Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_all = -1,
86 nir_var_shader_in,
87 nir_var_shader_out,
88 nir_var_global,
89 nir_var_local,
90 nir_var_uniform,
91 nir_var_shader_storage,
92 nir_var_system_value
93 } nir_variable_mode;
94
95 /**
96 * Data stored in an nir_constant
97 */
98 union nir_constant_data {
99 unsigned u[16];
100 int i[16];
101 float f[16];
102 bool b[16];
103 };
104
105 typedef struct nir_constant {
106 /**
107 * Value of the constant.
108 *
109 * The field used to back the values supplied by the constant is determined
110 * by the type associated with the \c nir_variable. Constants may be
111 * scalars, vectors, or matrices.
112 */
113 union nir_constant_data value;
114
115 /* we could get this from the var->type but makes clone *much* easier to
116 * not have to care about the type.
117 */
118 unsigned num_elements;
119
120 /* Array elements / Structure Fields */
121 struct nir_constant **elements;
122 } nir_constant;
123
124 /**
125 * \brief Layout qualifiers for gl_FragDepth.
126 *
127 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
128 * with a layout qualifier.
129 */
130 typedef enum {
131 nir_depth_layout_none, /**< No depth layout is specified. */
132 nir_depth_layout_any,
133 nir_depth_layout_greater,
134 nir_depth_layout_less,
135 nir_depth_layout_unchanged
136 } nir_depth_layout;
137
138 /**
139 * Either a uniform, global variable, shader input, or shader output. Based on
140 * ir_variable - it should be easy to translate between the two.
141 */
142
143 typedef struct {
144 struct exec_node node;
145
146 /**
147 * Declared type of the variable
148 */
149 const struct glsl_type *type;
150
151 /**
152 * Declared name of the variable
153 */
154 char *name;
155
156 struct nir_variable_data {
157
158 /**
159 * Is the variable read-only?
160 *
161 * This is set for variables declared as \c const, shader inputs,
162 * and uniforms.
163 */
164 unsigned read_only:1;
165 unsigned centroid:1;
166 unsigned sample:1;
167 unsigned patch:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Non-UBO Uniforms: uniform slot number.
276 * - Other: This field is not currently used.
277 *
278 * If the variable is a uniform, shader input, or shader output, and the
279 * slot has not been assigned, the value will be -1.
280 */
281 int location;
282
283 /**
284 * The actual location of the variable in the IR. Only valid for inputs
285 * and outputs.
286 */
287 unsigned int driver_location;
288
289 /**
290 * output index for dual source blending.
291 */
292 int index;
293
294 /**
295 * Descriptor set binding for sampler or UBO.
296 */
297 int descriptor_set;
298
299 /**
300 * Initial binding point for a sampler or UBO.
301 *
302 * For array types, this represents the binding point for the first element.
303 */
304 int binding;
305
306 /**
307 * Location an atomic counter is stored at.
308 */
309 struct {
310 unsigned offset;
311 } atomic;
312
313 /**
314 * ARB_shader_image_load_store qualifiers.
315 */
316 struct {
317 bool read_only; /**< "readonly" qualifier. */
318 bool write_only; /**< "writeonly" qualifier. */
319 bool coherent;
320 bool _volatile;
321 bool restrict_flag;
322
323 /** Image internal format if specified explicitly, otherwise GL_NONE. */
324 GLenum format;
325 } image;
326
327 /**
328 * Highest element accessed with a constant expression array index
329 *
330 * Not used for non-array variables.
331 */
332 unsigned max_array_access;
333
334 } data;
335
336 /**
337 * Built-in state that backs this uniform
338 *
339 * Once set at variable creation, \c state_slots must remain invariant.
340 * This is because, ideally, this array would be shared by all clones of
341 * this variable in the IR tree. In other words, we'd really like for it
342 * to be a fly-weight.
343 *
344 * If the variable is not a uniform, \c num_state_slots will be zero and
345 * \c state_slots will be \c NULL.
346 */
347 /*@{*/
348 unsigned num_state_slots; /**< Number of state slots used */
349 nir_state_slot *state_slots; /**< State descriptors. */
350 /*@}*/
351
352 /**
353 * Constant expression assigned in the initializer of the variable
354 */
355 nir_constant *constant_initializer;
356
357 /**
358 * For variables that are in an interface block or are an instance of an
359 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
360 *
361 * \sa ir_variable::location
362 */
363 const struct glsl_type *interface_type;
364 } nir_variable;
365
366 #define nir_foreach_variable(var, var_list) \
367 foreach_list_typed(nir_variable, var, node, var_list)
368
369 typedef struct {
370 struct exec_node node;
371
372 unsigned num_components; /** < number of vector components */
373 unsigned num_array_elems; /** < size of array (0 for no array) */
374
375 /** generic register index. */
376 unsigned index;
377
378 /** only for debug purposes, can be NULL */
379 const char *name;
380
381 /** whether this register is local (per-function) or global (per-shader) */
382 bool is_global;
383
384 /**
385 * If this flag is set to true, then accessing channels >= num_components
386 * is well-defined, and simply spills over to the next array element. This
387 * is useful for backends that can do per-component accessing, in
388 * particular scalar backends. By setting this flag and making
389 * num_components equal to 1, structures can be packed tightly into
390 * registers and then registers can be accessed per-component to get to
391 * each structure member, even if it crosses vec4 boundaries.
392 */
393 bool is_packed;
394
395 /** set of nir_src's where this register is used (read from) */
396 struct list_head uses;
397
398 /** set of nir_dest's where this register is defined (written to) */
399 struct list_head defs;
400
401 /** set of nir_if's where this register is used as a condition */
402 struct list_head if_uses;
403 } nir_register;
404
405 typedef enum {
406 nir_instr_type_alu,
407 nir_instr_type_call,
408 nir_instr_type_tex,
409 nir_instr_type_intrinsic,
410 nir_instr_type_load_const,
411 nir_instr_type_jump,
412 nir_instr_type_ssa_undef,
413 nir_instr_type_phi,
414 nir_instr_type_parallel_copy,
415 } nir_instr_type;
416
417 typedef struct nir_instr {
418 struct exec_node node;
419 nir_instr_type type;
420 struct nir_block *block;
421
422 /** generic instruction index. */
423 unsigned index;
424
425 /* A temporary for optimization and analysis passes to use for storing
426 * flags. For instance, DCE uses this to store the "dead/live" info.
427 */
428 uint8_t pass_flags;
429 } nir_instr;
430
431 static inline nir_instr *
432 nir_instr_next(nir_instr *instr)
433 {
434 struct exec_node *next = exec_node_get_next(&instr->node);
435 if (exec_node_is_tail_sentinel(next))
436 return NULL;
437 else
438 return exec_node_data(nir_instr, next, node);
439 }
440
441 static inline nir_instr *
442 nir_instr_prev(nir_instr *instr)
443 {
444 struct exec_node *prev = exec_node_get_prev(&instr->node);
445 if (exec_node_is_head_sentinel(prev))
446 return NULL;
447 else
448 return exec_node_data(nir_instr, prev, node);
449 }
450
451 static inline bool
452 nir_instr_is_first(nir_instr *instr)
453 {
454 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
455 }
456
457 static inline bool
458 nir_instr_is_last(nir_instr *instr)
459 {
460 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
461 }
462
463 typedef struct {
464 /** for debugging only, can be NULL */
465 const char* name;
466
467 /** generic SSA definition index. */
468 unsigned index;
469
470 /** Index into the live_in and live_out bitfields */
471 unsigned live_index;
472
473 nir_instr *parent_instr;
474
475 /** set of nir_instr's where this register is used (read from) */
476 struct list_head uses;
477
478 /** set of nir_if's where this register is used as a condition */
479 struct list_head if_uses;
480
481 uint8_t num_components;
482 } nir_ssa_def;
483
484 struct nir_src;
485
486 typedef struct {
487 nir_register *reg;
488 struct nir_src *indirect; /** < NULL for no indirect offset */
489 unsigned base_offset;
490
491 /* TODO use-def chain goes here */
492 } nir_reg_src;
493
494 typedef struct {
495 nir_instr *parent_instr;
496 struct list_head def_link;
497
498 nir_register *reg;
499 struct nir_src *indirect; /** < NULL for no indirect offset */
500 unsigned base_offset;
501
502 /* TODO def-use chain goes here */
503 } nir_reg_dest;
504
505 struct nir_if;
506
507 typedef struct nir_src {
508 union {
509 nir_instr *parent_instr;
510 struct nir_if *parent_if;
511 };
512
513 struct list_head use_link;
514
515 union {
516 nir_reg_src reg;
517 nir_ssa_def *ssa;
518 };
519
520 bool is_ssa;
521 } nir_src;
522
523 #ifdef __cplusplus
524 # define NIR_SRC_INIT nir_src()
525 #else
526 # define NIR_SRC_INIT (nir_src) { { NULL } }
527 #endif
528
529 #define nir_foreach_use(reg_or_ssa_def, src) \
530 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
531
532 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
533 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
534
535 #define nir_foreach_if_use(reg_or_ssa_def, src) \
536 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
537
538 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
539 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
540
541 typedef struct {
542 union {
543 nir_reg_dest reg;
544 nir_ssa_def ssa;
545 };
546
547 bool is_ssa;
548 } nir_dest;
549
550 #ifdef __cplusplus
551 # define NIR_DEST_INIT nir_dest()
552 #else
553 # define NIR_DEST_INIT (nir_dest) { { { NULL } } }
554 #endif
555
556 #define nir_foreach_def(reg, dest) \
557 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
558
559 #define nir_foreach_def_safe(reg, dest) \
560 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
561
562 static inline nir_src
563 nir_src_for_ssa(nir_ssa_def *def)
564 {
565 nir_src src = NIR_SRC_INIT;
566
567 src.is_ssa = true;
568 src.ssa = def;
569
570 return src;
571 }
572
573 static inline nir_src
574 nir_src_for_reg(nir_register *reg)
575 {
576 nir_src src = NIR_SRC_INIT;
577
578 src.is_ssa = false;
579 src.reg.reg = reg;
580 src.reg.indirect = NULL;
581 src.reg.base_offset = 0;
582
583 return src;
584 }
585
586 static inline nir_dest
587 nir_dest_for_reg(nir_register *reg)
588 {
589 nir_dest dest = NIR_DEST_INIT;
590
591 dest.reg.reg = reg;
592
593 return dest;
594 }
595
596 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
597 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
598
599 typedef struct {
600 nir_src src;
601
602 /**
603 * \name input modifiers
604 */
605 /*@{*/
606 /**
607 * For inputs interpreted as floating point, flips the sign bit. For
608 * inputs interpreted as integers, performs the two's complement negation.
609 */
610 bool negate;
611
612 /**
613 * Clears the sign bit for floating point values, and computes the integer
614 * absolute value for integers. Note that the negate modifier acts after
615 * the absolute value modifier, therefore if both are set then all inputs
616 * will become negative.
617 */
618 bool abs;
619 /*@}*/
620
621 /**
622 * For each input component, says which component of the register it is
623 * chosen from. Note that which elements of the swizzle are used and which
624 * are ignored are based on the write mask for most opcodes - for example,
625 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
626 * a swizzle of {2, x, 1, 0} where x means "don't care."
627 */
628 uint8_t swizzle[4];
629 } nir_alu_src;
630
631 typedef struct {
632 nir_dest dest;
633
634 /**
635 * \name saturate output modifier
636 *
637 * Only valid for opcodes that output floating-point numbers. Clamps the
638 * output to between 0.0 and 1.0 inclusive.
639 */
640
641 bool saturate;
642
643 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
644 } nir_alu_dest;
645
646 typedef enum {
647 nir_type_invalid = 0, /* Not a valid type */
648 nir_type_float,
649 nir_type_int,
650 nir_type_uint,
651 nir_type_bool
652 } nir_alu_type;
653
654 typedef enum {
655 NIR_OP_IS_COMMUTATIVE = (1 << 0),
656 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
657 } nir_op_algebraic_property;
658
659 typedef struct {
660 const char *name;
661
662 unsigned num_inputs;
663
664 /**
665 * The number of components in the output
666 *
667 * If non-zero, this is the size of the output and input sizes are
668 * explicitly given; swizzle and writemask are still in effect, but if
669 * the output component is masked out, then the input component may
670 * still be in use.
671 *
672 * If zero, the opcode acts in the standard, per-component manner; the
673 * operation is performed on each component (except the ones that are
674 * masked out) with the input being taken from the input swizzle for
675 * that component.
676 *
677 * The size of some of the inputs may be given (i.e. non-zero) even
678 * though output_size is zero; in that case, the inputs with a zero
679 * size act per-component, while the inputs with non-zero size don't.
680 */
681 unsigned output_size;
682
683 /**
684 * The type of vector that the instruction outputs. Note that the
685 * staurate modifier is only allowed on outputs with the float type.
686 */
687
688 nir_alu_type output_type;
689
690 /**
691 * The number of components in each input
692 */
693 unsigned input_sizes[4];
694
695 /**
696 * The type of vector that each input takes. Note that negate and
697 * absolute value are only allowed on inputs with int or float type and
698 * behave differently on the two.
699 */
700 nir_alu_type input_types[4];
701
702 nir_op_algebraic_property algebraic_properties;
703 } nir_op_info;
704
705 extern const nir_op_info nir_op_infos[nir_num_opcodes];
706
707 typedef struct nir_alu_instr {
708 nir_instr instr;
709 nir_op op;
710 nir_alu_dest dest;
711 nir_alu_src src[];
712 } nir_alu_instr;
713
714 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
715 nir_alu_instr *instr);
716 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
717 nir_alu_instr *instr);
718
719 /* is this source channel used? */
720 static inline bool
721 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
722 {
723 if (nir_op_infos[instr->op].input_sizes[src] > 0)
724 return channel < nir_op_infos[instr->op].input_sizes[src];
725
726 return (instr->dest.write_mask >> channel) & 1;
727 }
728
729 /*
730 * For instructions whose destinations are SSA, get the number of channels
731 * used for a source
732 */
733 static inline unsigned
734 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
735 {
736 assert(instr->dest.dest.is_ssa);
737
738 if (nir_op_infos[instr->op].input_sizes[src] > 0)
739 return nir_op_infos[instr->op].input_sizes[src];
740
741 return instr->dest.dest.ssa.num_components;
742 }
743
744 typedef enum {
745 nir_deref_type_var,
746 nir_deref_type_array,
747 nir_deref_type_struct
748 } nir_deref_type;
749
750 typedef struct nir_deref {
751 nir_deref_type deref_type;
752 struct nir_deref *child;
753 const struct glsl_type *type;
754 } nir_deref;
755
756 typedef struct {
757 nir_deref deref;
758
759 nir_variable *var;
760 } nir_deref_var;
761
762 /* This enum describes how the array is referenced. If the deref is
763 * direct then the base_offset is used. If the deref is indirect then then
764 * offset is given by base_offset + indirect. If the deref is a wildcard
765 * then the deref refers to all of the elements of the array at the same
766 * time. Wildcard dereferences are only ever allowed in copy_var
767 * intrinsics and the source and destination derefs must have matching
768 * wildcards.
769 */
770 typedef enum {
771 nir_deref_array_type_direct,
772 nir_deref_array_type_indirect,
773 nir_deref_array_type_wildcard,
774 } nir_deref_array_type;
775
776 typedef struct {
777 nir_deref deref;
778
779 nir_deref_array_type deref_array_type;
780 unsigned base_offset;
781 nir_src indirect;
782 } nir_deref_array;
783
784 typedef struct {
785 nir_deref deref;
786
787 unsigned index;
788 } nir_deref_struct;
789
790 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
791 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
792 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
793
794 /* Returns the last deref in the chain. */
795 static inline nir_deref *
796 nir_deref_tail(nir_deref *deref)
797 {
798 while (deref->child)
799 deref = deref->child;
800 return deref;
801 }
802
803 typedef struct {
804 nir_instr instr;
805
806 unsigned num_params;
807 nir_deref_var **params;
808 nir_deref_var *return_deref;
809
810 struct nir_function_overload *callee;
811 } nir_call_instr;
812
813 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
814 num_variables, num_indices, flags) \
815 nir_intrinsic_##name,
816
817 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
818
819 typedef enum {
820 #include "nir_intrinsics.h"
821 nir_num_intrinsics = nir_last_intrinsic + 1
822 } nir_intrinsic_op;
823
824 #undef INTRINSIC
825 #undef LAST_INTRINSIC
826
827 /** Represents an intrinsic
828 *
829 * An intrinsic is an instruction type for handling things that are
830 * more-or-less regular operations but don't just consume and produce SSA
831 * values like ALU operations do. Intrinsics are not for things that have
832 * special semantic meaning such as phi nodes and parallel copies.
833 * Examples of intrinsics include variable load/store operations, system
834 * value loads, and the like. Even though texturing more-or-less falls
835 * under this category, texturing is its own instruction type because
836 * trying to represent texturing with intrinsics would lead to a
837 * combinatorial explosion of intrinsic opcodes.
838 *
839 * By having a single instruction type for handling a lot of different
840 * cases, optimization passes can look for intrinsics and, for the most
841 * part, completely ignore them. Each intrinsic type also has a few
842 * possible flags that govern whether or not they can be reordered or
843 * eliminated. That way passes like dead code elimination can still work
844 * on intrisics without understanding the meaning of each.
845 *
846 * Each intrinsic has some number of constant indices, some number of
847 * variables, and some number of sources. What these sources, variables,
848 * and indices mean depends on the intrinsic and is documented with the
849 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
850 * instructions are the only types of instruction that can operate on
851 * variables.
852 */
853 typedef struct {
854 nir_instr instr;
855
856 nir_intrinsic_op intrinsic;
857
858 nir_dest dest;
859
860 /** number of components if this is a vectorized intrinsic
861 *
862 * Similarly to ALU operations, some intrinsics are vectorized.
863 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
864 * For vectorized intrinsics, the num_components field specifies the
865 * number of destination components and the number of source components
866 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
867 */
868 uint8_t num_components;
869
870 int const_index[3];
871
872 nir_deref_var *variables[2];
873
874 nir_src src[];
875 } nir_intrinsic_instr;
876
877 /**
878 * \name NIR intrinsics semantic flags
879 *
880 * information about what the compiler can do with the intrinsics.
881 *
882 * \sa nir_intrinsic_info::flags
883 */
884 typedef enum {
885 /**
886 * whether the intrinsic can be safely eliminated if none of its output
887 * value is not being used.
888 */
889 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
890
891 /**
892 * Whether the intrinsic can be reordered with respect to any other
893 * intrinsic, i.e. whether the only reordering dependencies of the
894 * intrinsic are due to the register reads/writes.
895 */
896 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
897 } nir_intrinsic_semantic_flag;
898
899 #define NIR_INTRINSIC_MAX_INPUTS 4
900
901 typedef struct {
902 const char *name;
903
904 unsigned num_srcs; /** < number of register/SSA inputs */
905
906 /** number of components of each input register
907 *
908 * If this value is 0, the number of components is given by the
909 * num_components field of nir_intrinsic_instr.
910 */
911 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
912
913 bool has_dest;
914
915 /** number of components of the output register
916 *
917 * If this value is 0, the number of components is given by the
918 * num_components field of nir_intrinsic_instr.
919 */
920 unsigned dest_components;
921
922 /** the number of inputs/outputs that are variables */
923 unsigned num_variables;
924
925 /** the number of constant indices used by the intrinsic */
926 unsigned num_indices;
927
928 /** semantic flags for calls to this intrinsic */
929 nir_intrinsic_semantic_flag flags;
930 } nir_intrinsic_info;
931
932 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
933
934 /**
935 * \group texture information
936 *
937 * This gives semantic information about textures which is useful to the
938 * frontend, the backend, and lowering passes, but not the optimizer.
939 */
940
941 typedef enum {
942 nir_tex_src_coord,
943 nir_tex_src_projector,
944 nir_tex_src_comparitor, /* shadow comparitor */
945 nir_tex_src_offset,
946 nir_tex_src_bias,
947 nir_tex_src_lod,
948 nir_tex_src_ms_index, /* MSAA sample index */
949 nir_tex_src_ddx,
950 nir_tex_src_ddy,
951 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
952 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
953 nir_num_tex_src_types
954 } nir_tex_src_type;
955
956 typedef struct {
957 nir_src src;
958 nir_tex_src_type src_type;
959 } nir_tex_src;
960
961 typedef enum {
962 nir_texop_tex, /**< Regular texture look-up */
963 nir_texop_txb, /**< Texture look-up with LOD bias */
964 nir_texop_txl, /**< Texture look-up with explicit LOD */
965 nir_texop_txd, /**< Texture look-up with partial derivatvies */
966 nir_texop_txf, /**< Texel fetch with explicit LOD */
967 nir_texop_txf_ms, /**< Multisample texture fetch */
968 nir_texop_txs, /**< Texture size */
969 nir_texop_lod, /**< Texture lod query */
970 nir_texop_tg4, /**< Texture gather */
971 nir_texop_query_levels, /**< Texture levels query */
972 nir_texop_texture_samples, /**< Texture samples query */
973 nir_texop_samples_identical, /**< Query whether all samples are definitely
974 * identical.
975 */
976 } nir_texop;
977
978 typedef struct {
979 nir_instr instr;
980
981 enum glsl_sampler_dim sampler_dim;
982 nir_alu_type dest_type;
983
984 nir_texop op;
985 nir_dest dest;
986 nir_tex_src *src;
987 unsigned num_srcs, coord_components;
988 bool is_array, is_shadow;
989
990 /**
991 * If is_shadow is true, whether this is the old-style shadow that outputs 4
992 * components or the new-style shadow that outputs 1 component.
993 */
994 bool is_new_style_shadow;
995
996 /* constant offset - must be 0 if the offset source is used */
997 int const_offset[4];
998
999 /* gather component selector */
1000 unsigned component : 2;
1001
1002 /** The texture index
1003 *
1004 * If this texture instruction has a nir_tex_src_texture_offset source,
1005 * then the texture index is given by texture_index + texture_offset.
1006 */
1007 unsigned texture_index;
1008
1009 /** The size of the texture array or 0 if it's not an array */
1010 unsigned texture_array_size;
1011
1012 /** The texture deref
1013 *
1014 * If both this and `sampler` are both NULL, use texture_index instead.
1015 * If `texture` is NULL, but `sampler` is non-NULL, then the texture is
1016 * implied from the sampler.
1017 */
1018 nir_deref_var *texture;
1019
1020 /** The sampler index
1021 *
1022 * If this texture instruction has a nir_tex_src_sampler_offset source,
1023 * then the sampler index is given by sampler_index + sampler_offset.
1024 */
1025 unsigned sampler_index;
1026
1027 /** The sampler deref
1028 *
1029 * If this is null, use sampler_index instead.
1030 */
1031 nir_deref_var *sampler;
1032 } nir_tex_instr;
1033
1034 static inline unsigned
1035 nir_tex_instr_dest_size(nir_tex_instr *instr)
1036 {
1037 switch (instr->op) {
1038 case nir_texop_txs: {
1039 unsigned ret;
1040 switch (instr->sampler_dim) {
1041 case GLSL_SAMPLER_DIM_1D:
1042 case GLSL_SAMPLER_DIM_BUF:
1043 ret = 1;
1044 break;
1045 case GLSL_SAMPLER_DIM_2D:
1046 case GLSL_SAMPLER_DIM_CUBE:
1047 case GLSL_SAMPLER_DIM_MS:
1048 case GLSL_SAMPLER_DIM_RECT:
1049 case GLSL_SAMPLER_DIM_EXTERNAL:
1050 ret = 2;
1051 break;
1052 case GLSL_SAMPLER_DIM_3D:
1053 ret = 3;
1054 break;
1055 default:
1056 unreachable("not reached");
1057 }
1058 if (instr->is_array)
1059 ret++;
1060 return ret;
1061 }
1062
1063 case nir_texop_lod:
1064 return 2;
1065
1066 case nir_texop_texture_samples:
1067 case nir_texop_query_levels:
1068 case nir_texop_samples_identical:
1069 return 1;
1070
1071 default:
1072 if (instr->is_shadow && instr->is_new_style_shadow)
1073 return 1;
1074
1075 return 4;
1076 }
1077 }
1078
1079 /* Returns true if this texture operation queries something about the texture
1080 * rather than actually sampling it.
1081 */
1082 static inline bool
1083 nir_tex_instr_is_query(nir_tex_instr *instr)
1084 {
1085 switch (instr->op) {
1086 case nir_texop_txs:
1087 case nir_texop_lod:
1088 case nir_texop_texture_samples:
1089 case nir_texop_query_levels:
1090 return true;
1091 case nir_texop_tex:
1092 case nir_texop_txb:
1093 case nir_texop_txl:
1094 case nir_texop_txd:
1095 case nir_texop_txf:
1096 case nir_texop_txf_ms:
1097 case nir_texop_tg4:
1098 return false;
1099 default:
1100 unreachable("Invalid texture opcode");
1101 }
1102 }
1103
1104 static inline unsigned
1105 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1106 {
1107 if (instr->src[src].src_type == nir_tex_src_coord)
1108 return instr->coord_components;
1109
1110
1111 if (instr->src[src].src_type == nir_tex_src_offset ||
1112 instr->src[src].src_type == nir_tex_src_ddx ||
1113 instr->src[src].src_type == nir_tex_src_ddy) {
1114 if (instr->is_array)
1115 return instr->coord_components - 1;
1116 else
1117 return instr->coord_components;
1118 }
1119
1120 return 1;
1121 }
1122
1123 static inline int
1124 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1125 {
1126 for (unsigned i = 0; i < instr->num_srcs; i++)
1127 if (instr->src[i].src_type == type)
1128 return (int) i;
1129
1130 return -1;
1131 }
1132
1133 typedef struct {
1134 union {
1135 float f[4];
1136 int32_t i[4];
1137 uint32_t u[4];
1138 };
1139 } nir_const_value;
1140
1141 typedef struct {
1142 nir_instr instr;
1143
1144 nir_const_value value;
1145
1146 nir_ssa_def def;
1147 } nir_load_const_instr;
1148
1149 typedef enum {
1150 nir_jump_return,
1151 nir_jump_break,
1152 nir_jump_continue,
1153 } nir_jump_type;
1154
1155 typedef struct {
1156 nir_instr instr;
1157 nir_jump_type type;
1158 } nir_jump_instr;
1159
1160 /* creates a new SSA variable in an undefined state */
1161
1162 typedef struct {
1163 nir_instr instr;
1164 nir_ssa_def def;
1165 } nir_ssa_undef_instr;
1166
1167 typedef struct {
1168 struct exec_node node;
1169
1170 /* The predecessor block corresponding to this source */
1171 struct nir_block *pred;
1172
1173 nir_src src;
1174 } nir_phi_src;
1175
1176 #define nir_foreach_phi_src(phi, entry) \
1177 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1178 #define nir_foreach_phi_src_safe(phi, entry) \
1179 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1180
1181 typedef struct {
1182 nir_instr instr;
1183
1184 struct exec_list srcs; /** < list of nir_phi_src */
1185
1186 nir_dest dest;
1187 } nir_phi_instr;
1188
1189 typedef struct {
1190 struct exec_node node;
1191 nir_src src;
1192 nir_dest dest;
1193 } nir_parallel_copy_entry;
1194
1195 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1196 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1197
1198 typedef struct {
1199 nir_instr instr;
1200
1201 /* A list of nir_parallel_copy_entry's. The sources of all of the
1202 * entries are copied to the corresponding destinations "in parallel".
1203 * In other words, if we have two entries: a -> b and b -> a, the values
1204 * get swapped.
1205 */
1206 struct exec_list entries;
1207 } nir_parallel_copy_instr;
1208
1209 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1210 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1211 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1212 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1213 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1214 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1215 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1216 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1217 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1218 nir_parallel_copy_instr, instr)
1219
1220 /*
1221 * Control flow
1222 *
1223 * Control flow consists of a tree of control flow nodes, which include
1224 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1225 * instructions that always run start-to-finish. Each basic block also keeps
1226 * track of its successors (blocks which may run immediately after the current
1227 * block) and predecessors (blocks which could have run immediately before the
1228 * current block). Each function also has a start block and an end block which
1229 * all return statements point to (which is always empty). Together, all the
1230 * blocks with their predecessors and successors make up the control flow
1231 * graph (CFG) of the function. There are helpers that modify the tree of
1232 * control flow nodes while modifying the CFG appropriately; these should be
1233 * used instead of modifying the tree directly.
1234 */
1235
1236 typedef enum {
1237 nir_cf_node_block,
1238 nir_cf_node_if,
1239 nir_cf_node_loop,
1240 nir_cf_node_function
1241 } nir_cf_node_type;
1242
1243 typedef struct nir_cf_node {
1244 struct exec_node node;
1245 nir_cf_node_type type;
1246 struct nir_cf_node *parent;
1247 } nir_cf_node;
1248
1249 typedef struct nir_block {
1250 nir_cf_node cf_node;
1251
1252 struct exec_list instr_list; /** < list of nir_instr */
1253
1254 /** generic block index; generated by nir_index_blocks */
1255 unsigned index;
1256
1257 /*
1258 * Each block can only have up to 2 successors, so we put them in a simple
1259 * array - no need for anything more complicated.
1260 */
1261 struct nir_block *successors[2];
1262
1263 /* Set of nir_block predecessors in the CFG */
1264 struct set *predecessors;
1265
1266 /*
1267 * this node's immediate dominator in the dominance tree - set to NULL for
1268 * the start block.
1269 */
1270 struct nir_block *imm_dom;
1271
1272 /* This node's children in the dominance tree */
1273 unsigned num_dom_children;
1274 struct nir_block **dom_children;
1275
1276 /* Set of nir_block's on the dominance frontier of this block */
1277 struct set *dom_frontier;
1278
1279 /*
1280 * These two indices have the property that dom_{pre,post}_index for each
1281 * child of this block in the dominance tree will always be between
1282 * dom_pre_index and dom_post_index for this block, which makes testing if
1283 * a given block is dominated by another block an O(1) operation.
1284 */
1285 unsigned dom_pre_index, dom_post_index;
1286
1287 /* live in and out for this block; used for liveness analysis */
1288 BITSET_WORD *live_in;
1289 BITSET_WORD *live_out;
1290 } nir_block;
1291
1292 static inline nir_instr *
1293 nir_block_first_instr(nir_block *block)
1294 {
1295 struct exec_node *head = exec_list_get_head(&block->instr_list);
1296 return exec_node_data(nir_instr, head, node);
1297 }
1298
1299 static inline nir_instr *
1300 nir_block_last_instr(nir_block *block)
1301 {
1302 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1303 return exec_node_data(nir_instr, tail, node);
1304 }
1305
1306 #define nir_foreach_instr(block, instr) \
1307 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1308 #define nir_foreach_instr_reverse(block, instr) \
1309 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1310 #define nir_foreach_instr_safe(block, instr) \
1311 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1312 #define nir_foreach_instr_safe_reverse(block, instr) \
1313 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1314
1315 typedef struct nir_if {
1316 nir_cf_node cf_node;
1317 nir_src condition;
1318
1319 struct exec_list then_list; /** < list of nir_cf_node */
1320 struct exec_list else_list; /** < list of nir_cf_node */
1321 } nir_if;
1322
1323 static inline nir_cf_node *
1324 nir_if_first_then_node(nir_if *if_stmt)
1325 {
1326 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1327 return exec_node_data(nir_cf_node, head, node);
1328 }
1329
1330 static inline nir_cf_node *
1331 nir_if_last_then_node(nir_if *if_stmt)
1332 {
1333 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1334 return exec_node_data(nir_cf_node, tail, node);
1335 }
1336
1337 static inline nir_cf_node *
1338 nir_if_first_else_node(nir_if *if_stmt)
1339 {
1340 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1341 return exec_node_data(nir_cf_node, head, node);
1342 }
1343
1344 static inline nir_cf_node *
1345 nir_if_last_else_node(nir_if *if_stmt)
1346 {
1347 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1348 return exec_node_data(nir_cf_node, tail, node);
1349 }
1350
1351 typedef struct {
1352 nir_cf_node cf_node;
1353
1354 struct exec_list body; /** < list of nir_cf_node */
1355 } nir_loop;
1356
1357 static inline nir_cf_node *
1358 nir_loop_first_cf_node(nir_loop *loop)
1359 {
1360 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1361 }
1362
1363 static inline nir_cf_node *
1364 nir_loop_last_cf_node(nir_loop *loop)
1365 {
1366 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1367 }
1368
1369 /**
1370 * Various bits of metadata that can may be created or required by
1371 * optimization and analysis passes
1372 */
1373 typedef enum {
1374 nir_metadata_none = 0x0,
1375 nir_metadata_block_index = 0x1,
1376 nir_metadata_dominance = 0x2,
1377 nir_metadata_live_ssa_defs = 0x4,
1378 nir_metadata_not_properly_reset = 0x8,
1379 } nir_metadata;
1380
1381 typedef struct {
1382 nir_cf_node cf_node;
1383
1384 /** pointer to the overload of which this is an implementation */
1385 struct nir_function_overload *overload;
1386
1387 struct exec_list body; /** < list of nir_cf_node */
1388
1389 nir_block *end_block;
1390
1391 /** list for all local variables in the function */
1392 struct exec_list locals;
1393
1394 /** array of variables used as parameters */
1395 unsigned num_params;
1396 nir_variable **params;
1397
1398 /** variable used to hold the result of the function */
1399 nir_variable *return_var;
1400
1401 /** list of local registers in the function */
1402 struct exec_list registers;
1403
1404 /** next available local register index */
1405 unsigned reg_alloc;
1406
1407 /** next available SSA value index */
1408 unsigned ssa_alloc;
1409
1410 /* total number of basic blocks, only valid when block_index_dirty = false */
1411 unsigned num_blocks;
1412
1413 nir_metadata valid_metadata;
1414 } nir_function_impl;
1415
1416 static inline nir_block *
1417 nir_start_block(nir_function_impl *impl)
1418 {
1419 return (nir_block *) exec_list_get_head(&impl->body);
1420 }
1421
1422 static inline nir_cf_node *
1423 nir_cf_node_next(nir_cf_node *node)
1424 {
1425 struct exec_node *next = exec_node_get_next(&node->node);
1426 if (exec_node_is_tail_sentinel(next))
1427 return NULL;
1428 else
1429 return exec_node_data(nir_cf_node, next, node);
1430 }
1431
1432 static inline nir_cf_node *
1433 nir_cf_node_prev(nir_cf_node *node)
1434 {
1435 struct exec_node *prev = exec_node_get_prev(&node->node);
1436 if (exec_node_is_head_sentinel(prev))
1437 return NULL;
1438 else
1439 return exec_node_data(nir_cf_node, prev, node);
1440 }
1441
1442 static inline bool
1443 nir_cf_node_is_first(const nir_cf_node *node)
1444 {
1445 return exec_node_is_head_sentinel(node->node.prev);
1446 }
1447
1448 static inline bool
1449 nir_cf_node_is_last(const nir_cf_node *node)
1450 {
1451 return exec_node_is_tail_sentinel(node->node.next);
1452 }
1453
1454 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1455 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1456 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1457 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1458
1459 typedef enum {
1460 nir_parameter_in,
1461 nir_parameter_out,
1462 nir_parameter_inout,
1463 } nir_parameter_type;
1464
1465 typedef struct {
1466 nir_parameter_type param_type;
1467 const struct glsl_type *type;
1468 } nir_parameter;
1469
1470 typedef struct nir_function_overload {
1471 struct exec_node node;
1472
1473 unsigned num_params;
1474 nir_parameter *params;
1475 const struct glsl_type *return_type;
1476
1477 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1478
1479 /** pointer to the function of which this is an overload */
1480 struct nir_function *function;
1481 } nir_function_overload;
1482
1483 typedef struct nir_function {
1484 struct exec_node node;
1485
1486 struct exec_list overload_list; /** < list of nir_function_overload */
1487 const char *name;
1488 struct nir_shader *shader;
1489 } nir_function;
1490
1491 #define nir_function_first_overload(func) \
1492 exec_node_data(nir_function_overload, \
1493 exec_list_get_head(&(func)->overload_list), node)
1494
1495 typedef struct nir_shader_compiler_options {
1496 bool lower_ffma;
1497 bool lower_fdiv;
1498 bool lower_flrp;
1499 bool lower_fpow;
1500 bool lower_fsat;
1501 bool lower_fsqrt;
1502 /** lowers fneg and ineg to fsub and isub. */
1503 bool lower_negate;
1504 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1505 bool lower_sub;
1506
1507 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1508 bool lower_scmp;
1509
1510 /* Does the native fdot instruction replicate its result for four
1511 * components? If so, then opt_algebraic_late will turn all fdotN
1512 * instructions into fdot_replicatedN instructions.
1513 */
1514 bool fdot_replicates;
1515
1516 /** lowers ffract to fsub+ffloor: */
1517 bool lower_ffract;
1518
1519 /**
1520 * Does the driver support real 32-bit integers? (Otherwise, integers
1521 * are simulated by floats.)
1522 */
1523 bool native_integers;
1524 } nir_shader_compiler_options;
1525
1526 typedef struct nir_shader_info {
1527 const char *name;
1528
1529 /* Descriptive name provided by the client; may be NULL */
1530 const char *label;
1531
1532 /* Number of textures used by this shader */
1533 unsigned num_textures;
1534 /* Number of uniform buffers used by this shader */
1535 unsigned num_ubos;
1536 /* Number of atomic buffers used by this shader */
1537 unsigned num_abos;
1538 /* Number of shader storage buffers used by this shader */
1539 unsigned num_ssbos;
1540 /* Number of images used by this shader */
1541 unsigned num_images;
1542
1543 /* Which inputs are actually read */
1544 uint64_t inputs_read;
1545 /* Which outputs are actually written */
1546 uint64_t outputs_written;
1547 /* Which system values are actually read */
1548 uint64_t system_values_read;
1549
1550 /* Which patch inputs are actually read */
1551 uint32_t patch_inputs_read;
1552 /* Which patch outputs are actually written */
1553 uint32_t patch_outputs_written;
1554
1555 /* Whether or not this shader ever uses textureGather() */
1556 bool uses_texture_gather;
1557
1558 /* Whether or not this shader uses the gl_ClipDistance output */
1559 bool uses_clip_distance_out;
1560
1561 /* Whether or not separate shader objects were used */
1562 bool separate_shader;
1563
1564 /** Was this shader linked with any transform feedback varyings? */
1565 bool has_transform_feedback_varyings;
1566
1567 union {
1568 struct {
1569 /** The number of vertices recieves per input primitive */
1570 unsigned vertices_in;
1571
1572 /** The output primitive type (GL enum value) */
1573 unsigned output_primitive;
1574
1575 /** The maximum number of vertices the geometry shader might write. */
1576 unsigned vertices_out;
1577
1578 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1579 unsigned invocations;
1580
1581 /** Whether or not this shader uses EndPrimitive */
1582 bool uses_end_primitive;
1583
1584 /** Whether or not this shader uses non-zero streams */
1585 bool uses_streams;
1586 } gs;
1587
1588 struct {
1589 bool uses_discard;
1590
1591 /**
1592 * Whether early fragment tests are enabled as defined by
1593 * ARB_shader_image_load_store.
1594 */
1595 bool early_fragment_tests;
1596
1597 /** gl_FragDepth layout for ARB_conservative_depth. */
1598 enum gl_frag_depth_layout depth_layout;
1599 } fs;
1600
1601 struct {
1602 unsigned local_size[3];
1603 } cs;
1604
1605 struct {
1606 /** The number of vertices in the TCS output patch. */
1607 unsigned vertices_out;
1608 } tcs;
1609 };
1610 } nir_shader_info;
1611
1612 typedef struct nir_shader {
1613 /** list of uniforms (nir_variable) */
1614 struct exec_list uniforms;
1615
1616 /** list of inputs (nir_variable) */
1617 struct exec_list inputs;
1618
1619 /** list of outputs (nir_variable) */
1620 struct exec_list outputs;
1621
1622 /** Set of driver-specific options for the shader.
1623 *
1624 * The memory for the options is expected to be kept in a single static
1625 * copy by the driver.
1626 */
1627 const struct nir_shader_compiler_options *options;
1628
1629 /** Various bits of compile-time information about a given shader */
1630 struct nir_shader_info info;
1631
1632 /** list of global variables in the shader (nir_variable) */
1633 struct exec_list globals;
1634
1635 /** list of system value variables in the shader (nir_variable) */
1636 struct exec_list system_values;
1637
1638 struct exec_list functions; /** < list of nir_function */
1639
1640 /** list of global register in the shader */
1641 struct exec_list registers;
1642
1643 /** next available global register index */
1644 unsigned reg_alloc;
1645
1646 /**
1647 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1648 * access plus one
1649 */
1650 unsigned num_inputs, num_uniforms, num_outputs;
1651
1652 /** The shader stage, such as MESA_SHADER_VERTEX. */
1653 gl_shader_stage stage;
1654 } nir_shader;
1655
1656 #define nir_foreach_overload(shader, overload) \
1657 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1658 foreach_list_typed(nir_function_overload, overload, node, \
1659 &(func)->overload_list)
1660
1661 nir_shader *nir_shader_create(void *mem_ctx,
1662 gl_shader_stage stage,
1663 const nir_shader_compiler_options *options);
1664
1665 /** creates a register, including assigning it an index and adding it to the list */
1666 nir_register *nir_global_reg_create(nir_shader *shader);
1667
1668 nir_register *nir_local_reg_create(nir_function_impl *impl);
1669
1670 void nir_reg_remove(nir_register *reg);
1671
1672 /** Adds a variable to the appropreate list in nir_shader */
1673 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1674
1675 static inline void
1676 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1677 {
1678 assert(var->data.mode == nir_var_local);
1679 exec_list_push_tail(&impl->locals, &var->node);
1680 }
1681
1682 /** creates a variable, sets a few defaults, and adds it to the list */
1683 nir_variable *nir_variable_create(nir_shader *shader,
1684 nir_variable_mode mode,
1685 const struct glsl_type *type,
1686 const char *name);
1687 /** creates a local variable and adds it to the list */
1688 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1689 const struct glsl_type *type,
1690 const char *name);
1691
1692 /** creates a function and adds it to the shader's list of functions */
1693 nir_function *nir_function_create(nir_shader *shader, const char *name);
1694
1695 /** creates a null function returning null */
1696 nir_function_overload *nir_function_overload_create(nir_function *func);
1697
1698 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1699
1700 nir_block *nir_block_create(nir_shader *shader);
1701 nir_if *nir_if_create(nir_shader *shader);
1702 nir_loop *nir_loop_create(nir_shader *shader);
1703
1704 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1705
1706 /** requests that the given pieces of metadata be generated */
1707 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1708 /** dirties all but the preserved metadata */
1709 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1710
1711 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1712 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1713
1714 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1715
1716 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1717 unsigned num_components);
1718
1719 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1720 nir_intrinsic_op op);
1721
1722 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1723 nir_function_overload *callee);
1724
1725 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1726
1727 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1728
1729 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1730
1731 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1732 unsigned num_components);
1733
1734 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1735 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1736 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1737
1738 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1739
1740 nir_load_const_instr *
1741 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1742
1743 /**
1744 * NIR Cursors and Instruction Insertion API
1745 * @{
1746 *
1747 * A tiny struct representing a point to insert/extract instructions or
1748 * control flow nodes. Helps reduce the combinatorial explosion of possible
1749 * points to insert/extract.
1750 *
1751 * \sa nir_control_flow.h
1752 */
1753 typedef enum {
1754 nir_cursor_before_block,
1755 nir_cursor_after_block,
1756 nir_cursor_before_instr,
1757 nir_cursor_after_instr,
1758 } nir_cursor_option;
1759
1760 typedef struct {
1761 nir_cursor_option option;
1762 union {
1763 nir_block *block;
1764 nir_instr *instr;
1765 };
1766 } nir_cursor;
1767
1768 static inline nir_block *
1769 nir_cursor_current_block(nir_cursor cursor)
1770 {
1771 if (cursor.option == nir_cursor_before_instr ||
1772 cursor.option == nir_cursor_after_instr) {
1773 return cursor.instr->block;
1774 } else {
1775 return cursor.block;
1776 }
1777 }
1778
1779 static inline nir_cursor
1780 nir_before_block(nir_block *block)
1781 {
1782 nir_cursor cursor;
1783 cursor.option = nir_cursor_before_block;
1784 cursor.block = block;
1785 return cursor;
1786 }
1787
1788 static inline nir_cursor
1789 nir_after_block(nir_block *block)
1790 {
1791 nir_cursor cursor;
1792 cursor.option = nir_cursor_after_block;
1793 cursor.block = block;
1794 return cursor;
1795 }
1796
1797 static inline nir_cursor
1798 nir_before_instr(nir_instr *instr)
1799 {
1800 nir_cursor cursor;
1801 cursor.option = nir_cursor_before_instr;
1802 cursor.instr = instr;
1803 return cursor;
1804 }
1805
1806 static inline nir_cursor
1807 nir_after_instr(nir_instr *instr)
1808 {
1809 nir_cursor cursor;
1810 cursor.option = nir_cursor_after_instr;
1811 cursor.instr = instr;
1812 return cursor;
1813 }
1814
1815 static inline nir_cursor
1816 nir_after_block_before_jump(nir_block *block)
1817 {
1818 nir_instr *last_instr = nir_block_last_instr(block);
1819 if (last_instr && last_instr->type == nir_instr_type_jump) {
1820 return nir_before_instr(last_instr);
1821 } else {
1822 return nir_after_block(block);
1823 }
1824 }
1825
1826 static inline nir_cursor
1827 nir_before_cf_node(nir_cf_node *node)
1828 {
1829 if (node->type == nir_cf_node_block)
1830 return nir_before_block(nir_cf_node_as_block(node));
1831
1832 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1833 }
1834
1835 static inline nir_cursor
1836 nir_after_cf_node(nir_cf_node *node)
1837 {
1838 if (node->type == nir_cf_node_block)
1839 return nir_after_block(nir_cf_node_as_block(node));
1840
1841 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1842 }
1843
1844 static inline nir_cursor
1845 nir_before_cf_list(struct exec_list *cf_list)
1846 {
1847 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1848 exec_list_get_head(cf_list), node);
1849 return nir_before_cf_node(first_node);
1850 }
1851
1852 static inline nir_cursor
1853 nir_after_cf_list(struct exec_list *cf_list)
1854 {
1855 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1856 exec_list_get_tail(cf_list), node);
1857 return nir_after_cf_node(last_node);
1858 }
1859
1860 /**
1861 * Insert a NIR instruction at the given cursor.
1862 *
1863 * Note: This does not update the cursor.
1864 */
1865 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1866
1867 static inline void
1868 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1869 {
1870 nir_instr_insert(nir_before_instr(instr), before);
1871 }
1872
1873 static inline void
1874 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1875 {
1876 nir_instr_insert(nir_after_instr(instr), after);
1877 }
1878
1879 static inline void
1880 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1881 {
1882 nir_instr_insert(nir_before_block(block), before);
1883 }
1884
1885 static inline void
1886 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1887 {
1888 nir_instr_insert(nir_after_block(block), after);
1889 }
1890
1891 static inline void
1892 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1893 {
1894 nir_instr_insert(nir_before_cf_node(node), before);
1895 }
1896
1897 static inline void
1898 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1899 {
1900 nir_instr_insert(nir_after_cf_node(node), after);
1901 }
1902
1903 static inline void
1904 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1905 {
1906 nir_instr_insert(nir_before_cf_list(list), before);
1907 }
1908
1909 static inline void
1910 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1911 {
1912 nir_instr_insert(nir_after_cf_list(list), after);
1913 }
1914
1915 void nir_instr_remove(nir_instr *instr);
1916
1917 /** @} */
1918
1919 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1920 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1921 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1922 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1923 void *state);
1924 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1925 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1926
1927 nir_const_value *nir_src_as_const_value(nir_src src);
1928 bool nir_src_is_dynamically_uniform(nir_src src);
1929 bool nir_srcs_equal(nir_src src1, nir_src src2);
1930 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1931 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1932 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1933 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1934 nir_dest new_dest);
1935
1936 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1937 unsigned num_components, const char *name);
1938 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1939 unsigned num_components, const char *name);
1940 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1941 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
1942 nir_instr *after_me);
1943
1944 /* visits basic blocks in source-code order */
1945 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1946 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1947 void *state);
1948 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1949 void *state);
1950 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1951 void *state);
1952
1953 /* If the following CF node is an if, this function returns that if.
1954 * Otherwise, it returns NULL.
1955 */
1956 nir_if *nir_block_get_following_if(nir_block *block);
1957
1958 nir_loop *nir_block_get_following_loop(nir_block *block);
1959
1960 void nir_index_local_regs(nir_function_impl *impl);
1961 void nir_index_global_regs(nir_shader *shader);
1962 void nir_index_ssa_defs(nir_function_impl *impl);
1963 unsigned nir_index_instrs(nir_function_impl *impl);
1964
1965 void nir_index_blocks(nir_function_impl *impl);
1966
1967 void nir_print_shader(nir_shader *shader, FILE *fp);
1968 void nir_print_instr(const nir_instr *instr, FILE *fp);
1969
1970 nir_shader * nir_shader_clone(void *mem_ctx, const nir_shader *s);
1971
1972 #ifdef DEBUG
1973 void nir_validate_shader(nir_shader *shader);
1974 void nir_metadata_set_validation_flag(nir_shader *shader);
1975 void nir_metadata_check_validation_flag(nir_shader *shader);
1976 #else
1977 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1978 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
1979 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
1980 #endif /* DEBUG */
1981
1982 void nir_calc_dominance_impl(nir_function_impl *impl);
1983 void nir_calc_dominance(nir_shader *shader);
1984
1985 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1986 bool nir_block_dominates(nir_block *parent, nir_block *child);
1987
1988 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1989 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1990
1991 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1992 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1993
1994 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1995 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1996
1997 int nir_gs_count_vertices(const nir_shader *shader);
1998
1999 bool nir_split_var_copies(nir_shader *shader);
2000
2001 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2002 void nir_lower_var_copies(nir_shader *shader);
2003
2004 bool nir_lower_global_vars_to_local(nir_shader *shader);
2005
2006 bool nir_lower_locals_to_regs(nir_shader *shader);
2007
2008 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2009
2010 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2011
2012 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2013
2014 void nir_assign_var_locations(struct exec_list *var_list,
2015 unsigned *size,
2016 int (*type_size)(const struct glsl_type *));
2017
2018 void nir_lower_io(nir_shader *shader,
2019 nir_variable_mode mode,
2020 int (*type_size)(const struct glsl_type *));
2021 nir_src *nir_get_io_indirect_src(nir_intrinsic_instr *instr);
2022 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2023
2024 void nir_lower_vars_to_ssa(nir_shader *shader);
2025
2026 bool nir_remove_dead_variables(nir_shader *shader);
2027
2028 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2029 bool nir_lower_vec_to_movs(nir_shader *shader);
2030 void nir_lower_alu_to_scalar(nir_shader *shader);
2031 void nir_lower_load_const_to_scalar(nir_shader *shader);
2032
2033 void nir_lower_phis_to_scalar(nir_shader *shader);
2034
2035 void nir_lower_samplers(nir_shader *shader,
2036 const struct gl_shader_program *shader_program);
2037
2038 bool nir_lower_system_values(nir_shader *shader);
2039
2040 typedef struct nir_lower_tex_options {
2041 /**
2042 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2043 * sampler types a texture projector is lowered.
2044 */
2045 unsigned lower_txp;
2046
2047 /**
2048 * If true, lower rect textures to 2D, using txs to fetch the
2049 * texture dimensions and dividing the texture coords by the
2050 * texture dims to normalize.
2051 */
2052 bool lower_rect;
2053
2054 /**
2055 * To emulate certain texture wrap modes, this can be used
2056 * to saturate the specified tex coord to [0.0, 1.0]. The
2057 * bits are according to sampler #, ie. if, for example:
2058 *
2059 * (conf->saturate_s & (1 << n))
2060 *
2061 * is true, then the s coord for sampler n is saturated.
2062 *
2063 * Note that clamping must happen *after* projector lowering
2064 * so any projected texture sample instruction with a clamped
2065 * coordinate gets automatically lowered, regardless of the
2066 * 'lower_txp' setting.
2067 */
2068 unsigned saturate_s;
2069 unsigned saturate_t;
2070 unsigned saturate_r;
2071
2072 /* Bitmask of samplers that need swizzling.
2073 *
2074 * If (swizzle_result & (1 << sampler_index)), then the swizzle in
2075 * swizzles[sampler_index] is applied to the result of the texturing
2076 * operation.
2077 */
2078 unsigned swizzle_result;
2079
2080 /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles
2081 * while 4 and 5 represent 0 and 1 respectively.
2082 */
2083 uint8_t swizzles[32][4];
2084 } nir_lower_tex_options;
2085
2086 bool nir_lower_tex(nir_shader *shader,
2087 const nir_lower_tex_options *options);
2088
2089 void nir_lower_idiv(nir_shader *shader);
2090
2091 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2092 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2093
2094 void nir_lower_two_sided_color(nir_shader *shader);
2095
2096 void nir_lower_atomics(nir_shader *shader,
2097 const struct gl_shader_program *shader_program);
2098 void nir_lower_to_source_mods(nir_shader *shader);
2099
2100 bool nir_lower_gs_intrinsics(nir_shader *shader);
2101
2102 bool nir_normalize_cubemap_coords(nir_shader *shader);
2103
2104 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2105 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2106
2107 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2108 void nir_convert_to_ssa(nir_shader *shader);
2109
2110 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2111 * registers. If false, convert all values (even those not involved in a phi
2112 * node) to registers.
2113 */
2114 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2115
2116 bool nir_opt_algebraic(nir_shader *shader);
2117 bool nir_opt_algebraic_late(nir_shader *shader);
2118 bool nir_opt_constant_folding(nir_shader *shader);
2119
2120 bool nir_opt_global_to_local(nir_shader *shader);
2121
2122 bool nir_copy_prop(nir_shader *shader);
2123
2124 bool nir_opt_cse(nir_shader *shader);
2125
2126 bool nir_opt_dce(nir_shader *shader);
2127
2128 bool nir_opt_dead_cf(nir_shader *shader);
2129
2130 void nir_opt_gcm(nir_shader *shader);
2131
2132 bool nir_opt_peephole_select(nir_shader *shader);
2133
2134 bool nir_opt_remove_phis(nir_shader *shader);
2135
2136 bool nir_opt_undef(nir_shader *shader);
2137
2138 void nir_sweep(nir_shader *shader);
2139
2140 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2141 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2142
2143 #ifdef __cplusplus
2144 } /* extern "C" */
2145 #endif