Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine how this variable should be interpolated based on its
435 * interpolation qualifier (if present), whether it is gl_Color or
436 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
437 * state.
438 *
439 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
440 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
441 */
442 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
443
444 /**
445 * Determine whether or not a variable is part of a uniform or
446 * shader storage block.
447 */
448 inline bool is_in_buffer_block() const
449 {
450 return (this->data.mode == ir_var_uniform ||
451 this->data.mode == ir_var_shader_storage) &&
452 this->interface_type != NULL;
453 }
454
455 /**
456 * Determine whether or not a variable is the declaration of an interface
457 * block
458 *
459 * For the first declaration below, there will be an \c ir_variable named
460 * "instance" whose type and whose instance_type will be the same
461 * \cglsl_type. For the second declaration, there will be an \c ir_variable
462 * named "f" whose type is float and whose instance_type is B2.
463 *
464 * "instance" is an interface instance variable, but "f" is not.
465 *
466 * uniform B1 {
467 * float f;
468 * } instance;
469 *
470 * uniform B2 {
471 * float f;
472 * };
473 */
474 inline bool is_interface_instance() const
475 {
476 return this->type->without_array() == this->interface_type;
477 }
478
479 /**
480 * Set this->interface_type on a newly created variable.
481 */
482 void init_interface_type(const struct glsl_type *type)
483 {
484 assert(this->interface_type == NULL);
485 this->interface_type = type;
486 if (this->is_interface_instance()) {
487 this->u.max_ifc_array_access =
488 rzalloc_array(this, unsigned, type->length);
489 }
490 }
491
492 /**
493 * Change this->interface_type on a variable that previously had a
494 * different, but compatible, interface_type. This is used during linking
495 * to set the size of arrays in interface blocks.
496 */
497 void change_interface_type(const struct glsl_type *type)
498 {
499 if (this->u.max_ifc_array_access != NULL) {
500 /* max_ifc_array_access has already been allocated, so make sure the
501 * new interface has the same number of fields as the old one.
502 */
503 assert(this->interface_type->length == type->length);
504 }
505 this->interface_type = type;
506 }
507
508 /**
509 * Change this->interface_type on a variable that previously had a
510 * different, and incompatible, interface_type. This is used during
511 * compilation to handle redeclaration of the built-in gl_PerVertex
512 * interface block.
513 */
514 void reinit_interface_type(const struct glsl_type *type)
515 {
516 if (this->u.max_ifc_array_access != NULL) {
517 #ifndef NDEBUG
518 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
519 * it defines have been accessed yet; so it's safe to throw away the
520 * old max_ifc_array_access pointer, since all of its values are
521 * zero.
522 */
523 for (unsigned i = 0; i < this->interface_type->length; i++)
524 assert(this->u.max_ifc_array_access[i] == 0);
525 #endif
526 ralloc_free(this->u.max_ifc_array_access);
527 this->u.max_ifc_array_access = NULL;
528 }
529 this->interface_type = NULL;
530 init_interface_type(type);
531 }
532
533 const glsl_type *get_interface_type() const
534 {
535 return this->interface_type;
536 }
537
538 /**
539 * Get the max_ifc_array_access pointer
540 *
541 * A "set" function is not needed because the array is dynmically allocated
542 * as necessary.
543 */
544 inline unsigned *get_max_ifc_array_access()
545 {
546 assert(this->data._num_state_slots == 0);
547 return this->u.max_ifc_array_access;
548 }
549
550 inline unsigned get_num_state_slots() const
551 {
552 assert(!this->is_interface_instance()
553 || this->data._num_state_slots == 0);
554 return this->data._num_state_slots;
555 }
556
557 inline void set_num_state_slots(unsigned n)
558 {
559 assert(!this->is_interface_instance()
560 || n == 0);
561 this->data._num_state_slots = n;
562 }
563
564 inline ir_state_slot *get_state_slots()
565 {
566 return this->is_interface_instance() ? NULL : this->u.state_slots;
567 }
568
569 inline const ir_state_slot *get_state_slots() const
570 {
571 return this->is_interface_instance() ? NULL : this->u.state_slots;
572 }
573
574 inline ir_state_slot *allocate_state_slots(unsigned n)
575 {
576 assert(!this->is_interface_instance());
577
578 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
579 this->data._num_state_slots = 0;
580
581 if (this->u.state_slots != NULL)
582 this->data._num_state_slots = n;
583
584 return this->u.state_slots;
585 }
586
587 inline bool is_name_ralloced() const
588 {
589 return this->name != ir_variable::tmp_name;
590 }
591
592 /**
593 * Enable emitting extension warnings for this variable
594 */
595 void enable_extension_warning(const char *extension);
596
597 /**
598 * Get the extension warning string for this variable
599 *
600 * If warnings are not enabled, \c NULL is returned.
601 */
602 const char *get_extension_warning() const;
603
604 /**
605 * Declared type of the variable
606 */
607 const struct glsl_type *type;
608
609 /**
610 * Declared name of the variable
611 */
612 const char *name;
613
614 struct ir_variable_data {
615
616 /**
617 * Is the variable read-only?
618 *
619 * This is set for variables declared as \c const, shader inputs,
620 * and uniforms.
621 */
622 unsigned read_only:1;
623 unsigned centroid:1;
624 unsigned sample:1;
625 unsigned patch:1;
626 unsigned invariant:1;
627 unsigned precise:1;
628
629 /**
630 * Has this variable been used for reading or writing?
631 *
632 * Several GLSL semantic checks require knowledge of whether or not a
633 * variable has been used. For example, it is an error to redeclare a
634 * variable as invariant after it has been used.
635 *
636 * This is only maintained in the ast_to_hir.cpp path, not in
637 * Mesa's fixed function or ARB program paths.
638 */
639 unsigned used:1;
640
641 /**
642 * Has this variable been statically assigned?
643 *
644 * This answers whether the variable was assigned in any path of
645 * the shader during ast_to_hir. This doesn't answer whether it is
646 * still written after dead code removal, nor is it maintained in
647 * non-ast_to_hir.cpp (GLSL parsing) paths.
648 */
649 unsigned assigned:1;
650
651 /**
652 * Enum indicating how the variable was declared. See
653 * ir_var_declaration_type.
654 *
655 * This is used to detect certain kinds of illegal variable redeclarations.
656 */
657 unsigned how_declared:2;
658
659 /**
660 * Storage class of the variable.
661 *
662 * \sa ir_variable_mode
663 */
664 unsigned mode:4;
665
666 /**
667 * Interpolation mode for shader inputs / outputs
668 *
669 * \sa ir_variable_interpolation
670 */
671 unsigned interpolation:2;
672
673 /**
674 * \name ARB_fragment_coord_conventions
675 * @{
676 */
677 unsigned origin_upper_left:1;
678 unsigned pixel_center_integer:1;
679 /*@}*/
680
681 /**
682 * Was the location explicitly set in the shader?
683 *
684 * If the location is explicitly set in the shader, it \b cannot be changed
685 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
686 * no effect).
687 */
688 unsigned explicit_location:1;
689 unsigned explicit_index:1;
690
691 /**
692 * Do we have a Vulkan (group, index) qualifier for this variable?
693 */
694 unsigned vk_set:1;
695
696 /**
697 * Was an initial binding explicitly set in the shader?
698 *
699 * If so, constant_value contains an integer ir_constant representing the
700 * initial binding point.
701 */
702 unsigned explicit_binding:1;
703
704 /**
705 * Does this variable have an initializer?
706 *
707 * This is used by the linker to cross-validiate initializers of global
708 * variables.
709 */
710 unsigned has_initializer:1;
711
712 /**
713 * Is this variable a generic output or input that has not yet been matched
714 * up to a variable in another stage of the pipeline?
715 *
716 * This is used by the linker as scratch storage while assigning locations
717 * to generic inputs and outputs.
718 */
719 unsigned is_unmatched_generic_inout:1;
720
721 /**
722 * If non-zero, then this variable may be packed along with other variables
723 * into a single varying slot, so this offset should be applied when
724 * accessing components. For example, an offset of 1 means that the x
725 * component of this variable is actually stored in component y of the
726 * location specified by \c location.
727 */
728 unsigned location_frac:2;
729
730 /**
731 * Layout of the matrix. Uses glsl_matrix_layout values.
732 */
733 unsigned matrix_layout:2;
734
735 /**
736 * Non-zero if this variable was created by lowering a named interface
737 * block which was not an array.
738 *
739 * Note that this variable and \c from_named_ifc_block_array will never
740 * both be non-zero.
741 */
742 unsigned from_named_ifc_block_nonarray:1;
743
744 /**
745 * Non-zero if this variable was created by lowering a named interface
746 * block which was an array.
747 *
748 * Note that this variable and \c from_named_ifc_block_nonarray will never
749 * both be non-zero.
750 */
751 unsigned from_named_ifc_block_array:1;
752
753 /**
754 * Non-zero if the variable must be a shader input. This is useful for
755 * constraints on function parameters.
756 */
757 unsigned must_be_shader_input:1;
758
759 /**
760 * Output index for dual source blending.
761 *
762 * \note
763 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
764 * source blending.
765 *
766 * This is now also used for the Vulkan descriptor set index.
767 */
768 int16_t index;
769
770 /**
771 * \brief Layout qualifier for gl_FragDepth.
772 *
773 * This is not equal to \c ir_depth_layout_none if and only if this
774 * variable is \c gl_FragDepth and a layout qualifier is specified.
775 */
776 ir_depth_layout depth_layout:3;
777
778 /**
779 * ARB_shader_image_load_store qualifiers.
780 */
781 unsigned image_read_only:1; /**< "readonly" qualifier. */
782 unsigned image_write_only:1; /**< "writeonly" qualifier. */
783 unsigned image_coherent:1;
784 unsigned image_volatile:1;
785 unsigned image_restrict:1;
786
787 /**
788 * Emit a warning if this variable is accessed.
789 */
790 private:
791 uint8_t warn_extension_index;
792
793 public:
794 /** Image internal format if specified explicitly, otherwise GL_NONE. */
795 uint16_t image_format;
796
797 private:
798 /**
799 * Number of state slots used
800 *
801 * \note
802 * This could be stored in as few as 7-bits, if necessary. If it is made
803 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
804 * be safe.
805 */
806 uint16_t _num_state_slots;
807
808 public:
809 /**
810 * Initial binding point for a sampler, atomic, or UBO.
811 *
812 * For array types, this represents the binding point for the first element.
813 */
814 int16_t binding;
815
816 /**
817 * Vulkan descriptor set for the resource.
818 */
819 int16_t set;
820
821 /**
822 * Storage location of the base of this variable
823 *
824 * The precise meaning of this field depends on the nature of the variable.
825 *
826 * - Vertex shader input: one of the values from \c gl_vert_attrib.
827 * - Vertex shader output: one of the values from \c gl_varying_slot.
828 * - Geometry shader input: one of the values from \c gl_varying_slot.
829 * - Geometry shader output: one of the values from \c gl_varying_slot.
830 * - Fragment shader input: one of the values from \c gl_varying_slot.
831 * - Fragment shader output: one of the values from \c gl_frag_result.
832 * - Uniforms: Per-stage uniform slot number for default uniform block.
833 * - Uniforms: Index within the uniform block definition for UBO members.
834 * - Other: This field is not currently used.
835 *
836 * If the variable is a uniform, shader input, or shader output, and the
837 * slot has not been assigned, the value will be -1.
838 */
839 int location;
840
841 /**
842 * Vertex stream output identifier.
843 */
844 unsigned stream;
845
846 /**
847 * Location an atomic counter is stored at.
848 */
849 struct {
850 unsigned offset;
851 } atomic;
852
853 /**
854 * Highest element accessed with a constant expression array index
855 *
856 * Not used for non-array variables.
857 */
858 unsigned max_array_access;
859
860 /**
861 * Allow (only) ir_variable direct access private members.
862 */
863 friend class ir_variable;
864 } data;
865
866 /**
867 * Value assigned in the initializer of a variable declared "const"
868 */
869 ir_constant *constant_value;
870
871 /**
872 * Constant expression assigned in the initializer of the variable
873 *
874 * \warning
875 * This field and \c ::constant_value are distinct. Even if the two fields
876 * refer to constants with the same value, they must point to separate
877 * objects.
878 */
879 ir_constant *constant_initializer;
880
881 private:
882 static const char *const warn_extension_table[];
883
884 union {
885 /**
886 * For variables which satisfy the is_interface_instance() predicate,
887 * this points to an array of integers such that if the ith member of
888 * the interface block is an array, max_ifc_array_access[i] is the
889 * maximum array element of that member that has been accessed. If the
890 * ith member of the interface block is not an array,
891 * max_ifc_array_access[i] is unused.
892 *
893 * For variables whose type is not an interface block, this pointer is
894 * NULL.
895 */
896 unsigned *max_ifc_array_access;
897
898 /**
899 * Built-in state that backs this uniform
900 *
901 * Once set at variable creation, \c state_slots must remain invariant.
902 *
903 * If the variable is not a uniform, \c _num_state_slots will be zero
904 * and \c state_slots will be \c NULL.
905 */
906 ir_state_slot *state_slots;
907 } u;
908
909 /**
910 * For variables that are in an interface block or are an instance of an
911 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
912 *
913 * \sa ir_variable::location
914 */
915 const glsl_type *interface_type;
916
917 /**
918 * Name used for anonymous compiler temporaries
919 */
920 static const char tmp_name[];
921
922 public:
923 /**
924 * Should the construct keep names for ir_var_temporary variables?
925 *
926 * When this global is false, names passed to the constructor for
927 * \c ir_var_temporary variables will be dropped. Instead, the variable will
928 * be named "compiler_temp". This name will be in static storage.
929 *
930 * \warning
931 * \b NEVER change the mode of an \c ir_var_temporary.
932 *
933 * \warning
934 * This variable is \b not thread-safe. It is global, \b not
935 * per-context. It begins life false. A context can, at some point, make
936 * it true. From that point on, it will be true forever. This should be
937 * okay since it will only be set true while debugging.
938 */
939 static bool temporaries_allocate_names;
940 };
941
942 /**
943 * A function that returns whether a built-in function is available in the
944 * current shading language (based on version, ES or desktop, and extensions).
945 */
946 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
947
948 /*@{*/
949 /**
950 * The representation of a function instance; may be the full definition or
951 * simply a prototype.
952 */
953 class ir_function_signature : public ir_instruction {
954 /* An ir_function_signature will be part of the list of signatures in
955 * an ir_function.
956 */
957 public:
958 ir_function_signature(const glsl_type *return_type,
959 builtin_available_predicate builtin_avail = NULL);
960
961 virtual ir_function_signature *clone(void *mem_ctx,
962 struct hash_table *ht) const;
963 ir_function_signature *clone_prototype(void *mem_ctx,
964 struct hash_table *ht) const;
965
966 virtual void accept(ir_visitor *v)
967 {
968 v->visit(this);
969 }
970
971 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
972
973 /**
974 * Attempt to evaluate this function as a constant expression,
975 * given a list of the actual parameters and the variable context.
976 * Returns NULL for non-built-ins.
977 */
978 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
979
980 /**
981 * Get the name of the function for which this is a signature
982 */
983 const char *function_name() const;
984
985 /**
986 * Get a handle to the function for which this is a signature
987 *
988 * There is no setter function, this function returns a \c const pointer,
989 * and \c ir_function_signature::_function is private for a reason. The
990 * only way to make a connection between a function and function signature
991 * is via \c ir_function::add_signature. This helps ensure that certain
992 * invariants (i.e., a function signature is in the list of signatures for
993 * its \c _function) are met.
994 *
995 * \sa ir_function::add_signature
996 */
997 inline const class ir_function *function() const
998 {
999 return this->_function;
1000 }
1001
1002 /**
1003 * Check whether the qualifiers match between this signature's parameters
1004 * and the supplied parameter list. If not, returns the name of the first
1005 * parameter with mismatched qualifiers (for use in error messages).
1006 */
1007 const char *qualifiers_match(exec_list *params);
1008
1009 /**
1010 * Replace the current parameter list with the given one. This is useful
1011 * if the current information came from a prototype, and either has invalid
1012 * or missing parameter names.
1013 */
1014 void replace_parameters(exec_list *new_params);
1015
1016 /**
1017 * Function return type.
1018 *
1019 * \note This discards the optional precision qualifier.
1020 */
1021 const struct glsl_type *return_type;
1022
1023 /**
1024 * List of ir_variable of function parameters.
1025 *
1026 * This represents the storage. The paramaters passed in a particular
1027 * call will be in ir_call::actual_paramaters.
1028 */
1029 struct exec_list parameters;
1030
1031 /** Whether or not this function has a body (which may be empty). */
1032 unsigned is_defined:1;
1033
1034 /** Whether or not this function signature is a built-in. */
1035 bool is_builtin() const;
1036
1037 /**
1038 * Whether or not this function is an intrinsic to be implemented
1039 * by the driver.
1040 */
1041 bool is_intrinsic;
1042
1043 /** Whether or not a built-in is available for this shader. */
1044 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1045
1046 /** Body of instructions in the function. */
1047 struct exec_list body;
1048
1049 private:
1050 /**
1051 * A function pointer to a predicate that answers whether a built-in
1052 * function is available in the current shader. NULL if not a built-in.
1053 */
1054 builtin_available_predicate builtin_avail;
1055
1056 /** Function of which this signature is one overload. */
1057 class ir_function *_function;
1058
1059 /** Function signature of which this one is a prototype clone */
1060 const ir_function_signature *origin;
1061
1062 friend class ir_function;
1063
1064 /**
1065 * Helper function to run a list of instructions for constant
1066 * expression evaluation.
1067 *
1068 * The hash table represents the values of the visible variables.
1069 * There are no scoping issues because the table is indexed on
1070 * ir_variable pointers, not variable names.
1071 *
1072 * Returns false if the expression is not constant, true otherwise,
1073 * and the value in *result if result is non-NULL.
1074 */
1075 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1076 struct hash_table *variable_context,
1077 ir_constant **result);
1078 };
1079
1080
1081 /**
1082 * Header for tracking multiple overloaded functions with the same name.
1083 * Contains a list of ir_function_signatures representing each of the
1084 * actual functions.
1085 */
1086 class ir_function : public ir_instruction {
1087 public:
1088 ir_function(const char *name);
1089
1090 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1091
1092 virtual void accept(ir_visitor *v)
1093 {
1094 v->visit(this);
1095 }
1096
1097 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1098
1099 void add_signature(ir_function_signature *sig)
1100 {
1101 sig->_function = this;
1102 this->signatures.push_tail(sig);
1103 }
1104
1105 /**
1106 * Find a signature that matches a set of actual parameters, taking implicit
1107 * conversions into account. Also flags whether the match was exact.
1108 */
1109 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1110 const exec_list *actual_param,
1111 bool allow_builtins,
1112 bool *match_is_exact);
1113
1114 /**
1115 * Find a signature that matches a set of actual parameters, taking implicit
1116 * conversions into account.
1117 */
1118 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1119 const exec_list *actual_param,
1120 bool allow_builtins);
1121
1122 /**
1123 * Find a signature that exactly matches a set of actual parameters without
1124 * any implicit type conversions.
1125 */
1126 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1127 const exec_list *actual_ps);
1128
1129 /**
1130 * Name of the function.
1131 */
1132 const char *name;
1133
1134 /** Whether or not this function has a signature that isn't a built-in. */
1135 bool has_user_signature();
1136
1137 /**
1138 * List of ir_function_signature for each overloaded function with this name.
1139 */
1140 struct exec_list signatures;
1141
1142 /**
1143 * is this function a subroutine type declaration
1144 * e.g. subroutine void type1(float arg1);
1145 */
1146 bool is_subroutine;
1147
1148 /**
1149 * is this function associated to a subroutine type
1150 * e.g. subroutine (type1, type2) function_name { function_body };
1151 * would have num_subroutine_types 2,
1152 * and pointers to the type1 and type2 types.
1153 */
1154 int num_subroutine_types;
1155 const struct glsl_type **subroutine_types;
1156 };
1157
1158 inline const char *ir_function_signature::function_name() const
1159 {
1160 return this->_function->name;
1161 }
1162 /*@}*/
1163
1164
1165 /**
1166 * IR instruction representing high-level if-statements
1167 */
1168 class ir_if : public ir_instruction {
1169 public:
1170 ir_if(ir_rvalue *condition)
1171 : ir_instruction(ir_type_if), condition(condition)
1172 {
1173 }
1174
1175 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1176
1177 virtual void accept(ir_visitor *v)
1178 {
1179 v->visit(this);
1180 }
1181
1182 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1183
1184 ir_rvalue *condition;
1185 /** List of ir_instruction for the body of the then branch */
1186 exec_list then_instructions;
1187 /** List of ir_instruction for the body of the else branch */
1188 exec_list else_instructions;
1189 };
1190
1191
1192 /**
1193 * IR instruction representing a high-level loop structure.
1194 */
1195 class ir_loop : public ir_instruction {
1196 public:
1197 ir_loop();
1198
1199 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1200
1201 virtual void accept(ir_visitor *v)
1202 {
1203 v->visit(this);
1204 }
1205
1206 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1207
1208 /** List of ir_instruction that make up the body of the loop. */
1209 exec_list body_instructions;
1210 };
1211
1212
1213 class ir_assignment : public ir_instruction {
1214 public:
1215 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1216
1217 /**
1218 * Construct an assignment with an explicit write mask
1219 *
1220 * \note
1221 * Since a write mask is supplied, the LHS must already be a bare
1222 * \c ir_dereference. The cannot be any swizzles in the LHS.
1223 */
1224 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1225 unsigned write_mask);
1226
1227 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1228
1229 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1230
1231 virtual void accept(ir_visitor *v)
1232 {
1233 v->visit(this);
1234 }
1235
1236 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1237
1238 /**
1239 * Get a whole variable written by an assignment
1240 *
1241 * If the LHS of the assignment writes a whole variable, the variable is
1242 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1243 * assignment are:
1244 *
1245 * - Assigning to a scalar
1246 * - Assigning to all components of a vector
1247 * - Whole array (or matrix) assignment
1248 * - Whole structure assignment
1249 */
1250 ir_variable *whole_variable_written();
1251
1252 /**
1253 * Set the LHS of an assignment
1254 */
1255 void set_lhs(ir_rvalue *lhs);
1256
1257 /**
1258 * Left-hand side of the assignment.
1259 *
1260 * This should be treated as read only. If you need to set the LHS of an
1261 * assignment, use \c ir_assignment::set_lhs.
1262 */
1263 ir_dereference *lhs;
1264
1265 /**
1266 * Value being assigned
1267 */
1268 ir_rvalue *rhs;
1269
1270 /**
1271 * Optional condition for the assignment.
1272 */
1273 ir_rvalue *condition;
1274
1275
1276 /**
1277 * Component mask written
1278 *
1279 * For non-vector types in the LHS, this field will be zero. For vector
1280 * types, a bit will be set for each component that is written. Note that
1281 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1282 *
1283 * A partially-set write mask means that each enabled channel gets
1284 * the value from a consecutive channel of the rhs. For example,
1285 * to write just .xyw of gl_FrontColor with color:
1286 *
1287 * (assign (constant bool (1)) (xyw)
1288 * (var_ref gl_FragColor)
1289 * (swiz xyw (var_ref color)))
1290 */
1291 unsigned write_mask:4;
1292 };
1293
1294 /* Update ir_expression::get_num_operands() and operator_strs when
1295 * updating this list.
1296 */
1297 enum ir_expression_operation {
1298 ir_unop_bit_not,
1299 ir_unop_logic_not,
1300 ir_unop_neg,
1301 ir_unop_abs,
1302 ir_unop_sign,
1303 ir_unop_rcp,
1304 ir_unop_rsq,
1305 ir_unop_sqrt,
1306 ir_unop_exp, /**< Log base e on gentype */
1307 ir_unop_log, /**< Natural log on gentype */
1308 ir_unop_exp2,
1309 ir_unop_log2,
1310 ir_unop_f2i, /**< Float-to-integer conversion. */
1311 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1312 ir_unop_i2f, /**< Integer-to-float conversion. */
1313 ir_unop_f2b, /**< Float-to-boolean conversion */
1314 ir_unop_b2f, /**< Boolean-to-float conversion */
1315 ir_unop_i2b, /**< int-to-boolean conversion */
1316 ir_unop_b2i, /**< Boolean-to-int conversion */
1317 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1318 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1319 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1320 ir_unop_d2f, /**< Double-to-float conversion. */
1321 ir_unop_f2d, /**< Float-to-double conversion. */
1322 ir_unop_d2i, /**< Double-to-integer conversion. */
1323 ir_unop_i2d, /**< Integer-to-double conversion. */
1324 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1325 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1326 ir_unop_d2b, /**< Double-to-boolean conversion. */
1327 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1328 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1329 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1330 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1331 ir_unop_any,
1332
1333 /**
1334 * \name Unary floating-point rounding operations.
1335 */
1336 /*@{*/
1337 ir_unop_trunc,
1338 ir_unop_ceil,
1339 ir_unop_floor,
1340 ir_unop_fract,
1341 ir_unop_round_even,
1342 /*@}*/
1343
1344 /**
1345 * \name Trigonometric operations.
1346 */
1347 /*@{*/
1348 ir_unop_sin,
1349 ir_unop_cos,
1350 /*@}*/
1351
1352 /**
1353 * \name Partial derivatives.
1354 */
1355 /*@{*/
1356 ir_unop_dFdx,
1357 ir_unop_dFdx_coarse,
1358 ir_unop_dFdx_fine,
1359 ir_unop_dFdy,
1360 ir_unop_dFdy_coarse,
1361 ir_unop_dFdy_fine,
1362 /*@}*/
1363
1364 /**
1365 * \name Floating point pack and unpack operations.
1366 */
1367 /*@{*/
1368 ir_unop_pack_snorm_2x16,
1369 ir_unop_pack_snorm_4x8,
1370 ir_unop_pack_unorm_2x16,
1371 ir_unop_pack_unorm_4x8,
1372 ir_unop_pack_half_2x16,
1373 ir_unop_unpack_snorm_2x16,
1374 ir_unop_unpack_snorm_4x8,
1375 ir_unop_unpack_unorm_2x16,
1376 ir_unop_unpack_unorm_4x8,
1377 ir_unop_unpack_half_2x16,
1378 /*@}*/
1379
1380 /**
1381 * \name Lowered floating point unpacking operations.
1382 *
1383 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1384 */
1385 /*@{*/
1386 ir_unop_unpack_half_2x16_split_x,
1387 ir_unop_unpack_half_2x16_split_y,
1388 /*@}*/
1389
1390 /**
1391 * \name Bit operations, part of ARB_gpu_shader5.
1392 */
1393 /*@{*/
1394 ir_unop_bitfield_reverse,
1395 ir_unop_bit_count,
1396 ir_unop_find_msb,
1397 ir_unop_find_lsb,
1398 /*@}*/
1399
1400 ir_unop_saturate,
1401
1402 /**
1403 * \name Double packing, part of ARB_gpu_shader_fp64.
1404 */
1405 /*@{*/
1406 ir_unop_pack_double_2x32,
1407 ir_unop_unpack_double_2x32,
1408 /*@}*/
1409
1410 ir_unop_frexp_sig,
1411 ir_unop_frexp_exp,
1412
1413 ir_unop_noise,
1414
1415 ir_unop_subroutine_to_int,
1416 /**
1417 * Interpolate fs input at centroid
1418 *
1419 * operand0 is the fs input.
1420 */
1421 ir_unop_interpolate_at_centroid,
1422
1423 /**
1424 * A sentinel marking the last of the unary operations.
1425 */
1426 ir_last_unop = ir_unop_interpolate_at_centroid,
1427
1428 ir_binop_add,
1429 ir_binop_sub,
1430 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1431 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1432 ir_binop_div,
1433
1434 /**
1435 * Returns the carry resulting from the addition of the two arguments.
1436 */
1437 /*@{*/
1438 ir_binop_carry,
1439 /*@}*/
1440
1441 /**
1442 * Returns the borrow resulting from the subtraction of the second argument
1443 * from the first argument.
1444 */
1445 /*@{*/
1446 ir_binop_borrow,
1447 /*@}*/
1448
1449 /**
1450 * Takes one of two combinations of arguments:
1451 *
1452 * - mod(vecN, vecN)
1453 * - mod(vecN, float)
1454 *
1455 * Does not take integer types.
1456 */
1457 ir_binop_mod,
1458
1459 /**
1460 * \name Binary comparison operators which return a boolean vector.
1461 * The type of both operands must be equal.
1462 */
1463 /*@{*/
1464 ir_binop_less,
1465 ir_binop_greater,
1466 ir_binop_lequal,
1467 ir_binop_gequal,
1468 ir_binop_equal,
1469 ir_binop_nequal,
1470 /**
1471 * Returns single boolean for whether all components of operands[0]
1472 * equal the components of operands[1].
1473 */
1474 ir_binop_all_equal,
1475 /**
1476 * Returns single boolean for whether any component of operands[0]
1477 * is not equal to the corresponding component of operands[1].
1478 */
1479 ir_binop_any_nequal,
1480 /*@}*/
1481
1482 /**
1483 * \name Bit-wise binary operations.
1484 */
1485 /*@{*/
1486 ir_binop_lshift,
1487 ir_binop_rshift,
1488 ir_binop_bit_and,
1489 ir_binop_bit_xor,
1490 ir_binop_bit_or,
1491 /*@}*/
1492
1493 ir_binop_logic_and,
1494 ir_binop_logic_xor,
1495 ir_binop_logic_or,
1496
1497 ir_binop_dot,
1498 ir_binop_min,
1499 ir_binop_max,
1500
1501 ir_binop_pow,
1502
1503 /**
1504 * \name Lowered floating point packing operations.
1505 *
1506 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1507 */
1508 /*@{*/
1509 ir_binop_pack_half_2x16_split,
1510 /*@}*/
1511
1512 /**
1513 * \name First half of a lowered bitfieldInsert() operation.
1514 *
1515 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1516 */
1517 /*@{*/
1518 ir_binop_bfm,
1519 /*@}*/
1520
1521 /**
1522 * Load a value the size of a given GLSL type from a uniform block.
1523 *
1524 * operand0 is the ir_constant uniform block index in the linked shader.
1525 * operand1 is a byte offset within the uniform block.
1526 */
1527 ir_binop_ubo_load,
1528
1529 /**
1530 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1531 */
1532 /*@{*/
1533 ir_binop_ldexp,
1534 /*@}*/
1535
1536 /**
1537 * Extract a scalar from a vector
1538 *
1539 * operand0 is the vector
1540 * operand1 is the index of the field to read from operand0
1541 */
1542 ir_binop_vector_extract,
1543
1544 /**
1545 * Interpolate fs input at offset
1546 *
1547 * operand0 is the fs input
1548 * operand1 is the offset from the pixel center
1549 */
1550 ir_binop_interpolate_at_offset,
1551
1552 /**
1553 * Interpolate fs input at sample position
1554 *
1555 * operand0 is the fs input
1556 * operand1 is the sample ID
1557 */
1558 ir_binop_interpolate_at_sample,
1559
1560 /**
1561 * A sentinel marking the last of the binary operations.
1562 */
1563 ir_last_binop = ir_binop_interpolate_at_sample,
1564
1565 /**
1566 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1567 */
1568 /*@{*/
1569 ir_triop_fma,
1570 /*@}*/
1571
1572 ir_triop_lrp,
1573
1574 /**
1575 * \name Conditional Select
1576 *
1577 * A vector conditional select instruction (like ?:, but operating per-
1578 * component on vectors).
1579 *
1580 * \see lower_instructions_visitor::ldexp_to_arith
1581 */
1582 /*@{*/
1583 ir_triop_csel,
1584 /*@}*/
1585
1586 /**
1587 * \name Second half of a lowered bitfieldInsert() operation.
1588 *
1589 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1590 */
1591 /*@{*/
1592 ir_triop_bfi,
1593 /*@}*/
1594
1595 ir_triop_bitfield_extract,
1596
1597 /**
1598 * Generate a value with one field of a vector changed
1599 *
1600 * operand0 is the vector
1601 * operand1 is the value to write into the vector result
1602 * operand2 is the index in operand0 to be modified
1603 */
1604 ir_triop_vector_insert,
1605
1606 /**
1607 * A sentinel marking the last of the ternary operations.
1608 */
1609 ir_last_triop = ir_triop_vector_insert,
1610
1611 ir_quadop_bitfield_insert,
1612
1613 ir_quadop_vector,
1614
1615 /**
1616 * A sentinel marking the last of the ternary operations.
1617 */
1618 ir_last_quadop = ir_quadop_vector,
1619
1620 /**
1621 * A sentinel marking the last of all operations.
1622 */
1623 ir_last_opcode = ir_quadop_vector
1624 };
1625
1626 class ir_expression : public ir_rvalue {
1627 public:
1628 ir_expression(int op, const struct glsl_type *type,
1629 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1630 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1631
1632 /**
1633 * Constructor for unary operation expressions
1634 */
1635 ir_expression(int op, ir_rvalue *);
1636
1637 /**
1638 * Constructor for binary operation expressions
1639 */
1640 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1641
1642 /**
1643 * Constructor for ternary operation expressions
1644 */
1645 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1646
1647 virtual bool equals(const ir_instruction *ir,
1648 enum ir_node_type ignore = ir_type_unset) const;
1649
1650 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1651
1652 /**
1653 * Attempt to constant-fold the expression
1654 *
1655 * The "variable_context" hash table links ir_variable * to ir_constant *
1656 * that represent the variables' values. \c NULL represents an empty
1657 * context.
1658 *
1659 * If the expression cannot be constant folded, this method will return
1660 * \c NULL.
1661 */
1662 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1663
1664 /**
1665 * Determine the number of operands used by an expression
1666 */
1667 static unsigned int get_num_operands(ir_expression_operation);
1668
1669 /**
1670 * Determine the number of operands used by an expression
1671 */
1672 unsigned int get_num_operands() const
1673 {
1674 return (this->operation == ir_quadop_vector)
1675 ? this->type->vector_elements : get_num_operands(operation);
1676 }
1677
1678 /**
1679 * Return whether the expression operates on vectors horizontally.
1680 */
1681 bool is_horizontal() const
1682 {
1683 return operation == ir_binop_all_equal ||
1684 operation == ir_binop_any_nequal ||
1685 operation == ir_unop_any ||
1686 operation == ir_binop_dot ||
1687 operation == ir_quadop_vector;
1688 }
1689
1690 /**
1691 * Return a string representing this expression's operator.
1692 */
1693 const char *operator_string();
1694
1695 /**
1696 * Return a string representing this expression's operator.
1697 */
1698 static const char *operator_string(ir_expression_operation);
1699
1700
1701 /**
1702 * Do a reverse-lookup to translate the given string into an operator.
1703 */
1704 static ir_expression_operation get_operator(const char *);
1705
1706 virtual void accept(ir_visitor *v)
1707 {
1708 v->visit(this);
1709 }
1710
1711 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1712
1713 ir_expression_operation operation;
1714 ir_rvalue *operands[4];
1715 };
1716
1717
1718 /**
1719 * HIR instruction representing a high-level function call, containing a list
1720 * of parameters and returning a value in the supplied temporary.
1721 */
1722 class ir_call : public ir_instruction {
1723 public:
1724 ir_call(ir_function_signature *callee,
1725 ir_dereference_variable *return_deref,
1726 exec_list *actual_parameters)
1727 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1728 {
1729 assert(callee->return_type != NULL);
1730 actual_parameters->move_nodes_to(& this->actual_parameters);
1731 this->use_builtin = callee->is_builtin();
1732 }
1733
1734 ir_call(ir_function_signature *callee,
1735 ir_dereference_variable *return_deref,
1736 exec_list *actual_parameters,
1737 ir_variable *var, ir_rvalue *array_idx)
1738 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1739 {
1740 assert(callee->return_type != NULL);
1741 actual_parameters->move_nodes_to(& this->actual_parameters);
1742 this->use_builtin = callee->is_builtin();
1743 }
1744
1745 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1746
1747 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1748
1749 virtual void accept(ir_visitor *v)
1750 {
1751 v->visit(this);
1752 }
1753
1754 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1755
1756 /**
1757 * Get the name of the function being called.
1758 */
1759 const char *callee_name() const
1760 {
1761 return callee->function_name();
1762 }
1763
1764 /**
1765 * Generates an inline version of the function before @ir,
1766 * storing the return value in return_deref.
1767 */
1768 void generate_inline(ir_instruction *ir);
1769
1770 /**
1771 * Storage for the function's return value.
1772 * This must be NULL if the return type is void.
1773 */
1774 ir_dereference_variable *return_deref;
1775
1776 /**
1777 * The specific function signature being called.
1778 */
1779 ir_function_signature *callee;
1780
1781 /* List of ir_rvalue of paramaters passed in this call. */
1782 exec_list actual_parameters;
1783
1784 /** Should this call only bind to a built-in function? */
1785 bool use_builtin;
1786
1787 /*
1788 * ARB_shader_subroutine support -
1789 * the subroutine uniform variable and array index
1790 * rvalue to be used in the lowering pass later.
1791 */
1792 ir_variable *sub_var;
1793 ir_rvalue *array_idx;
1794 };
1795
1796
1797 /**
1798 * \name Jump-like IR instructions.
1799 *
1800 * These include \c break, \c continue, \c return, and \c discard.
1801 */
1802 /*@{*/
1803 class ir_jump : public ir_instruction {
1804 protected:
1805 ir_jump(enum ir_node_type t)
1806 : ir_instruction(t)
1807 {
1808 }
1809 };
1810
1811 class ir_return : public ir_jump {
1812 public:
1813 ir_return()
1814 : ir_jump(ir_type_return), value(NULL)
1815 {
1816 }
1817
1818 ir_return(ir_rvalue *value)
1819 : ir_jump(ir_type_return), value(value)
1820 {
1821 }
1822
1823 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1824
1825 ir_rvalue *get_value() const
1826 {
1827 return value;
1828 }
1829
1830 virtual void accept(ir_visitor *v)
1831 {
1832 v->visit(this);
1833 }
1834
1835 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1836
1837 ir_rvalue *value;
1838 };
1839
1840
1841 /**
1842 * Jump instructions used inside loops
1843 *
1844 * These include \c break and \c continue. The \c break within a loop is
1845 * different from the \c break within a switch-statement.
1846 *
1847 * \sa ir_switch_jump
1848 */
1849 class ir_loop_jump : public ir_jump {
1850 public:
1851 enum jump_mode {
1852 jump_break,
1853 jump_continue
1854 };
1855
1856 ir_loop_jump(jump_mode mode)
1857 : ir_jump(ir_type_loop_jump)
1858 {
1859 this->mode = mode;
1860 }
1861
1862 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1863
1864 virtual void accept(ir_visitor *v)
1865 {
1866 v->visit(this);
1867 }
1868
1869 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1870
1871 bool is_break() const
1872 {
1873 return mode == jump_break;
1874 }
1875
1876 bool is_continue() const
1877 {
1878 return mode == jump_continue;
1879 }
1880
1881 /** Mode selector for the jump instruction. */
1882 enum jump_mode mode;
1883 };
1884
1885 /**
1886 * IR instruction representing discard statements.
1887 */
1888 class ir_discard : public ir_jump {
1889 public:
1890 ir_discard()
1891 : ir_jump(ir_type_discard)
1892 {
1893 this->condition = NULL;
1894 }
1895
1896 ir_discard(ir_rvalue *cond)
1897 : ir_jump(ir_type_discard)
1898 {
1899 this->condition = cond;
1900 }
1901
1902 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1903
1904 virtual void accept(ir_visitor *v)
1905 {
1906 v->visit(this);
1907 }
1908
1909 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1910
1911 ir_rvalue *condition;
1912 };
1913 /*@}*/
1914
1915
1916 /**
1917 * Texture sampling opcodes used in ir_texture
1918 */
1919 enum ir_texture_opcode {
1920 ir_tex, /**< Regular texture look-up */
1921 ir_txb, /**< Texture look-up with LOD bias */
1922 ir_txl, /**< Texture look-up with explicit LOD */
1923 ir_txd, /**< Texture look-up with partial derivatvies */
1924 ir_txf, /**< Texel fetch with explicit LOD */
1925 ir_txf_ms, /**< Multisample texture fetch */
1926 ir_txs, /**< Texture size */
1927 ir_lod, /**< Texture lod query */
1928 ir_tg4, /**< Texture gather */
1929 ir_query_levels /**< Texture levels query */
1930 };
1931
1932
1933 /**
1934 * IR instruction to sample a texture
1935 *
1936 * The specific form of the IR instruction depends on the \c mode value
1937 * selected from \c ir_texture_opcodes. In the printed IR, these will
1938 * appear as:
1939 *
1940 * Texel offset (0 or an expression)
1941 * | Projection divisor
1942 * | | Shadow comparitor
1943 * | | |
1944 * v v v
1945 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1946 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1947 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1948 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1949 * (txf <type> <sampler> <coordinate> 0 <lod>)
1950 * (txf_ms
1951 * <type> <sampler> <coordinate> <sample_index>)
1952 * (txs <type> <sampler> <lod>)
1953 * (lod <type> <sampler> <coordinate>)
1954 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1955 * (query_levels <type> <sampler>)
1956 */
1957 class ir_texture : public ir_rvalue {
1958 public:
1959 ir_texture(enum ir_texture_opcode op)
1960 : ir_rvalue(ir_type_texture),
1961 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1962 shadow_comparitor(NULL), offset(NULL)
1963 {
1964 memset(&lod_info, 0, sizeof(lod_info));
1965 }
1966
1967 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1968
1969 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1970
1971 virtual void accept(ir_visitor *v)
1972 {
1973 v->visit(this);
1974 }
1975
1976 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1977
1978 virtual bool equals(const ir_instruction *ir,
1979 enum ir_node_type ignore = ir_type_unset) const;
1980
1981 /**
1982 * Return a string representing the ir_texture_opcode.
1983 */
1984 const char *opcode_string();
1985
1986 /** Set the sampler and type. */
1987 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1988
1989 /**
1990 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1991 */
1992 static ir_texture_opcode get_opcode(const char *);
1993
1994 enum ir_texture_opcode op;
1995
1996 /** Sampler to use for the texture access. */
1997 ir_dereference *sampler;
1998
1999 /** Texture coordinate to sample */
2000 ir_rvalue *coordinate;
2001
2002 /**
2003 * Value used for projective divide.
2004 *
2005 * If there is no projective divide (the common case), this will be
2006 * \c NULL. Optimization passes should check for this to point to a constant
2007 * of 1.0 and replace that with \c NULL.
2008 */
2009 ir_rvalue *projector;
2010
2011 /**
2012 * Coordinate used for comparison on shadow look-ups.
2013 *
2014 * If there is no shadow comparison, this will be \c NULL. For the
2015 * \c ir_txf opcode, this *must* be \c NULL.
2016 */
2017 ir_rvalue *shadow_comparitor;
2018
2019 /** Texel offset. */
2020 ir_rvalue *offset;
2021
2022 union {
2023 ir_rvalue *lod; /**< Floating point LOD */
2024 ir_rvalue *bias; /**< Floating point LOD bias */
2025 ir_rvalue *sample_index; /**< MSAA sample index */
2026 ir_rvalue *component; /**< Gather component selector */
2027 struct {
2028 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2029 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2030 } grad;
2031 } lod_info;
2032 };
2033
2034
2035 struct ir_swizzle_mask {
2036 unsigned x:2;
2037 unsigned y:2;
2038 unsigned z:2;
2039 unsigned w:2;
2040
2041 /**
2042 * Number of components in the swizzle.
2043 */
2044 unsigned num_components:3;
2045
2046 /**
2047 * Does the swizzle contain duplicate components?
2048 *
2049 * L-value swizzles cannot contain duplicate components.
2050 */
2051 unsigned has_duplicates:1;
2052 };
2053
2054
2055 class ir_swizzle : public ir_rvalue {
2056 public:
2057 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2058 unsigned count);
2059
2060 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2061
2062 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2063
2064 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2065
2066 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2067
2068 /**
2069 * Construct an ir_swizzle from the textual representation. Can fail.
2070 */
2071 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2072
2073 virtual void accept(ir_visitor *v)
2074 {
2075 v->visit(this);
2076 }
2077
2078 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2079
2080 virtual bool equals(const ir_instruction *ir,
2081 enum ir_node_type ignore = ir_type_unset) const;
2082
2083 bool is_lvalue() const
2084 {
2085 return val->is_lvalue() && !mask.has_duplicates;
2086 }
2087
2088 /**
2089 * Get the variable that is ultimately referenced by an r-value
2090 */
2091 virtual ir_variable *variable_referenced() const;
2092
2093 ir_rvalue *val;
2094 ir_swizzle_mask mask;
2095
2096 private:
2097 /**
2098 * Initialize the mask component of a swizzle
2099 *
2100 * This is used by the \c ir_swizzle constructors.
2101 */
2102 void init_mask(const unsigned *components, unsigned count);
2103 };
2104
2105
2106 class ir_dereference : public ir_rvalue {
2107 public:
2108 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2109
2110 bool is_lvalue() const;
2111
2112 /**
2113 * Get the variable that is ultimately referenced by an r-value
2114 */
2115 virtual ir_variable *variable_referenced() const = 0;
2116
2117 protected:
2118 ir_dereference(enum ir_node_type t)
2119 : ir_rvalue(t)
2120 {
2121 }
2122 };
2123
2124
2125 class ir_dereference_variable : public ir_dereference {
2126 public:
2127 ir_dereference_variable(ir_variable *var);
2128
2129 virtual ir_dereference_variable *clone(void *mem_ctx,
2130 struct hash_table *) const;
2131
2132 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2133
2134 virtual bool equals(const ir_instruction *ir,
2135 enum ir_node_type ignore = ir_type_unset) const;
2136
2137 /**
2138 * Get the variable that is ultimately referenced by an r-value
2139 */
2140 virtual ir_variable *variable_referenced() const
2141 {
2142 return this->var;
2143 }
2144
2145 virtual ir_variable *whole_variable_referenced()
2146 {
2147 /* ir_dereference_variable objects always dereference the entire
2148 * variable. However, if this dereference is dereferenced by anything
2149 * else, the complete deferefernce chain is not a whole-variable
2150 * dereference. This method should only be called on the top most
2151 * ir_rvalue in a dereference chain.
2152 */
2153 return this->var;
2154 }
2155
2156 virtual void accept(ir_visitor *v)
2157 {
2158 v->visit(this);
2159 }
2160
2161 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2162
2163 /**
2164 * Object being dereferenced.
2165 */
2166 ir_variable *var;
2167 };
2168
2169
2170 class ir_dereference_array : public ir_dereference {
2171 public:
2172 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2173
2174 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2175
2176 virtual ir_dereference_array *clone(void *mem_ctx,
2177 struct hash_table *) const;
2178
2179 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2180
2181 virtual bool equals(const ir_instruction *ir,
2182 enum ir_node_type ignore = ir_type_unset) const;
2183
2184 /**
2185 * Get the variable that is ultimately referenced by an r-value
2186 */
2187 virtual ir_variable *variable_referenced() const
2188 {
2189 return this->array->variable_referenced();
2190 }
2191
2192 virtual void accept(ir_visitor *v)
2193 {
2194 v->visit(this);
2195 }
2196
2197 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2198
2199 ir_rvalue *array;
2200 ir_rvalue *array_index;
2201
2202 private:
2203 void set_array(ir_rvalue *value);
2204 };
2205
2206
2207 class ir_dereference_record : public ir_dereference {
2208 public:
2209 ir_dereference_record(ir_rvalue *value, const char *field);
2210
2211 ir_dereference_record(ir_variable *var, const char *field);
2212
2213 virtual ir_dereference_record *clone(void *mem_ctx,
2214 struct hash_table *) const;
2215
2216 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2217
2218 /**
2219 * Get the variable that is ultimately referenced by an r-value
2220 */
2221 virtual ir_variable *variable_referenced() const
2222 {
2223 return this->record->variable_referenced();
2224 }
2225
2226 virtual void accept(ir_visitor *v)
2227 {
2228 v->visit(this);
2229 }
2230
2231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2232
2233 ir_rvalue *record;
2234 const char *field;
2235 };
2236
2237
2238 /**
2239 * Data stored in an ir_constant
2240 */
2241 union ir_constant_data {
2242 unsigned u[16];
2243 int i[16];
2244 float f[16];
2245 bool b[16];
2246 double d[16];
2247 };
2248
2249
2250 class ir_constant : public ir_rvalue {
2251 public:
2252 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2253 ir_constant(bool b, unsigned vector_elements=1);
2254 ir_constant(unsigned int u, unsigned vector_elements=1);
2255 ir_constant(int i, unsigned vector_elements=1);
2256 ir_constant(float f, unsigned vector_elements=1);
2257 ir_constant(double d, unsigned vector_elements=1);
2258
2259 /**
2260 * Construct an ir_constant from a list of ir_constant values
2261 */
2262 ir_constant(const struct glsl_type *type, exec_list *values);
2263
2264 /**
2265 * Construct an ir_constant from a scalar component of another ir_constant
2266 *
2267 * The new \c ir_constant inherits the type of the component from the
2268 * source constant.
2269 *
2270 * \note
2271 * In the case of a matrix constant, the new constant is a scalar, \b not
2272 * a vector.
2273 */
2274 ir_constant(const ir_constant *c, unsigned i);
2275
2276 /**
2277 * Return a new ir_constant of the specified type containing all zeros.
2278 */
2279 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2280
2281 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2282
2283 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2284
2285 virtual void accept(ir_visitor *v)
2286 {
2287 v->visit(this);
2288 }
2289
2290 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2291
2292 virtual bool equals(const ir_instruction *ir,
2293 enum ir_node_type ignore = ir_type_unset) const;
2294
2295 /**
2296 * Get a particular component of a constant as a specific type
2297 *
2298 * This is useful, for example, to get a value from an integer constant
2299 * as a float or bool. This appears frequently when constructors are
2300 * called with all constant parameters.
2301 */
2302 /*@{*/
2303 bool get_bool_component(unsigned i) const;
2304 float get_float_component(unsigned i) const;
2305 double get_double_component(unsigned i) const;
2306 int get_int_component(unsigned i) const;
2307 unsigned get_uint_component(unsigned i) const;
2308 /*@}*/
2309
2310 ir_constant *get_array_element(unsigned i) const;
2311
2312 ir_constant *get_record_field(const char *name);
2313
2314 /**
2315 * Copy the values on another constant at a given offset.
2316 *
2317 * The offset is ignored for array or struct copies, it's only for
2318 * scalars or vectors into vectors or matrices.
2319 *
2320 * With identical types on both sides and zero offset it's clone()
2321 * without creating a new object.
2322 */
2323
2324 void copy_offset(ir_constant *src, int offset);
2325
2326 /**
2327 * Copy the values on another constant at a given offset and
2328 * following an assign-like mask.
2329 *
2330 * The mask is ignored for scalars.
2331 *
2332 * Note that this function only handles what assign can handle,
2333 * i.e. at most a vector as source and a column of a matrix as
2334 * destination.
2335 */
2336
2337 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2338
2339 /**
2340 * Determine whether a constant has the same value as another constant
2341 *
2342 * \sa ir_constant::is_zero, ir_constant::is_one,
2343 * ir_constant::is_negative_one
2344 */
2345 bool has_value(const ir_constant *) const;
2346
2347 /**
2348 * Return true if this ir_constant represents the given value.
2349 *
2350 * For vectors, this checks that each component is the given value.
2351 */
2352 virtual bool is_value(float f, int i) const;
2353 virtual bool is_zero() const;
2354 virtual bool is_one() const;
2355 virtual bool is_negative_one() const;
2356
2357 /**
2358 * Return true for constants that could be stored as 16-bit unsigned values.
2359 *
2360 * Note that this will return true even for signed integer ir_constants, as
2361 * long as the value is non-negative and fits in 16-bits.
2362 */
2363 virtual bool is_uint16_constant() const;
2364
2365 /**
2366 * Value of the constant.
2367 *
2368 * The field used to back the values supplied by the constant is determined
2369 * by the type associated with the \c ir_instruction. Constants may be
2370 * scalars, vectors, or matrices.
2371 */
2372 union ir_constant_data value;
2373
2374 /* Array elements */
2375 ir_constant **array_elements;
2376
2377 /* Structure fields */
2378 exec_list components;
2379
2380 private:
2381 /**
2382 * Parameterless constructor only used by the clone method
2383 */
2384 ir_constant(void);
2385 };
2386
2387 /**
2388 * IR instruction to emit a vertex in a geometry shader.
2389 */
2390 class ir_emit_vertex : public ir_instruction {
2391 public:
2392 ir_emit_vertex(ir_rvalue *stream)
2393 : ir_instruction(ir_type_emit_vertex),
2394 stream(stream)
2395 {
2396 assert(stream);
2397 }
2398
2399 virtual void accept(ir_visitor *v)
2400 {
2401 v->visit(this);
2402 }
2403
2404 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2405 {
2406 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2407 }
2408
2409 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2410
2411 int stream_id() const
2412 {
2413 return stream->as_constant()->value.i[0];
2414 }
2415
2416 ir_rvalue *stream;
2417 };
2418
2419 /**
2420 * IR instruction to complete the current primitive and start a new one in a
2421 * geometry shader.
2422 */
2423 class ir_end_primitive : public ir_instruction {
2424 public:
2425 ir_end_primitive(ir_rvalue *stream)
2426 : ir_instruction(ir_type_end_primitive),
2427 stream(stream)
2428 {
2429 assert(stream);
2430 }
2431
2432 virtual void accept(ir_visitor *v)
2433 {
2434 v->visit(this);
2435 }
2436
2437 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2438 {
2439 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2440 }
2441
2442 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2443
2444 int stream_id() const
2445 {
2446 return stream->as_constant()->value.i[0];
2447 }
2448
2449 ir_rvalue *stream;
2450 };
2451
2452 /**
2453 * IR instruction for tessellation control and compute shader barrier.
2454 */
2455 class ir_barrier : public ir_instruction {
2456 public:
2457 ir_barrier()
2458 : ir_instruction(ir_type_barrier)
2459 {
2460 }
2461
2462 virtual void accept(ir_visitor *v)
2463 {
2464 v->visit(this);
2465 }
2466
2467 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2468 {
2469 return new(mem_ctx) ir_barrier();
2470 }
2471
2472 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2473 };
2474
2475 /*@}*/
2476
2477 /**
2478 * Apply a visitor to each IR node in a list
2479 */
2480 void
2481 visit_exec_list(exec_list *list, ir_visitor *visitor);
2482
2483 /**
2484 * Validate invariants on each IR node in a list
2485 */
2486 void validate_ir_tree(exec_list *instructions);
2487
2488 struct _mesa_glsl_parse_state;
2489 struct gl_shader_program;
2490
2491 /**
2492 * Detect whether an unlinked shader contains static recursion
2493 *
2494 * If the list of instructions is determined to contain static recursion,
2495 * \c _mesa_glsl_error will be called to emit error messages for each function
2496 * that is in the recursion cycle.
2497 */
2498 void
2499 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2500 exec_list *instructions);
2501
2502 /**
2503 * Detect whether a linked shader contains static recursion
2504 *
2505 * If the list of instructions is determined to contain static recursion,
2506 * \c link_error_printf will be called to emit error messages for each function
2507 * that is in the recursion cycle. In addition,
2508 * \c gl_shader_program::LinkStatus will be set to false.
2509 */
2510 void
2511 detect_recursion_linked(struct gl_shader_program *prog,
2512 exec_list *instructions);
2513
2514 /**
2515 * Make a clone of each IR instruction in a list
2516 *
2517 * \param in List of IR instructions that are to be cloned
2518 * \param out List to hold the cloned instructions
2519 */
2520 void
2521 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2522
2523 extern void
2524 _mesa_glsl_initialize_variables(exec_list *instructions,
2525 struct _mesa_glsl_parse_state *state);
2526
2527 extern void
2528 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2529
2530 extern void
2531 _mesa_glsl_initialize_builtin_functions();
2532
2533 extern ir_function_signature *
2534 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2535 const char *name, exec_list *actual_parameters);
2536
2537 extern ir_function *
2538 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2539 const char *name);
2540
2541 extern gl_shader *
2542 _mesa_glsl_get_builtin_function_shader(void);
2543
2544 extern void
2545 _mesa_glsl_release_functions(void);
2546
2547 extern void
2548 _mesa_glsl_release_builtin_functions(void);
2549
2550 extern void
2551 reparent_ir(exec_list *list, void *mem_ctx);
2552
2553 struct glsl_symbol_table;
2554
2555 extern void
2556 import_prototypes(const exec_list *source, exec_list *dest,
2557 struct glsl_symbol_table *symbols, void *mem_ctx);
2558
2559 extern bool
2560 ir_has_call(ir_instruction *ir);
2561
2562 extern void
2563 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2564 gl_shader_stage shader_stage);
2565
2566 extern char *
2567 prototype_string(const glsl_type *return_type, const char *name,
2568 exec_list *parameters);
2569
2570 const char *
2571 mode_string(const ir_variable *var);
2572
2573 /**
2574 * Built-in / reserved GL variables names start with "gl_"
2575 */
2576 static inline bool
2577 is_gl_identifier(const char *s)
2578 {
2579 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2580 }
2581
2582 extern "C" {
2583 #endif /* __cplusplus */
2584
2585 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2586 struct _mesa_glsl_parse_state *state);
2587
2588 extern void
2589 fprint_ir(FILE *f, const void *instruction);
2590
2591 #ifdef __cplusplus
2592 } /* extern "C" */
2593 #endif
2594
2595 unsigned
2596 vertices_per_prim(GLenum prim);
2597
2598 #endif /* IR_H */