glsl: Fix condition to generate shader link error
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77
78 extern "C" {
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81 }
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->element_type(),
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->element_type();
248 return visit_continue;
249 }
250 };
251
252
253 /**
254 * Visitor that determines whether or not a shader uses ir_end_primitive.
255 */
256 class find_end_primitive_visitor : public ir_hierarchical_visitor {
257 public:
258 find_end_primitive_visitor()
259 : found(false)
260 {
261 /* empty */
262 }
263
264 virtual ir_visitor_status visit(ir_end_primitive *)
265 {
266 found = true;
267 return visit_stop;
268 }
269
270 bool end_primitive_found()
271 {
272 return found;
273 }
274
275 private:
276 bool found;
277 };
278
279 } /* anonymous namespace */
280
281 void
282 linker_error(gl_shader_program *prog, const char *fmt, ...)
283 {
284 va_list ap;
285
286 ralloc_strcat(&prog->InfoLog, "error: ");
287 va_start(ap, fmt);
288 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
289 va_end(ap);
290
291 prog->LinkStatus = false;
292 }
293
294
295 void
296 linker_warning(gl_shader_program *prog, const char *fmt, ...)
297 {
298 va_list ap;
299
300 ralloc_strcat(&prog->InfoLog, "error: ");
301 va_start(ap, fmt);
302 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
303 va_end(ap);
304
305 }
306
307
308 /**
309 * Given a string identifying a program resource, break it into a base name
310 * and an optional array index in square brackets.
311 *
312 * If an array index is present, \c out_base_name_end is set to point to the
313 * "[" that precedes the array index, and the array index itself is returned
314 * as a long.
315 *
316 * If no array index is present (or if the array index is negative or
317 * mal-formed), \c out_base_name_end, is set to point to the null terminator
318 * at the end of the input string, and -1 is returned.
319 *
320 * Only the final array index is parsed; if the string contains other array
321 * indices (or structure field accesses), they are left in the base name.
322 *
323 * No attempt is made to check that the base name is properly formed;
324 * typically the caller will look up the base name in a hash table, so
325 * ill-formed base names simply turn into hash table lookup failures.
326 */
327 long
328 parse_program_resource_name(const GLchar *name,
329 const GLchar **out_base_name_end)
330 {
331 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
332 *
333 * "When an integer array element or block instance number is part of
334 * the name string, it will be specified in decimal form without a "+"
335 * or "-" sign or any extra leading zeroes. Additionally, the name
336 * string will not include white space anywhere in the string."
337 */
338
339 const size_t len = strlen(name);
340 *out_base_name_end = name + len;
341
342 if (len == 0 || name[len-1] != ']')
343 return -1;
344
345 /* Walk backwards over the string looking for a non-digit character. This
346 * had better be the opening bracket for an array index.
347 *
348 * Initially, i specifies the location of the ']'. Since the string may
349 * contain only the ']' charcater, walk backwards very carefully.
350 */
351 unsigned i;
352 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
353 /* empty */ ;
354
355 if ((i == 0) || name[i-1] != '[')
356 return -1;
357
358 long array_index = strtol(&name[i], NULL, 10);
359 if (array_index < 0)
360 return -1;
361
362 *out_base_name_end = name + (i - 1);
363 return array_index;
364 }
365
366
367 void
368 link_invalidate_variable_locations(exec_list *ir)
369 {
370 foreach_list(node, ir) {
371 ir_variable *const var = ((ir_instruction *) node)->as_variable();
372
373 if (var == NULL)
374 continue;
375
376 /* Only assign locations for variables that lack an explicit location.
377 * Explicit locations are set for all built-in variables, generic vertex
378 * shader inputs (via layout(location=...)), and generic fragment shader
379 * outputs (also via layout(location=...)).
380 */
381 if (!var->data.explicit_location) {
382 var->data.location = -1;
383 var->data.location_frac = 0;
384 }
385
386 /* ir_variable::is_unmatched_generic_inout is used by the linker while
387 * connecting outputs from one stage to inputs of the next stage.
388 *
389 * There are two implicit assumptions here. First, we assume that any
390 * built-in variable (i.e., non-generic in or out) will have
391 * explicit_location set. Second, we assume that any generic in or out
392 * will not have explicit_location set.
393 *
394 * This second assumption will only be valid until
395 * GL_ARB_separate_shader_objects is supported. When that extension is
396 * implemented, this function will need some modifications.
397 */
398 if (!var->data.explicit_location) {
399 var->data.is_unmatched_generic_inout = 1;
400 } else {
401 var->data.is_unmatched_generic_inout = 0;
402 }
403 }
404 }
405
406
407 /**
408 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
409 *
410 * Also check for errors based on incorrect usage of gl_ClipVertex and
411 * gl_ClipDistance.
412 *
413 * Return false if an error was reported.
414 */
415 static void
416 analyze_clip_usage(struct gl_shader_program *prog,
417 struct gl_shader *shader, GLboolean *UsesClipDistance,
418 GLuint *ClipDistanceArraySize)
419 {
420 *ClipDistanceArraySize = 0;
421
422 if (!prog->IsES && prog->Version >= 130) {
423 /* From section 7.1 (Vertex Shader Special Variables) of the
424 * GLSL 1.30 spec:
425 *
426 * "It is an error for a shader to statically write both
427 * gl_ClipVertex and gl_ClipDistance."
428 *
429 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
430 * gl_ClipVertex nor gl_ClipDistance.
431 */
432 find_assignment_visitor clip_vertex("gl_ClipVertex");
433 find_assignment_visitor clip_distance("gl_ClipDistance");
434
435 clip_vertex.run(shader->ir);
436 clip_distance.run(shader->ir);
437 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
438 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
439 "and `gl_ClipDistance'\n",
440 _mesa_shader_stage_to_string(shader->Stage));
441 return;
442 }
443 *UsesClipDistance = clip_distance.variable_found();
444 ir_variable *clip_distance_var =
445 shader->symbols->get_variable("gl_ClipDistance");
446 if (clip_distance_var)
447 *ClipDistanceArraySize = clip_distance_var->type->length;
448 } else {
449 *UsesClipDistance = false;
450 }
451 }
452
453
454 /**
455 * Verify that a vertex shader executable meets all semantic requirements.
456 *
457 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
458 * as a side effect.
459 *
460 * \param shader Vertex shader executable to be verified
461 */
462 void
463 validate_vertex_shader_executable(struct gl_shader_program *prog,
464 struct gl_shader *shader)
465 {
466 if (shader == NULL)
467 return;
468
469 /* From the GLSL 1.10 spec, page 48:
470 *
471 * "The variable gl_Position is available only in the vertex
472 * language and is intended for writing the homogeneous vertex
473 * position. All executions of a well-formed vertex shader
474 * executable must write a value into this variable. [...] The
475 * variable gl_Position is available only in the vertex
476 * language and is intended for writing the homogeneous vertex
477 * position. All executions of a well-formed vertex shader
478 * executable must write a value into this variable."
479 *
480 * while in GLSL 1.40 this text is changed to:
481 *
482 * "The variable gl_Position is available only in the vertex
483 * language and is intended for writing the homogeneous vertex
484 * position. It can be written at any time during shader
485 * execution. It may also be read back by a vertex shader
486 * after being written. This value will be used by primitive
487 * assembly, clipping, culling, and other fixed functionality
488 * operations, if present, that operate on primitives after
489 * vertex processing has occurred. Its value is undefined if
490 * the vertex shader executable does not write gl_Position."
491 *
492 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
493 * not an error.
494 */
495 if (prog->Version < (prog->IsES ? 300 : 140)) {
496 find_assignment_visitor find("gl_Position");
497 find.run(shader->ir);
498 if (!find.variable_found()) {
499 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
500 return;
501 }
502 }
503
504 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
505 &prog->Vert.ClipDistanceArraySize);
506 }
507
508
509 /**
510 * Verify that a fragment shader executable meets all semantic requirements
511 *
512 * \param shader Fragment shader executable to be verified
513 */
514 void
515 validate_fragment_shader_executable(struct gl_shader_program *prog,
516 struct gl_shader *shader)
517 {
518 if (shader == NULL)
519 return;
520
521 find_assignment_visitor frag_color("gl_FragColor");
522 find_assignment_visitor frag_data("gl_FragData");
523
524 frag_color.run(shader->ir);
525 frag_data.run(shader->ir);
526
527 if (frag_color.variable_found() && frag_data.variable_found()) {
528 linker_error(prog, "fragment shader writes to both "
529 "`gl_FragColor' and `gl_FragData'\n");
530 }
531 }
532
533 /**
534 * Verify that a geometry shader executable meets all semantic requirements
535 *
536 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
537 * prog->Geom.ClipDistanceArraySize as a side effect.
538 *
539 * \param shader Geometry shader executable to be verified
540 */
541 void
542 validate_geometry_shader_executable(struct gl_shader_program *prog,
543 struct gl_shader *shader)
544 {
545 if (shader == NULL)
546 return;
547
548 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
549 prog->Geom.VerticesIn = num_vertices;
550
551 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
552 &prog->Geom.ClipDistanceArraySize);
553
554 find_end_primitive_visitor end_primitive;
555 end_primitive.run(shader->ir);
556 prog->Geom.UsesEndPrimitive = end_primitive.end_primitive_found();
557 }
558
559
560 /**
561 * Perform validation of global variables used across multiple shaders
562 */
563 void
564 cross_validate_globals(struct gl_shader_program *prog,
565 struct gl_shader **shader_list,
566 unsigned num_shaders,
567 bool uniforms_only)
568 {
569 /* Examine all of the uniforms in all of the shaders and cross validate
570 * them.
571 */
572 glsl_symbol_table variables;
573 for (unsigned i = 0; i < num_shaders; i++) {
574 if (shader_list[i] == NULL)
575 continue;
576
577 foreach_list(node, shader_list[i]->ir) {
578 ir_variable *const var = ((ir_instruction *) node)->as_variable();
579
580 if (var == NULL)
581 continue;
582
583 if (uniforms_only && (var->data.mode != ir_var_uniform))
584 continue;
585
586 /* Don't cross validate temporaries that are at global scope. These
587 * will eventually get pulled into the shaders 'main'.
588 */
589 if (var->data.mode == ir_var_temporary)
590 continue;
591
592 /* If a global with this name has already been seen, verify that the
593 * new instance has the same type. In addition, if the globals have
594 * initializers, the values of the initializers must be the same.
595 */
596 ir_variable *const existing = variables.get_variable(var->name);
597 if (existing != NULL) {
598 if (var->type != existing->type) {
599 /* Consider the types to be "the same" if both types are arrays
600 * of the same type and one of the arrays is implicitly sized.
601 * In addition, set the type of the linked variable to the
602 * explicitly sized array.
603 */
604 if (var->type->is_array()
605 && existing->type->is_array()
606 && (var->type->fields.array == existing->type->fields.array)
607 && ((var->type->length == 0)
608 || (existing->type->length == 0))) {
609 if (var->type->length != 0) {
610 existing->type = var->type;
611 }
612 } else if (var->type->is_record()
613 && existing->type->is_record()
614 && existing->type->record_compare(var->type)) {
615 existing->type = var->type;
616 } else {
617 linker_error(prog, "%s `%s' declared as type "
618 "`%s' and type `%s'\n",
619 mode_string(var),
620 var->name, var->type->name,
621 existing->type->name);
622 return;
623 }
624 }
625
626 if (var->data.explicit_location) {
627 if (existing->data.explicit_location
628 && (var->data.location != existing->data.location)) {
629 linker_error(prog, "explicit locations for %s "
630 "`%s' have differing values\n",
631 mode_string(var), var->name);
632 return;
633 }
634
635 existing->data.location = var->data.location;
636 existing->data.explicit_location = true;
637 }
638
639 /* From the GLSL 4.20 specification:
640 * "A link error will result if two compilation units in a program
641 * specify different integer-constant bindings for the same
642 * opaque-uniform name. However, it is not an error to specify a
643 * binding on some but not all declarations for the same name"
644 */
645 if (var->data.explicit_binding) {
646 if (existing->data.explicit_binding &&
647 var->data.binding != existing->data.binding) {
648 linker_error(prog, "explicit bindings for %s "
649 "`%s' have differing values\n",
650 mode_string(var), var->name);
651 return;
652 }
653
654 existing->data.binding = var->data.binding;
655 existing->data.explicit_binding = true;
656 }
657
658 if (var->type->contains_atomic() &&
659 var->data.atomic.offset != existing->data.atomic.offset) {
660 linker_error(prog, "offset specifications for %s "
661 "`%s' have differing values\n",
662 mode_string(var), var->name);
663 return;
664 }
665
666 /* Validate layout qualifiers for gl_FragDepth.
667 *
668 * From the AMD/ARB_conservative_depth specs:
669 *
670 * "If gl_FragDepth is redeclared in any fragment shader in a
671 * program, it must be redeclared in all fragment shaders in
672 * that program that have static assignments to
673 * gl_FragDepth. All redeclarations of gl_FragDepth in all
674 * fragment shaders in a single program must have the same set
675 * of qualifiers."
676 */
677 if (strcmp(var->name, "gl_FragDepth") == 0) {
678 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
679 bool layout_differs =
680 var->data.depth_layout != existing->data.depth_layout;
681
682 if (layout_declared && layout_differs) {
683 linker_error(prog,
684 "All redeclarations of gl_FragDepth in all "
685 "fragment shaders in a single program must have "
686 "the same set of qualifiers.");
687 }
688
689 if (var->data.used && layout_differs) {
690 linker_error(prog,
691 "If gl_FragDepth is redeclared with a layout "
692 "qualifier in any fragment shader, it must be "
693 "redeclared with the same layout qualifier in "
694 "all fragment shaders that have assignments to "
695 "gl_FragDepth");
696 }
697 }
698
699 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
700 *
701 * "If a shared global has multiple initializers, the
702 * initializers must all be constant expressions, and they
703 * must all have the same value. Otherwise, a link error will
704 * result. (A shared global having only one initializer does
705 * not require that initializer to be a constant expression.)"
706 *
707 * Previous to 4.20 the GLSL spec simply said that initializers
708 * must have the same value. In this case of non-constant
709 * initializers, this was impossible to determine. As a result,
710 * no vendor actually implemented that behavior. The 4.20
711 * behavior matches the implemented behavior of at least one other
712 * vendor, so we'll implement that for all GLSL versions.
713 */
714 if (var->constant_initializer != NULL) {
715 if (existing->constant_initializer != NULL) {
716 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
717 linker_error(prog, "initializers for %s "
718 "`%s' have differing values\n",
719 mode_string(var), var->name);
720 return;
721 }
722 } else {
723 /* If the first-seen instance of a particular uniform did not
724 * have an initializer but a later instance does, copy the
725 * initializer to the version stored in the symbol table.
726 */
727 /* FINISHME: This is wrong. The constant_value field should
728 * FINISHME: not be modified! Imagine a case where a shader
729 * FINISHME: without an initializer is linked in two different
730 * FINISHME: programs with shaders that have differing
731 * FINISHME: initializers. Linking with the first will
732 * FINISHME: modify the shader, and linking with the second
733 * FINISHME: will fail.
734 */
735 existing->constant_initializer =
736 var->constant_initializer->clone(ralloc_parent(existing),
737 NULL);
738 }
739 }
740
741 if (var->data.has_initializer) {
742 if (existing->data.has_initializer
743 && (var->constant_initializer == NULL
744 || existing->constant_initializer == NULL)) {
745 linker_error(prog,
746 "shared global variable `%s' has multiple "
747 "non-constant initializers.\n",
748 var->name);
749 return;
750 }
751
752 /* Some instance had an initializer, so keep track of that. In
753 * this location, all sorts of initializers (constant or
754 * otherwise) will propagate the existence to the variable
755 * stored in the symbol table.
756 */
757 existing->data.has_initializer = true;
758 }
759
760 if (existing->data.invariant != var->data.invariant) {
761 linker_error(prog, "declarations for %s `%s' have "
762 "mismatching invariant qualifiers\n",
763 mode_string(var), var->name);
764 return;
765 }
766 if (existing->data.centroid != var->data.centroid) {
767 linker_error(prog, "declarations for %s `%s' have "
768 "mismatching centroid qualifiers\n",
769 mode_string(var), var->name);
770 return;
771 }
772 if (existing->data.sample != var->data.sample) {
773 linker_error(prog, "declarations for %s `%s` have "
774 "mismatching sample qualifiers\n",
775 mode_string(var), var->name);
776 return;
777 }
778 } else
779 variables.add_variable(var);
780 }
781 }
782 }
783
784
785 /**
786 * Perform validation of uniforms used across multiple shader stages
787 */
788 void
789 cross_validate_uniforms(struct gl_shader_program *prog)
790 {
791 cross_validate_globals(prog, prog->_LinkedShaders,
792 MESA_SHADER_STAGES, true);
793 }
794
795 /**
796 * Accumulates the array of prog->UniformBlocks and checks that all
797 * definitons of blocks agree on their contents.
798 */
799 static bool
800 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
801 {
802 unsigned max_num_uniform_blocks = 0;
803 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
804 if (prog->_LinkedShaders[i])
805 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
806 }
807
808 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
809 struct gl_shader *sh = prog->_LinkedShaders[i];
810
811 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
812 max_num_uniform_blocks);
813 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
814 prog->UniformBlockStageIndex[i][j] = -1;
815
816 if (sh == NULL)
817 continue;
818
819 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
820 int index = link_cross_validate_uniform_block(prog,
821 &prog->UniformBlocks,
822 &prog->NumUniformBlocks,
823 &sh->UniformBlocks[j]);
824
825 if (index == -1) {
826 linker_error(prog, "uniform block `%s' has mismatching definitions",
827 sh->UniformBlocks[j].Name);
828 return false;
829 }
830
831 prog->UniformBlockStageIndex[i][index] = j;
832 }
833 }
834
835 return true;
836 }
837
838
839 /**
840 * Populates a shaders symbol table with all global declarations
841 */
842 static void
843 populate_symbol_table(gl_shader *sh)
844 {
845 sh->symbols = new(sh) glsl_symbol_table;
846
847 foreach_list(node, sh->ir) {
848 ir_instruction *const inst = (ir_instruction *) node;
849 ir_variable *var;
850 ir_function *func;
851
852 if ((func = inst->as_function()) != NULL) {
853 sh->symbols->add_function(func);
854 } else if ((var = inst->as_variable()) != NULL) {
855 sh->symbols->add_variable(var);
856 }
857 }
858 }
859
860
861 /**
862 * Remap variables referenced in an instruction tree
863 *
864 * This is used when instruction trees are cloned from one shader and placed in
865 * another. These trees will contain references to \c ir_variable nodes that
866 * do not exist in the target shader. This function finds these \c ir_variable
867 * references and replaces the references with matching variables in the target
868 * shader.
869 *
870 * If there is no matching variable in the target shader, a clone of the
871 * \c ir_variable is made and added to the target shader. The new variable is
872 * added to \b both the instruction stream and the symbol table.
873 *
874 * \param inst IR tree that is to be processed.
875 * \param symbols Symbol table containing global scope symbols in the
876 * linked shader.
877 * \param instructions Instruction stream where new variable declarations
878 * should be added.
879 */
880 void
881 remap_variables(ir_instruction *inst, struct gl_shader *target,
882 hash_table *temps)
883 {
884 class remap_visitor : public ir_hierarchical_visitor {
885 public:
886 remap_visitor(struct gl_shader *target,
887 hash_table *temps)
888 {
889 this->target = target;
890 this->symbols = target->symbols;
891 this->instructions = target->ir;
892 this->temps = temps;
893 }
894
895 virtual ir_visitor_status visit(ir_dereference_variable *ir)
896 {
897 if (ir->var->data.mode == ir_var_temporary) {
898 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
899
900 assert(var != NULL);
901 ir->var = var;
902 return visit_continue;
903 }
904
905 ir_variable *const existing =
906 this->symbols->get_variable(ir->var->name);
907 if (existing != NULL)
908 ir->var = existing;
909 else {
910 ir_variable *copy = ir->var->clone(this->target, NULL);
911
912 this->symbols->add_variable(copy);
913 this->instructions->push_head(copy);
914 ir->var = copy;
915 }
916
917 return visit_continue;
918 }
919
920 private:
921 struct gl_shader *target;
922 glsl_symbol_table *symbols;
923 exec_list *instructions;
924 hash_table *temps;
925 };
926
927 remap_visitor v(target, temps);
928
929 inst->accept(&v);
930 }
931
932
933 /**
934 * Move non-declarations from one instruction stream to another
935 *
936 * The intended usage pattern of this function is to pass the pointer to the
937 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
938 * pointer) for \c last and \c false for \c make_copies on the first
939 * call. Successive calls pass the return value of the previous call for
940 * \c last and \c true for \c make_copies.
941 *
942 * \param instructions Source instruction stream
943 * \param last Instruction after which new instructions should be
944 * inserted in the target instruction stream
945 * \param make_copies Flag selecting whether instructions in \c instructions
946 * should be copied (via \c ir_instruction::clone) into the
947 * target list or moved.
948 *
949 * \return
950 * The new "last" instruction in the target instruction stream. This pointer
951 * is suitable for use as the \c last parameter of a later call to this
952 * function.
953 */
954 exec_node *
955 move_non_declarations(exec_list *instructions, exec_node *last,
956 bool make_copies, gl_shader *target)
957 {
958 hash_table *temps = NULL;
959
960 if (make_copies)
961 temps = hash_table_ctor(0, hash_table_pointer_hash,
962 hash_table_pointer_compare);
963
964 foreach_list_safe(node, instructions) {
965 ir_instruction *inst = (ir_instruction *) node;
966
967 if (inst->as_function())
968 continue;
969
970 ir_variable *var = inst->as_variable();
971 if ((var != NULL) && (var->data.mode != ir_var_temporary))
972 continue;
973
974 assert(inst->as_assignment()
975 || inst->as_call()
976 || inst->as_if() /* for initializers with the ?: operator */
977 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
978
979 if (make_copies) {
980 inst = inst->clone(target, NULL);
981
982 if (var != NULL)
983 hash_table_insert(temps, inst, var);
984 else
985 remap_variables(inst, target, temps);
986 } else {
987 inst->remove();
988 }
989
990 last->insert_after(inst);
991 last = inst;
992 }
993
994 if (make_copies)
995 hash_table_dtor(temps);
996
997 return last;
998 }
999
1000 /**
1001 * Get the function signature for main from a shader
1002 */
1003 static ir_function_signature *
1004 get_main_function_signature(gl_shader *sh)
1005 {
1006 ir_function *const f = sh->symbols->get_function("main");
1007 if (f != NULL) {
1008 exec_list void_parameters;
1009
1010 /* Look for the 'void main()' signature and ensure that it's defined.
1011 * This keeps the linker from accidentally pick a shader that just
1012 * contains a prototype for main.
1013 *
1014 * We don't have to check for multiple definitions of main (in multiple
1015 * shaders) because that would have already been caught above.
1016 */
1017 ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
1018 if ((sig != NULL) && sig->is_defined) {
1019 return sig;
1020 }
1021 }
1022
1023 return NULL;
1024 }
1025
1026
1027 /**
1028 * This class is only used in link_intrastage_shaders() below but declaring
1029 * it inside that function leads to compiler warnings with some versions of
1030 * gcc.
1031 */
1032 class array_sizing_visitor : public ir_hierarchical_visitor {
1033 public:
1034 array_sizing_visitor()
1035 : mem_ctx(ralloc_context(NULL)),
1036 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1037 hash_table_pointer_compare))
1038 {
1039 }
1040
1041 ~array_sizing_visitor()
1042 {
1043 hash_table_dtor(this->unnamed_interfaces);
1044 ralloc_free(this->mem_ctx);
1045 }
1046
1047 virtual ir_visitor_status visit(ir_variable *var)
1048 {
1049 fixup_type(&var->type, var->data.max_array_access);
1050 if (var->type->is_interface()) {
1051 if (interface_contains_unsized_arrays(var->type)) {
1052 const glsl_type *new_type =
1053 resize_interface_members(var->type, var->max_ifc_array_access);
1054 var->type = new_type;
1055 var->change_interface_type(new_type);
1056 }
1057 } else if (var->type->is_array() &&
1058 var->type->fields.array->is_interface()) {
1059 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1060 const glsl_type *new_type =
1061 resize_interface_members(var->type->fields.array,
1062 var->max_ifc_array_access);
1063 var->change_interface_type(new_type);
1064 var->type =
1065 glsl_type::get_array_instance(new_type, var->type->length);
1066 }
1067 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1068 /* Store a pointer to the variable in the unnamed_interfaces
1069 * hashtable.
1070 */
1071 ir_variable **interface_vars = (ir_variable **)
1072 hash_table_find(this->unnamed_interfaces, ifc_type);
1073 if (interface_vars == NULL) {
1074 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1075 ifc_type->length);
1076 hash_table_insert(this->unnamed_interfaces, interface_vars,
1077 ifc_type);
1078 }
1079 unsigned index = ifc_type->field_index(var->name);
1080 assert(index < ifc_type->length);
1081 assert(interface_vars[index] == NULL);
1082 interface_vars[index] = var;
1083 }
1084 return visit_continue;
1085 }
1086
1087 /**
1088 * For each unnamed interface block that was discovered while running the
1089 * visitor, adjust the interface type to reflect the newly assigned array
1090 * sizes, and fix up the ir_variable nodes to point to the new interface
1091 * type.
1092 */
1093 void fixup_unnamed_interface_types()
1094 {
1095 hash_table_call_foreach(this->unnamed_interfaces,
1096 fixup_unnamed_interface_type, NULL);
1097 }
1098
1099 private:
1100 /**
1101 * If the type pointed to by \c type represents an unsized array, replace
1102 * it with a sized array whose size is determined by max_array_access.
1103 */
1104 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1105 {
1106 if ((*type)->is_unsized_array()) {
1107 *type = glsl_type::get_array_instance((*type)->fields.array,
1108 max_array_access + 1);
1109 assert(*type != NULL);
1110 }
1111 }
1112
1113 /**
1114 * Determine whether the given interface type contains unsized arrays (if
1115 * it doesn't, array_sizing_visitor doesn't need to process it).
1116 */
1117 static bool interface_contains_unsized_arrays(const glsl_type *type)
1118 {
1119 for (unsigned i = 0; i < type->length; i++) {
1120 const glsl_type *elem_type = type->fields.structure[i].type;
1121 if (elem_type->is_unsized_array())
1122 return true;
1123 }
1124 return false;
1125 }
1126
1127 /**
1128 * Create a new interface type based on the given type, with unsized arrays
1129 * replaced by sized arrays whose size is determined by
1130 * max_ifc_array_access.
1131 */
1132 static const glsl_type *
1133 resize_interface_members(const glsl_type *type,
1134 const unsigned *max_ifc_array_access)
1135 {
1136 unsigned num_fields = type->length;
1137 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1138 memcpy(fields, type->fields.structure,
1139 num_fields * sizeof(*fields));
1140 for (unsigned i = 0; i < num_fields; i++) {
1141 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1142 }
1143 glsl_interface_packing packing =
1144 (glsl_interface_packing) type->interface_packing;
1145 const glsl_type *new_ifc_type =
1146 glsl_type::get_interface_instance(fields, num_fields,
1147 packing, type->name);
1148 delete [] fields;
1149 return new_ifc_type;
1150 }
1151
1152 static void fixup_unnamed_interface_type(const void *key, void *data,
1153 void *)
1154 {
1155 const glsl_type *ifc_type = (const glsl_type *) key;
1156 ir_variable **interface_vars = (ir_variable **) data;
1157 unsigned num_fields = ifc_type->length;
1158 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1159 memcpy(fields, ifc_type->fields.structure,
1160 num_fields * sizeof(*fields));
1161 bool interface_type_changed = false;
1162 for (unsigned i = 0; i < num_fields; i++) {
1163 if (interface_vars[i] != NULL &&
1164 fields[i].type != interface_vars[i]->type) {
1165 fields[i].type = interface_vars[i]->type;
1166 interface_type_changed = true;
1167 }
1168 }
1169 if (!interface_type_changed) {
1170 delete [] fields;
1171 return;
1172 }
1173 glsl_interface_packing packing =
1174 (glsl_interface_packing) ifc_type->interface_packing;
1175 const glsl_type *new_ifc_type =
1176 glsl_type::get_interface_instance(fields, num_fields, packing,
1177 ifc_type->name);
1178 delete [] fields;
1179 for (unsigned i = 0; i < num_fields; i++) {
1180 if (interface_vars[i] != NULL)
1181 interface_vars[i]->change_interface_type(new_ifc_type);
1182 }
1183 }
1184
1185 /**
1186 * Memory context used to allocate the data in \c unnamed_interfaces.
1187 */
1188 void *mem_ctx;
1189
1190 /**
1191 * Hash table from const glsl_type * to an array of ir_variable *'s
1192 * pointing to the ir_variables constituting each unnamed interface block.
1193 */
1194 hash_table *unnamed_interfaces;
1195 };
1196
1197 /**
1198 * Performs the cross-validation of geometry shader max_vertices and
1199 * primitive type layout qualifiers for the attached geometry shaders,
1200 * and propagates them to the linked GS and linked shader program.
1201 */
1202 static void
1203 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1204 struct gl_shader *linked_shader,
1205 struct gl_shader **shader_list,
1206 unsigned num_shaders)
1207 {
1208 linked_shader->Geom.VerticesOut = 0;
1209 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1210 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1211
1212 /* No in/out qualifiers defined for anything but GLSL 1.50+
1213 * geometry shaders so far.
1214 */
1215 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1216 return;
1217
1218 /* From the GLSL 1.50 spec, page 46:
1219 *
1220 * "All geometry shader output layout declarations in a program
1221 * must declare the same layout and same value for
1222 * max_vertices. There must be at least one geometry output
1223 * layout declaration somewhere in a program, but not all
1224 * geometry shaders (compilation units) are required to
1225 * declare it."
1226 */
1227
1228 for (unsigned i = 0; i < num_shaders; i++) {
1229 struct gl_shader *shader = shader_list[i];
1230
1231 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1232 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1233 linked_shader->Geom.InputType != shader->Geom.InputType) {
1234 linker_error(prog, "geometry shader defined with conflicting "
1235 "input types\n");
1236 return;
1237 }
1238 linked_shader->Geom.InputType = shader->Geom.InputType;
1239 }
1240
1241 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1242 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1243 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1244 linker_error(prog, "geometry shader defined with conflicting "
1245 "output types\n");
1246 return;
1247 }
1248 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1249 }
1250
1251 if (shader->Geom.VerticesOut != 0) {
1252 if (linked_shader->Geom.VerticesOut != 0 &&
1253 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1254 linker_error(prog, "geometry shader defined with conflicting "
1255 "output vertex count (%d and %d)\n",
1256 linked_shader->Geom.VerticesOut,
1257 shader->Geom.VerticesOut);
1258 return;
1259 }
1260 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1261 }
1262 }
1263
1264 /* Just do the intrastage -> interstage propagation right now,
1265 * since we already know we're in the right type of shader program
1266 * for doing it.
1267 */
1268 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1269 linker_error(prog,
1270 "geometry shader didn't declare primitive input type\n");
1271 return;
1272 }
1273 prog->Geom.InputType = linked_shader->Geom.InputType;
1274
1275 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1276 linker_error(prog,
1277 "geometry shader didn't declare primitive output type\n");
1278 return;
1279 }
1280 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1281
1282 if (linked_shader->Geom.VerticesOut == 0) {
1283 linker_error(prog,
1284 "geometry shader didn't declare max_vertices\n");
1285 return;
1286 }
1287 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1288 }
1289
1290
1291 /**
1292 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1293 * qualifiers for the attached compute shaders, and propagate them to the
1294 * linked CS and linked shader program.
1295 */
1296 static void
1297 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1298 struct gl_shader *linked_shader,
1299 struct gl_shader **shader_list,
1300 unsigned num_shaders)
1301 {
1302 for (int i = 0; i < 3; i++)
1303 linked_shader->Comp.LocalSize[i] = 0;
1304
1305 /* This function is called for all shader stages, but it only has an effect
1306 * for compute shaders.
1307 */
1308 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1309 return;
1310
1311 /* From the ARB_compute_shader spec, in the section describing local size
1312 * declarations:
1313 *
1314 * If multiple compute shaders attached to a single program object
1315 * declare local work-group size, the declarations must be identical;
1316 * otherwise a link-time error results. Furthermore, if a program
1317 * object contains any compute shaders, at least one must contain an
1318 * input layout qualifier specifying the local work sizes of the
1319 * program, or a link-time error will occur.
1320 */
1321 for (unsigned sh = 0; sh < num_shaders; sh++) {
1322 struct gl_shader *shader = shader_list[sh];
1323
1324 if (shader->Comp.LocalSize[0] != 0) {
1325 if (linked_shader->Comp.LocalSize[0] != 0) {
1326 for (int i = 0; i < 3; i++) {
1327 if (linked_shader->Comp.LocalSize[i] !=
1328 shader->Comp.LocalSize[i]) {
1329 linker_error(prog, "compute shader defined with conflicting "
1330 "local sizes\n");
1331 return;
1332 }
1333 }
1334 }
1335 for (int i = 0; i < 3; i++)
1336 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1337 }
1338 }
1339
1340 /* Just do the intrastage -> interstage propagation right now,
1341 * since we already know we're in the right type of shader program
1342 * for doing it.
1343 */
1344 if (linked_shader->Comp.LocalSize[0] == 0) {
1345 linker_error(prog, "compute shader didn't declare local size\n");
1346 return;
1347 }
1348 for (int i = 0; i < 3; i++)
1349 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1350 }
1351
1352
1353 /**
1354 * Combine a group of shaders for a single stage to generate a linked shader
1355 *
1356 * \note
1357 * If this function is supplied a single shader, it is cloned, and the new
1358 * shader is returned.
1359 */
1360 static struct gl_shader *
1361 link_intrastage_shaders(void *mem_ctx,
1362 struct gl_context *ctx,
1363 struct gl_shader_program *prog,
1364 struct gl_shader **shader_list,
1365 unsigned num_shaders)
1366 {
1367 struct gl_uniform_block *uniform_blocks = NULL;
1368
1369 /* Check that global variables defined in multiple shaders are consistent.
1370 */
1371 cross_validate_globals(prog, shader_list, num_shaders, false);
1372 if (!prog->LinkStatus)
1373 return NULL;
1374
1375 /* Check that interface blocks defined in multiple shaders are consistent.
1376 */
1377 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1378 num_shaders);
1379 if (!prog->LinkStatus)
1380 return NULL;
1381
1382 /* Link up uniform blocks defined within this stage. */
1383 const unsigned num_uniform_blocks =
1384 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1385 &uniform_blocks);
1386
1387 /* Check that there is only a single definition of each function signature
1388 * across all shaders.
1389 */
1390 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1391 foreach_list(node, shader_list[i]->ir) {
1392 ir_function *const f = ((ir_instruction *) node)->as_function();
1393
1394 if (f == NULL)
1395 continue;
1396
1397 for (unsigned j = i + 1; j < num_shaders; j++) {
1398 ir_function *const other =
1399 shader_list[j]->symbols->get_function(f->name);
1400
1401 /* If the other shader has no function (and therefore no function
1402 * signatures) with the same name, skip to the next shader.
1403 */
1404 if (other == NULL)
1405 continue;
1406
1407 foreach_list(n, &f->signatures) {
1408 ir_function_signature *sig = (ir_function_signature *) n;
1409
1410 if (!sig->is_defined || sig->is_builtin())
1411 continue;
1412
1413 ir_function_signature *other_sig =
1414 other->exact_matching_signature(NULL, &sig->parameters);
1415
1416 if ((other_sig != NULL) && other_sig->is_defined
1417 && !other_sig->is_builtin()) {
1418 linker_error(prog, "function `%s' is multiply defined",
1419 f->name);
1420 return NULL;
1421 }
1422 }
1423 }
1424 }
1425 }
1426
1427 /* Find the shader that defines main, and make a clone of it.
1428 *
1429 * Starting with the clone, search for undefined references. If one is
1430 * found, find the shader that defines it. Clone the reference and add
1431 * it to the shader. Repeat until there are no undefined references or
1432 * until a reference cannot be resolved.
1433 */
1434 gl_shader *main = NULL;
1435 for (unsigned i = 0; i < num_shaders; i++) {
1436 if (get_main_function_signature(shader_list[i]) != NULL) {
1437 main = shader_list[i];
1438 break;
1439 }
1440 }
1441
1442 if (main == NULL) {
1443 linker_error(prog, "%s shader lacks `main'\n",
1444 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1445 return NULL;
1446 }
1447
1448 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1449 linked->ir = new(linked) exec_list;
1450 clone_ir_list(mem_ctx, linked->ir, main->ir);
1451
1452 linked->UniformBlocks = uniform_blocks;
1453 linked->NumUniformBlocks = num_uniform_blocks;
1454 ralloc_steal(linked, linked->UniformBlocks);
1455
1456 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1457 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1458
1459 populate_symbol_table(linked);
1460
1461 /* The a pointer to the main function in the final linked shader (i.e., the
1462 * copy of the original shader that contained the main function).
1463 */
1464 ir_function_signature *const main_sig = get_main_function_signature(linked);
1465
1466 /* Move any instructions other than variable declarations or function
1467 * declarations into main.
1468 */
1469 exec_node *insertion_point =
1470 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1471 linked);
1472
1473 for (unsigned i = 0; i < num_shaders; i++) {
1474 if (shader_list[i] == main)
1475 continue;
1476
1477 insertion_point = move_non_declarations(shader_list[i]->ir,
1478 insertion_point, true, linked);
1479 }
1480
1481 /* Check if any shader needs built-in functions. */
1482 bool need_builtins = false;
1483 for (unsigned i = 0; i < num_shaders; i++) {
1484 if (shader_list[i]->uses_builtin_functions) {
1485 need_builtins = true;
1486 break;
1487 }
1488 }
1489
1490 bool ok;
1491 if (need_builtins) {
1492 /* Make a temporary array one larger than shader_list, which will hold
1493 * the built-in function shader as well.
1494 */
1495 gl_shader **linking_shaders = (gl_shader **)
1496 calloc(num_shaders + 1, sizeof(gl_shader *));
1497 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1498 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1499
1500 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1501
1502 free(linking_shaders);
1503 } else {
1504 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1505 }
1506
1507
1508 if (!ok) {
1509 ctx->Driver.DeleteShader(ctx, linked);
1510 return NULL;
1511 }
1512
1513 /* At this point linked should contain all of the linked IR, so
1514 * validate it to make sure nothing went wrong.
1515 */
1516 validate_ir_tree(linked->ir);
1517
1518 /* Set the size of geometry shader input arrays */
1519 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1520 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1521 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1522 foreach_list(n, linked->ir) {
1523 ir_instruction *ir = (ir_instruction *) n;
1524 ir->accept(&input_resize_visitor);
1525 }
1526 }
1527
1528 /* Make a pass over all variable declarations to ensure that arrays with
1529 * unspecified sizes have a size specified. The size is inferred from the
1530 * max_array_access field.
1531 */
1532 array_sizing_visitor v;
1533 v.run(linked->ir);
1534 v.fixup_unnamed_interface_types();
1535
1536 return linked;
1537 }
1538
1539 /**
1540 * Update the sizes of linked shader uniform arrays to the maximum
1541 * array index used.
1542 *
1543 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1544 *
1545 * If one or more elements of an array are active,
1546 * GetActiveUniform will return the name of the array in name,
1547 * subject to the restrictions listed above. The type of the array
1548 * is returned in type. The size parameter contains the highest
1549 * array element index used, plus one. The compiler or linker
1550 * determines the highest index used. There will be only one
1551 * active uniform reported by the GL per uniform array.
1552
1553 */
1554 static void
1555 update_array_sizes(struct gl_shader_program *prog)
1556 {
1557 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1558 if (prog->_LinkedShaders[i] == NULL)
1559 continue;
1560
1561 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1562 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1563
1564 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1565 !var->type->is_array())
1566 continue;
1567
1568 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1569 * will not be eliminated. Since we always do std140, just
1570 * don't resize arrays in UBOs.
1571 *
1572 * Atomic counters are supposed to get deterministic
1573 * locations assigned based on the declaration ordering and
1574 * sizes, array compaction would mess that up.
1575 */
1576 if (var->is_in_uniform_block() || var->type->contains_atomic())
1577 continue;
1578
1579 unsigned int size = var->data.max_array_access;
1580 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1581 if (prog->_LinkedShaders[j] == NULL)
1582 continue;
1583
1584 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1585 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1586 if (!other_var)
1587 continue;
1588
1589 if (strcmp(var->name, other_var->name) == 0 &&
1590 other_var->data.max_array_access > size) {
1591 size = other_var->data.max_array_access;
1592 }
1593 }
1594 }
1595
1596 if (size + 1 != var->type->length) {
1597 /* If this is a built-in uniform (i.e., it's backed by some
1598 * fixed-function state), adjust the number of state slots to
1599 * match the new array size. The number of slots per array entry
1600 * is not known. It seems safe to assume that the total number of
1601 * slots is an integer multiple of the number of array elements.
1602 * Determine the number of slots per array element by dividing by
1603 * the old (total) size.
1604 */
1605 if (var->num_state_slots > 0) {
1606 var->num_state_slots = (size + 1)
1607 * (var->num_state_slots / var->type->length);
1608 }
1609
1610 var->type = glsl_type::get_array_instance(var->type->fields.array,
1611 size + 1);
1612 /* FINISHME: We should update the types of array
1613 * dereferences of this variable now.
1614 */
1615 }
1616 }
1617 }
1618 }
1619
1620 /**
1621 * Find a contiguous set of available bits in a bitmask.
1622 *
1623 * \param used_mask Bits representing used (1) and unused (0) locations
1624 * \param needed_count Number of contiguous bits needed.
1625 *
1626 * \return
1627 * Base location of the available bits on success or -1 on failure.
1628 */
1629 int
1630 find_available_slots(unsigned used_mask, unsigned needed_count)
1631 {
1632 unsigned needed_mask = (1 << needed_count) - 1;
1633 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1634
1635 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1636 * cannot optimize possibly infinite loops" for the loop below.
1637 */
1638 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1639 return -1;
1640
1641 for (int i = 0; i <= max_bit_to_test; i++) {
1642 if ((needed_mask & ~used_mask) == needed_mask)
1643 return i;
1644
1645 needed_mask <<= 1;
1646 }
1647
1648 return -1;
1649 }
1650
1651
1652 /**
1653 * Assign locations for either VS inputs for FS outputs
1654 *
1655 * \param prog Shader program whose variables need locations assigned
1656 * \param target_index Selector for the program target to receive location
1657 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1658 * \c MESA_SHADER_FRAGMENT.
1659 * \param max_index Maximum number of generic locations. This corresponds
1660 * to either the maximum number of draw buffers or the
1661 * maximum number of generic attributes.
1662 *
1663 * \return
1664 * If locations are successfully assigned, true is returned. Otherwise an
1665 * error is emitted to the shader link log and false is returned.
1666 */
1667 bool
1668 assign_attribute_or_color_locations(gl_shader_program *prog,
1669 unsigned target_index,
1670 unsigned max_index)
1671 {
1672 /* Mark invalid locations as being used.
1673 */
1674 unsigned used_locations = (max_index >= 32)
1675 ? ~0 : ~((1 << max_index) - 1);
1676
1677 assert((target_index == MESA_SHADER_VERTEX)
1678 || (target_index == MESA_SHADER_FRAGMENT));
1679
1680 gl_shader *const sh = prog->_LinkedShaders[target_index];
1681 if (sh == NULL)
1682 return true;
1683
1684 /* Operate in a total of four passes.
1685 *
1686 * 1. Invalidate the location assignments for all vertex shader inputs.
1687 *
1688 * 2. Assign locations for inputs that have user-defined (via
1689 * glBindVertexAttribLocation) locations and outputs that have
1690 * user-defined locations (via glBindFragDataLocation).
1691 *
1692 * 3. Sort the attributes without assigned locations by number of slots
1693 * required in decreasing order. Fragmentation caused by attribute
1694 * locations assigned by the application may prevent large attributes
1695 * from having enough contiguous space.
1696 *
1697 * 4. Assign locations to any inputs without assigned locations.
1698 */
1699
1700 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1701 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1702
1703 const enum ir_variable_mode direction =
1704 (target_index == MESA_SHADER_VERTEX)
1705 ? ir_var_shader_in : ir_var_shader_out;
1706
1707
1708 /* Temporary storage for the set of attributes that need locations assigned.
1709 */
1710 struct temp_attr {
1711 unsigned slots;
1712 ir_variable *var;
1713
1714 /* Used below in the call to qsort. */
1715 static int compare(const void *a, const void *b)
1716 {
1717 const temp_attr *const l = (const temp_attr *) a;
1718 const temp_attr *const r = (const temp_attr *) b;
1719
1720 /* Reversed because we want a descending order sort below. */
1721 return r->slots - l->slots;
1722 }
1723 } to_assign[16];
1724
1725 unsigned num_attr = 0;
1726
1727 foreach_list(node, sh->ir) {
1728 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1729
1730 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1731 continue;
1732
1733 if (var->data.explicit_location) {
1734 if ((var->data.location >= (int)(max_index + generic_base))
1735 || (var->data.location < 0)) {
1736 linker_error(prog,
1737 "invalid explicit location %d specified for `%s'\n",
1738 (var->data.location < 0)
1739 ? var->data.location
1740 : var->data.location - generic_base,
1741 var->name);
1742 return false;
1743 }
1744 } else if (target_index == MESA_SHADER_VERTEX) {
1745 unsigned binding;
1746
1747 if (prog->AttributeBindings->get(binding, var->name)) {
1748 assert(binding >= VERT_ATTRIB_GENERIC0);
1749 var->data.location = binding;
1750 var->data.is_unmatched_generic_inout = 0;
1751 }
1752 } else if (target_index == MESA_SHADER_FRAGMENT) {
1753 unsigned binding;
1754 unsigned index;
1755
1756 if (prog->FragDataBindings->get(binding, var->name)) {
1757 assert(binding >= FRAG_RESULT_DATA0);
1758 var->data.location = binding;
1759 var->data.is_unmatched_generic_inout = 0;
1760
1761 if (prog->FragDataIndexBindings->get(index, var->name)) {
1762 var->data.index = index;
1763 }
1764 }
1765 }
1766
1767 /* If the variable is not a built-in and has a location statically
1768 * assigned in the shader (presumably via a layout qualifier), make sure
1769 * that it doesn't collide with other assigned locations. Otherwise,
1770 * add it to the list of variables that need linker-assigned locations.
1771 */
1772 const unsigned slots = var->type->count_attribute_slots();
1773 if (var->data.location != -1) {
1774 if (var->data.location >= generic_base && var->data.index < 1) {
1775 /* From page 61 of the OpenGL 4.0 spec:
1776 *
1777 * "LinkProgram will fail if the attribute bindings assigned
1778 * by BindAttribLocation do not leave not enough space to
1779 * assign a location for an active matrix attribute or an
1780 * active attribute array, both of which require multiple
1781 * contiguous generic attributes."
1782 *
1783 * Previous versions of the spec contain similar language but omit
1784 * the bit about attribute arrays.
1785 *
1786 * Page 61 of the OpenGL 4.0 spec also says:
1787 *
1788 * "It is possible for an application to bind more than one
1789 * attribute name to the same location. This is referred to as
1790 * aliasing. This will only work if only one of the aliased
1791 * attributes is active in the executable program, or if no
1792 * path through the shader consumes more than one attribute of
1793 * a set of attributes aliased to the same location. A link
1794 * error can occur if the linker determines that every path
1795 * through the shader consumes multiple aliased attributes,
1796 * but implementations are not required to generate an error
1797 * in this case."
1798 *
1799 * These two paragraphs are either somewhat contradictory, or I
1800 * don't fully understand one or both of them.
1801 */
1802 /* FINISHME: The code as currently written does not support
1803 * FINISHME: attribute location aliasing (see comment above).
1804 */
1805 /* Mask representing the contiguous slots that will be used by
1806 * this attribute.
1807 */
1808 const unsigned attr = var->data.location - generic_base;
1809 const unsigned use_mask = (1 << slots) - 1;
1810
1811 /* Generate a link error if the set of bits requested for this
1812 * attribute overlaps any previously allocated bits.
1813 */
1814 if ((~(use_mask << attr) & used_locations) != used_locations) {
1815 const char *const string = (target_index == MESA_SHADER_VERTEX)
1816 ? "vertex shader input" : "fragment shader output";
1817 linker_error(prog,
1818 "insufficient contiguous locations "
1819 "available for %s `%s' %d %d %d", string,
1820 var->name, used_locations, use_mask, attr);
1821 return false;
1822 }
1823
1824 used_locations |= (use_mask << attr);
1825 }
1826
1827 continue;
1828 }
1829
1830 to_assign[num_attr].slots = slots;
1831 to_assign[num_attr].var = var;
1832 num_attr++;
1833 }
1834
1835 /* If all of the attributes were assigned locations by the application (or
1836 * are built-in attributes with fixed locations), return early. This should
1837 * be the common case.
1838 */
1839 if (num_attr == 0)
1840 return true;
1841
1842 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1843
1844 if (target_index == MESA_SHADER_VERTEX) {
1845 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1846 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1847 * reserved to prevent it from being automatically allocated below.
1848 */
1849 find_deref_visitor find("gl_Vertex");
1850 find.run(sh->ir);
1851 if (find.variable_found())
1852 used_locations |= (1 << 0);
1853 }
1854
1855 for (unsigned i = 0; i < num_attr; i++) {
1856 /* Mask representing the contiguous slots that will be used by this
1857 * attribute.
1858 */
1859 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1860
1861 int location = find_available_slots(used_locations, to_assign[i].slots);
1862
1863 if (location < 0) {
1864 const char *const string = (target_index == MESA_SHADER_VERTEX)
1865 ? "vertex shader input" : "fragment shader output";
1866
1867 linker_error(prog,
1868 "insufficient contiguous locations "
1869 "available for %s `%s'",
1870 string, to_assign[i].var->name);
1871 return false;
1872 }
1873
1874 to_assign[i].var->data.location = generic_base + location;
1875 to_assign[i].var->data.is_unmatched_generic_inout = 0;
1876 used_locations |= (use_mask << location);
1877 }
1878
1879 return true;
1880 }
1881
1882
1883 /**
1884 * Demote shader inputs and outputs that are not used in other stages
1885 */
1886 void
1887 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1888 {
1889 foreach_list(node, sh->ir) {
1890 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1891
1892 if ((var == NULL) || (var->data.mode != int(mode)))
1893 continue;
1894
1895 /* A shader 'in' or 'out' variable is only really an input or output if
1896 * its value is used by other shader stages. This will cause the variable
1897 * to have a location assigned.
1898 */
1899 if (var->data.is_unmatched_generic_inout) {
1900 var->data.mode = ir_var_auto;
1901 }
1902 }
1903 }
1904
1905
1906 /**
1907 * Store the gl_FragDepth layout in the gl_shader_program struct.
1908 */
1909 static void
1910 store_fragdepth_layout(struct gl_shader_program *prog)
1911 {
1912 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1913 return;
1914 }
1915
1916 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1917
1918 /* We don't look up the gl_FragDepth symbol directly because if
1919 * gl_FragDepth is not used in the shader, it's removed from the IR.
1920 * However, the symbol won't be removed from the symbol table.
1921 *
1922 * We're only interested in the cases where the variable is NOT removed
1923 * from the IR.
1924 */
1925 foreach_list(node, ir) {
1926 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1927
1928 if (var == NULL || var->data.mode != ir_var_shader_out) {
1929 continue;
1930 }
1931
1932 if (strcmp(var->name, "gl_FragDepth") == 0) {
1933 switch (var->data.depth_layout) {
1934 case ir_depth_layout_none:
1935 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1936 return;
1937 case ir_depth_layout_any:
1938 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1939 return;
1940 case ir_depth_layout_greater:
1941 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1942 return;
1943 case ir_depth_layout_less:
1944 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1945 return;
1946 case ir_depth_layout_unchanged:
1947 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1948 return;
1949 default:
1950 assert(0);
1951 return;
1952 }
1953 }
1954 }
1955 }
1956
1957 /**
1958 * Validate the resources used by a program versus the implementation limits
1959 */
1960 static void
1961 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1962 {
1963 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1964 struct gl_shader *sh = prog->_LinkedShaders[i];
1965
1966 if (sh == NULL)
1967 continue;
1968
1969 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
1970 linker_error(prog, "Too many %s shader texture samplers",
1971 _mesa_shader_stage_to_string(i));
1972 }
1973
1974 if (sh->num_uniform_components >
1975 ctx->Const.Program[i].MaxUniformComponents) {
1976 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1977 linker_warning(prog, "Too many %s shader default uniform block "
1978 "components, but the driver will try to optimize "
1979 "them out; this is non-portable out-of-spec "
1980 "behavior\n",
1981 _mesa_shader_stage_to_string(i));
1982 } else {
1983 linker_error(prog, "Too many %s shader default uniform block "
1984 "components",
1985 _mesa_shader_stage_to_string(i));
1986 }
1987 }
1988
1989 if (sh->num_combined_uniform_components >
1990 ctx->Const.Program[i].MaxCombinedUniformComponents) {
1991 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1992 linker_warning(prog, "Too many %s shader uniform components, "
1993 "but the driver will try to optimize them out; "
1994 "this is non-portable out-of-spec behavior\n",
1995 _mesa_shader_stage_to_string(i));
1996 } else {
1997 linker_error(prog, "Too many %s shader uniform components",
1998 _mesa_shader_stage_to_string(i));
1999 }
2000 }
2001 }
2002
2003 unsigned blocks[MESA_SHADER_STAGES] = {0};
2004 unsigned total_uniform_blocks = 0;
2005
2006 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2007 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2008 if (prog->UniformBlockStageIndex[j][i] != -1) {
2009 blocks[j]++;
2010 total_uniform_blocks++;
2011 }
2012 }
2013
2014 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2015 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2016 prog->NumUniformBlocks,
2017 ctx->Const.MaxCombinedUniformBlocks);
2018 } else {
2019 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2020 const unsigned max_uniform_blocks =
2021 ctx->Const.Program[i].MaxUniformBlocks;
2022 if (blocks[i] > max_uniform_blocks) {
2023 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2024 _mesa_shader_stage_to_string(i),
2025 blocks[i],
2026 max_uniform_blocks);
2027 break;
2028 }
2029 }
2030 }
2031 }
2032 }
2033
2034 /**
2035 * Validate shader image resources.
2036 */
2037 static void
2038 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2039 {
2040 unsigned total_image_units = 0;
2041 unsigned fragment_outputs = 0;
2042
2043 if (!ctx->Extensions.ARB_shader_image_load_store)
2044 return;
2045
2046 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2047 struct gl_shader *sh = prog->_LinkedShaders[i];
2048
2049 if (sh) {
2050 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2051 linker_error(prog, "Too many %s shader image uniforms",
2052 _mesa_shader_stage_to_string(i));
2053
2054 total_image_units += sh->NumImages;
2055
2056 if (i == MESA_SHADER_FRAGMENT) {
2057 foreach_list(node, sh->ir) {
2058 ir_variable *var = ((ir_instruction *)node)->as_variable();
2059 if (var && var->data.mode == ir_var_shader_out)
2060 fragment_outputs += var->type->count_attribute_slots();
2061 }
2062 }
2063 }
2064 }
2065
2066 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2067 linker_error(prog, "Too many combined image uniforms");
2068
2069 if (total_image_units + fragment_outputs >
2070 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2071 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2072 }
2073
2074 void
2075 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2076 {
2077 tfeedback_decl *tfeedback_decls = NULL;
2078 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2079
2080 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2081
2082 prog->LinkStatus = true; /* All error paths will set this to false */
2083 prog->Validated = false;
2084 prog->_Used = false;
2085
2086 ralloc_free(prog->InfoLog);
2087 prog->InfoLog = ralloc_strdup(NULL, "");
2088
2089 ralloc_free(prog->UniformBlocks);
2090 prog->UniformBlocks = NULL;
2091 prog->NumUniformBlocks = 0;
2092 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2093 ralloc_free(prog->UniformBlockStageIndex[i]);
2094 prog->UniformBlockStageIndex[i] = NULL;
2095 }
2096
2097 ralloc_free(prog->AtomicBuffers);
2098 prog->AtomicBuffers = NULL;
2099 prog->NumAtomicBuffers = 0;
2100
2101 /* Separate the shaders into groups based on their type.
2102 */
2103 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2104 unsigned num_shaders[MESA_SHADER_STAGES];
2105
2106 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2107 shader_list[i] = (struct gl_shader **)
2108 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2109 num_shaders[i] = 0;
2110 }
2111
2112 unsigned min_version = UINT_MAX;
2113 unsigned max_version = 0;
2114 const bool is_es_prog =
2115 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2116 for (unsigned i = 0; i < prog->NumShaders; i++) {
2117 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2118 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2119
2120 if (prog->Shaders[i]->IsES != is_es_prog) {
2121 linker_error(prog, "all shaders must use same shading "
2122 "language version\n");
2123 goto done;
2124 }
2125
2126 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2127 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2128 num_shaders[shader_type]++;
2129 }
2130
2131 /* In desktop GLSL, different shader versions may be linked together. In
2132 * GLSL ES, all shader versions must be the same.
2133 */
2134 if (is_es_prog && min_version != max_version) {
2135 linker_error(prog, "all shaders must use same shading "
2136 "language version\n");
2137 goto done;
2138 }
2139
2140 prog->Version = max_version;
2141 prog->IsES = is_es_prog;
2142
2143 /* Geometry shaders have to be linked with vertex shaders.
2144 */
2145 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2146 num_shaders[MESA_SHADER_VERTEX] == 0) {
2147 linker_error(prog, "Geometry shader must be linked with "
2148 "vertex shader\n");
2149 goto done;
2150 }
2151
2152 /* Compute shaders have additional restrictions. */
2153 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2154 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2155 linker_error(prog, "Compute shaders may not be linked with any other "
2156 "type of shader\n");
2157 }
2158
2159 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2160 if (prog->_LinkedShaders[i] != NULL)
2161 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2162
2163 prog->_LinkedShaders[i] = NULL;
2164 }
2165
2166 /* Link all shaders for a particular stage and validate the result.
2167 */
2168 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2169 if (num_shaders[stage] > 0) {
2170 gl_shader *const sh =
2171 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2172 num_shaders[stage]);
2173
2174 if (!prog->LinkStatus)
2175 goto done;
2176
2177 switch (stage) {
2178 case MESA_SHADER_VERTEX:
2179 validate_vertex_shader_executable(prog, sh);
2180 break;
2181 case MESA_SHADER_GEOMETRY:
2182 validate_geometry_shader_executable(prog, sh);
2183 break;
2184 case MESA_SHADER_FRAGMENT:
2185 validate_fragment_shader_executable(prog, sh);
2186 break;
2187 }
2188 if (!prog->LinkStatus)
2189 goto done;
2190
2191 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2192 }
2193 }
2194
2195 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2196 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2197 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2198 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2199 else
2200 prog->LastClipDistanceArraySize = 0; /* Not used */
2201
2202 /* Here begins the inter-stage linking phase. Some initial validation is
2203 * performed, then locations are assigned for uniforms, attributes, and
2204 * varyings.
2205 */
2206 cross_validate_uniforms(prog);
2207 if (!prog->LinkStatus)
2208 goto done;
2209
2210 unsigned prev;
2211
2212 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2213 if (prog->_LinkedShaders[prev] != NULL)
2214 break;
2215 }
2216
2217 /* Validate the inputs of each stage with the output of the preceding
2218 * stage.
2219 */
2220 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2221 if (prog->_LinkedShaders[i] == NULL)
2222 continue;
2223
2224 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2225 prog->_LinkedShaders[i]);
2226 if (!prog->LinkStatus)
2227 goto done;
2228
2229 cross_validate_outputs_to_inputs(prog,
2230 prog->_LinkedShaders[prev],
2231 prog->_LinkedShaders[i]);
2232 if (!prog->LinkStatus)
2233 goto done;
2234
2235 prev = i;
2236 }
2237
2238 /* Cross-validate uniform blocks between shader stages */
2239 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2240 MESA_SHADER_STAGES);
2241 if (!prog->LinkStatus)
2242 goto done;
2243
2244 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2245 if (prog->_LinkedShaders[i] != NULL)
2246 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2247 }
2248
2249 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2250 * it before optimization because we want most of the checks to get
2251 * dropped thanks to constant propagation.
2252 *
2253 * This rule also applies to GLSL ES 3.00.
2254 */
2255 if (max_version >= (is_es_prog ? 300 : 130)) {
2256 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2257 if (sh) {
2258 lower_discard_flow(sh->ir);
2259 }
2260 }
2261
2262 if (!interstage_cross_validate_uniform_blocks(prog))
2263 goto done;
2264
2265 /* Do common optimization before assigning storage for attributes,
2266 * uniforms, and varyings. Later optimization could possibly make
2267 * some of that unused.
2268 */
2269 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2270 if (prog->_LinkedShaders[i] == NULL)
2271 continue;
2272
2273 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2274 if (!prog->LinkStatus)
2275 goto done;
2276
2277 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2278 lower_clip_distance(prog->_LinkedShaders[i]);
2279 }
2280
2281 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
2282
2283 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll, &ctx->ShaderCompilerOptions[i]))
2284 ;
2285 }
2286
2287 /* Mark all generic shader inputs and outputs as unpaired. */
2288 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2289 link_invalidate_variable_locations(
2290 prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir);
2291 }
2292 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2293 link_invalidate_variable_locations(
2294 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
2295 }
2296 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2297 link_invalidate_variable_locations(
2298 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir);
2299 }
2300
2301 /* FINISHME: The value of the max_attribute_index parameter is
2302 * FINISHME: implementation dependent based on the value of
2303 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2304 * FINISHME: at least 16, so hardcode 16 for now.
2305 */
2306 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2307 goto done;
2308 }
2309
2310 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2311 goto done;
2312 }
2313
2314 unsigned first;
2315 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2316 if (prog->_LinkedShaders[first] != NULL)
2317 break;
2318 }
2319
2320 if (num_tfeedback_decls != 0) {
2321 /* From GL_EXT_transform_feedback:
2322 * A program will fail to link if:
2323 *
2324 * * the <count> specified by TransformFeedbackVaryingsEXT is
2325 * non-zero, but the program object has no vertex or geometry
2326 * shader;
2327 */
2328 if (first == MESA_SHADER_FRAGMENT) {
2329 linker_error(prog, "Transform feedback varyings specified, but "
2330 "no vertex or geometry shader is present.");
2331 goto done;
2332 }
2333
2334 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2335 prog->TransformFeedback.NumVarying);
2336 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2337 prog->TransformFeedback.VaryingNames,
2338 tfeedback_decls))
2339 goto done;
2340 }
2341
2342 /* Linking the stages in the opposite order (from fragment to vertex)
2343 * ensures that inter-shader outputs written to in an earlier stage are
2344 * eliminated if they are (transitively) not used in a later stage.
2345 */
2346 int last, next;
2347 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2348 if (prog->_LinkedShaders[last] != NULL)
2349 break;
2350 }
2351
2352 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2353 gl_shader *const sh = prog->_LinkedShaders[last];
2354
2355 if (num_tfeedback_decls != 0) {
2356 /* There was no fragment shader, but we still have to assign varying
2357 * locations for use by transform feedback.
2358 */
2359 if (!assign_varying_locations(ctx, mem_ctx, prog,
2360 sh, NULL,
2361 num_tfeedback_decls, tfeedback_decls,
2362 0))
2363 goto done;
2364 }
2365
2366 do_dead_builtin_varyings(ctx, sh, NULL,
2367 num_tfeedback_decls, tfeedback_decls);
2368
2369 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2370
2371 /* Eliminate code that is now dead due to unused outputs being demoted.
2372 */
2373 while (do_dead_code(sh->ir, false))
2374 ;
2375 }
2376 else if (first == MESA_SHADER_FRAGMENT) {
2377 /* If the program only contains a fragment shader...
2378 */
2379 gl_shader *const sh = prog->_LinkedShaders[first];
2380
2381 do_dead_builtin_varyings(ctx, NULL, sh,
2382 num_tfeedback_decls, tfeedback_decls);
2383
2384 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2385
2386 while (do_dead_code(sh->ir, false))
2387 ;
2388 }
2389
2390 next = last;
2391 for (int i = next - 1; i >= 0; i--) {
2392 if (prog->_LinkedShaders[i] == NULL)
2393 continue;
2394
2395 gl_shader *const sh_i = prog->_LinkedShaders[i];
2396 gl_shader *const sh_next = prog->_LinkedShaders[next];
2397 unsigned gs_input_vertices =
2398 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2399
2400 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2401 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2402 tfeedback_decls, gs_input_vertices))
2403 goto done;
2404
2405 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2406 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2407 tfeedback_decls);
2408
2409 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2410 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2411
2412 /* Eliminate code that is now dead due to unused outputs being demoted.
2413 */
2414 while (do_dead_code(sh_i->ir, false))
2415 ;
2416 while (do_dead_code(sh_next->ir, false))
2417 ;
2418
2419 /* This must be done after all dead varyings are eliminated. */
2420 if (!check_against_output_limit(ctx, prog, sh_i))
2421 goto done;
2422 if (!check_against_input_limit(ctx, prog, sh_next))
2423 goto done;
2424
2425 next = i;
2426 }
2427
2428 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2429 goto done;
2430
2431 update_array_sizes(prog);
2432 link_assign_uniform_locations(prog);
2433 link_assign_atomic_counter_resources(ctx, prog);
2434 store_fragdepth_layout(prog);
2435
2436 check_resources(ctx, prog);
2437 check_image_resources(ctx, prog);
2438 link_check_atomic_counter_resources(ctx, prog);
2439
2440 if (!prog->LinkStatus)
2441 goto done;
2442
2443 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2444 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2445 * anything about shader linking when one of the shaders (vertex or
2446 * fragment shader) is absent. So, the extension shouldn't change the
2447 * behavior specified in GLSL specification.
2448 */
2449 if (!prog->InternalSeparateShader && ctx->API == API_OPENGLES2) {
2450 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2451 linker_error(prog, "program lacks a vertex shader\n");
2452 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2453 linker_error(prog, "program lacks a fragment shader\n");
2454 }
2455 }
2456
2457 /* FINISHME: Assign fragment shader output locations. */
2458
2459 done:
2460 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2461 free(shader_list[i]);
2462 if (prog->_LinkedShaders[i] == NULL)
2463 continue;
2464
2465 /* Do a final validation step to make sure that the IR wasn't
2466 * invalidated by any modifications performed after intrastage linking.
2467 */
2468 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2469
2470 /* Retain any live IR, but trash the rest. */
2471 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2472
2473 /* The symbol table in the linked shaders may contain references to
2474 * variables that were removed (e.g., unused uniforms). Since it may
2475 * contain junk, there is no possible valid use. Delete it and set the
2476 * pointer to NULL.
2477 */
2478 delete prog->_LinkedShaders[i]->symbols;
2479 prog->_LinkedShaders[i]->symbols = NULL;
2480 }
2481
2482 ralloc_free(mem_ctx);
2483 }