Merge branch 'master' of ../mesa into vulkan
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * output index for dual source blending.
297 */
298 int index;
299
300 /**
301 * Descriptor set binding for sampler or UBO.
302 */
303 int descriptor_set;
304
305 /**
306 * Initial binding point for a sampler or UBO.
307 *
308 * For array types, this represents the binding point for the first element.
309 */
310 int binding;
311
312 /**
313 * Location an atomic counter is stored at.
314 */
315 struct {
316 unsigned buffer_index;
317 unsigned offset;
318 } atomic;
319
320 /**
321 * ARB_shader_image_load_store qualifiers.
322 */
323 struct {
324 bool read_only; /**< "readonly" qualifier. */
325 bool write_only; /**< "writeonly" qualifier. */
326 bool coherent;
327 bool _volatile;
328 bool restrict_flag;
329
330 /** Image internal format if specified explicitly, otherwise GL_NONE. */
331 GLenum format;
332 } image;
333
334 /**
335 * Highest element accessed with a constant expression array index
336 *
337 * Not used for non-array variables.
338 */
339 unsigned max_array_access;
340
341 } data;
342
343 /**
344 * Built-in state that backs this uniform
345 *
346 * Once set at variable creation, \c state_slots must remain invariant.
347 * This is because, ideally, this array would be shared by all clones of
348 * this variable in the IR tree. In other words, we'd really like for it
349 * to be a fly-weight.
350 *
351 * If the variable is not a uniform, \c num_state_slots will be zero and
352 * \c state_slots will be \c NULL.
353 */
354 /*@{*/
355 unsigned num_state_slots; /**< Number of state slots used */
356 nir_state_slot *state_slots; /**< State descriptors. */
357 /*@}*/
358
359 /**
360 * Constant expression assigned in the initializer of the variable
361 */
362 nir_constant *constant_initializer;
363
364 /**
365 * For variables that are in an interface block or are an instance of an
366 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
367 *
368 * \sa ir_variable::location
369 */
370 const struct glsl_type *interface_type;
371 } nir_variable;
372
373 typedef struct {
374 struct exec_node node;
375
376 unsigned num_components; /** < number of vector components */
377 unsigned num_array_elems; /** < size of array (0 for no array) */
378
379 /** generic register index. */
380 unsigned index;
381
382 /** only for debug purposes, can be NULL */
383 const char *name;
384
385 /** whether this register is local (per-function) or global (per-shader) */
386 bool is_global;
387
388 /**
389 * If this flag is set to true, then accessing channels >= num_components
390 * is well-defined, and simply spills over to the next array element. This
391 * is useful for backends that can do per-component accessing, in
392 * particular scalar backends. By setting this flag and making
393 * num_components equal to 1, structures can be packed tightly into
394 * registers and then registers can be accessed per-component to get to
395 * each structure member, even if it crosses vec4 boundaries.
396 */
397 bool is_packed;
398
399 /** set of nir_instr's where this register is used (read from) */
400 struct list_head uses;
401
402 /** set of nir_instr's where this register is defined (written to) */
403 struct list_head defs;
404
405 /** set of nir_if's where this register is used as a condition */
406 struct list_head if_uses;
407 } nir_register;
408
409 typedef enum {
410 nir_instr_type_alu,
411 nir_instr_type_call,
412 nir_instr_type_tex,
413 nir_instr_type_intrinsic,
414 nir_instr_type_load_const,
415 nir_instr_type_jump,
416 nir_instr_type_ssa_undef,
417 nir_instr_type_phi,
418 nir_instr_type_parallel_copy,
419 } nir_instr_type;
420
421 typedef struct nir_instr {
422 struct exec_node node;
423 nir_instr_type type;
424 struct nir_block *block;
425
426 /** generic instruction index. */
427 unsigned index;
428
429 /* A temporary for optimization and analysis passes to use for storing
430 * flags. For instance, DCE uses this to store the "dead/live" info.
431 */
432 uint8_t pass_flags;
433 } nir_instr;
434
435 static inline nir_instr *
436 nir_instr_next(nir_instr *instr)
437 {
438 struct exec_node *next = exec_node_get_next(&instr->node);
439 if (exec_node_is_tail_sentinel(next))
440 return NULL;
441 else
442 return exec_node_data(nir_instr, next, node);
443 }
444
445 static inline nir_instr *
446 nir_instr_prev(nir_instr *instr)
447 {
448 struct exec_node *prev = exec_node_get_prev(&instr->node);
449 if (exec_node_is_head_sentinel(prev))
450 return NULL;
451 else
452 return exec_node_data(nir_instr, prev, node);
453 }
454
455 static inline bool
456 nir_instr_is_first(nir_instr *instr)
457 {
458 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
459 }
460
461 static inline bool
462 nir_instr_is_last(nir_instr *instr)
463 {
464 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
465 }
466
467 typedef struct {
468 /** for debugging only, can be NULL */
469 const char* name;
470
471 /** generic SSA definition index. */
472 unsigned index;
473
474 /** Index into the live_in and live_out bitfields */
475 unsigned live_index;
476
477 nir_instr *parent_instr;
478
479 /** set of nir_instr's where this register is used (read from) */
480 struct list_head uses;
481
482 /** set of nir_if's where this register is used as a condition */
483 struct list_head if_uses;
484
485 uint8_t num_components;
486 } nir_ssa_def;
487
488 struct nir_src;
489
490 typedef struct {
491 nir_register *reg;
492 struct nir_src *indirect; /** < NULL for no indirect offset */
493 unsigned base_offset;
494
495 /* TODO use-def chain goes here */
496 } nir_reg_src;
497
498 typedef struct {
499 nir_instr *parent_instr;
500 struct list_head def_link;
501
502 nir_register *reg;
503 struct nir_src *indirect; /** < NULL for no indirect offset */
504 unsigned base_offset;
505
506 /* TODO def-use chain goes here */
507 } nir_reg_dest;
508
509 struct nir_if;
510
511 typedef struct nir_src {
512 union {
513 nir_instr *parent_instr;
514 struct nir_if *parent_if;
515 };
516
517 struct list_head use_link;
518
519 union {
520 nir_reg_src reg;
521 nir_ssa_def *ssa;
522 };
523
524 bool is_ssa;
525 } nir_src;
526
527 #ifdef __cplusplus
528 # define NIR_SRC_INIT nir_src()
529 #else
530 # define NIR_SRC_INIT (nir_src) { { NULL } }
531 #endif
532
533 #define nir_foreach_use(reg_or_ssa_def, src) \
534 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
535
536 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
537 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
538
539 #define nir_foreach_if_use(reg_or_ssa_def, src) \
540 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
541
542 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
543 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
544
545 typedef struct {
546 union {
547 nir_reg_dest reg;
548 nir_ssa_def ssa;
549 };
550
551 bool is_ssa;
552 } nir_dest;
553
554 #ifdef __cplusplus
555 # define NIR_DEST_INIT nir_dest()
556 #else
557 # define NIR_DEST_INIT (nir_dest) { { { NULL } } }
558 #endif
559
560 #define nir_foreach_def(reg, dest) \
561 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
562
563 #define nir_foreach_def_safe(reg, dest) \
564 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
565
566 static inline nir_src
567 nir_src_for_ssa(nir_ssa_def *def)
568 {
569 nir_src src = NIR_SRC_INIT;
570
571 src.is_ssa = true;
572 src.ssa = def;
573
574 return src;
575 }
576
577 static inline nir_src
578 nir_src_for_reg(nir_register *reg)
579 {
580 nir_src src = NIR_SRC_INIT;
581
582 src.is_ssa = false;
583 src.reg.reg = reg;
584 src.reg.indirect = NULL;
585 src.reg.base_offset = 0;
586
587 return src;
588 }
589
590 static inline nir_dest
591 nir_dest_for_reg(nir_register *reg)
592 {
593 nir_dest dest = NIR_DEST_INIT;
594
595 dest.reg.reg = reg;
596
597 return dest;
598 }
599
600 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
601 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
602
603 typedef struct {
604 nir_src src;
605
606 /**
607 * \name input modifiers
608 */
609 /*@{*/
610 /**
611 * For inputs interpreted as floating point, flips the sign bit. For
612 * inputs interpreted as integers, performs the two's complement negation.
613 */
614 bool negate;
615
616 /**
617 * Clears the sign bit for floating point values, and computes the integer
618 * absolute value for integers. Note that the negate modifier acts after
619 * the absolute value modifier, therefore if both are set then all inputs
620 * will become negative.
621 */
622 bool abs;
623 /*@}*/
624
625 /**
626 * For each input component, says which component of the register it is
627 * chosen from. Note that which elements of the swizzle are used and which
628 * are ignored are based on the write mask for most opcodes - for example,
629 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
630 * a swizzle of {2, x, 1, 0} where x means "don't care."
631 */
632 uint8_t swizzle[4];
633 } nir_alu_src;
634
635 typedef struct {
636 nir_dest dest;
637
638 /**
639 * \name saturate output modifier
640 *
641 * Only valid for opcodes that output floating-point numbers. Clamps the
642 * output to between 0.0 and 1.0 inclusive.
643 */
644
645 bool saturate;
646
647 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
648 } nir_alu_dest;
649
650 typedef enum {
651 nir_type_invalid = 0, /* Not a valid type */
652 nir_type_float,
653 nir_type_int,
654 nir_type_unsigned,
655 nir_type_bool
656 } nir_alu_type;
657
658 typedef enum {
659 NIR_OP_IS_COMMUTATIVE = (1 << 0),
660 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
661 } nir_op_algebraic_property;
662
663 typedef struct {
664 const char *name;
665
666 unsigned num_inputs;
667
668 /**
669 * The number of components in the output
670 *
671 * If non-zero, this is the size of the output and input sizes are
672 * explicitly given; swizzle and writemask are still in effect, but if
673 * the output component is masked out, then the input component may
674 * still be in use.
675 *
676 * If zero, the opcode acts in the standard, per-component manner; the
677 * operation is performed on each component (except the ones that are
678 * masked out) with the input being taken from the input swizzle for
679 * that component.
680 *
681 * The size of some of the inputs may be given (i.e. non-zero) even
682 * though output_size is zero; in that case, the inputs with a zero
683 * size act per-component, while the inputs with non-zero size don't.
684 */
685 unsigned output_size;
686
687 /**
688 * The type of vector that the instruction outputs. Note that the
689 * staurate modifier is only allowed on outputs with the float type.
690 */
691
692 nir_alu_type output_type;
693
694 /**
695 * The number of components in each input
696 */
697 unsigned input_sizes[4];
698
699 /**
700 * The type of vector that each input takes. Note that negate and
701 * absolute value are only allowed on inputs with int or float type and
702 * behave differently on the two.
703 */
704 nir_alu_type input_types[4];
705
706 nir_op_algebraic_property algebraic_properties;
707 } nir_op_info;
708
709 extern const nir_op_info nir_op_infos[nir_num_opcodes];
710
711 typedef struct nir_alu_instr {
712 nir_instr instr;
713 nir_op op;
714 nir_alu_dest dest;
715 nir_alu_src src[];
716 } nir_alu_instr;
717
718 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
719 nir_alu_instr *instr);
720 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
721 nir_alu_instr *instr);
722
723 /* is this source channel used? */
724 static inline bool
725 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
726 {
727 if (nir_op_infos[instr->op].input_sizes[src] > 0)
728 return channel < nir_op_infos[instr->op].input_sizes[src];
729
730 return (instr->dest.write_mask >> channel) & 1;
731 }
732
733 /*
734 * For instructions whose destinations are SSA, get the number of channels
735 * used for a source
736 */
737 static inline unsigned
738 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
739 {
740 assert(instr->dest.dest.is_ssa);
741
742 if (nir_op_infos[instr->op].input_sizes[src] > 0)
743 return nir_op_infos[instr->op].input_sizes[src];
744
745 return instr->dest.dest.ssa.num_components;
746 }
747
748 typedef enum {
749 nir_deref_type_var,
750 nir_deref_type_array,
751 nir_deref_type_struct
752 } nir_deref_type;
753
754 typedef struct nir_deref {
755 nir_deref_type deref_type;
756 struct nir_deref *child;
757 const struct glsl_type *type;
758 } nir_deref;
759
760 typedef struct {
761 nir_deref deref;
762
763 nir_variable *var;
764 } nir_deref_var;
765
766 /* This enum describes how the array is referenced. If the deref is
767 * direct then the base_offset is used. If the deref is indirect then then
768 * offset is given by base_offset + indirect. If the deref is a wildcard
769 * then the deref refers to all of the elements of the array at the same
770 * time. Wildcard dereferences are only ever allowed in copy_var
771 * intrinsics and the source and destination derefs must have matching
772 * wildcards.
773 */
774 typedef enum {
775 nir_deref_array_type_direct,
776 nir_deref_array_type_indirect,
777 nir_deref_array_type_wildcard,
778 } nir_deref_array_type;
779
780 typedef struct {
781 nir_deref deref;
782
783 nir_deref_array_type deref_array_type;
784 unsigned base_offset;
785 nir_src indirect;
786 } nir_deref_array;
787
788 typedef struct {
789 nir_deref deref;
790
791 unsigned index;
792 } nir_deref_struct;
793
794 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
795 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
796 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
797
798 /** Returns the tail of a deref chain */
799 static inline nir_deref *
800 nir_deref_tail(nir_deref *deref)
801 {
802 while (deref->child)
803 deref = deref->child;
804 return deref;
805 }
806
807 typedef struct {
808 nir_instr instr;
809
810 unsigned num_params;
811 nir_deref_var **params;
812 nir_deref_var *return_deref;
813
814 struct nir_function_overload *callee;
815 } nir_call_instr;
816
817 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
818 num_variables, num_indices, flags) \
819 nir_intrinsic_##name,
820
821 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
822
823 typedef enum {
824 #include "nir_intrinsics.h"
825 nir_num_intrinsics = nir_last_intrinsic + 1
826 } nir_intrinsic_op;
827
828 #undef INTRINSIC
829 #undef LAST_INTRINSIC
830
831 /** Represents an intrinsic
832 *
833 * An intrinsic is an instruction type for handling things that are
834 * more-or-less regular operations but don't just consume and produce SSA
835 * values like ALU operations do. Intrinsics are not for things that have
836 * special semantic meaning such as phi nodes and parallel copies.
837 * Examples of intrinsics include variable load/store operations, system
838 * value loads, and the like. Even though texturing more-or-less falls
839 * under this category, texturing is its own instruction type because
840 * trying to represent texturing with intrinsics would lead to a
841 * combinatorial explosion of intrinsic opcodes.
842 *
843 * By having a single instruction type for handling a lot of different
844 * cases, optimization passes can look for intrinsics and, for the most
845 * part, completely ignore them. Each intrinsic type also has a few
846 * possible flags that govern whether or not they can be reordered or
847 * eliminated. That way passes like dead code elimination can still work
848 * on intrisics without understanding the meaning of each.
849 *
850 * Each intrinsic has some number of constant indices, some number of
851 * variables, and some number of sources. What these sources, variables,
852 * and indices mean depends on the intrinsic and is documented with the
853 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
854 * instructions are the only types of instruction that can operate on
855 * variables.
856 */
857 typedef struct {
858 nir_instr instr;
859
860 nir_intrinsic_op intrinsic;
861
862 nir_dest dest;
863
864 /** number of components if this is a vectorized intrinsic
865 *
866 * Similarly to ALU operations, some intrinsics are vectorized.
867 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
868 * For vectorized intrinsics, the num_components field specifies the
869 * number of destination components and the number of source components
870 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
871 */
872 uint8_t num_components;
873
874 int const_index[3];
875
876 nir_deref_var *variables[2];
877
878 nir_src src[];
879 } nir_intrinsic_instr;
880
881 /**
882 * \name NIR intrinsics semantic flags
883 *
884 * information about what the compiler can do with the intrinsics.
885 *
886 * \sa nir_intrinsic_info::flags
887 */
888 typedef enum {
889 /**
890 * whether the intrinsic can be safely eliminated if none of its output
891 * value is not being used.
892 */
893 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
894
895 /**
896 * Whether the intrinsic can be reordered with respect to any other
897 * intrinsic, i.e. whether the only reordering dependencies of the
898 * intrinsic are due to the register reads/writes.
899 */
900 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
901 } nir_intrinsic_semantic_flag;
902
903 #define NIR_INTRINSIC_MAX_INPUTS 4
904
905 typedef struct {
906 const char *name;
907
908 unsigned num_srcs; /** < number of register/SSA inputs */
909
910 /** number of components of each input register
911 *
912 * If this value is 0, the number of components is given by the
913 * num_components field of nir_intrinsic_instr.
914 */
915 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
916
917 bool has_dest;
918
919 /** number of components of the output register
920 *
921 * If this value is 0, the number of components is given by the
922 * num_components field of nir_intrinsic_instr.
923 */
924 unsigned dest_components;
925
926 /** the number of inputs/outputs that are variables */
927 unsigned num_variables;
928
929 /** the number of constant indices used by the intrinsic */
930 unsigned num_indices;
931
932 /** semantic flags for calls to this intrinsic */
933 nir_intrinsic_semantic_flag flags;
934 } nir_intrinsic_info;
935
936 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
937
938 /**
939 * \group texture information
940 *
941 * This gives semantic information about textures which is useful to the
942 * frontend, the backend, and lowering passes, but not the optimizer.
943 */
944
945 typedef enum {
946 nir_tex_src_coord,
947 nir_tex_src_projector,
948 nir_tex_src_comparitor, /* shadow comparitor */
949 nir_tex_src_offset,
950 nir_tex_src_bias,
951 nir_tex_src_lod,
952 nir_tex_src_ms_index, /* MSAA sample index */
953 nir_tex_src_ddx,
954 nir_tex_src_ddy,
955 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
956 nir_num_tex_src_types
957 } nir_tex_src_type;
958
959 typedef struct {
960 nir_src src;
961 nir_tex_src_type src_type;
962 } nir_tex_src;
963
964 typedef enum {
965 nir_texop_tex, /**< Regular texture look-up */
966 nir_texop_txb, /**< Texture look-up with LOD bias */
967 nir_texop_txl, /**< Texture look-up with explicit LOD */
968 nir_texop_txd, /**< Texture look-up with partial derivatvies */
969 nir_texop_txf, /**< Texel fetch with explicit LOD */
970 nir_texop_txf_ms, /**< Multisample texture fetch */
971 nir_texop_txs, /**< Texture size */
972 nir_texop_lod, /**< Texture lod query */
973 nir_texop_tg4, /**< Texture gather */
974 nir_texop_query_levels, /**< Texture levels query */
975 nir_texop_texture_samples, /**< Texture samples query */
976 } nir_texop;
977
978 typedef struct {
979 nir_instr instr;
980
981 enum glsl_sampler_dim sampler_dim;
982 nir_alu_type dest_type;
983
984 nir_texop op;
985 nir_dest dest;
986 nir_tex_src *src;
987 unsigned num_srcs, coord_components;
988 bool is_array, is_shadow;
989
990 /**
991 * If is_shadow is true, whether this is the old-style shadow that outputs 4
992 * components or the new-style shadow that outputs 1 component.
993 */
994 bool is_new_style_shadow;
995
996 /* constant offset - must be 0 if the offset source is used */
997 int const_offset[4];
998
999 /* gather component selector */
1000 unsigned component : 2;
1001
1002 /* The descriptor set containing this texture */
1003 unsigned sampler_set;
1004
1005 /** The sampler index
1006 *
1007 * If this texture instruction has a nir_tex_src_sampler_offset source,
1008 * then the sampler index is given by sampler_index + sampler_offset.
1009 */
1010 unsigned sampler_index;
1011
1012 /** The size of the sampler array or 0 if it's not an array */
1013 unsigned sampler_array_size;
1014
1015 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
1016 } nir_tex_instr;
1017
1018 static inline unsigned
1019 nir_tex_instr_dest_size(nir_tex_instr *instr)
1020 {
1021 switch (instr->op) {
1022 case nir_texop_txs: {
1023 unsigned ret;
1024 switch (instr->sampler_dim) {
1025 case GLSL_SAMPLER_DIM_1D:
1026 case GLSL_SAMPLER_DIM_BUF:
1027 ret = 1;
1028 break;
1029 case GLSL_SAMPLER_DIM_2D:
1030 case GLSL_SAMPLER_DIM_CUBE:
1031 case GLSL_SAMPLER_DIM_MS:
1032 case GLSL_SAMPLER_DIM_RECT:
1033 case GLSL_SAMPLER_DIM_EXTERNAL:
1034 ret = 2;
1035 break;
1036 case GLSL_SAMPLER_DIM_3D:
1037 ret = 3;
1038 break;
1039 default:
1040 unreachable("not reached");
1041 }
1042 if (instr->is_array)
1043 ret++;
1044 return ret;
1045 }
1046
1047 case nir_texop_lod:
1048 return 2;
1049
1050 case nir_texop_texture_samples:
1051 case nir_texop_query_levels:
1052 return 1;
1053
1054 default:
1055 if (instr->is_shadow && instr->is_new_style_shadow)
1056 return 1;
1057
1058 return 4;
1059 }
1060 }
1061
1062 static inline unsigned
1063 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1064 {
1065 if (instr->src[src].src_type == nir_tex_src_coord)
1066 return instr->coord_components;
1067
1068
1069 if (instr->src[src].src_type == nir_tex_src_offset ||
1070 instr->src[src].src_type == nir_tex_src_ddx ||
1071 instr->src[src].src_type == nir_tex_src_ddy) {
1072 if (instr->is_array)
1073 return instr->coord_components - 1;
1074 else
1075 return instr->coord_components;
1076 }
1077
1078 return 1;
1079 }
1080
1081 static inline int
1082 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1083 {
1084 for (unsigned i = 0; i < instr->num_srcs; i++)
1085 if (instr->src[i].src_type == type)
1086 return (int) i;
1087
1088 return -1;
1089 }
1090
1091 typedef struct {
1092 union {
1093 float f[4];
1094 int32_t i[4];
1095 uint32_t u[4];
1096 };
1097 } nir_const_value;
1098
1099 typedef struct {
1100 nir_instr instr;
1101
1102 nir_const_value value;
1103
1104 nir_ssa_def def;
1105 } nir_load_const_instr;
1106
1107 typedef enum {
1108 nir_jump_return,
1109 nir_jump_break,
1110 nir_jump_continue,
1111 } nir_jump_type;
1112
1113 typedef struct {
1114 nir_instr instr;
1115 nir_jump_type type;
1116 } nir_jump_instr;
1117
1118 /* creates a new SSA variable in an undefined state */
1119
1120 typedef struct {
1121 nir_instr instr;
1122 nir_ssa_def def;
1123 } nir_ssa_undef_instr;
1124
1125 typedef struct {
1126 struct exec_node node;
1127
1128 /* The predecessor block corresponding to this source */
1129 struct nir_block *pred;
1130
1131 nir_src src;
1132 } nir_phi_src;
1133
1134 #define nir_foreach_phi_src(phi, entry) \
1135 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1136 #define nir_foreach_phi_src_safe(phi, entry) \
1137 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1138
1139 typedef struct {
1140 nir_instr instr;
1141
1142 struct exec_list srcs; /** < list of nir_phi_src */
1143
1144 nir_dest dest;
1145 } nir_phi_instr;
1146
1147 typedef struct {
1148 struct exec_node node;
1149 nir_src src;
1150 nir_dest dest;
1151 } nir_parallel_copy_entry;
1152
1153 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1154 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1155
1156 typedef struct {
1157 nir_instr instr;
1158
1159 /* A list of nir_parallel_copy_entry's. The sources of all of the
1160 * entries are copied to the corresponding destinations "in parallel".
1161 * In other words, if we have two entries: a -> b and b -> a, the values
1162 * get swapped.
1163 */
1164 struct exec_list entries;
1165 } nir_parallel_copy_instr;
1166
1167 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1168 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1169 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1170 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1171 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1172 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1173 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1174 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1175 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1176 nir_parallel_copy_instr, instr)
1177
1178 /*
1179 * Control flow
1180 *
1181 * Control flow consists of a tree of control flow nodes, which include
1182 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1183 * instructions that always run start-to-finish. Each basic block also keeps
1184 * track of its successors (blocks which may run immediately after the current
1185 * block) and predecessors (blocks which could have run immediately before the
1186 * current block). Each function also has a start block and an end block which
1187 * all return statements point to (which is always empty). Together, all the
1188 * blocks with their predecessors and successors make up the control flow
1189 * graph (CFG) of the function. There are helpers that modify the tree of
1190 * control flow nodes while modifying the CFG appropriately; these should be
1191 * used instead of modifying the tree directly.
1192 */
1193
1194 typedef enum {
1195 nir_cf_node_block,
1196 nir_cf_node_if,
1197 nir_cf_node_loop,
1198 nir_cf_node_function
1199 } nir_cf_node_type;
1200
1201 typedef struct nir_cf_node {
1202 struct exec_node node;
1203 nir_cf_node_type type;
1204 struct nir_cf_node *parent;
1205 } nir_cf_node;
1206
1207 typedef struct nir_block {
1208 nir_cf_node cf_node;
1209
1210 struct exec_list instr_list; /** < list of nir_instr */
1211
1212 /** generic block index; generated by nir_index_blocks */
1213 unsigned index;
1214
1215 /*
1216 * Each block can only have up to 2 successors, so we put them in a simple
1217 * array - no need for anything more complicated.
1218 */
1219 struct nir_block *successors[2];
1220
1221 /* Set of nir_block predecessors in the CFG */
1222 struct set *predecessors;
1223
1224 /*
1225 * this node's immediate dominator in the dominance tree - set to NULL for
1226 * the start block.
1227 */
1228 struct nir_block *imm_dom;
1229
1230 /* This node's children in the dominance tree */
1231 unsigned num_dom_children;
1232 struct nir_block **dom_children;
1233
1234 /* Set of nir_block's on the dominance frontier of this block */
1235 struct set *dom_frontier;
1236
1237 /*
1238 * These two indices have the property that dom_{pre,post}_index for each
1239 * child of this block in the dominance tree will always be between
1240 * dom_pre_index and dom_post_index for this block, which makes testing if
1241 * a given block is dominated by another block an O(1) operation.
1242 */
1243 unsigned dom_pre_index, dom_post_index;
1244
1245 /* live in and out for this block; used for liveness analysis */
1246 BITSET_WORD *live_in;
1247 BITSET_WORD *live_out;
1248 } nir_block;
1249
1250 static inline nir_instr *
1251 nir_block_first_instr(nir_block *block)
1252 {
1253 struct exec_node *head = exec_list_get_head(&block->instr_list);
1254 return exec_node_data(nir_instr, head, node);
1255 }
1256
1257 static inline nir_instr *
1258 nir_block_last_instr(nir_block *block)
1259 {
1260 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1261 return exec_node_data(nir_instr, tail, node);
1262 }
1263
1264 #define nir_foreach_instr(block, instr) \
1265 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1266 #define nir_foreach_instr_reverse(block, instr) \
1267 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1268 #define nir_foreach_instr_safe(block, instr) \
1269 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1270 #define nir_foreach_instr_safe_reverse(block, instr) \
1271 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1272
1273 typedef struct nir_if {
1274 nir_cf_node cf_node;
1275 nir_src condition;
1276
1277 struct exec_list then_list; /** < list of nir_cf_node */
1278 struct exec_list else_list; /** < list of nir_cf_node */
1279 } nir_if;
1280
1281 static inline nir_cf_node *
1282 nir_if_first_then_node(nir_if *if_stmt)
1283 {
1284 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1285 return exec_node_data(nir_cf_node, head, node);
1286 }
1287
1288 static inline nir_cf_node *
1289 nir_if_last_then_node(nir_if *if_stmt)
1290 {
1291 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1292 return exec_node_data(nir_cf_node, tail, node);
1293 }
1294
1295 static inline nir_cf_node *
1296 nir_if_first_else_node(nir_if *if_stmt)
1297 {
1298 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1299 return exec_node_data(nir_cf_node, head, node);
1300 }
1301
1302 static inline nir_cf_node *
1303 nir_if_last_else_node(nir_if *if_stmt)
1304 {
1305 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1306 return exec_node_data(nir_cf_node, tail, node);
1307 }
1308
1309 typedef struct {
1310 nir_cf_node cf_node;
1311
1312 struct exec_list body; /** < list of nir_cf_node */
1313 } nir_loop;
1314
1315 static inline nir_cf_node *
1316 nir_loop_first_cf_node(nir_loop *loop)
1317 {
1318 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1319 }
1320
1321 static inline nir_cf_node *
1322 nir_loop_last_cf_node(nir_loop *loop)
1323 {
1324 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1325 }
1326
1327 /**
1328 * Various bits of metadata that can may be created or required by
1329 * optimization and analysis passes
1330 */
1331 typedef enum {
1332 nir_metadata_none = 0x0,
1333 nir_metadata_block_index = 0x1,
1334 nir_metadata_dominance = 0x2,
1335 nir_metadata_live_variables = 0x4,
1336 } nir_metadata;
1337
1338 typedef struct {
1339 nir_cf_node cf_node;
1340
1341 /** pointer to the overload of which this is an implementation */
1342 struct nir_function_overload *overload;
1343
1344 struct exec_list body; /** < list of nir_cf_node */
1345
1346 nir_block *end_block;
1347
1348 /** list for all local variables in the function */
1349 struct exec_list locals;
1350
1351 /** array of variables used as parameters */
1352 unsigned num_params;
1353 nir_variable **params;
1354
1355 /** variable used to hold the result of the function */
1356 nir_variable *return_var;
1357
1358 /** list of local registers in the function */
1359 struct exec_list registers;
1360
1361 /** next available local register index */
1362 unsigned reg_alloc;
1363
1364 /** next available SSA value index */
1365 unsigned ssa_alloc;
1366
1367 /* total number of basic blocks, only valid when block_index_dirty = false */
1368 unsigned num_blocks;
1369
1370 nir_metadata valid_metadata;
1371 } nir_function_impl;
1372
1373 static inline nir_block *
1374 nir_start_block(nir_function_impl *impl)
1375 {
1376 return (nir_block *) exec_list_get_head(&impl->body);
1377 }
1378
1379 static inline nir_cf_node *
1380 nir_cf_node_next(nir_cf_node *node)
1381 {
1382 struct exec_node *next = exec_node_get_next(&node->node);
1383 if (exec_node_is_tail_sentinel(next))
1384 return NULL;
1385 else
1386 return exec_node_data(nir_cf_node, next, node);
1387 }
1388
1389 static inline nir_cf_node *
1390 nir_cf_node_prev(nir_cf_node *node)
1391 {
1392 struct exec_node *prev = exec_node_get_prev(&node->node);
1393 if (exec_node_is_head_sentinel(prev))
1394 return NULL;
1395 else
1396 return exec_node_data(nir_cf_node, prev, node);
1397 }
1398
1399 static inline bool
1400 nir_cf_node_is_first(const nir_cf_node *node)
1401 {
1402 return exec_node_is_head_sentinel(node->node.prev);
1403 }
1404
1405 static inline bool
1406 nir_cf_node_is_last(const nir_cf_node *node)
1407 {
1408 return exec_node_is_tail_sentinel(node->node.next);
1409 }
1410
1411 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1412 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1413 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1414 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1415
1416 typedef enum {
1417 nir_parameter_in,
1418 nir_parameter_out,
1419 nir_parameter_inout,
1420 } nir_parameter_type;
1421
1422 typedef struct {
1423 nir_parameter_type param_type;
1424 const struct glsl_type *type;
1425 } nir_parameter;
1426
1427 typedef struct nir_function_overload {
1428 struct exec_node node;
1429
1430 unsigned num_params;
1431 nir_parameter *params;
1432 const struct glsl_type *return_type;
1433
1434 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1435
1436 /** pointer to the function of which this is an overload */
1437 struct nir_function *function;
1438 } nir_function_overload;
1439
1440 typedef struct nir_function {
1441 struct exec_node node;
1442
1443 struct exec_list overload_list; /** < list of nir_function_overload */
1444 const char *name;
1445 struct nir_shader *shader;
1446 } nir_function;
1447
1448 #define nir_function_first_overload(func) \
1449 exec_node_data(nir_function_overload, \
1450 exec_list_get_head(&(func)->overload_list), node)
1451
1452 typedef struct nir_shader_compiler_options {
1453 bool lower_ffma;
1454 bool lower_fdiv;
1455 bool lower_flrp;
1456 bool lower_fpow;
1457 bool lower_fsat;
1458 bool lower_fsqrt;
1459 /** lowers fneg and ineg to fsub and isub. */
1460 bool lower_negate;
1461 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1462 bool lower_sub;
1463
1464 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1465 bool lower_scmp;
1466
1467 /* Does the native fdot instruction replicate its result for four
1468 * components? If so, then opt_algebraic_late will turn all fdotN
1469 * instructions into fdot_replicatedN instructions.
1470 */
1471 bool fdot_replicates;
1472
1473 /** lowers ffract to fsub+ffloor: */
1474 bool lower_ffract;
1475
1476 /**
1477 * Does the driver support real 32-bit integers? (Otherwise, integers
1478 * are simulated by floats.)
1479 */
1480 bool native_integers;
1481 } nir_shader_compiler_options;
1482
1483 typedef struct nir_shader {
1484 /** list of uniforms (nir_variable) */
1485 struct exec_list uniforms;
1486
1487 /** list of inputs (nir_variable) */
1488 struct exec_list inputs;
1489
1490 /** list of outputs (nir_variable) */
1491 struct exec_list outputs;
1492
1493 /** Set of driver-specific options for the shader.
1494 *
1495 * The memory for the options is expected to be kept in a single static
1496 * copy by the driver.
1497 */
1498 const struct nir_shader_compiler_options *options;
1499
1500 /** list of global variables in the shader (nir_variable) */
1501 struct exec_list globals;
1502
1503 /** list of system value variables in the shader (nir_variable) */
1504 struct exec_list system_values;
1505
1506 struct exec_list functions; /** < list of nir_function */
1507
1508 /** list of global register in the shader */
1509 struct exec_list registers;
1510
1511 /** next available global register index */
1512 unsigned reg_alloc;
1513
1514 /**
1515 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1516 * access plus one
1517 */
1518 unsigned num_inputs, num_uniforms, num_outputs;
1519
1520 /** The shader stage, such as MESA_SHADER_VERTEX. */
1521 gl_shader_stage stage;
1522
1523 struct {
1524 /** The maximum number of vertices the geometry shader might write. */
1525 unsigned vertices_out;
1526
1527 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1528 unsigned invocations;
1529 } gs;
1530 } nir_shader;
1531
1532 #define nir_foreach_overload(shader, overload) \
1533 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1534 foreach_list_typed(nir_function_overload, overload, node, \
1535 &(func)->overload_list)
1536
1537 nir_shader *nir_shader_create(void *mem_ctx,
1538 gl_shader_stage stage,
1539 const nir_shader_compiler_options *options);
1540
1541 /** creates a register, including assigning it an index and adding it to the list */
1542 nir_register *nir_global_reg_create(nir_shader *shader);
1543
1544 nir_register *nir_local_reg_create(nir_function_impl *impl);
1545
1546 void nir_reg_remove(nir_register *reg);
1547
1548 /** creates a function and adds it to the shader's list of functions */
1549 nir_function *nir_function_create(nir_shader *shader, const char *name);
1550
1551 /** creates a null function returning null */
1552 nir_function_overload *nir_function_overload_create(nir_function *func);
1553
1554 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1555
1556 nir_block *nir_block_create(void *mem_ctx);
1557 nir_if *nir_if_create(void *mem_ctx);
1558 nir_loop *nir_loop_create(void *mem_ctx);
1559
1560 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1561
1562 /** requests that the given pieces of metadata be generated */
1563 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1564 /** dirties all but the preserved metadata */
1565 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1566
1567 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1568 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1569
1570 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1571
1572 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1573 unsigned num_components);
1574
1575 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1576 nir_intrinsic_op op);
1577
1578 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1579 nir_function_overload *callee);
1580
1581 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1582
1583 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1584
1585 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1586
1587 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1588 unsigned num_components);
1589
1590 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1591 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1592 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1593
1594 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1595
1596 nir_load_const_instr *
1597 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1598
1599 /**
1600 * NIR Cursors and Instruction Insertion API
1601 * @{
1602 *
1603 * A tiny struct representing a point to insert/extract instructions or
1604 * control flow nodes. Helps reduce the combinatorial explosion of possible
1605 * points to insert/extract.
1606 *
1607 * \sa nir_control_flow.h
1608 */
1609 typedef enum {
1610 nir_cursor_before_block,
1611 nir_cursor_after_block,
1612 nir_cursor_before_instr,
1613 nir_cursor_after_instr,
1614 } nir_cursor_option;
1615
1616 typedef struct {
1617 nir_cursor_option option;
1618 union {
1619 nir_block *block;
1620 nir_instr *instr;
1621 };
1622 } nir_cursor;
1623
1624 static inline nir_block *
1625 nir_cursor_current_block(nir_cursor cursor)
1626 {
1627 if (cursor.option == nir_cursor_before_instr ||
1628 cursor.option == nir_cursor_after_instr) {
1629 return cursor.instr->block;
1630 } else {
1631 return cursor.block;
1632 }
1633 }
1634
1635 static inline nir_cursor
1636 nir_before_block(nir_block *block)
1637 {
1638 nir_cursor cursor;
1639 cursor.option = nir_cursor_before_block;
1640 cursor.block = block;
1641 return cursor;
1642 }
1643
1644 static inline nir_cursor
1645 nir_after_block(nir_block *block)
1646 {
1647 nir_cursor cursor;
1648 cursor.option = nir_cursor_after_block;
1649 cursor.block = block;
1650 return cursor;
1651 }
1652
1653 static inline nir_cursor
1654 nir_before_instr(nir_instr *instr)
1655 {
1656 nir_cursor cursor;
1657 cursor.option = nir_cursor_before_instr;
1658 cursor.instr = instr;
1659 return cursor;
1660 }
1661
1662 static inline nir_cursor
1663 nir_after_instr(nir_instr *instr)
1664 {
1665 nir_cursor cursor;
1666 cursor.option = nir_cursor_after_instr;
1667 cursor.instr = instr;
1668 return cursor;
1669 }
1670
1671 static inline nir_cursor
1672 nir_after_block_before_jump(nir_block *block)
1673 {
1674 nir_instr *last_instr = nir_block_last_instr(block);
1675 if (last_instr && last_instr->type == nir_instr_type_jump) {
1676 return nir_before_instr(last_instr);
1677 } else {
1678 return nir_after_block(block);
1679 }
1680 }
1681
1682 static inline nir_cursor
1683 nir_before_cf_node(nir_cf_node *node)
1684 {
1685 if (node->type == nir_cf_node_block)
1686 return nir_before_block(nir_cf_node_as_block(node));
1687
1688 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1689 }
1690
1691 static inline nir_cursor
1692 nir_after_cf_node(nir_cf_node *node)
1693 {
1694 if (node->type == nir_cf_node_block)
1695 return nir_after_block(nir_cf_node_as_block(node));
1696
1697 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1698 }
1699
1700 static inline nir_cursor
1701 nir_before_cf_list(struct exec_list *cf_list)
1702 {
1703 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1704 exec_list_get_head(cf_list), node);
1705 return nir_before_cf_node(first_node);
1706 }
1707
1708 static inline nir_cursor
1709 nir_after_cf_list(struct exec_list *cf_list)
1710 {
1711 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1712 exec_list_get_tail(cf_list), node);
1713 return nir_after_cf_node(last_node);
1714 }
1715
1716 /**
1717 * Insert a NIR instruction at the given cursor.
1718 *
1719 * Note: This does not update the cursor.
1720 */
1721 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1722
1723 static inline void
1724 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1725 {
1726 nir_instr_insert(nir_before_instr(instr), before);
1727 }
1728
1729 static inline void
1730 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1731 {
1732 nir_instr_insert(nir_after_instr(instr), after);
1733 }
1734
1735 static inline void
1736 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1737 {
1738 nir_instr_insert(nir_before_block(block), before);
1739 }
1740
1741 static inline void
1742 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1743 {
1744 nir_instr_insert(nir_after_block(block), after);
1745 }
1746
1747 static inline void
1748 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1749 {
1750 nir_instr_insert(nir_before_cf_node(node), before);
1751 }
1752
1753 static inline void
1754 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1755 {
1756 nir_instr_insert(nir_after_cf_node(node), after);
1757 }
1758
1759 static inline void
1760 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1761 {
1762 nir_instr_insert(nir_before_cf_list(list), before);
1763 }
1764
1765 static inline void
1766 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1767 {
1768 nir_instr_insert(nir_after_cf_list(list), after);
1769 }
1770
1771 void nir_instr_remove(nir_instr *instr);
1772
1773 /** @} */
1774
1775 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1776 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1777 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1778 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1779 void *state);
1780 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1781 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1782
1783 nir_const_value *nir_src_as_const_value(nir_src src);
1784 bool nir_srcs_equal(nir_src src1, nir_src src2);
1785 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1786 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1787 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1788 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1789 nir_dest new_dest);
1790
1791 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1792 unsigned num_components, const char *name);
1793 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1794 unsigned num_components, const char *name);
1795 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1796
1797 /* visits basic blocks in source-code order */
1798 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1799 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1800 void *state);
1801 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1802 void *state);
1803 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1804 void *state);
1805
1806 /* If the following CF node is an if, this function returns that if.
1807 * Otherwise, it returns NULL.
1808 */
1809 nir_if *nir_block_get_following_if(nir_block *block);
1810
1811 nir_loop *nir_block_get_following_loop(nir_block *block);
1812
1813 void nir_index_local_regs(nir_function_impl *impl);
1814 void nir_index_global_regs(nir_shader *shader);
1815 void nir_index_ssa_defs(nir_function_impl *impl);
1816 unsigned nir_index_instrs(nir_function_impl *impl);
1817
1818 void nir_index_blocks(nir_function_impl *impl);
1819
1820 void nir_print_shader(nir_shader *shader, FILE *fp);
1821 void nir_print_instr(const nir_instr *instr, FILE *fp);
1822
1823 #ifdef DEBUG
1824 void nir_validate_shader(nir_shader *shader);
1825 #else
1826 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1827 #endif /* DEBUG */
1828
1829 void nir_calc_dominance_impl(nir_function_impl *impl);
1830 void nir_calc_dominance(nir_shader *shader);
1831
1832 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1833 bool nir_block_dominates(nir_block *parent, nir_block *child);
1834
1835 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1836 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1837
1838 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1839 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1840
1841 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1842 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1843
1844 int nir_gs_count_vertices(nir_shader *shader);
1845
1846 bool nir_split_var_copies(nir_shader *shader);
1847
1848 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1849 void nir_lower_var_copies(nir_shader *shader);
1850
1851 bool nir_lower_global_vars_to_local(nir_shader *shader);
1852
1853 bool nir_lower_locals_to_regs(nir_shader *shader);
1854
1855 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1856
1857 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1858
1859 void nir_assign_var_locations(struct exec_list *var_list,
1860 unsigned *size,
1861 int (*type_size)(const struct glsl_type *));
1862
1863 void nir_lower_io(nir_shader *shader,
1864 int (*type_size)(const struct glsl_type *));
1865 void nir_lower_vars_to_ssa(nir_shader *shader);
1866
1867 bool nir_remove_dead_variables(nir_shader *shader);
1868
1869 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1870 bool nir_lower_vec_to_movs(nir_shader *shader);
1871 void nir_lower_alu_to_scalar(nir_shader *shader);
1872 void nir_lower_load_const_to_scalar(nir_shader *shader);
1873
1874 void nir_lower_phis_to_scalar(nir_shader *shader);
1875
1876 void nir_lower_samplers(nir_shader *shader,
1877 const struct gl_shader_program *shader_program);
1878 void nir_lower_samplers_for_vk(nir_shader *shader);
1879
1880 bool nir_lower_system_values(nir_shader *shader);
1881
1882 typedef struct nir_lower_tex_options {
1883 /**
1884 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
1885 * sampler types a texture projector is lowered.
1886 */
1887 unsigned lower_txp;
1888
1889 /**
1890 * If true, lower rect textures to 2D, using txs to fetch the
1891 * texture dimensions and dividing the texture coords by the
1892 * texture dims to normalize.
1893 */
1894 bool lower_rect;
1895
1896 /**
1897 * To emulate certain texture wrap modes, this can be used
1898 * to saturate the specified tex coord to [0.0, 1.0]. The
1899 * bits are according to sampler #, ie. if, for example:
1900 *
1901 * (conf->saturate_s & (1 << n))
1902 *
1903 * is true, then the s coord for sampler n is saturated.
1904 *
1905 * Note that clamping must happen *after* projector lowering
1906 * so any projected texture sample instruction with a clamped
1907 * coordinate gets automatically lowered, regardless of the
1908 * 'lower_txp' setting.
1909 */
1910 unsigned saturate_s;
1911 unsigned saturate_t;
1912 unsigned saturate_r;
1913 } nir_lower_tex_options;
1914
1915 void nir_lower_tex(nir_shader *shader,
1916 const nir_lower_tex_options *options);
1917
1918 void nir_lower_idiv(nir_shader *shader);
1919
1920 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
1921 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
1922
1923 void nir_lower_two_sided_color(nir_shader *shader);
1924
1925 void nir_lower_atomics(nir_shader *shader);
1926 void nir_lower_to_source_mods(nir_shader *shader);
1927
1928 bool nir_lower_gs_intrinsics(nir_shader *shader);
1929
1930 bool nir_normalize_cubemap_coords(nir_shader *shader);
1931
1932 void nir_live_variables_impl(nir_function_impl *impl);
1933 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1934
1935 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1936 void nir_convert_to_ssa(nir_shader *shader);
1937
1938 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1939 * registers. If false, convert all values (even those not involved in a phi
1940 * node) to registers.
1941 */
1942 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1943
1944 bool nir_opt_algebraic(nir_shader *shader);
1945 bool nir_opt_algebraic_late(nir_shader *shader);
1946 bool nir_opt_constant_folding(nir_shader *shader);
1947
1948 bool nir_opt_global_to_local(nir_shader *shader);
1949
1950 bool nir_copy_prop_impl(nir_function_impl *impl);
1951 bool nir_copy_prop(nir_shader *shader);
1952
1953 bool nir_opt_cse(nir_shader *shader);
1954
1955 bool nir_opt_dce_impl(nir_function_impl *impl);
1956 bool nir_opt_dce(nir_shader *shader);
1957
1958 bool nir_opt_dead_cf(nir_shader *shader);
1959
1960 void nir_opt_gcm(nir_shader *shader);
1961
1962 bool nir_opt_peephole_select(nir_shader *shader);
1963 bool nir_opt_peephole_ffma(nir_shader *shader);
1964
1965 bool nir_opt_remove_phis(nir_shader *shader);
1966
1967 bool nir_opt_undef(nir_shader *shader);
1968
1969 void nir_sweep(nir_shader *shader);
1970
1971 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
1972 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
1973
1974 #ifdef __cplusplus
1975 } /* extern "C" */
1976 #endif