Merge remote branch 'origin/master' into nv50-compiler
[mesa.git] / src / glsl / list.h
1 /*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinel head and tail node. These nodes
29 * contain no data. The head sentinel can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinel can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinel's \c next pointer points to the
34 * tail sentinel or the tail sentinel's \c prev poiner points to the head
35 * sentinel.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinel nodes are in a single structure. Noting
39 * that each sentinel node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
42 *
43 * - A \c head pointer that represents the \c next pointer of the
44 * head sentinel node.
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinel node and the \c next pointer of the tail sentinel node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
49 * tail sentinel node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #ifndef __cplusplus
68 #include <stddef.h>
69 #include <talloc.h>
70 #else
71 extern "C" {
72 #include <talloc.h>
73 }
74 #endif
75
76 #include <assert.h>
77
78 struct exec_node {
79 struct exec_node *next;
80 struct exec_node *prev;
81
82 #ifdef __cplusplus
83 /* Callers of this talloc-based new need not call delete. It's
84 * easier to just talloc_free 'ctx' (or any of its ancestors). */
85 static void* operator new(size_t size, void *ctx)
86 {
87 void *node;
88
89 node = talloc_size(ctx, size);
90 assert(node != NULL);
91
92 return node;
93 }
94
95 /* If the user *does* call delete, that's OK, we will just
96 * talloc_free in that case. */
97 static void operator delete(void *node)
98 {
99 talloc_free(node);
100 }
101
102 exec_node() : next(NULL), prev(NULL)
103 {
104 /* empty */
105 }
106
107 const exec_node *get_next() const
108 {
109 return next;
110 }
111
112 exec_node *get_next()
113 {
114 return next;
115 }
116
117 const exec_node *get_prev() const
118 {
119 return prev;
120 }
121
122 exec_node *get_prev()
123 {
124 return prev;
125 }
126
127 void remove()
128 {
129 next->prev = prev;
130 prev->next = next;
131 next = NULL;
132 prev = NULL;
133 }
134
135 /**
136 * Link a node with itself
137 *
138 * This creates a sort of degenerate list that is occasionally useful.
139 */
140 void self_link()
141 {
142 next = this;
143 prev = this;
144 }
145
146 /**
147 * Insert a node in the list after the current node
148 */
149 void insert_after(exec_node *after)
150 {
151 after->next = this->next;
152 after->prev = this;
153
154 this->next->prev = after;
155 this->next = after;
156 }
157 /**
158 * Insert a node in the list before the current node
159 */
160 void insert_before(exec_node *before)
161 {
162 before->next = this;
163 before->prev = this->prev;
164
165 this->prev->next = before;
166 this->prev = before;
167 }
168 /**
169 * Replace the current node with the given node.
170 */
171 void replace_with(exec_node *replacement)
172 {
173 replacement->prev = this->prev;
174 replacement->next = this->next;
175
176 this->prev->next = replacement;
177 this->next->prev = replacement;
178 }
179
180 /**
181 * Is this the sentinel at the tail of the list?
182 */
183 bool is_tail_sentinel() const
184 {
185 return this->next == NULL;
186 }
187
188 /**
189 * Is this the sentinel at the head of the list?
190 */
191 bool is_head_sentinel() const
192 {
193 return this->prev == NULL;
194 }
195 #endif
196 };
197
198
199 #ifdef __cplusplus
200 /* This macro will not work correctly if `t' uses virtual inheritance. If you
201 * are using virtual inheritance, you deserve a slow and painful death. Enjoy!
202 */
203 #define exec_list_offsetof(t, f, p) \
204 (((char *) &((t *) p)->f) - ((char *) p))
205 #else
206 #define exec_list_offsetof(t, f, p) offsetof(t, f)
207 #endif
208
209 /**
210 * Get a pointer to the structure containing an exec_node
211 *
212 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
213 * the containing structure.
214 *
215 * \param type Base type of the structure containing the node
216 * \param node Pointer to the \c exec_node
217 * \param field Name of the field in \c type that is the embedded \c exec_node
218 */
219 #define exec_node_data(type, node, field) \
220 ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
221
222 #ifdef __cplusplus
223 struct exec_node;
224
225 class iterator {
226 public:
227 void next()
228 {
229 }
230
231 void *get()
232 {
233 return NULL;
234 }
235
236 bool has_next() const
237 {
238 return false;
239 }
240 };
241
242 class exec_list_iterator : public iterator {
243 public:
244 exec_list_iterator(exec_node *n) : node(n), _next(n->next)
245 {
246 /* empty */
247 }
248
249 void next()
250 {
251 node = _next;
252 _next = node->next;
253 }
254
255 void remove()
256 {
257 node->remove();
258 }
259
260 exec_node *get()
261 {
262 return node;
263 }
264
265 bool has_next() const
266 {
267 return _next != NULL;
268 }
269
270 private:
271 exec_node *node;
272 exec_node *_next;
273 };
274
275 #define foreach_iter(iter_type, iter, container) \
276 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
277 #endif
278
279
280 struct exec_list {
281 struct exec_node *head;
282 struct exec_node *tail;
283 struct exec_node *tail_pred;
284
285 #ifdef __cplusplus
286 /* Callers of this talloc-based new need not call delete. It's
287 * easier to just talloc_free 'ctx' (or any of its ancestors). */
288 static void* operator new(size_t size, void *ctx)
289 {
290 void *node;
291
292 node = talloc_size(ctx, size);
293 assert(node != NULL);
294
295 return node;
296 }
297
298 /* If the user *does* call delete, that's OK, we will just
299 * talloc_free in that case. */
300 static void operator delete(void *node)
301 {
302 talloc_free(node);
303 }
304
305 exec_list()
306 {
307 make_empty();
308 }
309
310 void make_empty()
311 {
312 head = (exec_node *) & tail;
313 tail = NULL;
314 tail_pred = (exec_node *) & head;
315 }
316
317 bool is_empty() const
318 {
319 /* There are three ways to test whether a list is empty or not.
320 *
321 * - Check to see if the \c head points to the \c tail.
322 * - Check to see if the \c tail_pred points to the \c head.
323 * - Check to see if the \c head is the sentinel node by test whether its
324 * \c next pointer is \c NULL.
325 *
326 * The first two methods tend to generate better code on modern systems
327 * because they save a pointer dereference.
328 */
329 return head == (exec_node *) &tail;
330 }
331
332 const exec_node *get_head() const
333 {
334 return !is_empty() ? head : NULL;
335 }
336
337 exec_node *get_head()
338 {
339 return !is_empty() ? head : NULL;
340 }
341
342 const exec_node *get_tail() const
343 {
344 return !is_empty() ? tail_pred : NULL;
345 }
346
347 exec_node *get_tail()
348 {
349 return !is_empty() ? tail_pred : NULL;
350 }
351
352 void push_head(exec_node *n)
353 {
354 n->next = head;
355 n->prev = (exec_node *) &head;
356
357 n->next->prev = n;
358 head = n;
359 }
360
361 void push_tail(exec_node *n)
362 {
363 n->next = (exec_node *) &tail;
364 n->prev = tail_pred;
365
366 n->prev->next = n;
367 tail_pred = n;
368 }
369
370 void push_degenerate_list_at_head(exec_node *n)
371 {
372 assert(n->prev->next == n);
373
374 n->prev->next = head;
375 head->prev = n->prev;
376 n->prev = (exec_node *) &head;
377 head = n;
378 }
379
380 /**
381 * Move all of the nodes from this list to the target list
382 */
383 void move_nodes_to(exec_list *target)
384 {
385 if (is_empty()) {
386 target->make_empty();
387 } else {
388 target->head = head;
389 target->tail = NULL;
390 target->tail_pred = tail_pred;
391
392 target->head->prev = (exec_node *) &target->head;
393 target->tail_pred->next = (exec_node *) &target->tail;
394
395 make_empty();
396 }
397 }
398
399 /**
400 * Append all nodes from the source list to the target list
401 */
402 void
403 append_list(exec_list *source)
404 {
405 if (source->is_empty())
406 return;
407
408 /* Link the first node of the source with the last node of the target list.
409 */
410 this->tail_pred->next = source->head;
411 source->head->prev = this->tail_pred;
412
413 /* Make the tail of the source list be the tail of the target list.
414 */
415 this->tail_pred = source->tail_pred;
416 this->tail_pred->next = (exec_node *) &this->tail;
417
418 /* Make the source list empty for good measure.
419 */
420 source->make_empty();
421 }
422
423 exec_list_iterator iterator()
424 {
425 return exec_list_iterator(head);
426 }
427
428 exec_list_iterator iterator() const
429 {
430 return exec_list_iterator((exec_node *) head);
431 }
432 #endif
433 };
434
435 /**
436 * This version is safe even if the current node is removed.
437 */
438 #define foreach_list_safe(__node, __list) \
439 for (exec_node * __node = (__list)->head, * __next = __node->next \
440 ; __next != NULL \
441 ; __node = __next, __next = __next->next)
442
443 #define foreach_list(__node, __list) \
444 for (exec_node * __node = (__list)->head \
445 ; (__node)->next != NULL \
446 ; (__node) = (__node)->next)
447
448 #define foreach_list_const(__node, __list) \
449 for (const exec_node * __node = (__list)->head \
450 ; (__node)->next != NULL \
451 ; (__node) = (__node)->next)
452
453 #define foreach_list_typed(__type, __node, __field, __list) \
454 for (__type * __node = \
455 exec_node_data(__type, (__list)->head, __field); \
456 (__node)->__field.next != NULL; \
457 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
458
459 #define foreach_list_typed_const(__type, __node, __field, __list) \
460 for (const __type * __node = \
461 exec_node_data(__type, (__list)->head, __field); \
462 (__node)->__field.next != NULL; \
463 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
464
465 #endif /* LIST_CONTAINER_H */