Merge branch 'draw-instanced'
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
229 ir_var_temporary /**< Temporary variable generated during compilation. */
230 };
231
232 enum ir_variable_interpolation {
233 ir_var_smooth = 0,
234 ir_var_flat,
235 ir_var_noperspective
236 };
237
238
239 class ir_variable : public ir_instruction {
240 public:
241 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
242
243 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
244
245 virtual ir_variable *as_variable()
246 {
247 return this;
248 }
249
250 virtual void accept(ir_visitor *v)
251 {
252 v->visit(this);
253 }
254
255 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
256
257
258 /**
259 * Get the string value for the interpolation qualifier
260 *
261 * \return The string that would be used in a shader to specify \c
262 * mode will be returned.
263 *
264 * This function should only be used on a shader input or output variable.
265 */
266 const char *interpolation_string() const;
267
268 /**
269 * Calculate the number of slots required to hold this variable
270 *
271 * This is used to determine how many uniform or varying locations a variable
272 * occupies. The count is in units of floating point components.
273 */
274 unsigned component_slots() const;
275
276 /**
277 * Delcared name of the variable
278 */
279 const char *name;
280
281 /**
282 * Highest element accessed with a constant expression array index
283 *
284 * Not used for non-array variables.
285 */
286 unsigned max_array_access;
287
288 /**
289 * Is the variable read-only?
290 *
291 * This is set for variables declared as \c const, shader inputs,
292 * and uniforms.
293 */
294 unsigned read_only:1;
295 unsigned centroid:1;
296 unsigned invariant:1;
297
298 /**
299 * Has this variable been used for reading or writing?
300 *
301 * Several GLSL semantic checks require knowledge of whether or not a
302 * variable has been used. For example, it is an error to redeclare a
303 * variable as invariant after it has been used.
304 */
305 unsigned used:1;
306
307 /**
308 * Storage class of the variable.
309 *
310 * \sa ir_variable_mode
311 */
312 unsigned mode:3;
313
314 /**
315 * Interpolation mode for shader inputs / outputs
316 *
317 * \sa ir_variable_interpolation
318 */
319 unsigned interpolation:2;
320
321 /**
322 * Flag that the whole array is assignable
323 *
324 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
325 * equality). This flag enables this behavior.
326 */
327 unsigned array_lvalue:1;
328
329 /**
330 * \name ARB_fragment_coord_conventions
331 * @{
332 */
333 unsigned origin_upper_left:1;
334 unsigned pixel_center_integer:1;
335 /*@}*/
336
337 /**
338 * Was the location explicitly set in the shader?
339 *
340 * If the location is explicitly set in the shader, it \b cannot be changed
341 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
342 * no effect).
343 */
344 unsigned explicit_location:1;
345
346 /**
347 * Storage location of the base of this variable
348 *
349 * The precise meaning of this field depends on the nature of the variable.
350 *
351 * - Vertex shader input: one of the values from \c gl_vert_attrib.
352 * - Vertex shader output: one of the values from \c gl_vert_result.
353 * - Fragment shader input: one of the values from \c gl_frag_attrib.
354 * - Fragment shader output: one of the values from \c gl_frag_result.
355 * - Uniforms: Per-stage uniform slot number.
356 * - Other: This field is not currently used.
357 *
358 * If the variable is a uniform, shader input, or shader output, and the
359 * slot has not been assigned, the value will be -1.
360 */
361 int location;
362
363 /**
364 * Emit a warning if this variable is accessed.
365 */
366 const char *warn_extension;
367
368 /**
369 * Value assigned in the initializer of a variable declared "const"
370 */
371 ir_constant *constant_value;
372 };
373
374
375 /*@{*/
376 /**
377 * The representation of a function instance; may be the full definition or
378 * simply a prototype.
379 */
380 class ir_function_signature : public ir_instruction {
381 /* An ir_function_signature will be part of the list of signatures in
382 * an ir_function.
383 */
384 public:
385 ir_function_signature(const glsl_type *return_type);
386
387 virtual ir_function_signature *clone(void *mem_ctx,
388 struct hash_table *ht) const;
389 ir_function_signature *clone_prototype(void *mem_ctx,
390 struct hash_table *ht) const;
391
392 virtual void accept(ir_visitor *v)
393 {
394 v->visit(this);
395 }
396
397 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
398
399 /**
400 * Get the name of the function for which this is a signature
401 */
402 const char *function_name() const;
403
404 /**
405 * Get a handle to the function for which this is a signature
406 *
407 * There is no setter function, this function returns a \c const pointer,
408 * and \c ir_function_signature::_function is private for a reason. The
409 * only way to make a connection between a function and function signature
410 * is via \c ir_function::add_signature. This helps ensure that certain
411 * invariants (i.e., a function signature is in the list of signatures for
412 * its \c _function) are met.
413 *
414 * \sa ir_function::add_signature
415 */
416 inline const class ir_function *function() const
417 {
418 return this->_function;
419 }
420
421 /**
422 * Check whether the qualifiers match between this signature's parameters
423 * and the supplied parameter list. If not, returns the name of the first
424 * parameter with mismatched qualifiers (for use in error messages).
425 */
426 const char *qualifiers_match(exec_list *params);
427
428 /**
429 * Replace the current parameter list with the given one. This is useful
430 * if the current information came from a prototype, and either has invalid
431 * or missing parameter names.
432 */
433 void replace_parameters(exec_list *new_params);
434
435 /**
436 * Function return type.
437 *
438 * \note This discards the optional precision qualifier.
439 */
440 const struct glsl_type *return_type;
441
442 /**
443 * List of ir_variable of function parameters.
444 *
445 * This represents the storage. The paramaters passed in a particular
446 * call will be in ir_call::actual_paramaters.
447 */
448 struct exec_list parameters;
449
450 /** Whether or not this function has a body (which may be empty). */
451 unsigned is_defined:1;
452
453 /** Whether or not this function signature is a built-in. */
454 unsigned is_builtin:1;
455
456 /** Body of instructions in the function. */
457 struct exec_list body;
458
459 private:
460 /** Function of which this signature is one overload. */
461 class ir_function *_function;
462
463 friend class ir_function;
464 };
465
466
467 /**
468 * Header for tracking multiple overloaded functions with the same name.
469 * Contains a list of ir_function_signatures representing each of the
470 * actual functions.
471 */
472 class ir_function : public ir_instruction {
473 public:
474 ir_function(const char *name);
475
476 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
477
478 virtual ir_function *as_function()
479 {
480 return this;
481 }
482
483 virtual void accept(ir_visitor *v)
484 {
485 v->visit(this);
486 }
487
488 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
489
490 void add_signature(ir_function_signature *sig)
491 {
492 sig->_function = this;
493 this->signatures.push_tail(sig);
494 }
495
496 /**
497 * Get an iterator for the set of function signatures
498 */
499 exec_list_iterator iterator()
500 {
501 return signatures.iterator();
502 }
503
504 /**
505 * Find a signature that matches a set of actual parameters, taking implicit
506 * conversions into account.
507 */
508 ir_function_signature *matching_signature(const exec_list *actual_param);
509
510 /**
511 * Find a signature that exactly matches a set of actual parameters without
512 * any implicit type conversions.
513 */
514 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
515
516 /**
517 * Name of the function.
518 */
519 const char *name;
520
521 /** Whether or not this function has a signature that isn't a built-in. */
522 bool has_user_signature();
523
524 /**
525 * List of ir_function_signature for each overloaded function with this name.
526 */
527 struct exec_list signatures;
528 };
529
530 inline const char *ir_function_signature::function_name() const
531 {
532 return this->_function->name;
533 }
534 /*@}*/
535
536
537 /**
538 * IR instruction representing high-level if-statements
539 */
540 class ir_if : public ir_instruction {
541 public:
542 ir_if(ir_rvalue *condition)
543 : condition(condition)
544 {
545 ir_type = ir_type_if;
546 }
547
548 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
549
550 virtual ir_if *as_if()
551 {
552 return this;
553 }
554
555 virtual void accept(ir_visitor *v)
556 {
557 v->visit(this);
558 }
559
560 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
561
562 ir_rvalue *condition;
563 /** List of ir_instruction for the body of the then branch */
564 exec_list then_instructions;
565 /** List of ir_instruction for the body of the else branch */
566 exec_list else_instructions;
567 };
568
569
570 /**
571 * IR instruction representing a high-level loop structure.
572 */
573 class ir_loop : public ir_instruction {
574 public:
575 ir_loop();
576
577 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
578
579 virtual void accept(ir_visitor *v)
580 {
581 v->visit(this);
582 }
583
584 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
585
586 virtual ir_loop *as_loop()
587 {
588 return this;
589 }
590
591 /**
592 * Get an iterator for the instructions of the loop body
593 */
594 exec_list_iterator iterator()
595 {
596 return body_instructions.iterator();
597 }
598
599 /** List of ir_instruction that make up the body of the loop. */
600 exec_list body_instructions;
601
602 /**
603 * \name Loop counter and controls
604 *
605 * Represents a loop like a FORTRAN \c do-loop.
606 *
607 * \note
608 * If \c from and \c to are the same value, the loop will execute once.
609 */
610 /*@{*/
611 ir_rvalue *from; /** Value of the loop counter on the first
612 * iteration of the loop.
613 */
614 ir_rvalue *to; /** Value of the loop counter on the last
615 * iteration of the loop.
616 */
617 ir_rvalue *increment;
618 ir_variable *counter;
619
620 /**
621 * Comparison operation in the loop terminator.
622 *
623 * If any of the loop control fields are non-\c NULL, this field must be
624 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
625 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
626 */
627 int cmp;
628 /*@}*/
629 };
630
631
632 class ir_assignment : public ir_instruction {
633 public:
634 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
635
636 /**
637 * Construct an assignment with an explicit write mask
638 *
639 * \note
640 * Since a write mask is supplied, the LHS must already be a bare
641 * \c ir_dereference. The cannot be any swizzles in the LHS.
642 */
643 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
644 unsigned write_mask);
645
646 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
647
648 virtual ir_constant *constant_expression_value();
649
650 virtual void accept(ir_visitor *v)
651 {
652 v->visit(this);
653 }
654
655 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
656
657 virtual ir_assignment * as_assignment()
658 {
659 return this;
660 }
661
662 /**
663 * Get a whole variable written by an assignment
664 *
665 * If the LHS of the assignment writes a whole variable, the variable is
666 * returned. Otherwise \c NULL is returned. Examples of whole-variable
667 * assignment are:
668 *
669 * - Assigning to a scalar
670 * - Assigning to all components of a vector
671 * - Whole array (or matrix) assignment
672 * - Whole structure assignment
673 */
674 ir_variable *whole_variable_written();
675
676 /**
677 * Set the LHS of an assignment
678 */
679 void set_lhs(ir_rvalue *lhs);
680
681 /**
682 * Left-hand side of the assignment.
683 *
684 * This should be treated as read only. If you need to set the LHS of an
685 * assignment, use \c ir_assignment::set_lhs.
686 */
687 ir_dereference *lhs;
688
689 /**
690 * Value being assigned
691 */
692 ir_rvalue *rhs;
693
694 /**
695 * Optional condition for the assignment.
696 */
697 ir_rvalue *condition;
698
699
700 /**
701 * Component mask written
702 *
703 * For non-vector types in the LHS, this field will be zero. For vector
704 * types, a bit will be set for each component that is written. Note that
705 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
706 *
707 * A partially-set write mask means that each enabled channel gets
708 * the value from a consecutive channel of the rhs. For example,
709 * to write just .xyw of gl_FrontColor with color:
710 *
711 * (assign (constant bool (1)) (xyw)
712 * (var_ref gl_FragColor)
713 * (swiz xyw (var_ref color)))
714 */
715 unsigned write_mask:4;
716 };
717
718 /* Update ir_expression::num_operands() and operator_strs when
719 * updating this list.
720 */
721 enum ir_expression_operation {
722 ir_unop_bit_not,
723 ir_unop_logic_not,
724 ir_unop_neg,
725 ir_unop_abs,
726 ir_unop_sign,
727 ir_unop_rcp,
728 ir_unop_rsq,
729 ir_unop_sqrt,
730 ir_unop_exp, /**< Log base e on gentype */
731 ir_unop_log, /**< Natural log on gentype */
732 ir_unop_exp2,
733 ir_unop_log2,
734 ir_unop_f2i, /**< Float-to-integer conversion. */
735 ir_unop_i2f, /**< Integer-to-float conversion. */
736 ir_unop_f2b, /**< Float-to-boolean conversion */
737 ir_unop_b2f, /**< Boolean-to-float conversion */
738 ir_unop_i2b, /**< int-to-boolean conversion */
739 ir_unop_b2i, /**< Boolean-to-int conversion */
740 ir_unop_u2f, /**< Unsigned-to-float conversion. */
741 ir_unop_any,
742
743 /**
744 * \name Unary floating-point rounding operations.
745 */
746 /*@{*/
747 ir_unop_trunc,
748 ir_unop_ceil,
749 ir_unop_floor,
750 ir_unop_fract,
751 ir_unop_round_even,
752 /*@}*/
753
754 /**
755 * \name Trigonometric operations.
756 */
757 /*@{*/
758 ir_unop_sin,
759 ir_unop_cos,
760 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
761 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
762 /*@}*/
763
764 /**
765 * \name Partial derivatives.
766 */
767 /*@{*/
768 ir_unop_dFdx,
769 ir_unop_dFdy,
770 /*@}*/
771
772 ir_unop_noise,
773
774 /**
775 * A sentinel marking the last of the unary operations.
776 */
777 ir_last_unop = ir_unop_noise,
778
779 ir_binop_add,
780 ir_binop_sub,
781 ir_binop_mul,
782 ir_binop_div,
783
784 /**
785 * Takes one of two combinations of arguments:
786 *
787 * - mod(vecN, vecN)
788 * - mod(vecN, float)
789 *
790 * Does not take integer types.
791 */
792 ir_binop_mod,
793
794 /**
795 * \name Binary comparison operators which return a boolean vector.
796 * The type of both operands must be equal.
797 */
798 /*@{*/
799 ir_binop_less,
800 ir_binop_greater,
801 ir_binop_lequal,
802 ir_binop_gequal,
803 ir_binop_equal,
804 ir_binop_nequal,
805 /**
806 * Returns single boolean for whether all components of operands[0]
807 * equal the components of operands[1].
808 */
809 ir_binop_all_equal,
810 /**
811 * Returns single boolean for whether any component of operands[0]
812 * is not equal to the corresponding component of operands[1].
813 */
814 ir_binop_any_nequal,
815 /*@}*/
816
817 /**
818 * \name Bit-wise binary operations.
819 */
820 /*@{*/
821 ir_binop_lshift,
822 ir_binop_rshift,
823 ir_binop_bit_and,
824 ir_binop_bit_xor,
825 ir_binop_bit_or,
826 /*@}*/
827
828 ir_binop_logic_and,
829 ir_binop_logic_xor,
830 ir_binop_logic_or,
831
832 ir_binop_dot,
833 ir_binop_min,
834 ir_binop_max,
835
836 ir_binop_pow,
837
838 /**
839 * A sentinel marking the last of the binary operations.
840 */
841 ir_last_binop = ir_binop_pow,
842
843 ir_quadop_vector,
844
845 /**
846 * A sentinel marking the last of all operations.
847 */
848 ir_last_opcode = ir_last_binop
849 };
850
851 class ir_expression : public ir_rvalue {
852 public:
853 /**
854 * Constructor for unary operation expressions
855 */
856 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
857 ir_expression(int op, ir_rvalue *);
858
859 /**
860 * Constructor for binary operation expressions
861 */
862 ir_expression(int op, const struct glsl_type *type,
863 ir_rvalue *, ir_rvalue *);
864 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
865
866 /**
867 * Constructor for quad operator expressions
868 */
869 ir_expression(int op, const struct glsl_type *type,
870 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
871
872 virtual ir_expression *as_expression()
873 {
874 return this;
875 }
876
877 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
878
879 /**
880 * Attempt to constant-fold the expression
881 *
882 * If the expression cannot be constant folded, this method will return
883 * \c NULL.
884 */
885 virtual ir_constant *constant_expression_value();
886
887 /**
888 * Determine the number of operands used by an expression
889 */
890 static unsigned int get_num_operands(ir_expression_operation);
891
892 /**
893 * Determine the number of operands used by an expression
894 */
895 unsigned int get_num_operands() const
896 {
897 return (this->operation == ir_quadop_vector)
898 ? this->type->vector_elements : get_num_operands(operation);
899 }
900
901 /**
902 * Return a string representing this expression's operator.
903 */
904 const char *operator_string();
905
906 /**
907 * Return a string representing this expression's operator.
908 */
909 static const char *operator_string(ir_expression_operation);
910
911
912 /**
913 * Do a reverse-lookup to translate the given string into an operator.
914 */
915 static ir_expression_operation get_operator(const char *);
916
917 virtual void accept(ir_visitor *v)
918 {
919 v->visit(this);
920 }
921
922 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
923
924 ir_expression_operation operation;
925 ir_rvalue *operands[4];
926 };
927
928
929 /**
930 * IR instruction representing a function call
931 */
932 class ir_call : public ir_rvalue {
933 public:
934 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
935 : callee(callee)
936 {
937 ir_type = ir_type_call;
938 assert(callee->return_type != NULL);
939 type = callee->return_type;
940 actual_parameters->move_nodes_to(& this->actual_parameters);
941 }
942
943 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
944
945 virtual ir_constant *constant_expression_value();
946
947 virtual ir_call *as_call()
948 {
949 return this;
950 }
951
952 virtual void accept(ir_visitor *v)
953 {
954 v->visit(this);
955 }
956
957 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
958
959 /**
960 * Get a generic ir_call object when an error occurs
961 *
962 * Any allocation will be performed with 'ctx' as talloc owner.
963 */
964 static ir_call *get_error_instruction(void *ctx);
965
966 /**
967 * Get an iterator for the set of acutal parameters
968 */
969 exec_list_iterator iterator()
970 {
971 return actual_parameters.iterator();
972 }
973
974 /**
975 * Get the name of the function being called.
976 */
977 const char *callee_name() const
978 {
979 return callee->function_name();
980 }
981
982 /**
983 * Get the function signature bound to this function call
984 */
985 ir_function_signature *get_callee()
986 {
987 return callee;
988 }
989
990 /**
991 * Set the function call target
992 */
993 void set_callee(ir_function_signature *sig);
994
995 /**
996 * Generates an inline version of the function before @ir,
997 * returning the return value of the function.
998 */
999 ir_rvalue *generate_inline(ir_instruction *ir);
1000
1001 /* List of ir_rvalue of paramaters passed in this call. */
1002 exec_list actual_parameters;
1003
1004 private:
1005 ir_call()
1006 : callee(NULL)
1007 {
1008 this->ir_type = ir_type_call;
1009 }
1010
1011 ir_function_signature *callee;
1012 };
1013
1014
1015 /**
1016 * \name Jump-like IR instructions.
1017 *
1018 * These include \c break, \c continue, \c return, and \c discard.
1019 */
1020 /*@{*/
1021 class ir_jump : public ir_instruction {
1022 protected:
1023 ir_jump()
1024 {
1025 ir_type = ir_type_unset;
1026 }
1027 };
1028
1029 class ir_return : public ir_jump {
1030 public:
1031 ir_return()
1032 : value(NULL)
1033 {
1034 this->ir_type = ir_type_return;
1035 }
1036
1037 ir_return(ir_rvalue *value)
1038 : value(value)
1039 {
1040 this->ir_type = ir_type_return;
1041 }
1042
1043 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1044
1045 virtual ir_return *as_return()
1046 {
1047 return this;
1048 }
1049
1050 ir_rvalue *get_value() const
1051 {
1052 return value;
1053 }
1054
1055 virtual void accept(ir_visitor *v)
1056 {
1057 v->visit(this);
1058 }
1059
1060 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1061
1062 ir_rvalue *value;
1063 };
1064
1065
1066 /**
1067 * Jump instructions used inside loops
1068 *
1069 * These include \c break and \c continue. The \c break within a loop is
1070 * different from the \c break within a switch-statement.
1071 *
1072 * \sa ir_switch_jump
1073 */
1074 class ir_loop_jump : public ir_jump {
1075 public:
1076 enum jump_mode {
1077 jump_break,
1078 jump_continue
1079 };
1080
1081 ir_loop_jump(jump_mode mode)
1082 {
1083 this->ir_type = ir_type_loop_jump;
1084 this->mode = mode;
1085 this->loop = loop;
1086 }
1087
1088 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1089
1090 virtual void accept(ir_visitor *v)
1091 {
1092 v->visit(this);
1093 }
1094
1095 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1096
1097 bool is_break() const
1098 {
1099 return mode == jump_break;
1100 }
1101
1102 bool is_continue() const
1103 {
1104 return mode == jump_continue;
1105 }
1106
1107 /** Mode selector for the jump instruction. */
1108 enum jump_mode mode;
1109 private:
1110 /** Loop containing this break instruction. */
1111 ir_loop *loop;
1112 };
1113
1114 /**
1115 * IR instruction representing discard statements.
1116 */
1117 class ir_discard : public ir_jump {
1118 public:
1119 ir_discard()
1120 {
1121 this->ir_type = ir_type_discard;
1122 this->condition = NULL;
1123 }
1124
1125 ir_discard(ir_rvalue *cond)
1126 {
1127 this->ir_type = ir_type_discard;
1128 this->condition = cond;
1129 }
1130
1131 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1132
1133 virtual void accept(ir_visitor *v)
1134 {
1135 v->visit(this);
1136 }
1137
1138 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1139
1140 virtual ir_discard *as_discard()
1141 {
1142 return this;
1143 }
1144
1145 ir_rvalue *condition;
1146 };
1147 /*@}*/
1148
1149
1150 /**
1151 * Texture sampling opcodes used in ir_texture
1152 */
1153 enum ir_texture_opcode {
1154 ir_tex, /**< Regular texture look-up */
1155 ir_txb, /**< Texture look-up with LOD bias */
1156 ir_txl, /**< Texture look-up with explicit LOD */
1157 ir_txd, /**< Texture look-up with partial derivatvies */
1158 ir_txf /**< Texel fetch with explicit LOD */
1159 };
1160
1161
1162 /**
1163 * IR instruction to sample a texture
1164 *
1165 * The specific form of the IR instruction depends on the \c mode value
1166 * selected from \c ir_texture_opcodes. In the printed IR, these will
1167 * appear as:
1168 *
1169 * Texel offset
1170 * | Projection divisor
1171 * | | Shadow comparitor
1172 * | | |
1173 * v v v
1174 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1175 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1176 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1177 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1178 * (txf (sampler) (coordinate) (0 0 0) (lod))
1179 */
1180 class ir_texture : public ir_rvalue {
1181 public:
1182 ir_texture(enum ir_texture_opcode op)
1183 : op(op), projector(NULL), shadow_comparitor(NULL)
1184 {
1185 this->ir_type = ir_type_texture;
1186 }
1187
1188 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1189
1190 virtual ir_constant *constant_expression_value();
1191
1192 virtual void accept(ir_visitor *v)
1193 {
1194 v->visit(this);
1195 }
1196
1197 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1198
1199 /**
1200 * Return a string representing the ir_texture_opcode.
1201 */
1202 const char *opcode_string();
1203
1204 /** Set the sampler and infer the type. */
1205 void set_sampler(ir_dereference *sampler);
1206
1207 /**
1208 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1209 */
1210 static ir_texture_opcode get_opcode(const char *);
1211
1212 enum ir_texture_opcode op;
1213
1214 /** Sampler to use for the texture access. */
1215 ir_dereference *sampler;
1216
1217 /** Texture coordinate to sample */
1218 ir_rvalue *coordinate;
1219
1220 /**
1221 * Value used for projective divide.
1222 *
1223 * If there is no projective divide (the common case), this will be
1224 * \c NULL. Optimization passes should check for this to point to a constant
1225 * of 1.0 and replace that with \c NULL.
1226 */
1227 ir_rvalue *projector;
1228
1229 /**
1230 * Coordinate used for comparison on shadow look-ups.
1231 *
1232 * If there is no shadow comparison, this will be \c NULL. For the
1233 * \c ir_txf opcode, this *must* be \c NULL.
1234 */
1235 ir_rvalue *shadow_comparitor;
1236
1237 /** Explicit texel offsets. */
1238 signed char offsets[3];
1239
1240 union {
1241 ir_rvalue *lod; /**< Floating point LOD */
1242 ir_rvalue *bias; /**< Floating point LOD bias */
1243 struct {
1244 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1245 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1246 } grad;
1247 } lod_info;
1248 };
1249
1250
1251 struct ir_swizzle_mask {
1252 unsigned x:2;
1253 unsigned y:2;
1254 unsigned z:2;
1255 unsigned w:2;
1256
1257 /**
1258 * Number of components in the swizzle.
1259 */
1260 unsigned num_components:3;
1261
1262 /**
1263 * Does the swizzle contain duplicate components?
1264 *
1265 * L-value swizzles cannot contain duplicate components.
1266 */
1267 unsigned has_duplicates:1;
1268 };
1269
1270
1271 class ir_swizzle : public ir_rvalue {
1272 public:
1273 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1274 unsigned count);
1275
1276 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1277
1278 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1279
1280 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1281
1282 virtual ir_constant *constant_expression_value();
1283
1284 virtual ir_swizzle *as_swizzle()
1285 {
1286 return this;
1287 }
1288
1289 /**
1290 * Construct an ir_swizzle from the textual representation. Can fail.
1291 */
1292 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1293
1294 virtual void accept(ir_visitor *v)
1295 {
1296 v->visit(this);
1297 }
1298
1299 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1300
1301 bool is_lvalue()
1302 {
1303 return val->is_lvalue() && !mask.has_duplicates;
1304 }
1305
1306 /**
1307 * Get the variable that is ultimately referenced by an r-value
1308 */
1309 virtual ir_variable *variable_referenced();
1310
1311 ir_rvalue *val;
1312 ir_swizzle_mask mask;
1313
1314 private:
1315 /**
1316 * Initialize the mask component of a swizzle
1317 *
1318 * This is used by the \c ir_swizzle constructors.
1319 */
1320 void init_mask(const unsigned *components, unsigned count);
1321 };
1322
1323
1324 class ir_dereference : public ir_rvalue {
1325 public:
1326 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1327
1328 virtual ir_dereference *as_dereference()
1329 {
1330 return this;
1331 }
1332
1333 bool is_lvalue();
1334
1335 /**
1336 * Get the variable that is ultimately referenced by an r-value
1337 */
1338 virtual ir_variable *variable_referenced() = 0;
1339 };
1340
1341
1342 class ir_dereference_variable : public ir_dereference {
1343 public:
1344 ir_dereference_variable(ir_variable *var);
1345
1346 virtual ir_dereference_variable *clone(void *mem_ctx,
1347 struct hash_table *) const;
1348
1349 virtual ir_constant *constant_expression_value();
1350
1351 virtual ir_dereference_variable *as_dereference_variable()
1352 {
1353 return this;
1354 }
1355
1356 /**
1357 * Get the variable that is ultimately referenced by an r-value
1358 */
1359 virtual ir_variable *variable_referenced()
1360 {
1361 return this->var;
1362 }
1363
1364 virtual ir_variable *whole_variable_referenced()
1365 {
1366 /* ir_dereference_variable objects always dereference the entire
1367 * variable. However, if this dereference is dereferenced by anything
1368 * else, the complete deferefernce chain is not a whole-variable
1369 * dereference. This method should only be called on the top most
1370 * ir_rvalue in a dereference chain.
1371 */
1372 return this->var;
1373 }
1374
1375 virtual void accept(ir_visitor *v)
1376 {
1377 v->visit(this);
1378 }
1379
1380 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1381
1382 /**
1383 * Object being dereferenced.
1384 */
1385 ir_variable *var;
1386 };
1387
1388
1389 class ir_dereference_array : public ir_dereference {
1390 public:
1391 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1392
1393 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1394
1395 virtual ir_dereference_array *clone(void *mem_ctx,
1396 struct hash_table *) const;
1397
1398 virtual ir_constant *constant_expression_value();
1399
1400 virtual ir_dereference_array *as_dereference_array()
1401 {
1402 return this;
1403 }
1404
1405 /**
1406 * Get the variable that is ultimately referenced by an r-value
1407 */
1408 virtual ir_variable *variable_referenced()
1409 {
1410 return this->array->variable_referenced();
1411 }
1412
1413 virtual void accept(ir_visitor *v)
1414 {
1415 v->visit(this);
1416 }
1417
1418 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1419
1420 ir_rvalue *array;
1421 ir_rvalue *array_index;
1422
1423 private:
1424 void set_array(ir_rvalue *value);
1425 };
1426
1427
1428 class ir_dereference_record : public ir_dereference {
1429 public:
1430 ir_dereference_record(ir_rvalue *value, const char *field);
1431
1432 ir_dereference_record(ir_variable *var, const char *field);
1433
1434 virtual ir_dereference_record *clone(void *mem_ctx,
1435 struct hash_table *) const;
1436
1437 virtual ir_constant *constant_expression_value();
1438
1439 /**
1440 * Get the variable that is ultimately referenced by an r-value
1441 */
1442 virtual ir_variable *variable_referenced()
1443 {
1444 return this->record->variable_referenced();
1445 }
1446
1447 virtual void accept(ir_visitor *v)
1448 {
1449 v->visit(this);
1450 }
1451
1452 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1453
1454 ir_rvalue *record;
1455 const char *field;
1456 };
1457
1458
1459 /**
1460 * Data stored in an ir_constant
1461 */
1462 union ir_constant_data {
1463 unsigned u[16];
1464 int i[16];
1465 float f[16];
1466 bool b[16];
1467 };
1468
1469
1470 class ir_constant : public ir_rvalue {
1471 public:
1472 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1473 ir_constant(bool b);
1474 ir_constant(unsigned int u);
1475 ir_constant(int i);
1476 ir_constant(float f);
1477
1478 /**
1479 * Construct an ir_constant from a list of ir_constant values
1480 */
1481 ir_constant(const struct glsl_type *type, exec_list *values);
1482
1483 /**
1484 * Construct an ir_constant from a scalar component of another ir_constant
1485 *
1486 * The new \c ir_constant inherits the type of the component from the
1487 * source constant.
1488 *
1489 * \note
1490 * In the case of a matrix constant, the new constant is a scalar, \b not
1491 * a vector.
1492 */
1493 ir_constant(const ir_constant *c, unsigned i);
1494
1495 /**
1496 * Return a new ir_constant of the specified type containing all zeros.
1497 */
1498 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1499
1500 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1501
1502 virtual ir_constant *constant_expression_value();
1503
1504 virtual ir_constant *as_constant()
1505 {
1506 return this;
1507 }
1508
1509 virtual void accept(ir_visitor *v)
1510 {
1511 v->visit(this);
1512 }
1513
1514 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1515
1516 /**
1517 * Get a particular component of a constant as a specific type
1518 *
1519 * This is useful, for example, to get a value from an integer constant
1520 * as a float or bool. This appears frequently when constructors are
1521 * called with all constant parameters.
1522 */
1523 /*@{*/
1524 bool get_bool_component(unsigned i) const;
1525 float get_float_component(unsigned i) const;
1526 int get_int_component(unsigned i) const;
1527 unsigned get_uint_component(unsigned i) const;
1528 /*@}*/
1529
1530 ir_constant *get_array_element(unsigned i) const;
1531
1532 ir_constant *get_record_field(const char *name);
1533
1534 /**
1535 * Determine whether a constant has the same value as another constant
1536 *
1537 * \sa ir_constant::is_zero, ir_constant::is_one,
1538 * ir_constant::is_negative_one
1539 */
1540 bool has_value(const ir_constant *) const;
1541
1542 virtual bool is_zero() const;
1543 virtual bool is_one() const;
1544 virtual bool is_negative_one() const;
1545
1546 /**
1547 * Value of the constant.
1548 *
1549 * The field used to back the values supplied by the constant is determined
1550 * by the type associated with the \c ir_instruction. Constants may be
1551 * scalars, vectors, or matrices.
1552 */
1553 union ir_constant_data value;
1554
1555 /* Array elements */
1556 ir_constant **array_elements;
1557
1558 /* Structure fields */
1559 exec_list components;
1560
1561 private:
1562 /**
1563 * Parameterless constructor only used by the clone method
1564 */
1565 ir_constant(void);
1566 };
1567
1568 /*@}*/
1569
1570 /**
1571 * Apply a visitor to each IR node in a list
1572 */
1573 void
1574 visit_exec_list(exec_list *list, ir_visitor *visitor);
1575
1576 /**
1577 * Validate invariants on each IR node in a list
1578 */
1579 void validate_ir_tree(exec_list *instructions);
1580
1581 /**
1582 * Make a clone of each IR instruction in a list
1583 *
1584 * \param in List of IR instructions that are to be cloned
1585 * \param out List to hold the cloned instructions
1586 */
1587 void
1588 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1589
1590 extern void
1591 _mesa_glsl_initialize_variables(exec_list *instructions,
1592 struct _mesa_glsl_parse_state *state);
1593
1594 extern void
1595 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1596
1597 extern void
1598 _mesa_glsl_release_functions(void);
1599
1600 extern void
1601 reparent_ir(exec_list *list, void *mem_ctx);
1602
1603 struct glsl_symbol_table;
1604
1605 extern void
1606 import_prototypes(const exec_list *source, exec_list *dest,
1607 struct glsl_symbol_table *symbols, void *mem_ctx);
1608
1609 extern bool
1610 ir_has_call(ir_instruction *ir);
1611
1612 extern void
1613 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1614
1615 #endif /* IR_H */