mesa/teximage: Add GL error parameter to _mesa_target_can_be_compressed
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Other: This field is not currently used.
282 *
283 * If the variable is a uniform, shader input, or shader output, and the
284 * slot has not been assigned, the value will be -1.
285 */
286 int location;
287
288 /**
289 * The actual location of the variable in the IR. Only valid for inputs
290 * and outputs.
291 */
292 unsigned int driver_location;
293
294 /**
295 * output index for dual source blending.
296 */
297 int index;
298
299 /**
300 * Initial binding point for a sampler or UBO.
301 *
302 * For array types, this represents the binding point for the first element.
303 */
304 int binding;
305
306 /**
307 * Location an atomic counter is stored at.
308 */
309 struct {
310 unsigned buffer_index;
311 unsigned offset;
312 } atomic;
313
314 /**
315 * ARB_shader_image_load_store qualifiers.
316 */
317 struct {
318 bool read_only; /**< "readonly" qualifier. */
319 bool write_only; /**< "writeonly" qualifier. */
320 bool coherent;
321 bool _volatile;
322 bool restrict_flag;
323
324 /** Image internal format if specified explicitly, otherwise GL_NONE. */
325 GLenum format;
326 } image;
327
328 /**
329 * Highest element accessed with a constant expression array index
330 *
331 * Not used for non-array variables.
332 */
333 unsigned max_array_access;
334
335 } data;
336
337 /**
338 * Built-in state that backs this uniform
339 *
340 * Once set at variable creation, \c state_slots must remain invariant.
341 * This is because, ideally, this array would be shared by all clones of
342 * this variable in the IR tree. In other words, we'd really like for it
343 * to be a fly-weight.
344 *
345 * If the variable is not a uniform, \c num_state_slots will be zero and
346 * \c state_slots will be \c NULL.
347 */
348 /*@{*/
349 unsigned num_state_slots; /**< Number of state slots used */
350 nir_state_slot *state_slots; /**< State descriptors. */
351 /*@}*/
352
353 /**
354 * Constant expression assigned in the initializer of the variable
355 */
356 nir_constant *constant_initializer;
357
358 /**
359 * For variables that are in an interface block or are an instance of an
360 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
361 *
362 * \sa ir_variable::location
363 */
364 const struct glsl_type *interface_type;
365 } nir_variable;
366
367 typedef struct {
368 struct exec_node node;
369
370 unsigned num_components; /** < number of vector components */
371 unsigned num_array_elems; /** < size of array (0 for no array) */
372
373 /** generic register index. */
374 unsigned index;
375
376 /** only for debug purposes, can be NULL */
377 const char *name;
378
379 /** whether this register is local (per-function) or global (per-shader) */
380 bool is_global;
381
382 /**
383 * If this flag is set to true, then accessing channels >= num_components
384 * is well-defined, and simply spills over to the next array element. This
385 * is useful for backends that can do per-component accessing, in
386 * particular scalar backends. By setting this flag and making
387 * num_components equal to 1, structures can be packed tightly into
388 * registers and then registers can be accessed per-component to get to
389 * each structure member, even if it crosses vec4 boundaries.
390 */
391 bool is_packed;
392
393 /** set of nir_instr's where this register is used (read from) */
394 struct list_head uses;
395
396 /** set of nir_instr's where this register is defined (written to) */
397 struct list_head defs;
398
399 /** set of nir_if's where this register is used as a condition */
400 struct list_head if_uses;
401 } nir_register;
402
403 typedef enum {
404 nir_instr_type_alu,
405 nir_instr_type_call,
406 nir_instr_type_tex,
407 nir_instr_type_intrinsic,
408 nir_instr_type_load_const,
409 nir_instr_type_jump,
410 nir_instr_type_ssa_undef,
411 nir_instr_type_phi,
412 nir_instr_type_parallel_copy,
413 } nir_instr_type;
414
415 typedef struct nir_instr {
416 struct exec_node node;
417 nir_instr_type type;
418 struct nir_block *block;
419
420 /* A temporary for optimization and analysis passes to use for storing
421 * flags. For instance, DCE uses this to store the "dead/live" info.
422 */
423 uint8_t pass_flags;
424 } nir_instr;
425
426 static inline nir_instr *
427 nir_instr_next(nir_instr *instr)
428 {
429 struct exec_node *next = exec_node_get_next(&instr->node);
430 if (exec_node_is_tail_sentinel(next))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, next, node);
434 }
435
436 static inline nir_instr *
437 nir_instr_prev(nir_instr *instr)
438 {
439 struct exec_node *prev = exec_node_get_prev(&instr->node);
440 if (exec_node_is_head_sentinel(prev))
441 return NULL;
442 else
443 return exec_node_data(nir_instr, prev, node);
444 }
445
446 static inline bool
447 nir_instr_is_first(nir_instr *instr)
448 {
449 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
450 }
451
452 static inline bool
453 nir_instr_is_last(nir_instr *instr)
454 {
455 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
456 }
457
458 typedef struct {
459 /** for debugging only, can be NULL */
460 const char* name;
461
462 /** generic SSA definition index. */
463 unsigned index;
464
465 /** Index into the live_in and live_out bitfields */
466 unsigned live_index;
467
468 nir_instr *parent_instr;
469
470 /** set of nir_instr's where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_if's where this register is used as a condition */
474 struct list_head if_uses;
475
476 uint8_t num_components;
477 } nir_ssa_def;
478
479 struct nir_src;
480
481 typedef struct {
482 nir_register *reg;
483 struct nir_src *indirect; /** < NULL for no indirect offset */
484 unsigned base_offset;
485
486 /* TODO use-def chain goes here */
487 } nir_reg_src;
488
489 typedef struct {
490 nir_instr *parent_instr;
491 struct list_head def_link;
492
493 nir_register *reg;
494 struct nir_src *indirect; /** < NULL for no indirect offset */
495 unsigned base_offset;
496
497 /* TODO def-use chain goes here */
498 } nir_reg_dest;
499
500 struct nir_if;
501
502 typedef struct nir_src {
503 union {
504 nir_instr *parent_instr;
505 struct nir_if *parent_if;
506 };
507
508 struct list_head use_link;
509
510 union {
511 nir_reg_src reg;
512 nir_ssa_def *ssa;
513 };
514
515 bool is_ssa;
516 } nir_src;
517
518 #define NIR_SRC_INIT (nir_src) { { NULL } }
519
520 #define nir_foreach_use(reg_or_ssa_def, src) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(reg_or_ssa_def, src) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
542
543 #define nir_foreach_def(reg, dest) \
544 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
545
546 #define nir_foreach_def_safe(reg, dest) \
547 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
548
549 static inline nir_src
550 nir_src_for_ssa(nir_ssa_def *def)
551 {
552 nir_src src = NIR_SRC_INIT;
553
554 src.is_ssa = true;
555 src.ssa = def;
556
557 return src;
558 }
559
560 static inline nir_src
561 nir_src_for_reg(nir_register *reg)
562 {
563 nir_src src = NIR_SRC_INIT;
564
565 src.is_ssa = false;
566 src.reg.reg = reg;
567 src.reg.indirect = NULL;
568 src.reg.base_offset = 0;
569
570 return src;
571 }
572
573 static inline nir_dest
574 nir_dest_for_reg(nir_register *reg)
575 {
576 nir_dest dest = NIR_DEST_INIT;
577
578 dest.reg.reg = reg;
579
580 return dest;
581 }
582
583 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
584 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
585
586 typedef struct {
587 nir_src src;
588
589 /**
590 * \name input modifiers
591 */
592 /*@{*/
593 /**
594 * For inputs interpreted as floating point, flips the sign bit. For
595 * inputs interpreted as integers, performs the two's complement negation.
596 */
597 bool negate;
598
599 /**
600 * Clears the sign bit for floating point values, and computes the integer
601 * absolute value for integers. Note that the negate modifier acts after
602 * the absolute value modifier, therefore if both are set then all inputs
603 * will become negative.
604 */
605 bool abs;
606 /*@}*/
607
608 /**
609 * For each input component, says which component of the register it is
610 * chosen from. Note that which elements of the swizzle are used and which
611 * are ignored are based on the write mask for most opcodes - for example,
612 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
613 * a swizzle of {2, x, 1, 0} where x means "don't care."
614 */
615 uint8_t swizzle[4];
616 } nir_alu_src;
617
618 typedef struct {
619 nir_dest dest;
620
621 /**
622 * \name saturate output modifier
623 *
624 * Only valid for opcodes that output floating-point numbers. Clamps the
625 * output to between 0.0 and 1.0 inclusive.
626 */
627
628 bool saturate;
629
630 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
631 } nir_alu_dest;
632
633 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
634 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
635 void *mem_ctx);
636
637 typedef enum {
638 nir_type_invalid = 0, /* Not a valid type */
639 nir_type_float,
640 nir_type_int,
641 nir_type_unsigned,
642 nir_type_bool
643 } nir_alu_type;
644
645 typedef enum {
646 NIR_OP_IS_COMMUTATIVE = (1 << 0),
647 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
648 } nir_op_algebraic_property;
649
650 typedef struct {
651 const char *name;
652
653 unsigned num_inputs;
654
655 /**
656 * The number of components in the output
657 *
658 * If non-zero, this is the size of the output and input sizes are
659 * explicitly given; swizzle and writemask are still in effect, but if
660 * the output component is masked out, then the input component may
661 * still be in use.
662 *
663 * If zero, the opcode acts in the standard, per-component manner; the
664 * operation is performed on each component (except the ones that are
665 * masked out) with the input being taken from the input swizzle for
666 * that component.
667 *
668 * The size of some of the inputs may be given (i.e. non-zero) even
669 * though output_size is zero; in that case, the inputs with a zero
670 * size act per-component, while the inputs with non-zero size don't.
671 */
672 unsigned output_size;
673
674 /**
675 * The type of vector that the instruction outputs. Note that the
676 * staurate modifier is only allowed on outputs with the float type.
677 */
678
679 nir_alu_type output_type;
680
681 /**
682 * The number of components in each input
683 */
684 unsigned input_sizes[4];
685
686 /**
687 * The type of vector that each input takes. Note that negate and
688 * absolute value are only allowed on inputs with int or float type and
689 * behave differently on the two.
690 */
691 nir_alu_type input_types[4];
692
693 nir_op_algebraic_property algebraic_properties;
694 } nir_op_info;
695
696 extern const nir_op_info nir_op_infos[nir_num_opcodes];
697
698 typedef struct nir_alu_instr {
699 nir_instr instr;
700 nir_op op;
701 nir_alu_dest dest;
702 nir_alu_src src[];
703 } nir_alu_instr;
704
705 /* is this source channel used? */
706 static inline bool
707 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
708 {
709 if (nir_op_infos[instr->op].input_sizes[src] > 0)
710 return channel < nir_op_infos[instr->op].input_sizes[src];
711
712 return (instr->dest.write_mask >> channel) & 1;
713 }
714
715 /*
716 * For instructions whose destinations are SSA, get the number of channels
717 * used for a source
718 */
719 static inline unsigned
720 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
721 {
722 assert(instr->dest.dest.is_ssa);
723
724 if (nir_op_infos[instr->op].input_sizes[src] > 0)
725 return nir_op_infos[instr->op].input_sizes[src];
726
727 return instr->dest.dest.ssa.num_components;
728 }
729
730 typedef enum {
731 nir_deref_type_var,
732 nir_deref_type_array,
733 nir_deref_type_struct
734 } nir_deref_type;
735
736 typedef struct nir_deref {
737 nir_deref_type deref_type;
738 struct nir_deref *child;
739 const struct glsl_type *type;
740 } nir_deref;
741
742 typedef struct {
743 nir_deref deref;
744
745 nir_variable *var;
746 } nir_deref_var;
747
748 /* This enum describes how the array is referenced. If the deref is
749 * direct then the base_offset is used. If the deref is indirect then then
750 * offset is given by base_offset + indirect. If the deref is a wildcard
751 * then the deref refers to all of the elements of the array at the same
752 * time. Wildcard dereferences are only ever allowed in copy_var
753 * intrinsics and the source and destination derefs must have matching
754 * wildcards.
755 */
756 typedef enum {
757 nir_deref_array_type_direct,
758 nir_deref_array_type_indirect,
759 nir_deref_array_type_wildcard,
760 } nir_deref_array_type;
761
762 typedef struct {
763 nir_deref deref;
764
765 nir_deref_array_type deref_array_type;
766 unsigned base_offset;
767 nir_src indirect;
768 } nir_deref_array;
769
770 typedef struct {
771 nir_deref deref;
772
773 unsigned index;
774 } nir_deref_struct;
775
776 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
777 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
778 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
779
780 typedef struct {
781 nir_instr instr;
782
783 unsigned num_params;
784 nir_deref_var **params;
785 nir_deref_var *return_deref;
786
787 struct nir_function_overload *callee;
788 } nir_call_instr;
789
790 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
791 num_variables, num_indices, flags) \
792 nir_intrinsic_##name,
793
794 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
795
796 typedef enum {
797 #include "nir_intrinsics.h"
798 nir_num_intrinsics = nir_last_intrinsic + 1
799 } nir_intrinsic_op;
800
801 #undef INTRINSIC
802 #undef LAST_INTRINSIC
803
804 /** Represents an intrinsic
805 *
806 * An intrinsic is an instruction type for handling things that are
807 * more-or-less regular operations but don't just consume and produce SSA
808 * values like ALU operations do. Intrinsics are not for things that have
809 * special semantic meaning such as phi nodes and parallel copies.
810 * Examples of intrinsics include variable load/store operations, system
811 * value loads, and the like. Even though texturing more-or-less falls
812 * under this category, texturing is its own instruction type because
813 * trying to represent texturing with intrinsics would lead to a
814 * combinatorial explosion of intrinsic opcodes.
815 *
816 * By having a single instruction type for handling a lot of different
817 * cases, optimization passes can look for intrinsics and, for the most
818 * part, completely ignore them. Each intrinsic type also has a few
819 * possible flags that govern whether or not they can be reordered or
820 * eliminated. That way passes like dead code elimination can still work
821 * on intrisics without understanding the meaning of each.
822 *
823 * Each intrinsic has some number of constant indices, some number of
824 * variables, and some number of sources. What these sources, variables,
825 * and indices mean depends on the intrinsic and is documented with the
826 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
827 * instructions are the only types of instruction that can operate on
828 * variables.
829 */
830 typedef struct {
831 nir_instr instr;
832
833 nir_intrinsic_op intrinsic;
834
835 nir_dest dest;
836
837 /** number of components if this is a vectorized intrinsic
838 *
839 * Similarly to ALU operations, some intrinsics are vectorized.
840 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
841 * For vectorized intrinsics, the num_components field specifies the
842 * number of destination components and the number of source components
843 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
844 */
845 uint8_t num_components;
846
847 int const_index[3];
848
849 nir_deref_var *variables[2];
850
851 nir_src src[];
852 } nir_intrinsic_instr;
853
854 /**
855 * \name NIR intrinsics semantic flags
856 *
857 * information about what the compiler can do with the intrinsics.
858 *
859 * \sa nir_intrinsic_info::flags
860 */
861 typedef enum {
862 /**
863 * whether the intrinsic can be safely eliminated if none of its output
864 * value is not being used.
865 */
866 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
867
868 /**
869 * Whether the intrinsic can be reordered with respect to any other
870 * intrinsic, i.e. whether the only reordering dependencies of the
871 * intrinsic are due to the register reads/writes.
872 */
873 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
874 } nir_intrinsic_semantic_flag;
875
876 #define NIR_INTRINSIC_MAX_INPUTS 4
877
878 typedef struct {
879 const char *name;
880
881 unsigned num_srcs; /** < number of register/SSA inputs */
882
883 /** number of components of each input register
884 *
885 * If this value is 0, the number of components is given by the
886 * num_components field of nir_intrinsic_instr.
887 */
888 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
889
890 bool has_dest;
891
892 /** number of components of the output register
893 *
894 * If this value is 0, the number of components is given by the
895 * num_components field of nir_intrinsic_instr.
896 */
897 unsigned dest_components;
898
899 /** the number of inputs/outputs that are variables */
900 unsigned num_variables;
901
902 /** the number of constant indices used by the intrinsic */
903 unsigned num_indices;
904
905 /** semantic flags for calls to this intrinsic */
906 nir_intrinsic_semantic_flag flags;
907 } nir_intrinsic_info;
908
909 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
910
911 /**
912 * \group texture information
913 *
914 * This gives semantic information about textures which is useful to the
915 * frontend, the backend, and lowering passes, but not the optimizer.
916 */
917
918 typedef enum {
919 nir_tex_src_coord,
920 nir_tex_src_projector,
921 nir_tex_src_comparitor, /* shadow comparitor */
922 nir_tex_src_offset,
923 nir_tex_src_bias,
924 nir_tex_src_lod,
925 nir_tex_src_ms_index, /* MSAA sample index */
926 nir_tex_src_ddx,
927 nir_tex_src_ddy,
928 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
929 nir_num_tex_src_types
930 } nir_tex_src_type;
931
932 typedef struct {
933 nir_src src;
934 nir_tex_src_type src_type;
935 } nir_tex_src;
936
937 typedef enum {
938 nir_texop_tex, /**< Regular texture look-up */
939 nir_texop_txb, /**< Texture look-up with LOD bias */
940 nir_texop_txl, /**< Texture look-up with explicit LOD */
941 nir_texop_txd, /**< Texture look-up with partial derivatvies */
942 nir_texop_txf, /**< Texel fetch with explicit LOD */
943 nir_texop_txf_ms, /**< Multisample texture fetch */
944 nir_texop_txs, /**< Texture size */
945 nir_texop_lod, /**< Texture lod query */
946 nir_texop_tg4, /**< Texture gather */
947 nir_texop_query_levels /**< Texture levels query */
948 } nir_texop;
949
950 typedef struct {
951 nir_instr instr;
952
953 enum glsl_sampler_dim sampler_dim;
954 nir_alu_type dest_type;
955
956 nir_texop op;
957 nir_dest dest;
958 nir_tex_src *src;
959 unsigned num_srcs, coord_components;
960 bool is_array, is_shadow;
961
962 /**
963 * If is_shadow is true, whether this is the old-style shadow that outputs 4
964 * components or the new-style shadow that outputs 1 component.
965 */
966 bool is_new_style_shadow;
967
968 /* constant offset - must be 0 if the offset source is used */
969 int const_offset[4];
970
971 /* gather component selector */
972 unsigned component : 2;
973
974 /** The sampler index
975 *
976 * If this texture instruction has a nir_tex_src_sampler_offset source,
977 * then the sampler index is given by sampler_index + sampler_offset.
978 */
979 unsigned sampler_index;
980
981 /** The size of the sampler array or 0 if it's not an array */
982 unsigned sampler_array_size;
983
984 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
985 } nir_tex_instr;
986
987 static inline unsigned
988 nir_tex_instr_dest_size(nir_tex_instr *instr)
989 {
990 switch (instr->op) {
991 case nir_texop_txs: {
992 unsigned ret;
993 switch (instr->sampler_dim) {
994 case GLSL_SAMPLER_DIM_1D:
995 case GLSL_SAMPLER_DIM_BUF:
996 ret = 1;
997 break;
998 case GLSL_SAMPLER_DIM_2D:
999 case GLSL_SAMPLER_DIM_CUBE:
1000 case GLSL_SAMPLER_DIM_MS:
1001 case GLSL_SAMPLER_DIM_RECT:
1002 case GLSL_SAMPLER_DIM_EXTERNAL:
1003 ret = 2;
1004 break;
1005 case GLSL_SAMPLER_DIM_3D:
1006 ret = 3;
1007 break;
1008 default:
1009 unreachable("not reached");
1010 }
1011 if (instr->is_array)
1012 ret++;
1013 return ret;
1014 }
1015
1016 case nir_texop_lod:
1017 return 2;
1018
1019 case nir_texop_query_levels:
1020 return 1;
1021
1022 default:
1023 if (instr->is_shadow && instr->is_new_style_shadow)
1024 return 1;
1025
1026 return 4;
1027 }
1028 }
1029
1030 static inline unsigned
1031 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1032 {
1033 if (instr->src[src].src_type == nir_tex_src_coord)
1034 return instr->coord_components;
1035
1036
1037 if (instr->src[src].src_type == nir_tex_src_offset ||
1038 instr->src[src].src_type == nir_tex_src_ddx ||
1039 instr->src[src].src_type == nir_tex_src_ddy) {
1040 if (instr->is_array)
1041 return instr->coord_components - 1;
1042 else
1043 return instr->coord_components;
1044 }
1045
1046 return 1;
1047 }
1048
1049 static inline int
1050 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1051 {
1052 for (unsigned i = 0; i < instr->num_srcs; i++)
1053 if (instr->src[i].src_type == type)
1054 return (int) i;
1055
1056 return -1;
1057 }
1058
1059 typedef struct {
1060 union {
1061 float f[4];
1062 int32_t i[4];
1063 uint32_t u[4];
1064 };
1065 } nir_const_value;
1066
1067 typedef struct {
1068 nir_instr instr;
1069
1070 nir_const_value value;
1071
1072 nir_ssa_def def;
1073 } nir_load_const_instr;
1074
1075 typedef enum {
1076 nir_jump_return,
1077 nir_jump_break,
1078 nir_jump_continue,
1079 } nir_jump_type;
1080
1081 typedef struct {
1082 nir_instr instr;
1083 nir_jump_type type;
1084 } nir_jump_instr;
1085
1086 /* creates a new SSA variable in an undefined state */
1087
1088 typedef struct {
1089 nir_instr instr;
1090 nir_ssa_def def;
1091 } nir_ssa_undef_instr;
1092
1093 typedef struct {
1094 struct exec_node node;
1095
1096 /* The predecessor block corresponding to this source */
1097 struct nir_block *pred;
1098
1099 nir_src src;
1100 } nir_phi_src;
1101
1102 #define nir_foreach_phi_src(phi, entry) \
1103 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1104 #define nir_foreach_phi_src_safe(phi, entry) \
1105 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1106
1107 typedef struct {
1108 nir_instr instr;
1109
1110 struct exec_list srcs; /** < list of nir_phi_src */
1111
1112 nir_dest dest;
1113 } nir_phi_instr;
1114
1115 typedef struct {
1116 struct exec_node node;
1117 nir_src src;
1118 nir_dest dest;
1119 } nir_parallel_copy_entry;
1120
1121 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1122 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1123
1124 typedef struct {
1125 nir_instr instr;
1126
1127 /* A list of nir_parallel_copy_entry's. The sources of all of the
1128 * entries are copied to the corresponding destinations "in parallel".
1129 * In other words, if we have two entries: a -> b and b -> a, the values
1130 * get swapped.
1131 */
1132 struct exec_list entries;
1133 } nir_parallel_copy_instr;
1134
1135 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1136 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1137 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1138 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1139 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1140 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1141 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1142 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1143 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1144 nir_parallel_copy_instr, instr)
1145
1146 /*
1147 * Control flow
1148 *
1149 * Control flow consists of a tree of control flow nodes, which include
1150 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1151 * instructions that always run start-to-finish. Each basic block also keeps
1152 * track of its successors (blocks which may run immediately after the current
1153 * block) and predecessors (blocks which could have run immediately before the
1154 * current block). Each function also has a start block and an end block which
1155 * all return statements point to (which is always empty). Together, all the
1156 * blocks with their predecessors and successors make up the control flow
1157 * graph (CFG) of the function. There are helpers that modify the tree of
1158 * control flow nodes while modifying the CFG appropriately; these should be
1159 * used instead of modifying the tree directly.
1160 */
1161
1162 typedef enum {
1163 nir_cf_node_block,
1164 nir_cf_node_if,
1165 nir_cf_node_loop,
1166 nir_cf_node_function
1167 } nir_cf_node_type;
1168
1169 typedef struct nir_cf_node {
1170 struct exec_node node;
1171 nir_cf_node_type type;
1172 struct nir_cf_node *parent;
1173 } nir_cf_node;
1174
1175 typedef struct nir_block {
1176 nir_cf_node cf_node;
1177
1178 struct exec_list instr_list; /** < list of nir_instr */
1179
1180 /** generic block index; generated by nir_index_blocks */
1181 unsigned index;
1182
1183 /*
1184 * Each block can only have up to 2 successors, so we put them in a simple
1185 * array - no need for anything more complicated.
1186 */
1187 struct nir_block *successors[2];
1188
1189 /* Set of nir_block predecessors in the CFG */
1190 struct set *predecessors;
1191
1192 /*
1193 * this node's immediate dominator in the dominance tree - set to NULL for
1194 * the start block.
1195 */
1196 struct nir_block *imm_dom;
1197
1198 /* This node's children in the dominance tree */
1199 unsigned num_dom_children;
1200 struct nir_block **dom_children;
1201
1202 /* Set of nir_block's on the dominance frontier of this block */
1203 struct set *dom_frontier;
1204
1205 /*
1206 * These two indices have the property that dom_{pre,post}_index for each
1207 * child of this block in the dominance tree will always be between
1208 * dom_pre_index and dom_post_index for this block, which makes testing if
1209 * a given block is dominated by another block an O(1) operation.
1210 */
1211 unsigned dom_pre_index, dom_post_index;
1212
1213 /* live in and out for this block; used for liveness analysis */
1214 BITSET_WORD *live_in;
1215 BITSET_WORD *live_out;
1216 } nir_block;
1217
1218 static inline nir_instr *
1219 nir_block_first_instr(nir_block *block)
1220 {
1221 struct exec_node *head = exec_list_get_head(&block->instr_list);
1222 return exec_node_data(nir_instr, head, node);
1223 }
1224
1225 static inline nir_instr *
1226 nir_block_last_instr(nir_block *block)
1227 {
1228 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1229 return exec_node_data(nir_instr, tail, node);
1230 }
1231
1232 #define nir_foreach_instr(block, instr) \
1233 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1234 #define nir_foreach_instr_reverse(block, instr) \
1235 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1236 #define nir_foreach_instr_safe(block, instr) \
1237 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1238 #define nir_foreach_instr_safe_reverse(block, instr) \
1239 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1240
1241 typedef struct nir_if {
1242 nir_cf_node cf_node;
1243 nir_src condition;
1244
1245 struct exec_list then_list; /** < list of nir_cf_node */
1246 struct exec_list else_list; /** < list of nir_cf_node */
1247 } nir_if;
1248
1249 static inline nir_cf_node *
1250 nir_if_first_then_node(nir_if *if_stmt)
1251 {
1252 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1253 return exec_node_data(nir_cf_node, head, node);
1254 }
1255
1256 static inline nir_cf_node *
1257 nir_if_last_then_node(nir_if *if_stmt)
1258 {
1259 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1260 return exec_node_data(nir_cf_node, tail, node);
1261 }
1262
1263 static inline nir_cf_node *
1264 nir_if_first_else_node(nir_if *if_stmt)
1265 {
1266 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1267 return exec_node_data(nir_cf_node, head, node);
1268 }
1269
1270 static inline nir_cf_node *
1271 nir_if_last_else_node(nir_if *if_stmt)
1272 {
1273 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1274 return exec_node_data(nir_cf_node, tail, node);
1275 }
1276
1277 typedef struct {
1278 nir_cf_node cf_node;
1279
1280 struct exec_list body; /** < list of nir_cf_node */
1281 } nir_loop;
1282
1283 static inline nir_cf_node *
1284 nir_loop_first_cf_node(nir_loop *loop)
1285 {
1286 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1287 }
1288
1289 static inline nir_cf_node *
1290 nir_loop_last_cf_node(nir_loop *loop)
1291 {
1292 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1293 }
1294
1295 /**
1296 * Various bits of metadata that can may be created or required by
1297 * optimization and analysis passes
1298 */
1299 typedef enum {
1300 nir_metadata_none = 0x0,
1301 nir_metadata_block_index = 0x1,
1302 nir_metadata_dominance = 0x2,
1303 nir_metadata_live_variables = 0x4,
1304 } nir_metadata;
1305
1306 typedef struct {
1307 nir_cf_node cf_node;
1308
1309 /** pointer to the overload of which this is an implementation */
1310 struct nir_function_overload *overload;
1311
1312 struct exec_list body; /** < list of nir_cf_node */
1313
1314 nir_block *end_block;
1315
1316 /** list for all local variables in the function */
1317 struct exec_list locals;
1318
1319 /** array of variables used as parameters */
1320 unsigned num_params;
1321 nir_variable **params;
1322
1323 /** variable used to hold the result of the function */
1324 nir_variable *return_var;
1325
1326 /** list of local registers in the function */
1327 struct exec_list registers;
1328
1329 /** next available local register index */
1330 unsigned reg_alloc;
1331
1332 /** next available SSA value index */
1333 unsigned ssa_alloc;
1334
1335 /* total number of basic blocks, only valid when block_index_dirty = false */
1336 unsigned num_blocks;
1337
1338 nir_metadata valid_metadata;
1339 } nir_function_impl;
1340
1341 static inline nir_block *
1342 nir_start_block(nir_function_impl *impl)
1343 {
1344 return (nir_block *) exec_list_get_head(&impl->body);
1345 }
1346
1347 static inline nir_cf_node *
1348 nir_cf_node_next(nir_cf_node *node)
1349 {
1350 struct exec_node *next = exec_node_get_next(&node->node);
1351 if (exec_node_is_tail_sentinel(next))
1352 return NULL;
1353 else
1354 return exec_node_data(nir_cf_node, next, node);
1355 }
1356
1357 static inline nir_cf_node *
1358 nir_cf_node_prev(nir_cf_node *node)
1359 {
1360 struct exec_node *prev = exec_node_get_prev(&node->node);
1361 if (exec_node_is_head_sentinel(prev))
1362 return NULL;
1363 else
1364 return exec_node_data(nir_cf_node, prev, node);
1365 }
1366
1367 static inline bool
1368 nir_cf_node_is_first(const nir_cf_node *node)
1369 {
1370 return exec_node_is_head_sentinel(node->node.prev);
1371 }
1372
1373 static inline bool
1374 nir_cf_node_is_last(const nir_cf_node *node)
1375 {
1376 return exec_node_is_tail_sentinel(node->node.next);
1377 }
1378
1379 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1380 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1381 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1382 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1383
1384 typedef enum {
1385 nir_parameter_in,
1386 nir_parameter_out,
1387 nir_parameter_inout,
1388 } nir_parameter_type;
1389
1390 typedef struct {
1391 nir_parameter_type param_type;
1392 const struct glsl_type *type;
1393 } nir_parameter;
1394
1395 typedef struct nir_function_overload {
1396 struct exec_node node;
1397
1398 unsigned num_params;
1399 nir_parameter *params;
1400 const struct glsl_type *return_type;
1401
1402 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1403
1404 /** pointer to the function of which this is an overload */
1405 struct nir_function *function;
1406 } nir_function_overload;
1407
1408 typedef struct nir_function {
1409 struct exec_node node;
1410
1411 struct exec_list overload_list; /** < list of nir_function_overload */
1412 const char *name;
1413 struct nir_shader *shader;
1414 } nir_function;
1415
1416 #define nir_function_first_overload(func) \
1417 exec_node_data(nir_function_overload, \
1418 exec_list_get_head(&(func)->overload_list), node)
1419
1420 typedef struct nir_shader_compiler_options {
1421 bool lower_ffma;
1422 bool lower_flrp;
1423 bool lower_fpow;
1424 bool lower_fsat;
1425 bool lower_fsqrt;
1426 /** lowers fneg and ineg to fsub and isub. */
1427 bool lower_negate;
1428 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1429 bool lower_sub;
1430
1431 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1432 bool lower_scmp;
1433
1434 /**
1435 * Does the driver support real 32-bit integers? (Otherwise, integers
1436 * are simulated by floats.)
1437 */
1438 bool native_integers;
1439 } nir_shader_compiler_options;
1440
1441 typedef struct nir_shader {
1442 /** hash table of name -> uniform nir_variable */
1443 struct exec_list uniforms;
1444
1445 /** hash table of name -> input nir_variable */
1446 struct exec_list inputs;
1447
1448 /** hash table of name -> output nir_variable */
1449 struct exec_list outputs;
1450
1451 /** Set of driver-specific options for the shader.
1452 *
1453 * The memory for the options is expected to be kept in a single static
1454 * copy by the driver.
1455 */
1456 const struct nir_shader_compiler_options *options;
1457
1458 /** list of global variables in the shader */
1459 struct exec_list globals;
1460
1461 /** list of system value variables in the shader */
1462 struct exec_list system_values;
1463
1464 struct exec_list functions; /** < list of nir_function */
1465
1466 /** list of global register in the shader */
1467 struct exec_list registers;
1468
1469 /** next available global register index */
1470 unsigned reg_alloc;
1471
1472 /**
1473 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1474 * access plus one
1475 */
1476 unsigned num_inputs, num_uniforms, num_outputs;
1477
1478 /** The shader stage, such as MESA_SHADER_VERTEX. */
1479 gl_shader_stage stage;
1480 } nir_shader;
1481
1482 #define nir_foreach_overload(shader, overload) \
1483 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1484 foreach_list_typed(nir_function_overload, overload, node, \
1485 &(func)->overload_list)
1486
1487 nir_shader *nir_shader_create(void *mem_ctx,
1488 gl_shader_stage stage,
1489 const nir_shader_compiler_options *options);
1490
1491 /** creates a register, including assigning it an index and adding it to the list */
1492 nir_register *nir_global_reg_create(nir_shader *shader);
1493
1494 nir_register *nir_local_reg_create(nir_function_impl *impl);
1495
1496 void nir_reg_remove(nir_register *reg);
1497
1498 /** creates a function and adds it to the shader's list of functions */
1499 nir_function *nir_function_create(nir_shader *shader, const char *name);
1500
1501 /** creates a null function returning null */
1502 nir_function_overload *nir_function_overload_create(nir_function *func);
1503
1504 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1505
1506 nir_block *nir_block_create(void *mem_ctx);
1507 nir_if *nir_if_create(void *mem_ctx);
1508 nir_loop *nir_loop_create(void *mem_ctx);
1509
1510 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1511
1512 /** requests that the given pieces of metadata be generated */
1513 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1514 /** dirties all but the preserved metadata */
1515 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1516
1517 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1518 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1519
1520 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1521
1522 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1523 unsigned num_components);
1524
1525 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1526 nir_intrinsic_op op);
1527
1528 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1529 nir_function_overload *callee);
1530
1531 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1532
1533 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1534
1535 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1536
1537 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1538 unsigned num_components);
1539
1540 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1541 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1542 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1543
1544 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1545
1546 nir_load_const_instr *
1547 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1548
1549 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1550 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1551
1552 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1553 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1554
1555 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1556 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1557
1558 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1559 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1560
1561 void nir_instr_remove(nir_instr *instr);
1562
1563 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1564 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1565 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1566 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1567 void *state);
1568 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1569 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1570
1571 nir_const_value *nir_src_as_const_value(nir_src src);
1572 bool nir_srcs_equal(nir_src src1, nir_src src2);
1573 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1574 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1575 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1576
1577 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1578 unsigned num_components, const char *name);
1579 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1580 unsigned num_components, const char *name);
1581 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1582
1583 /* visits basic blocks in source-code order */
1584 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1585 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1586 void *state);
1587 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1588 void *state);
1589
1590 /* If the following CF node is an if, this function returns that if.
1591 * Otherwise, it returns NULL.
1592 */
1593 nir_if *nir_block_get_following_if(nir_block *block);
1594
1595 void nir_index_local_regs(nir_function_impl *impl);
1596 void nir_index_global_regs(nir_shader *shader);
1597 void nir_index_ssa_defs(nir_function_impl *impl);
1598
1599 void nir_index_blocks(nir_function_impl *impl);
1600
1601 void nir_print_shader(nir_shader *shader, FILE *fp);
1602 void nir_print_instr(const nir_instr *instr, FILE *fp);
1603
1604 #ifdef DEBUG
1605 void nir_validate_shader(nir_shader *shader);
1606 #else
1607 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1608 #endif /* DEBUG */
1609
1610 void nir_calc_dominance_impl(nir_function_impl *impl);
1611 void nir_calc_dominance(nir_shader *shader);
1612
1613 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1614 bool nir_block_dominates(nir_block *parent, nir_block *child);
1615
1616 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1617 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1618
1619 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1620 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1621
1622 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1623 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1624
1625 void nir_split_var_copies(nir_shader *shader);
1626
1627 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1628 void nir_lower_var_copies(nir_shader *shader);
1629
1630 void nir_lower_global_vars_to_local(nir_shader *shader);
1631
1632 void nir_lower_locals_to_regs(nir_shader *shader);
1633
1634 void nir_assign_var_locations(struct exec_list *var_list,
1635 unsigned *size,
1636 int (*type_size)(const struct glsl_type *));
1637
1638 void nir_lower_io(nir_shader *shader,
1639 int (*type_size)(const struct glsl_type *));
1640 void nir_lower_vars_to_ssa(nir_shader *shader);
1641
1642 void nir_remove_dead_variables(nir_shader *shader);
1643
1644 void nir_lower_vec_to_movs(nir_shader *shader);
1645 void nir_lower_alu_to_scalar(nir_shader *shader);
1646 void nir_lower_load_const_to_scalar(nir_shader *shader);
1647
1648 void nir_lower_phis_to_scalar(nir_shader *shader);
1649
1650 void nir_lower_samplers(nir_shader *shader,
1651 const struct gl_shader_program *shader_program);
1652
1653 void nir_lower_system_values(nir_shader *shader);
1654 void nir_lower_tex_projector(nir_shader *shader);
1655 void nir_lower_idiv(nir_shader *shader);
1656
1657 void nir_lower_atomics(nir_shader *shader);
1658 void nir_lower_to_source_mods(nir_shader *shader);
1659
1660 void nir_normalize_cubemap_coords(nir_shader *shader);
1661
1662 void nir_live_variables_impl(nir_function_impl *impl);
1663 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1664
1665 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1666 void nir_convert_to_ssa(nir_shader *shader);
1667
1668 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1669 * registers. If false, convert all values (even those not involved in a phi
1670 * node) to registers.
1671 */
1672 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1673
1674 bool nir_opt_algebraic(nir_shader *shader);
1675 bool nir_opt_algebraic_late(nir_shader *shader);
1676 bool nir_opt_constant_folding(nir_shader *shader);
1677
1678 bool nir_opt_global_to_local(nir_shader *shader);
1679
1680 bool nir_copy_prop_impl(nir_function_impl *impl);
1681 bool nir_copy_prop(nir_shader *shader);
1682
1683 bool nir_opt_cse(nir_shader *shader);
1684
1685 bool nir_opt_dce_impl(nir_function_impl *impl);
1686 bool nir_opt_dce(nir_shader *shader);
1687
1688 void nir_opt_gcm(nir_shader *shader);
1689
1690 bool nir_opt_peephole_select(nir_shader *shader);
1691 bool nir_opt_peephole_ffma(nir_shader *shader);
1692
1693 bool nir_opt_remove_phis(nir_shader *shader);
1694
1695 bool nir_opt_undef(nir_shader *shader);
1696
1697 void nir_sweep(nir_shader *shader);
1698
1699 #ifdef __cplusplus
1700 } /* extern "C" */
1701 #endif