184698abd5cf0d92abd8b322bf25892a37aef4a3
[mesa.git] / src / glsl / nir / nir_from_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_vla.h"
30
31 /*
32 * This file implements an out-of-SSA pass as described in "Revisiting
33 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
34 * Boissinot et. al.
35 */
36
37 struct from_ssa_state {
38 void *mem_ctx;
39 void *dead_ctx;
40 struct hash_table *ssa_table;
41 struct hash_table *merge_node_table;
42 nir_instr *instr;
43 nir_function_impl *impl;
44 };
45
46 /* Returns true if a dominates b */
47 static bool
48 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
49 {
50 if (a->live_index == 0) {
51 /* SSA undefs always dominate */
52 return true;
53 } else if (b->live_index < a->live_index) {
54 return false;
55 } else if (a->parent_instr->block == b->parent_instr->block) {
56 return a->live_index <= b->live_index;
57 } else {
58 return nir_block_dominates(a->parent_instr->block,
59 b->parent_instr->block);
60 }
61 }
62
63
64 /* The following data structure, which I have named merge_set is a way of
65 * representing a set registers of non-interfering registers. This is
66 * based on the concept of a "dominence forest" presented in "Fast Copy
67 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
68 * implementation concept is taken from "Revisiting Out-of-SSA Translation
69 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
70 *
71 * Each SSA definition is associated with a merge_node and the association
72 * is represented by a combination of a hash table and the "def" parameter
73 * in the merge_node structure. The merge_set stores a linked list of
74 * merge_node's in dominence order of the ssa definitions. (Since the
75 * liveness analysis pass indexes the SSA values in dominence order for us,
76 * this is an easy thing to keep up.) It is assumed that no pair of the
77 * nodes in a given set interfere. Merging two sets or checking for
78 * interference can be done in a single linear-time merge-sort walk of the
79 * two lists of nodes.
80 */
81 struct merge_set;
82
83 typedef struct {
84 struct exec_node node;
85 struct merge_set *set;
86 nir_ssa_def *def;
87 } merge_node;
88
89 typedef struct merge_set {
90 struct exec_list nodes;
91 unsigned size;
92 nir_register *reg;
93 } merge_set;
94
95 #if 0
96 static void
97 merge_set_dump(merge_set *set, FILE *fp)
98 {
99 nir_ssa_def *dom[set->size];
100 int dom_idx = -1;
101
102 foreach_list_typed(merge_node, node, node, &set->nodes) {
103 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
104 dom_idx--;
105
106 for (int i = 0; i <= dom_idx; i++)
107 fprintf(fp, " ");
108
109 if (node->def->name)
110 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
111 else
112 fprintf(fp, "ssa_%d\n", node->def->index);
113
114 dom[++dom_idx] = node->def;
115 }
116 }
117 #endif
118
119 static merge_node *
120 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
121 {
122 struct hash_entry *entry =
123 _mesa_hash_table_search(state->merge_node_table, def);
124 if (entry)
125 return entry->data;
126
127 merge_set *set = ralloc(state->dead_ctx, merge_set);
128 exec_list_make_empty(&set->nodes);
129 set->size = 1;
130 set->reg = NULL;
131
132 merge_node *node = ralloc(state->dead_ctx, merge_node);
133 node->set = set;
134 node->def = def;
135 exec_list_push_head(&set->nodes, &node->node);
136
137 _mesa_hash_table_insert(state->merge_node_table, def, node);
138
139 return node;
140 }
141
142 static bool
143 merge_nodes_interfere(merge_node *a, merge_node *b)
144 {
145 return nir_ssa_defs_interfere(a->def, b->def);
146 }
147
148 /* Merges b into a */
149 static merge_set *
150 merge_merge_sets(merge_set *a, merge_set *b)
151 {
152 struct exec_node *an = exec_list_get_head(&a->nodes);
153 struct exec_node *bn = exec_list_get_head(&b->nodes);
154 while (!exec_node_is_tail_sentinel(bn)) {
155 merge_node *a_node = exec_node_data(merge_node, an, node);
156 merge_node *b_node = exec_node_data(merge_node, bn, node);
157
158 if (exec_node_is_tail_sentinel(an) ||
159 a_node->def->live_index > b_node->def->live_index) {
160 struct exec_node *next = bn->next;
161 exec_node_remove(bn);
162 exec_node_insert_node_before(an, bn);
163 exec_node_data(merge_node, bn, node)->set = a;
164 bn = next;
165 } else {
166 an = an->next;
167 }
168 }
169
170 a->size += b->size;
171 b->size = 0;
172
173 return a;
174 }
175
176 /* Checks for any interference between two merge sets
177 *
178 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
179 * Translation for Correctness, Code Quality, and Efficiency" by
180 * Boissinot et. al.
181 */
182 static bool
183 merge_sets_interfere(merge_set *a, merge_set *b)
184 {
185 NIR_VLA(merge_node *, dom, a->size + b->size);
186 int dom_idx = -1;
187
188 struct exec_node *an = exec_list_get_head(&a->nodes);
189 struct exec_node *bn = exec_list_get_head(&b->nodes);
190 while (!exec_node_is_tail_sentinel(an) ||
191 !exec_node_is_tail_sentinel(bn)) {
192
193 merge_node *current;
194 if (exec_node_is_tail_sentinel(an)) {
195 current = exec_node_data(merge_node, bn, node);
196 bn = bn->next;
197 } else if (exec_node_is_tail_sentinel(bn)) {
198 current = exec_node_data(merge_node, an, node);
199 an = an->next;
200 } else {
201 merge_node *a_node = exec_node_data(merge_node, an, node);
202 merge_node *b_node = exec_node_data(merge_node, bn, node);
203
204 if (a_node->def->live_index <= b_node->def->live_index) {
205 current = a_node;
206 an = an->next;
207 } else {
208 current = b_node;
209 bn = bn->next;
210 }
211 }
212
213 while (dom_idx >= 0 &&
214 !ssa_def_dominates(dom[dom_idx]->def, current->def))
215 dom_idx--;
216
217 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
218 return true;
219
220 dom[++dom_idx] = current;
221 }
222
223 return false;
224 }
225
226 static bool
227 add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
228 {
229 struct from_ssa_state *state = void_state;
230
231 bool need_end_copy = false;
232 if (block->successors[0]) {
233 nir_instr *instr = nir_block_first_instr(block->successors[0]);
234 if (instr && instr->type == nir_instr_type_phi)
235 need_end_copy = true;
236 }
237
238 if (block->successors[1]) {
239 nir_instr *instr = nir_block_first_instr(block->successors[1]);
240 if (instr && instr->type == nir_instr_type_phi)
241 need_end_copy = true;
242 }
243
244 if (need_end_copy) {
245 /* If one of our successors has at least one phi node, we need to
246 * create a parallel copy at the end of the block but before the jump
247 * (if there is one).
248 */
249 nir_parallel_copy_instr *pcopy =
250 nir_parallel_copy_instr_create(state->dead_ctx);
251
252 nir_instr *last_instr = nir_block_last_instr(block);
253 if (last_instr && last_instr->type == nir_instr_type_jump) {
254 nir_instr_insert_before(last_instr, &pcopy->instr);
255 } else {
256 nir_instr_insert_after_block(block, &pcopy->instr);
257 }
258 }
259
260 return true;
261 }
262
263 static nir_parallel_copy_instr *
264 get_parallel_copy_at_end_of_block(nir_block *block)
265 {
266 nir_instr *last_instr = nir_block_last_instr(block);
267 if (last_instr == NULL)
268 return NULL;
269
270 /* The last instruction may be a jump in which case the parallel copy is
271 * right before it.
272 */
273 if (last_instr->type == nir_instr_type_jump)
274 last_instr = nir_instr_prev(last_instr);
275
276 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
277 return nir_instr_as_parallel_copy(last_instr);
278 else
279 return NULL;
280 }
281
282 /** Isolate phi nodes with parallel copies
283 *
284 * In order to solve the dependency problems with the sources and
285 * destinations of phi nodes, we first isolate them by adding parallel
286 * copies to the beginnings and ends of basic blocks. For every block with
287 * phi nodes, we add a parallel copy immediately following the last phi
288 * node that copies the destinations of all of the phi nodes to new SSA
289 * values. We also add a parallel copy to the end of every block that has
290 * a successor with phi nodes that, for each phi node in each successor,
291 * copies the corresponding sorce of the phi node and adjust the phi to
292 * used the destination of the parallel copy.
293 *
294 * In SSA form, each value has exactly one definition. What this does is
295 * ensure that each value used in a phi also has exactly one use. The
296 * destinations of phis are only used by the parallel copy immediately
297 * following the phi nodes and. Thanks to the parallel copy at the end of
298 * the predecessor block, the sources of phi nodes are are the only use of
299 * that value. This allows us to immediately assign all the sources and
300 * destinations of any given phi node to the same register without worrying
301 * about interference at all. We do coalescing to get rid of the parallel
302 * copies where possible.
303 *
304 * Before this pass can be run, we have to iterate over the blocks with
305 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
306 * the ends of blocks exist. We can create the ones at the beginnings as
307 * we go, but the ones at the ends of blocks need to be created ahead of
308 * time because of potential back-edges in the CFG.
309 */
310 static bool
311 isolate_phi_nodes_block(nir_block *block, void *void_state)
312 {
313 struct from_ssa_state *state = void_state;
314
315 nir_instr *last_phi_instr = NULL;
316 nir_foreach_instr(block, instr) {
317 /* Phi nodes only ever come at the start of a block */
318 if (instr->type != nir_instr_type_phi)
319 break;
320
321 last_phi_instr = instr;
322 }
323
324 /* If we don't have any phi's, then there's nothing for us to do. */
325 if (last_phi_instr == NULL)
326 return true;
327
328 /* If we have phi nodes, we need to create a parallel copy at the
329 * start of this block but after the phi nodes.
330 */
331 nir_parallel_copy_instr *block_pcopy =
332 nir_parallel_copy_instr_create(state->dead_ctx);
333 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
334
335 nir_foreach_instr(block, instr) {
336 /* Phi nodes only ever come at the start of a block */
337 if (instr->type != nir_instr_type_phi)
338 break;
339
340 nir_phi_instr *phi = nir_instr_as_phi(instr);
341 assert(phi->dest.is_ssa);
342 nir_foreach_phi_src(phi, src) {
343 nir_parallel_copy_instr *pcopy =
344 get_parallel_copy_at_end_of_block(src->pred);
345 assert(pcopy);
346
347 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
348 nir_parallel_copy_entry);
349 exec_list_push_tail(&pcopy->entries, &entry->node);
350
351 nir_src_copy(&entry->src, &src->src, state->dead_ctx);
352 _mesa_set_add(src->src.ssa->uses, &pcopy->instr);
353
354 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
355 phi->dest.ssa.num_components, src->src.ssa->name);
356
357 struct set_entry *use_entry =
358 _mesa_set_search(src->src.ssa->uses, instr);
359 if (use_entry)
360 /* It is possible that a phi node can use the same source twice
361 * but for different basic blocks. If that happens, entry will
362 * be NULL because we already deleted it. This is safe
363 * because, by the time the loop is done, we will have deleted
364 * all of the sources of the phi from their respective use sets
365 * and moved them to the parallel copy definitions.
366 */
367 _mesa_set_remove(src->src.ssa->uses, use_entry);
368
369 src->src.ssa = &entry->dest.ssa;
370 _mesa_set_add(entry->dest.ssa.uses, instr);
371 }
372
373 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
374 nir_parallel_copy_entry);
375 exec_list_push_tail(&block_pcopy->entries, &entry->node);
376
377 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
378 phi->dest.ssa.num_components, phi->dest.ssa.name);
379 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
380 nir_src_for_ssa(&entry->dest.ssa),
381 state->mem_ctx);
382
383 entry->src.is_ssa = true;
384 entry->src.ssa = &phi->dest.ssa;
385 _mesa_set_add(phi->dest.ssa.uses, &block_pcopy->instr);
386 }
387
388 return true;
389 }
390
391 static bool
392 coalesce_phi_nodes_block(nir_block *block, void *void_state)
393 {
394 struct from_ssa_state *state = void_state;
395
396 nir_foreach_instr(block, instr) {
397 /* Phi nodes only ever come at the start of a block */
398 if (instr->type != nir_instr_type_phi)
399 break;
400
401 nir_phi_instr *phi = nir_instr_as_phi(instr);
402
403 assert(phi->dest.is_ssa);
404 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
405
406 nir_foreach_phi_src(phi, src) {
407 assert(src->src.is_ssa);
408 merge_node *src_node = get_merge_node(src->src.ssa, state);
409 if (src_node->set != dest_node->set)
410 merge_merge_sets(dest_node->set, src_node->set);
411 }
412 }
413
414 return true;
415 }
416
417 static void
418 agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
419 struct from_ssa_state *state)
420 {
421 nir_foreach_parallel_copy_entry(pcopy, entry) {
422 if (!entry->src.is_ssa)
423 continue;
424
425 /* Since load_const instructions are SSA only, we can't replace their
426 * destinations with registers and, therefore, can't coalesce them.
427 */
428 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
429 continue;
430
431 /* Don't try and coalesce these */
432 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
433 continue;
434
435 merge_node *src_node = get_merge_node(entry->src.ssa, state);
436 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
437
438 if (src_node->set == dest_node->set)
439 continue;
440
441 if (!merge_sets_interfere(src_node->set, dest_node->set))
442 merge_merge_sets(src_node->set, dest_node->set);
443 }
444 }
445
446 static bool
447 agressive_coalesce_block(nir_block *block, void *void_state)
448 {
449 struct from_ssa_state *state = void_state;
450
451 nir_parallel_copy_instr *start_pcopy = NULL;
452 nir_foreach_instr(block, instr) {
453 /* Phi nodes only ever come at the start of a block */
454 if (instr->type != nir_instr_type_phi) {
455 if (instr->type != nir_instr_type_parallel_copy)
456 break; /* The parallel copy must be right after the phis */
457
458 start_pcopy = nir_instr_as_parallel_copy(instr);
459
460 agressive_coalesce_parallel_copy(start_pcopy, state);
461
462 break;
463 }
464 }
465
466 nir_parallel_copy_instr *end_pcopy =
467 get_parallel_copy_at_end_of_block(block);
468
469 if (end_pcopy && end_pcopy != start_pcopy)
470 agressive_coalesce_parallel_copy(end_pcopy, state);
471
472 return true;
473 }
474
475 static nir_register *
476 get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state)
477 {
478 struct hash_entry *entry =
479 _mesa_hash_table_search(state->merge_node_table, def);
480 if (entry) {
481 merge_node *node = (merge_node *)entry->data;
482
483 /* If it doesn't have a register yet, create one. Note that all of
484 * the things in the merge set should be the same so it doesn't
485 * matter which node's definition we use.
486 */
487 if (node->set->reg == NULL) {
488 node->set->reg = nir_local_reg_create(state->impl);
489 node->set->reg->name = def->name;
490 node->set->reg->num_components = def->num_components;
491 node->set->reg->num_array_elems = 0;
492 }
493
494 return node->set->reg;
495 }
496
497 entry = _mesa_hash_table_search(state->ssa_table, def);
498 if (entry) {
499 return (nir_register *)entry->data;
500 } else {
501 /* We leave load_const SSA values alone. They act as immediates to
502 * the backend. If it got coalesced into a phi, that's ok.
503 */
504 if (def->parent_instr->type == nir_instr_type_load_const)
505 return NULL;
506
507 nir_register *reg = nir_local_reg_create(state->impl);
508 reg->name = def->name;
509 reg->num_components = def->num_components;
510 reg->num_array_elems = 0;
511
512 /* This register comes from an SSA definition that is defined and not
513 * part of a phi-web. Therefore, we know it has a single unique
514 * definition that dominates all of its uses; we can copy the
515 * parent_instr from the SSA def safely.
516 */
517 if (def->parent_instr->type != nir_instr_type_ssa_undef)
518 reg->parent_instr = def->parent_instr;
519
520 _mesa_hash_table_insert(state->ssa_table, def, reg);
521 return reg;
522 }
523 }
524
525 static bool
526 rewrite_ssa_src(nir_src *src, void *void_state)
527 {
528 struct from_ssa_state *state = void_state;
529
530 if (src->is_ssa) {
531 nir_register *reg = get_register_for_ssa_def(src->ssa, state);
532
533 if (reg == NULL) {
534 assert(src->ssa->parent_instr->type == nir_instr_type_load_const);
535 return true;
536 }
537
538 memset(src, 0, sizeof *src);
539 src->reg.reg = reg;
540
541 /* We don't need to remove it from the uses set because that is going
542 * away. We just need to add it to the one for the register. */
543 _mesa_set_add(reg->uses, state->instr);
544 }
545
546 return true;
547 }
548
549 static bool
550 rewrite_ssa_dest(nir_dest *dest, void *void_state)
551 {
552 struct from_ssa_state *state = void_state;
553
554 if (dest->is_ssa) {
555 nir_register *reg = get_register_for_ssa_def(&dest->ssa, state);
556
557 if (reg == NULL) {
558 assert(dest->ssa.parent_instr->type == nir_instr_type_load_const);
559 return true;
560 }
561
562 _mesa_set_destroy(dest->ssa.uses, NULL);
563 _mesa_set_destroy(dest->ssa.if_uses, NULL);
564
565 memset(dest, 0, sizeof *dest);
566 dest->reg.reg = reg;
567
568 _mesa_set_add(reg->defs, state->instr);
569 }
570
571 return true;
572 }
573
574 /* Resolves ssa definitions to registers. While we're at it, we also
575 * remove phi nodes and ssa_undef instructions
576 */
577 static bool
578 resolve_registers_block(nir_block *block, void *void_state)
579 {
580 struct from_ssa_state *state = void_state;
581
582 nir_foreach_instr_safe(block, instr) {
583 state->instr = instr;
584 nir_foreach_src(instr, rewrite_ssa_src, state);
585 nir_foreach_dest(instr, rewrite_ssa_dest, state);
586
587 if (instr->type == nir_instr_type_ssa_undef ||
588 instr->type == nir_instr_type_phi) {
589 nir_instr_remove(instr);
590 ralloc_steal(state->dead_ctx, instr);
591 }
592 }
593 state->instr = NULL;
594
595 nir_if *following_if = nir_block_get_following_if(block);
596 if (following_if && following_if->condition.is_ssa) {
597 nir_register *reg = get_register_for_ssa_def(following_if->condition.ssa,
598 state);
599 if (reg) {
600 memset(&following_if->condition, 0, sizeof following_if->condition);
601 following_if->condition.reg.reg = reg;
602
603 _mesa_set_add(reg->if_uses, following_if);
604 } else {
605 /* FIXME: We really shouldn't hit this. We should be doing
606 * constant control flow propagation.
607 */
608 assert(following_if->condition.ssa->parent_instr->type == nir_instr_type_load_const);
609 }
610 }
611
612 return true;
613 }
614
615 static void
616 emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
617 void *mem_ctx)
618 {
619 assert(!dest_src.is_ssa &&
620 dest_src.reg.indirect == NULL &&
621 dest_src.reg.base_offset == 0);
622
623 if (src.is_ssa)
624 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
625 else
626 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
627
628 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
629 nir_src_copy(&mov->src[0].src, &src, mem_ctx);
630 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
631 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
632
633 nir_instr_insert_before(&pcopy->instr, &mov->instr);
634 }
635
636 /* Resolves a single parallel copy operation into a sequence of mov's
637 *
638 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
639 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
640 * However, I never got the algorithm to work as written, so this version
641 * is slightly modified.
642 *
643 * The algorithm works by playing this little shell game with the values.
644 * We start by recording where every source value is and which source value
645 * each destination value should recieve. We then grab any copy whose
646 * destination is "empty", i.e. not used as a source, and do the following:
647 * - Find where its source value currently lives
648 * - Emit the move instruction
649 * - Set the location of the source value to the destination
650 * - Mark the location containing the source value
651 * - Mark the destination as no longer needing to be copied
652 *
653 * When we run out of "empty" destinations, we have a cycle and so we
654 * create a temporary register, copy to that register, and mark the value
655 * we copied as living in that temporary. Now, the cycle is broken, so we
656 * can continue with the above steps.
657 */
658 static void
659 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
660 struct from_ssa_state *state)
661 {
662 unsigned num_copies = 0;
663 nir_foreach_parallel_copy_entry(pcopy, entry) {
664 /* Sources may be SSA */
665 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
666 continue;
667
668 num_copies++;
669 }
670
671 if (num_copies == 0) {
672 /* Hooray, we don't need any copies! */
673 nir_instr_remove(&pcopy->instr);
674 return;
675 }
676
677 /* The register/source corresponding to the given index */
678 NIR_VLA_ZERO(nir_src, values, num_copies * 2);
679
680 /* The current location of a given piece of data. We will use -1 for "null" */
681 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
682
683 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
684 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
685
686 /* The destinations we have yet to properly fill */
687 NIR_VLA(int, to_do, num_copies * 2);
688 int to_do_idx = -1;
689
690 /* Now we set everything up:
691 * - All values get assigned a temporary index
692 * - Current locations are set from sources
693 * - Predicessors are recorded from sources and destinations
694 */
695 int num_vals = 0;
696 nir_foreach_parallel_copy_entry(pcopy, entry) {
697 /* Sources may be SSA */
698 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
699 continue;
700
701 int src_idx = -1;
702 for (int i = 0; i < num_vals; ++i) {
703 if (nir_srcs_equal(values[i], entry->src))
704 src_idx = i;
705 }
706 if (src_idx < 0) {
707 src_idx = num_vals++;
708 values[src_idx] = entry->src;
709 }
710
711 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
712
713 int dest_idx = -1;
714 for (int i = 0; i < num_vals; ++i) {
715 if (nir_srcs_equal(values[i], dest_src)) {
716 /* Each destination of a parallel copy instruction should be
717 * unique. A destination may get used as a source, so we still
718 * have to walk the list. However, the predecessor should not,
719 * at this point, be set yet, so we should have -1 here.
720 */
721 assert(pred[i] == -1);
722 dest_idx = i;
723 }
724 }
725 if (dest_idx < 0) {
726 dest_idx = num_vals++;
727 values[dest_idx] = dest_src;
728 }
729
730 loc[src_idx] = src_idx;
731 pred[dest_idx] = src_idx;
732
733 to_do[++to_do_idx] = dest_idx;
734 }
735
736 /* Currently empty destinations we can go ahead and fill */
737 NIR_VLA(int, ready, num_copies * 2);
738 int ready_idx = -1;
739
740 /* Mark the ones that are ready for copying. We know an index is a
741 * destination if it has a predecessor and it's ready for copying if
742 * it's not marked as containing data.
743 */
744 for (int i = 0; i < num_vals; i++) {
745 if (pred[i] != -1 && loc[i] == -1)
746 ready[++ready_idx] = i;
747 }
748
749 while (to_do_idx >= 0) {
750 while (ready_idx >= 0) {
751 int b = ready[ready_idx--];
752 int a = pred[b];
753 emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
754
755 /* If any other copies want a they can find it at b */
756 loc[a] = b;
757
758 /* b has been filled, mark it as not needing to be copied */
759 pred[b] = -1;
760
761 /* If a needs to be filled, it's ready for copying now */
762 if (pred[a] != -1)
763 ready[++ready_idx] = a;
764 }
765 int b = to_do[to_do_idx--];
766 if (pred[b] == -1)
767 continue;
768
769 /* If we got here, then we don't have any more trivial copies that we
770 * can do. We have to break a cycle, so we create a new temporary
771 * register for that purpose. Normally, if going out of SSA after
772 * register allocation, you would want to avoid creating temporary
773 * registers. However, we are going out of SSA before register
774 * allocation, so we would rather not create extra register
775 * dependencies for the backend to deal with. If it wants, the
776 * backend can coalesce the (possibly multiple) temporaries.
777 */
778 assert(num_vals < num_copies * 2);
779 nir_register *reg = nir_local_reg_create(state->impl);
780 reg->name = "copy_temp";
781 reg->num_array_elems = 0;
782 if (values[b].is_ssa)
783 reg->num_components = values[b].ssa->num_components;
784 else
785 reg->num_components = values[b].reg.reg->num_components;
786 values[num_vals].is_ssa = false;
787 values[num_vals].reg.reg = reg;
788
789 emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
790 loc[b] = num_vals;
791 ready[++ready_idx] = b;
792 num_vals++;
793 }
794
795 nir_instr_remove(&pcopy->instr);
796 }
797
798 /* Resolves the parallel copies in a block. Each block can have at most
799 * two: One at the beginning, right after all the phi noces, and one at
800 * the end (or right before the final jump if it exists).
801 */
802 static bool
803 resolve_parallel_copies_block(nir_block *block, void *void_state)
804 {
805 struct from_ssa_state *state = void_state;
806
807 /* At this point, we have removed all of the phi nodes. If a parallel
808 * copy existed right after the phi nodes in this block, it is now the
809 * first instruction.
810 */
811 nir_instr *first_instr = nir_block_first_instr(block);
812 if (first_instr == NULL)
813 return true; /* Empty, nothing to do. */
814
815 if (first_instr->type == nir_instr_type_parallel_copy) {
816 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
817
818 resolve_parallel_copy(pcopy, state);
819 }
820
821 /* It's possible that the above code already cleaned up the end parallel
822 * copy. However, doing so removed it form the instructions list so we
823 * won't find it here. Therefore, it's safe to go ahead and just look
824 * for one and clean it up if it exists.
825 */
826 nir_parallel_copy_instr *end_pcopy =
827 get_parallel_copy_at_end_of_block(block);
828 if (end_pcopy)
829 resolve_parallel_copy(end_pcopy, state);
830
831 return true;
832 }
833
834 static void
835 nir_convert_from_ssa_impl(nir_function_impl *impl)
836 {
837 struct from_ssa_state state;
838
839 state.mem_ctx = ralloc_parent(impl);
840 state.dead_ctx = ralloc_context(NULL);
841 state.impl = impl;
842 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
843 _mesa_key_pointer_equal);
844
845 nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state);
846 nir_foreach_block(impl, isolate_phi_nodes_block, &state);
847
848 /* Mark metadata as dirty before we ask for liveness analysis */
849 nir_metadata_preserve(impl, nir_metadata_block_index |
850 nir_metadata_dominance);
851
852 nir_metadata_require(impl, nir_metadata_live_variables |
853 nir_metadata_dominance);
854
855 nir_foreach_block(impl, coalesce_phi_nodes_block, &state);
856 nir_foreach_block(impl, agressive_coalesce_block, &state);
857
858 state.ssa_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
859 _mesa_key_pointer_equal);
860 nir_foreach_block(impl, resolve_registers_block, &state);
861
862 nir_foreach_block(impl, resolve_parallel_copies_block, &state);
863
864 nir_metadata_preserve(impl, nir_metadata_block_index |
865 nir_metadata_dominance);
866
867 /* Clean up dead instructions and the hash tables */
868 _mesa_hash_table_destroy(state.ssa_table, NULL);
869 _mesa_hash_table_destroy(state.merge_node_table, NULL);
870 ralloc_free(state.dead_ctx);
871 }
872
873 void
874 nir_convert_from_ssa(nir_shader *shader)
875 {
876 nir_foreach_overload(shader, overload) {
877 if (overload->impl)
878 nir_convert_from_ssa_impl(overload->impl);
879 }
880 }