */
6549 expl_location);
6550
6551 validate_identifier(this->name, loc, state);
6552
6553 const glsl_type *t =
6554 glsl_type::get_record_instance(fields, decl_count, this->name);
6555
6556 if (!state->symbols->add_type(name, t)) {
6557 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6558 } else {
6559 const glsl_type **s = reralloc(state, state->user_structures,
6560 const glsl_type *,
6561 state->num_user_structures + 1);
6562 if (s != NULL) {
6563 s[state->num_user_structures] = t;
6564 state->user_structures = s;
6565 state->num_user_structures++;
6566 }
6567 }
6568
6569 state->struct_specifier_depth--;
6570
6571 /* Structure type definitions do not have r-values.
6572 */
6573 return NULL;
6574 }
6575
6576
6577 /**
6578 * Visitor class which detects whether a given interface block has been used.
6579 */
6580 class interface_block_usage_visitor : public ir_hierarchical_visitor
6581 {
6582 public:
6583 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6584 : mode(mode), block(block), found(false)
6585 {
6586 }
6587
6588 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6589 {
6590 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6591 found = true;
6592 return visit_stop;
6593 }
6594 return visit_continue;
6595 }
6596
6597 bool usage_found() const
6598 {
6599 return this->found;
6600 }
6601
6602 private:
6603 ir_variable_mode mode;
6604 const glsl_type *block;
6605 bool found;
6606 };
6607
6608 static bool
6609 is_unsized_array_last_element(ir_variable *v)
6610 {
6611 const glsl_type *interface_type = v->get_interface_type();
6612 int length = interface_type->length;
6613
6614 assert(v->type->is_unsized_array());
6615
6616 /* Check if it is the last element of the interface */
6617 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6618 return true;
6619 return false;
6620 }
6621
6622 ir_rvalue *
6623 ast_interface_block::hir(exec_list *instructions,
6624 struct _mesa_glsl_parse_state *state)
6625 {
6626 YYLTYPE loc = this->get_location();
6627
6628 /* Interface blocks must be declared at global scope */
6629 if (state->current_function != NULL) {
6630 _mesa_glsl_error(&loc, state,
6631 "Interface block `%s' must be declared "
6632 "at global scope",
6633 this->block_name);
6634 }
6635
6636 if (!this->layout.flags.q.buffer &&
6637 this->layout.flags.q.std430) {
6638 _mesa_glsl_error(&loc, state,
6639 "std430 storage block layout qualifier is supported "
6640 "only for shader storage blocks");
6641 }
6642
6643 /* The ast_interface_block has a list of ast_declarator_lists. We
6644 * need to turn those into ir_variables with an association
6645 * with this uniform block.
6646 */
6647 enum glsl_interface_packing packing;
6648 if (this->layout.flags.q.shared) {
6649 packing = GLSL_INTERFACE_PACKING_SHARED;
6650 } else if (this->layout.flags.q.packed) {
6651 packing = GLSL_INTERFACE_PACKING_PACKED;
6652 } else if (this->layout.flags.q.std430) {
6653 packing = GLSL_INTERFACE_PACKING_STD430;
6654 } else {
6655 /* The default layout is std140.
6656 */
6657 packing = GLSL_INTERFACE_PACKING_STD140;
6658 }
6659
6660 ir_variable_mode var_mode;
6661 const char *iface_type_name;
6662 if (this->layout.flags.q.in) {
6663 var_mode = ir_var_shader_in;
6664 iface_type_name = "in";
6665 } else if (this->layout.flags.q.out) {
6666 var_mode = ir_var_shader_out;
6667 iface_type_name = "out";
6668 } else if (this->layout.flags.q.uniform) {
6669 var_mode = ir_var_uniform;
6670 iface_type_name = "uniform";
6671 } else if (this->layout.flags.q.buffer) {
6672 var_mode = ir_var_shader_storage;
6673 iface_type_name = "buffer";
6674 } else {
6675 var_mode = ir_var_auto;
6676 iface_type_name = "UNKNOWN";
6677 assert(!"interface block layout qualifier not found!");
6678 }
6679
6680 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6681 if (this->layout.flags.q.row_major)
6682 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6683 else if (this->layout.flags.q.column_major)
6684 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6685
6686 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6687 exec_list declared_variables;
6688 glsl_struct_field *fields;
6689
6690 /* Treat an interface block as one level of nesting, so that embedded struct
6691 * specifiers will be disallowed.
6692 */
6693 state->struct_specifier_depth++;
6694
6695 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6696 * that we don't have incompatible qualifiers
6697 */
6698 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6699 _mesa_glsl_error(&loc, state,
6700 "Interface block sets both readonly and writeonly");
6701 }
6702
6703 unsigned qual_stream;
6704 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6705 &qual_stream) ||
6706 !validate_stream_qualifier(&loc, state, qual_stream)) {
6707 /* If the stream qualifier is invalid it doesn't make sense to continue
6708 * on and try to compare stream layouts on member variables against it
6709 * so just return early.
6710 */
6711 return NULL;
6712 }
6713
6714 unsigned expl_location = 0;
6715 if (layout.flags.q.explicit_location) {
6716 if (!process_qualifier_constant(state, &loc, "location",
6717 layout.location, &expl_location)) {
6718 return NULL;
6719 } else {
6720 expl_location = VARYING_SLOT_VAR0 + expl_location;
6721 }
6722 }
6723
6724 unsigned int num_variables =
6725 ast_process_struct_or_iface_block_members(&declared_variables,
6726 state,
6727 &this->declarations,
6728 &fields,
6729 true,
6730 matrix_layout,
6731 redeclaring_per_vertex,
6732 var_mode,
6733 &this->layout,
6734 qual_stream,
6735 expl_location);
6736
6737 state->struct_specifier_depth--;
6738
6739 if (!redeclaring_per_vertex) {
6740 validate_identifier(this->block_name, loc, state);
6741
6742 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6743 *
6744 * "Block names have no other use within a shader beyond interface
6745 * matching; it is a compile-time error to use a block name at global
6746 * scope for anything other than as a block name."
6747 */
6748 ir_variable *var = state->symbols->get_variable(this->block_name);
6749 if (var && !var->type->is_interface()) {
6750 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6751 "already used in the scope.",
6752 this->block_name);
6753 }
6754 }
6755
6756 const glsl_type *earlier_per_vertex = NULL;
6757 if (redeclaring_per_vertex) {
6758 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6759 * the named interface block gl_in, we can find it by looking at the
6760 * previous declaration of gl_in. Otherwise we can find it by looking
6761 * at the previous decalartion of any of the built-in outputs,
6762 * e.g. gl_Position.
6763 *
6764 * Also check that the instance name and array-ness of the redeclaration
6765 * are correct.
6766 */
6767 switch (var_mode) {
6768 case ir_var_shader_in:
6769 if (ir_variable *earlier_gl_in =
6770 state->symbols->get_variable("gl_in")) {
6771 earlier_per_vertex = earlier_gl_in->get_interface_type();
6772 } else {
6773 _mesa_glsl_error(&loc, state,
6774 "redeclaration of gl_PerVertex input not allowed "
6775 "in the %s shader",
6776 _mesa_shader_stage_to_string(state->stage));
6777 }
6778 if (this->instance_name == NULL ||
6779 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6780 !this->array_specifier->is_single_dimension()) {
6781 _mesa_glsl_error(&loc, state,
6782 "gl_PerVertex input must be redeclared as "
6783 "gl_in[]");
6784 }
6785 break;
6786 case ir_var_shader_out:
6787 if (ir_variable *earlier_gl_Position =
6788 state->symbols->get_variable("gl_Position")) {
6789 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6790 } else if (ir_variable *earlier_gl_out =
6791 state->symbols->get_variable("gl_out")) {
6792 earlier_per_vertex = earlier_gl_out->get_interface_type();
6793 } else {
6794 _mesa_glsl_error(&loc, state,
6795 "redeclaration of gl_PerVertex output not "
6796 "allowed in the %s shader",
6797 _mesa_shader_stage_to_string(state->stage));
6798 }
6799 if (state->stage == MESA_SHADER_TESS_CTRL) {
6800 if (this->instance_name == NULL ||
6801 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6802 _mesa_glsl_error(&loc, state,
6803 "gl_PerVertex output must be redeclared as "
6804 "gl_out[]");
6805 }
6806 } else {
6807 if (this->instance_name != NULL) {
6808 _mesa_glsl_error(&loc, state,
6809 "gl_PerVertex output may not be redeclared with "
6810 "an instance name");
6811 }
6812 }
6813 break;
6814 default:
6815 _mesa_glsl_error(&loc, state,
6816 "gl_PerVertex must be declared as an input or an "
6817 "output");
6818 break;
6819 }
6820
6821 if (earlier_per_vertex == NULL) {
6822 /* An error has already been reported. Bail out to avoid null
6823 * dereferences later in this function.
6824 */
6825 return NULL;
6826 }
6827
6828 /* Copy locations from the old gl_PerVertex interface block. */
6829 for (unsigned i = 0; i < num_variables; i++) {
6830 int j = earlier_per_vertex->field_index(fields[i].name);
6831 if (j == -1) {
6832 _mesa_glsl_error(&loc, state,
6833 "redeclaration of gl_PerVertex must be a subset "
6834 "of the built-in members of gl_PerVertex");
6835 } else {
6836 fields[i].location =
6837 earlier_per_vertex->fields.structure[j].location;
6838 fields[i].interpolation =
6839 earlier_per_vertex->fields.structure[j].interpolation;
6840 fields[i].centroid =
6841 earlier_per_vertex->fields.structure[j].centroid;
6842 fields[i].sample =
6843 earlier_per_vertex->fields.structure[j].sample;
6844 fields[i].patch =
6845 earlier_per_vertex->fields.structure[j].patch;
6846 fields[i].precision =
6847 earlier_per_vertex->fields.structure[j].precision;
6848 }
6849 }
6850
6851 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6852 * spec:
6853 *
6854 * If a built-in interface block is redeclared, it must appear in
6855 * the shader before any use of any member included in the built-in
6856 * declaration, or a compilation error will result.
6857 *
6858 * This appears to be a clarification to the behaviour established for
6859 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6860 * regardless of GLSL version.
6861 */
6862 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6863 v.run(instructions);
6864 if (v.usage_found()) {
6865 _mesa_glsl_error(&loc, state,
6866 "redeclaration of a built-in interface block must "
6867 "appear before any use of any member of the "
6868 "interface block");
6869 }
6870 }
6871
6872 const glsl_type *block_type =
6873 glsl_type::get_interface_instance(fields,
6874 num_variables,
6875 packing,
6876 this->block_name);
6877
6878 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6879 YYLTYPE loc = this->get_location();
6880 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6881 "already taken in the current scope",
6882 this->block_name, iface_type_name);
6883 }
6884
6885 /* Since interface blocks cannot contain statements, it should be
6886 * impossible for the block to generate any instructions.
6887 */
6888 assert(declared_variables.is_empty());
6889
6890 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6891 *
6892 * Geometry shader input variables get the per-vertex values written
6893 * out by vertex shader output variables of the same names. Since a
6894 * geometry shader operates on a set of vertices, each input varying
6895 * variable (or input block, see interface blocks below) needs to be
6896 * declared as an array.
6897 */
6898 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6899 var_mode == ir_var_shader_in) {
6900 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6901 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6902 state->stage == MESA_SHADER_TESS_EVAL) &&
6903 this->array_specifier == NULL &&
6904 var_mode == ir_var_shader_in) {
6905 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6906 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6907 this->array_specifier == NULL &&
6908 var_mode == ir_var_shader_out) {
6909 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6910 }
6911
6912
6913 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6914 * says:
6915 *
6916 * "If an instance name (instance-name) is used, then it puts all the
6917 * members inside a scope within its own name space, accessed with the
6918 * field selector ( . ) operator (analogously to structures)."
6919 */
6920 if (this->instance_name) {
6921 if (redeclaring_per_vertex) {
6922 /* When a built-in in an unnamed interface block is redeclared,
6923 * get_variable_being_redeclared() calls
6924 * check_builtin_array_max_size() to make sure that built-in array
6925 * variables aren't redeclared to illegal sizes. But we're looking
6926 * at a redeclaration of a named built-in interface block. So we
6927 * have to manually call check_builtin_array_max_size() for all parts
6928 * of the interface that are arrays.
6929 */
6930 for (unsigned i = 0; i < num_variables; i++) {
6931 if (fields[i].type->is_array()) {
6932 const unsigned size = fields[i].type->array_size();
6933 check_builtin_array_max_size(fields[i].name, size, loc, state);
6934 }
6935 }
6936 } else {
6937 validate_identifier(this->instance_name, loc, state);
6938 }
6939
6940 ir_variable *var;
6941
6942 if (this->array_specifier != NULL) {
6943 const glsl_type *block_array_type =
6944 process_array_type(&loc, block_type, this->array_specifier, state);
6945
6946 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6947 *
6948 * For uniform blocks declared an array, each individual array
6949 * element corresponds to a separate buffer object backing one
6950 * instance of the block. As the array size indicates the number
6951 * of buffer objects needed, uniform block array declarations
6952 * must specify an array size.
6953 *
6954 * And a few paragraphs later:
6955 *
6956 * Geometry shader input blocks must be declared as arrays and
6957 * follow the array declaration and linking rules for all
6958 * geometry shader inputs. All other input and output block
6959 * arrays must specify an array size.
6960 *
6961 * The same applies to tessellation shaders.
6962 *
6963 * The upshot of this is that the only circumstance where an
6964 * interface array size *doesn't* need to be specified is on a
6965 * geometry shader input, tessellation control shader input,
6966 * tessellation control shader output, and tessellation evaluation
6967 * shader input.
6968 */
6969 if (block_array_type->is_unsized_array()) {
6970 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6971 state->stage == MESA_SHADER_TESS_CTRL ||
6972 state->stage == MESA_SHADER_TESS_EVAL;
6973 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6974
6975 if (this->layout.flags.q.in) {
6976 if (!allow_inputs)
6977 _mesa_glsl_error(&loc, state,
6978 "unsized input block arrays not allowed in "
6979 "%s shader",
6980 _mesa_shader_stage_to_string(state->stage));
6981 } else if (this->layout.flags.q.out) {
6982 if (!allow_outputs)
6983 _mesa_glsl_error(&loc, state,
6984 "unsized output block arrays not allowed in "
6985 "%s shader",
6986 _mesa_shader_stage_to_string(state->stage));
6987 } else {
6988 /* by elimination, this is a uniform block array */
6989 _mesa_glsl_error(&loc, state,
6990 "unsized uniform block arrays not allowed in "
6991 "%s shader",
6992 _mesa_shader_stage_to_string(state->stage));
6993 }
6994 }
6995
6996 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6997 *
6998 * * Arrays of arrays of blocks are not allowed
6999 */
7000 if (state->es_shader && block_array_type->is_array() &&
7001 block_array_type->fields.array->is_array()) {
7002 _mesa_glsl_error(&loc, state,
7003 "arrays of arrays interface blocks are "
7004 "not allowed");
7005 }
7006
7007 var = new(state) ir_variable(block_array_type,
7008 this->instance_name,
7009 var_mode);
7010 } else {
7011 var = new(state) ir_variable(block_type,
7012 this->instance_name,
7013 var_mode);
7014 }
7015
7016 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7017 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7018
7019 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7020 var->data.read_only = true;
7021
7022 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7023 handle_geometry_shader_input_decl(state, loc, var);
7024 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7025 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7026 handle_tess_shader_input_decl(state, loc, var);
7027 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7028 handle_tess_ctrl_shader_output_decl(state, loc, var);
7029
7030 for (unsigned i = 0; i < num_variables; i++) {
7031 if (fields[i].type->is_unsized_array()) {
7032 if (var_mode == ir_var_shader_storage) {
7033 if (i != (num_variables - 1)) {
7034 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7035 "only last member of a shader storage block "
7036 "can be defined as unsized array",
7037 fields[i].name);
7038 }
7039 } else {
7040 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7041 *
7042 * "If an array is declared as the last member of a shader storage
7043 * block and the size is not specified at compile-time, it is
7044 * sized at run-time. In all other cases, arrays are sized only
7045 * at compile-time."
7046 */
7047 if (state->es_shader) {
7048 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7049 "only last member of a shader storage block "
7050 "can be defined as unsized array",
7051 fields[i].name);
7052 }
7053 }
7054 }
7055 }
7056
7057 if (ir_variable *earlier =
7058 state->symbols->get_variable(this->instance_name)) {
7059 if (!redeclaring_per_vertex) {
7060 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7061 this->instance_name);
7062 }
7063 earlier->data.how_declared = ir_var_declared_normally;
7064 earlier->type = var->type;
7065 earlier->reinit_interface_type(block_type);
7066 delete var;
7067 } else {
7068 if (this->layout.flags.q.explicit_binding) {
7069 apply_explicit_binding(state, &loc, var, var->type,
7070 &this->layout);
7071 }
7072
7073 var->data.stream = qual_stream;
7074 if (layout.flags.q.explicit_location) {
7075 var->data.location = expl_location;
7076 var->data.explicit_location = true;
7077 }
7078
7079 state->symbols->add_variable(var);
7080 instructions->push_tail(var);
7081 }
7082 } else {
7083 /* In order to have an array size, the block must also be declared with
7084 * an instance name.
7085 */
7086 assert(this->array_specifier == NULL);
7087
7088 for (unsigned i = 0; i < num_variables; i++) {
7089 ir_variable *var =
7090 new(state) ir_variable(fields[i].type,
7091 ralloc_strdup(state, fields[i].name),
7092 var_mode);
7093 var->data.interpolation = fields[i].interpolation;
7094 var->data.centroid = fields[i].centroid;
7095 var->data.sample = fields[i].sample;
7096 var->data.patch = fields[i].patch;
7097 var->data.stream = qual_stream;
7098 var->data.location = fields[i].location;
7099 if (fields[i].location != -1)
7100 var->data.explicit_location = true;
7101 var->init_interface_type(block_type);
7102
7103 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7104 var->data.read_only = true;
7105
7106 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7107 if (state->es_shader) {
7108 var->data.precision =
7109 select_gles_precision(fields[i].precision, fields[i].type,
7110 state, &loc);
7111 }
7112
7113 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7114 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7115 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7116 } else {
7117 var->data.matrix_layout = fields[i].matrix_layout;
7118 }
7119
7120 if (var->data.mode == ir_var_shader_storage) {
7121 var->data.image_read_only = fields[i].image_read_only;
7122 var->data.image_write_only = fields[i].image_write_only;
7123 var->data.image_coherent = fields[i].image_coherent;
7124 var->data.image_volatile = fields[i].image_volatile;
7125 var->data.image_restrict = fields[i].image_restrict;
7126 }
7127
7128 /* Examine var name here since var may get deleted in the next call */
7129 bool var_is_gl_id = is_gl_identifier(var->name);
7130
7131 if (redeclaring_per_vertex) {
7132 ir_variable *earlier =
7133 get_variable_being_redeclared(var, loc, state,
7134 true /* allow_all_redeclarations */);
7135 if (!var_is_gl_id || earlier == NULL) {
7136 _mesa_glsl_error(&loc, state,
7137 "redeclaration of gl_PerVertex can only "
7138 "include built-in variables");
7139 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7140 _mesa_glsl_error(&loc, state,
7141 "`%s' has already been redeclared",
7142 earlier->name);
7143 } else {
7144 earlier->data.how_declared = ir_var_declared_in_block;
7145 earlier->reinit_interface_type(block_type);
7146 }
7147 continue;
7148 }
7149
7150 if (state->symbols->get_variable(var->name) != NULL)
7151 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7152
7153 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7154 * The UBO declaration itself doesn't get an ir_variable unless it
7155 * has an instance name. This is ugly.
7156 */
7157 if (this->layout.flags.q.explicit_binding) {
7158 apply_explicit_binding(state, &loc, var,
7159 var->get_interface_type(), &this->layout);
7160 }
7161
7162 if (var->type->is_unsized_array()) {
7163 if (var->is_in_shader_storage_block()) {
7164 if (!is_unsized_array_last_element(var)) {
7165 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7166 "only last member of a shader storage block "
7167 "can be defined as unsized array",
7168 var->name);
7169 }
7170 var->data.from_ssbo_unsized_array = true;
7171 } else {
7172 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7173 *
7174 * "If an array is declared as the last member of a shader storage
7175 * block and the size is not specified at compile-time, it is
7176 * sized at run-time. In all other cases, arrays are sized only
7177 * at compile-time."
7178 */
7179 if (state->es_shader) {
7180 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7181 "only last member of a shader storage block "
7182 "can be defined as unsized array",
7183 var->name);
7184 }
7185 }
7186 }
7187
7188 state->symbols->add_variable(var);
7189 instructions->push_tail(var);
7190 }
7191
7192 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7193 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7194 *
7195 * It is also a compilation error ... to redeclare a built-in
7196 * block and then use a member from that built-in block that was
7197 * not included in the redeclaration.
7198 *
7199 * This appears to be a clarification to the behaviour established
7200 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7201 * behaviour regardless of GLSL version.
7202 *
7203 * To prevent the shader from using a member that was not included in
7204 * the redeclaration, we disable any ir_variables that are still
7205 * associated with the old declaration of gl_PerVertex (since we've
7206 * already updated all of the variables contained in the new
7207 * gl_PerVertex to point to it).
7208 *
7209 * As a side effect this will prevent
7210 * validate_intrastage_interface_blocks() from getting confused and
7211 * thinking there are conflicting definitions of gl_PerVertex in the
7212 * shader.
7213 */
7214 foreach_in_list_safe(ir_instruction, node, instructions) {
7215 ir_variable *const var = node->as_variable();
7216 if (var != NULL &&
7217 var->get_interface_type() == earlier_per_vertex &&
7218 var->data.mode == var_mode) {
7219 if (var->data.how_declared == ir_var_declared_normally) {
7220 _mesa_glsl_error(&loc, state,
7221 "redeclaration of gl_PerVertex cannot "
7222 "follow a redeclaration of `%s'",
7223 var->name);
7224 }
7225 state->symbols->disable_variable(var->name);
7226 var->remove();
7227 }
7228 }
7229 }
7230 }
7231
7232 return NULL;
7233 }
7234
7235
7236 ir_rvalue *
7237 ast_tcs_output_layout::hir(exec_list *instructions,
7238 struct _mesa_glsl_parse_state *state)
7239 {
7240 YYLTYPE loc = this->get_location();
7241
7242 unsigned num_vertices;
7243 if (!state->out_qualifier->vertices->
7244 process_qualifier_constant(state, "vertices", &num_vertices,
7245 false)) {
7246 /* return here to stop cascading incorrect error messages */
7247 return NULL;
7248 }
7249
7250 /* If any shader outputs occurred before this declaration and specified an
7251 * array size, make sure the size they specified is consistent with the
7252 * primitive type.
7253 */
7254 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7255 _mesa_glsl_error(&loc, state,
7256 "this tessellation control shader output layout "
7257 "specifies %u vertices, but a previous output "
7258 "is declared with size %u",
7259 num_vertices, state->tcs_output_size);
7260 return NULL;
7261 }
7262
7263 state->tcs_output_vertices_specified = true;
7264
7265 /* If any shader outputs occurred before this declaration and did not
7266 * specify an array size, their size is determined now.
7267 */
7268 foreach_in_list (ir_instruction, node, instructions) {
7269 ir_variable *var = node->as_variable();
7270 if (var == NULL || var->data.mode != ir_var_shader_out)
7271 continue;
7272
7273 /* Note: Not all tessellation control shader output are arrays. */
7274 if (!var->type->is_unsized_array() || var->data.patch)
7275 continue;
7276
7277 if (var->data.max_array_access >= num_vertices) {
7278 _mesa_glsl_error(&loc, state,
7279 "this tessellation control shader output layout "
7280 "specifies %u vertices, but an access to element "
7281 "%u of output `%s' already exists", num_vertices,
7282 var->data.max_array_access, var->name);
7283 } else {
7284 var->type = glsl_type::get_array_instance(var->type->fields.array,
7285 num_vertices);
7286 }
7287 }
7288
7289 return NULL;
7290 }
7291
7292
7293 ir_rvalue *
7294 ast_gs_input_layout::hir(exec_list *instructions,
7295 struct _mesa_glsl_parse_state *state)
7296 {
7297 YYLTYPE loc = this->get_location();
7298
7299 /* If any geometry input layout declaration preceded this one, make sure it
7300 * was consistent with this one.
7301 */
7302 if (state->gs_input_prim_type_specified &&
7303 state->in_qualifier->prim_type != this->prim_type) {
7304 _mesa_glsl_error(&loc, state,
7305 "geometry shader input layout does not match"
7306 " previous declaration");
7307 return NULL;
7308 }
7309
7310 /* If any shader inputs occurred before this declaration and specified an
7311 * array size, make sure the size they specified is consistent with the
7312 * primitive type.
7313 */
7314 unsigned num_vertices = vertices_per_prim(this->prim_type);
7315 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7316 _mesa_glsl_error(&loc, state,
7317 "this geometry shader input layout implies %u vertices"
7318 " per primitive, but a previous input is declared"
7319 " with size %u", num_vertices, state->gs_input_size);
7320 return NULL;
7321 }
7322
7323 state->gs_input_prim_type_specified = true;
7324
7325 /* If any shader inputs occurred before this declaration and did not
7326 * specify an array size, their size is determined now.
7327 */
7328 foreach_in_list(ir_instruction, node, instructions) {
7329 ir_variable *var = node->as_variable();
7330 if (var == NULL || var->data.mode != ir_var_shader_in)
7331 continue;
7332
7333 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7334 * array; skip it.
7335 */
7336
7337 if (var->type->is_unsized_array()) {
7338 if (var->data.max_array_access >= num_vertices) {
7339 _mesa_glsl_error(&loc, state,
7340 "this geometry shader input layout implies %u"
7341 " vertices, but an access to element %u of input"
7342 " `%s' already exists", num_vertices,
7343 var->data.max_array_access, var->name);
7344 } else {
7345 var->type = glsl_type::get_array_instance(var->type->fields.array,
7346 num_vertices);
7347 }
7348 }
7349 }
7350
7351 return NULL;
7352 }
7353
7354
7355 ir_rvalue *
7356 ast_cs_input_layout::hir(exec_list *instructions,
7357 struct _mesa_glsl_parse_state *state)
7358 {
7359 YYLTYPE loc = this->get_location();
7360
7361 /* From the ARB_compute_shader specification:
7362 *
7363 * If the local size of the shader in any dimension is greater
7364 * than the maximum size supported by the implementation for that
7365 * dimension, a compile-time error results.
7366 *
7367 * It is not clear from the spec how the error should be reported if
7368 * the total size of the work group exceeds
7369 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7370 * report it at compile time as well.
7371 */
7372 GLuint64 total_invocations = 1;
7373 unsigned qual_local_size[3];
7374 for (int i = 0; i < 3; i++) {
7375
7376 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7377 'x' + i);
7378 /* Infer a local_size of 1 for unspecified dimensions */
7379 if (this->local_size[i] == NULL) {
7380 qual_local_size[i] = 1;
7381 } else if (!this->local_size[i]->
7382 process_qualifier_constant(state, local_size_str,
7383 &qual_local_size[i], false)) {
7384 ralloc_free(local_size_str);
7385 return NULL;
7386 }
7387 ralloc_free(local_size_str);
7388
7389 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7390 _mesa_glsl_error(&loc, state,
7391 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7392 " (%d)", 'x' + i,
7393 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7394 break;
7395 }
7396 total_invocations *= qual_local_size[i];
7397 if (total_invocations >
7398 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7399 _mesa_glsl_error(&loc, state,
7400 "product of local_sizes exceeds "
7401 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7402 state->ctx->Const.MaxComputeWorkGroupInvocations);
7403 break;
7404 }
7405 }
7406
7407 /* If any compute input layout declaration preceded this one, make sure it
7408 * was consistent with this one.
7409 */
7410 if (state->cs_input_local_size_specified) {
7411 for (int i = 0; i < 3; i++) {
7412 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7413 _mesa_glsl_error(&loc, state,
7414 "compute shader input layout does not match"
7415 " previous declaration");
7416 return NULL;
7417 }
7418 }
7419 }
7420
7421 state->cs_input_local_size_specified = true;
7422 for (int i = 0; i < 3; i++)
7423 state->cs_input_local_size[i] = qual_local_size[i];
7424
7425 /* We may now declare the built-in constant gl_WorkGroupSize (see
7426 * builtin_variable_generator::generate_constants() for why we didn't
7427 * declare it earlier).
7428 */
7429 ir_variable *var = new(state->symbols)
7430 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7431 var->data.how_declared = ir_var_declared_implicitly;
7432 var->data.read_only = true;
7433 instructions->push_tail(var);
7434 state->symbols->add_variable(var);
7435 ir_constant_data data;
7436 memset(&data, 0, sizeof(data));
7437 for (int i = 0; i < 3; i++)
7438 data.u[i] = qual_local_size[i];
7439 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7440 var->constant_initializer =
7441 new(var) ir_constant(glsl_type::uvec3_type, &data);
7442 var->data.has_initializer = true;
7443
7444 return NULL;
7445 }
7446
7447
7448 static void
7449 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7450 exec_list *instructions)
7451 {
7452 bool gl_FragColor_assigned = false;
7453 bool gl_FragData_assigned = false;
7454 bool gl_FragSecondaryColor_assigned = false;
7455 bool gl_FragSecondaryData_assigned = false;
7456 bool user_defined_fs_output_assigned = false;
7457 ir_variable *user_defined_fs_output = NULL;
7458
7459 /* It would be nice to have proper location information. */
7460 YYLTYPE loc;
7461 memset(&loc, 0, sizeof(loc));
7462
7463 foreach_in_list(ir_instruction, node, instructions) {
7464 ir_variable *var = node->as_variable();
7465
7466 if (!var || !var->data.assigned)
7467 continue;
7468
7469 if (strcmp(var->name, "gl_FragColor") == 0)
7470 gl_FragColor_assigned = true;
7471 else if (strcmp(var->name, "gl_FragData") == 0)
7472 gl_FragData_assigned = true;
7473 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7474 gl_FragSecondaryColor_assigned = true;
7475 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7476 gl_FragSecondaryData_assigned = true;
7477 else if (!is_gl_identifier(var->name)) {
7478 if (state->stage == MESA_SHADER_FRAGMENT &&
7479 var->data.mode == ir_var_shader_out) {
7480 user_defined_fs_output_assigned = true;
7481 user_defined_fs_output = var;
7482 }
7483 }
7484 }
7485
7486 /* From the GLSL 1.30 spec:
7487 *
7488 * "If a shader statically assigns a value to gl_FragColor, it
7489 * may not assign a value to any element of gl_FragData. If a
7490 * shader statically writes a value to any element of
7491 * gl_FragData, it may not assign a value to
7492 * gl_FragColor. That is, a shader may assign values to either
7493 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7494 * linked together must also consistently write just one of
7495 * these variables. Similarly, if user declared output
7496 * variables are in use (statically assigned to), then the
7497 * built-in variables gl_FragColor and gl_FragData may not be
7498 * assigned to. These incorrect usages all generate compile
7499 * time errors."
7500 */
7501 if (gl_FragColor_assigned && gl_FragData_assigned) {
7502 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7503 "`gl_FragColor' and `gl_FragData'");
7504 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7505 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7506 "`gl_FragColor' and `%s'",
7507 user_defined_fs_output->name);
7508 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7509 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7510 "`gl_FragSecondaryColorEXT' and"
7511 " `gl_FragSecondaryDataEXT'");
7512 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7513 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7514 "`gl_FragColor' and"
7515 " `gl_FragSecondaryDataEXT'");
7516 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7517 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7518 "`gl_FragData' and"
7519 " `gl_FragSecondaryColorEXT'");
7520 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7521 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7522 "`gl_FragData' and `%s'",
7523 user_defined_fs_output->name);
7524 }
7525
7526 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7527 !state->EXT_blend_func_extended_enable) {
7528 _mesa_glsl_error(&loc, state,
7529 "Dual source blending requires EXT_blend_func_extended");
7530 }
7531 }
7532
7533
7534 static void
7535 remove_per_vertex_blocks(exec_list *instructions,
7536 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7537 {
7538 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7539 * if it exists in this shader type.
7540 */
7541 const glsl_type *per_vertex = NULL;
7542 switch (mode) {
7543 case ir_var_shader_in:
7544 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7545 per_vertex = gl_in->get_interface_type();
7546 break;
7547 case ir_var_shader_out:
7548 if (ir_variable *gl_Position =
7549 state->symbols->get_variable("gl_Position")) {
7550 per_vertex = gl_Position->get_interface_type();
7551 }
7552 break;
7553 default:
7554 assert(!"Unexpected mode");
7555 break;
7556 }
7557
7558 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7559 * need to do anything.
7560 */
7561 if (per_vertex == NULL)
7562 return;
7563
7564 /* If the interface block is used by the shader, then we don't need to do
7565 * anything.
7566 */
7567 interface_block_usage_visitor v(mode, per_vertex);
7568 v.run(instructions);
7569 if (v.usage_found())
7570 return;
7571
7572 /* Remove any ir_variable declarations that refer to the interface block
7573 * we're removing.
7574 */
7575 foreach_in_list_safe(ir_instruction, node, instructions) {
7576 ir_variable *const var = node->as_variable();
7577 if (var != NULL && var->get_interface_type() == per_vertex &&
7578 var->data.mode == mode) {
7579 state->symbols->disable_variable(var->name);
7580 var->remove();
7581 }
7582 }
7583 }