gtest: Update to 1.8.0.
[mesa.git] / src / gtest / include / gtest / internal / gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <vector>
62
63 #include "gtest/gtest-message.h"
64 #include "gtest/internal/gtest-string.h"
65 #include "gtest/internal/gtest-filepath.h"
66 #include "gtest/internal/gtest-type-util.h"
67
68 // Due to C++ preprocessor weirdness, we need double indirection to
69 // concatenate two tokens when one of them is __LINE__. Writing
70 //
71 // foo ## __LINE__
72 //
73 // will result in the token foo__LINE__, instead of foo followed by
74 // the current line number. For more details, see
75 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78
79 class ProtocolMessage;
80 namespace proto2 { class Message; }
81
82 namespace testing {
83
84 // Forward declarations.
85
86 class AssertionResult; // Result of an assertion.
87 class Message; // Represents a failure message.
88 class Test; // Represents a test.
89 class TestInfo; // Information about a test.
90 class TestPartResult; // Result of a test part.
91 class UnitTest; // A collection of test cases.
92
93 template <typename T>
94 ::std::string PrintToString(const T& value);
95
96 namespace internal {
97
98 struct TraceInfo; // Information about a trace point.
99 class ScopedTrace; // Implements scoped trace.
100 class TestInfoImpl; // Opaque implementation of TestInfo
101 class UnitTestImpl; // Opaque implementation of UnitTest
102
103 // The text used in failure messages to indicate the start of the
104 // stack trace.
105 GTEST_API_ extern const char kStackTraceMarker[];
106
107 // Two overloaded helpers for checking at compile time whether an
108 // expression is a null pointer literal (i.e. NULL or any 0-valued
109 // compile-time integral constant). Their return values have
110 // different sizes, so we can use sizeof() to test which version is
111 // picked by the compiler. These helpers have no implementations, as
112 // we only need their signatures.
113 //
114 // Given IsNullLiteralHelper(x), the compiler will pick the first
115 // version if x can be implicitly converted to Secret*, and pick the
116 // second version otherwise. Since Secret is a secret and incomplete
117 // type, the only expression a user can write that has type Secret* is
118 // a null pointer literal. Therefore, we know that x is a null
119 // pointer literal if and only if the first version is picked by the
120 // compiler.
121 char IsNullLiteralHelper(Secret* p);
122 char (&IsNullLiteralHelper(...))[2]; // NOLINT
123
124 // A compile-time bool constant that is true if and only if x is a
125 // null pointer literal (i.e. NULL or any 0-valued compile-time
126 // integral constant).
127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
128 // We lose support for NULL detection where the compiler doesn't like
129 // passing non-POD classes through ellipsis (...).
130 # define GTEST_IS_NULL_LITERAL_(x) false
131 #else
132 # define GTEST_IS_NULL_LITERAL_(x) \
133 (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
134 #endif // GTEST_ELLIPSIS_NEEDS_POD_
135
136 // Appends the user-supplied message to the Google-Test-generated message.
137 GTEST_API_ std::string AppendUserMessage(
138 const std::string& gtest_msg, const Message& user_msg);
139
140 #if GTEST_HAS_EXCEPTIONS
141
142 // This exception is thrown by (and only by) a failed Google Test
143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
144 // are enabled). We derive it from std::runtime_error, which is for
145 // errors presumably detectable only at run time. Since
146 // std::runtime_error inherits from std::exception, many testing
147 // frameworks know how to extract and print the message inside it.
148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
149 public:
150 explicit GoogleTestFailureException(const TestPartResult& failure);
151 };
152
153 #endif // GTEST_HAS_EXCEPTIONS
154
155 // A helper class for creating scoped traces in user programs.
156 class GTEST_API_ ScopedTrace {
157 public:
158 // The c'tor pushes the given source file location and message onto
159 // a trace stack maintained by Google Test.
160 ScopedTrace(const char* file, int line, const Message& message);
161
162 // The d'tor pops the info pushed by the c'tor.
163 //
164 // Note that the d'tor is not virtual in order to be efficient.
165 // Don't inherit from ScopedTrace!
166 ~ScopedTrace();
167
168 private:
169 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
170 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
171 // c'tor and d'tor. Therefore it doesn't
172 // need to be used otherwise.
173
174 namespace edit_distance {
175 // Returns the optimal edits to go from 'left' to 'right'.
176 // All edits cost the same, with replace having lower priority than
177 // add/remove.
178 // Simple implementation of the Wagner–Fischer algorithm.
179 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
180 enum EditType { kMatch, kAdd, kRemove, kReplace };
181 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
182 const std::vector<size_t>& left, const std::vector<size_t>& right);
183
184 // Same as above, but the input is represented as strings.
185 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
186 const std::vector<std::string>& left,
187 const std::vector<std::string>& right);
188
189 // Create a diff of the input strings in Unified diff format.
190 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
191 const std::vector<std::string>& right,
192 size_t context = 2);
193
194 } // namespace edit_distance
195
196 // Calculate the diff between 'left' and 'right' and return it in unified diff
197 // format.
198 // If not null, stores in 'total_line_count' the total number of lines found
199 // in left + right.
200 GTEST_API_ std::string DiffStrings(const std::string& left,
201 const std::string& right,
202 size_t* total_line_count);
203
204 // Constructs and returns the message for an equality assertion
205 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
206 //
207 // The first four parameters are the expressions used in the assertion
208 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
209 // where foo is 5 and bar is 6, we have:
210 //
211 // expected_expression: "foo"
212 // actual_expression: "bar"
213 // expected_value: "5"
214 // actual_value: "6"
215 //
216 // The ignoring_case parameter is true iff the assertion is a
217 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
218 // be inserted into the message.
219 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
220 const char* actual_expression,
221 const std::string& expected_value,
222 const std::string& actual_value,
223 bool ignoring_case);
224
225 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
226 GTEST_API_ std::string GetBoolAssertionFailureMessage(
227 const AssertionResult& assertion_result,
228 const char* expression_text,
229 const char* actual_predicate_value,
230 const char* expected_predicate_value);
231
232 // This template class represents an IEEE floating-point number
233 // (either single-precision or double-precision, depending on the
234 // template parameters).
235 //
236 // The purpose of this class is to do more sophisticated number
237 // comparison. (Due to round-off error, etc, it's very unlikely that
238 // two floating-points will be equal exactly. Hence a naive
239 // comparison by the == operation often doesn't work.)
240 //
241 // Format of IEEE floating-point:
242 //
243 // The most-significant bit being the leftmost, an IEEE
244 // floating-point looks like
245 //
246 // sign_bit exponent_bits fraction_bits
247 //
248 // Here, sign_bit is a single bit that designates the sign of the
249 // number.
250 //
251 // For float, there are 8 exponent bits and 23 fraction bits.
252 //
253 // For double, there are 11 exponent bits and 52 fraction bits.
254 //
255 // More details can be found at
256 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
257 //
258 // Template parameter:
259 //
260 // RawType: the raw floating-point type (either float or double)
261 template <typename RawType>
262 class FloatingPoint {
263 public:
264 // Defines the unsigned integer type that has the same size as the
265 // floating point number.
266 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
267
268 // Constants.
269
270 // # of bits in a number.
271 static const size_t kBitCount = 8*sizeof(RawType);
272
273 // # of fraction bits in a number.
274 static const size_t kFractionBitCount =
275 std::numeric_limits<RawType>::digits - 1;
276
277 // # of exponent bits in a number.
278 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
279
280 // The mask for the sign bit.
281 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
282
283 // The mask for the fraction bits.
284 static const Bits kFractionBitMask =
285 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
286
287 // The mask for the exponent bits.
288 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
289
290 // How many ULP's (Units in the Last Place) we want to tolerate when
291 // comparing two numbers. The larger the value, the more error we
292 // allow. A 0 value means that two numbers must be exactly the same
293 // to be considered equal.
294 //
295 // The maximum error of a single floating-point operation is 0.5
296 // units in the last place. On Intel CPU's, all floating-point
297 // calculations are done with 80-bit precision, while double has 64
298 // bits. Therefore, 4 should be enough for ordinary use.
299 //
300 // See the following article for more details on ULP:
301 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
302 static const size_t kMaxUlps = 4;
303
304 // Constructs a FloatingPoint from a raw floating-point number.
305 //
306 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
307 // around may change its bits, although the new value is guaranteed
308 // to be also a NAN. Therefore, don't expect this constructor to
309 // preserve the bits in x when x is a NAN.
310 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
311
312 // Static methods
313
314 // Reinterprets a bit pattern as a floating-point number.
315 //
316 // This function is needed to test the AlmostEquals() method.
317 static RawType ReinterpretBits(const Bits bits) {
318 FloatingPoint fp(0);
319 fp.u_.bits_ = bits;
320 return fp.u_.value_;
321 }
322
323 // Returns the floating-point number that represent positive infinity.
324 static RawType Infinity() {
325 return ReinterpretBits(kExponentBitMask);
326 }
327
328 // Returns the maximum representable finite floating-point number.
329 static RawType Max();
330
331 // Non-static methods
332
333 // Returns the bits that represents this number.
334 const Bits &bits() const { return u_.bits_; }
335
336 // Returns the exponent bits of this number.
337 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
338
339 // Returns the fraction bits of this number.
340 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
341
342 // Returns the sign bit of this number.
343 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
344
345 // Returns true iff this is NAN (not a number).
346 bool is_nan() const {
347 // It's a NAN if the exponent bits are all ones and the fraction
348 // bits are not entirely zeros.
349 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
350 }
351
352 // Returns true iff this number is at most kMaxUlps ULP's away from
353 // rhs. In particular, this function:
354 //
355 // - returns false if either number is (or both are) NAN.
356 // - treats really large numbers as almost equal to infinity.
357 // - thinks +0.0 and -0.0 are 0 DLP's apart.
358 bool AlmostEquals(const FloatingPoint& rhs) const {
359 // The IEEE standard says that any comparison operation involving
360 // a NAN must return false.
361 if (is_nan() || rhs.is_nan()) return false;
362
363 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
364 <= kMaxUlps;
365 }
366
367 private:
368 // The data type used to store the actual floating-point number.
369 union FloatingPointUnion {
370 RawType value_; // The raw floating-point number.
371 Bits bits_; // The bits that represent the number.
372 };
373
374 // Converts an integer from the sign-and-magnitude representation to
375 // the biased representation. More precisely, let N be 2 to the
376 // power of (kBitCount - 1), an integer x is represented by the
377 // unsigned number x + N.
378 //
379 // For instance,
380 //
381 // -N + 1 (the most negative number representable using
382 // sign-and-magnitude) is represented by 1;
383 // 0 is represented by N; and
384 // N - 1 (the biggest number representable using
385 // sign-and-magnitude) is represented by 2N - 1.
386 //
387 // Read http://en.wikipedia.org/wiki/Signed_number_representations
388 // for more details on signed number representations.
389 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
390 if (kSignBitMask & sam) {
391 // sam represents a negative number.
392 return ~sam + 1;
393 } else {
394 // sam represents a positive number.
395 return kSignBitMask | sam;
396 }
397 }
398
399 // Given two numbers in the sign-and-magnitude representation,
400 // returns the distance between them as an unsigned number.
401 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
402 const Bits &sam2) {
403 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
404 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
405 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
406 }
407
408 FloatingPointUnion u_;
409 };
410
411 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
412 // macro defined by <windows.h>.
413 template <>
414 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
415 template <>
416 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
417
418 // Typedefs the instances of the FloatingPoint template class that we
419 // care to use.
420 typedef FloatingPoint<float> Float;
421 typedef FloatingPoint<double> Double;
422
423 // In order to catch the mistake of putting tests that use different
424 // test fixture classes in the same test case, we need to assign
425 // unique IDs to fixture classes and compare them. The TypeId type is
426 // used to hold such IDs. The user should treat TypeId as an opaque
427 // type: the only operation allowed on TypeId values is to compare
428 // them for equality using the == operator.
429 typedef const void* TypeId;
430
431 template <typename T>
432 class TypeIdHelper {
433 public:
434 // dummy_ must not have a const type. Otherwise an overly eager
435 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
436 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
437 static bool dummy_;
438 };
439
440 template <typename T>
441 bool TypeIdHelper<T>::dummy_ = false;
442
443 // GetTypeId<T>() returns the ID of type T. Different values will be
444 // returned for different types. Calling the function twice with the
445 // same type argument is guaranteed to return the same ID.
446 template <typename T>
447 TypeId GetTypeId() {
448 // The compiler is required to allocate a different
449 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
450 // the template. Therefore, the address of dummy_ is guaranteed to
451 // be unique.
452 return &(TypeIdHelper<T>::dummy_);
453 }
454
455 // Returns the type ID of ::testing::Test. Always call this instead
456 // of GetTypeId< ::testing::Test>() to get the type ID of
457 // ::testing::Test, as the latter may give the wrong result due to a
458 // suspected linker bug when compiling Google Test as a Mac OS X
459 // framework.
460 GTEST_API_ TypeId GetTestTypeId();
461
462 // Defines the abstract factory interface that creates instances
463 // of a Test object.
464 class TestFactoryBase {
465 public:
466 virtual ~TestFactoryBase() {}
467
468 // Creates a test instance to run. The instance is both created and destroyed
469 // within TestInfoImpl::Run()
470 virtual Test* CreateTest() = 0;
471
472 protected:
473 TestFactoryBase() {}
474
475 private:
476 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
477 };
478
479 // This class provides implementation of TeastFactoryBase interface.
480 // It is used in TEST and TEST_F macros.
481 template <class TestClass>
482 class TestFactoryImpl : public TestFactoryBase {
483 public:
484 virtual Test* CreateTest() { return new TestClass; }
485 };
486
487 #if GTEST_OS_WINDOWS
488
489 // Predicate-formatters for implementing the HRESULT checking macros
490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491 // We pass a long instead of HRESULT to avoid causing an
492 // include dependency for the HRESULT type.
493 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
494 long hr); // NOLINT
495 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
496 long hr); // NOLINT
497
498 #endif // GTEST_OS_WINDOWS
499
500 // Types of SetUpTestCase() and TearDownTestCase() functions.
501 typedef void (*SetUpTestCaseFunc)();
502 typedef void (*TearDownTestCaseFunc)();
503
504 struct CodeLocation {
505 CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {}
506
507 string file;
508 int line;
509 };
510
511 // Creates a new TestInfo object and registers it with Google Test;
512 // returns the created object.
513 //
514 // Arguments:
515 //
516 // test_case_name: name of the test case
517 // name: name of the test
518 // type_param the name of the test's type parameter, or NULL if
519 // this is not a typed or a type-parameterized test.
520 // value_param text representation of the test's value parameter,
521 // or NULL if this is not a type-parameterized test.
522 // code_location: code location where the test is defined
523 // fixture_class_id: ID of the test fixture class
524 // set_up_tc: pointer to the function that sets up the test case
525 // tear_down_tc: pointer to the function that tears down the test case
526 // factory: pointer to the factory that creates a test object.
527 // The newly created TestInfo instance will assume
528 // ownership of the factory object.
529 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
530 const char* test_case_name,
531 const char* name,
532 const char* type_param,
533 const char* value_param,
534 CodeLocation code_location,
535 TypeId fixture_class_id,
536 SetUpTestCaseFunc set_up_tc,
537 TearDownTestCaseFunc tear_down_tc,
538 TestFactoryBase* factory);
539
540 // If *pstr starts with the given prefix, modifies *pstr to be right
541 // past the prefix and returns true; otherwise leaves *pstr unchanged
542 // and returns false. None of pstr, *pstr, and prefix can be NULL.
543 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
544
545 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
546
547 // State of the definition of a type-parameterized test case.
548 class GTEST_API_ TypedTestCasePState {
549 public:
550 TypedTestCasePState() : registered_(false) {}
551
552 // Adds the given test name to defined_test_names_ and return true
553 // if the test case hasn't been registered; otherwise aborts the
554 // program.
555 bool AddTestName(const char* file, int line, const char* case_name,
556 const char* test_name) {
557 if (registered_) {
558 fprintf(stderr, "%s Test %s must be defined before "
559 "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
560 FormatFileLocation(file, line).c_str(), test_name, case_name);
561 fflush(stderr);
562 posix::Abort();
563 }
564 registered_tests_.insert(
565 ::std::make_pair(test_name, CodeLocation(file, line)));
566 return true;
567 }
568
569 bool TestExists(const std::string& test_name) const {
570 return registered_tests_.count(test_name) > 0;
571 }
572
573 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
574 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
575 GTEST_CHECK_(it != registered_tests_.end());
576 return it->second;
577 }
578
579 // Verifies that registered_tests match the test names in
580 // defined_test_names_; returns registered_tests if successful, or
581 // aborts the program otherwise.
582 const char* VerifyRegisteredTestNames(
583 const char* file, int line, const char* registered_tests);
584
585 private:
586 typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
587
588 bool registered_;
589 RegisteredTestsMap registered_tests_;
590 };
591
592 // Skips to the first non-space char after the first comma in 'str';
593 // returns NULL if no comma is found in 'str'.
594 inline const char* SkipComma(const char* str) {
595 const char* comma = strchr(str, ',');
596 if (comma == NULL) {
597 return NULL;
598 }
599 while (IsSpace(*(++comma))) {}
600 return comma;
601 }
602
603 // Returns the prefix of 'str' before the first comma in it; returns
604 // the entire string if it contains no comma.
605 inline std::string GetPrefixUntilComma(const char* str) {
606 const char* comma = strchr(str, ',');
607 return comma == NULL ? str : std::string(str, comma);
608 }
609
610 // Splits a given string on a given delimiter, populating a given
611 // vector with the fields.
612 void SplitString(const ::std::string& str, char delimiter,
613 ::std::vector< ::std::string>* dest);
614
615 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
616 // registers a list of type-parameterized tests with Google Test. The
617 // return value is insignificant - we just need to return something
618 // such that we can call this function in a namespace scope.
619 //
620 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
621 // template parameter. It's defined in gtest-type-util.h.
622 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
623 class TypeParameterizedTest {
624 public:
625 // 'index' is the index of the test in the type list 'Types'
626 // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
627 // Types). Valid values for 'index' are [0, N - 1] where N is the
628 // length of Types.
629 static bool Register(const char* prefix,
630 CodeLocation code_location,
631 const char* case_name, const char* test_names,
632 int index) {
633 typedef typename Types::Head Type;
634 typedef Fixture<Type> FixtureClass;
635 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
636
637 // First, registers the first type-parameterized test in the type
638 // list.
639 MakeAndRegisterTestInfo(
640 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
641 + StreamableToString(index)).c_str(),
642 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
643 GetTypeName<Type>().c_str(),
644 NULL, // No value parameter.
645 code_location,
646 GetTypeId<FixtureClass>(),
647 TestClass::SetUpTestCase,
648 TestClass::TearDownTestCase,
649 new TestFactoryImpl<TestClass>);
650
651 // Next, recurses (at compile time) with the tail of the type list.
652 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
653 ::Register(prefix, code_location, case_name, test_names, index + 1);
654 }
655 };
656
657 // The base case for the compile time recursion.
658 template <GTEST_TEMPLATE_ Fixture, class TestSel>
659 class TypeParameterizedTest<Fixture, TestSel, Types0> {
660 public:
661 static bool Register(const char* /*prefix*/, CodeLocation,
662 const char* /*case_name*/, const char* /*test_names*/,
663 int /*index*/) {
664 return true;
665 }
666 };
667
668 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
669 // registers *all combinations* of 'Tests' and 'Types' with Google
670 // Test. The return value is insignificant - we just need to return
671 // something such that we can call this function in a namespace scope.
672 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
673 class TypeParameterizedTestCase {
674 public:
675 static bool Register(const char* prefix, CodeLocation code_location,
676 const TypedTestCasePState* state,
677 const char* case_name, const char* test_names) {
678 std::string test_name = StripTrailingSpaces(
679 GetPrefixUntilComma(test_names));
680 if (!state->TestExists(test_name)) {
681 fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
682 case_name, test_name.c_str(),
683 FormatFileLocation(code_location.file.c_str(),
684 code_location.line).c_str());
685 fflush(stderr);
686 posix::Abort();
687 }
688 const CodeLocation& test_location = state->GetCodeLocation(test_name);
689
690 typedef typename Tests::Head Head;
691
692 // First, register the first test in 'Test' for each type in 'Types'.
693 TypeParameterizedTest<Fixture, Head, Types>::Register(
694 prefix, test_location, case_name, test_names, 0);
695
696 // Next, recurses (at compile time) with the tail of the test list.
697 return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
698 ::Register(prefix, code_location, state,
699 case_name, SkipComma(test_names));
700 }
701 };
702
703 // The base case for the compile time recursion.
704 template <GTEST_TEMPLATE_ Fixture, typename Types>
705 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
706 public:
707 static bool Register(const char* /*prefix*/, CodeLocation,
708 const TypedTestCasePState* /*state*/,
709 const char* /*case_name*/, const char* /*test_names*/) {
710 return true;
711 }
712 };
713
714 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
715
716 // Returns the current OS stack trace as an std::string.
717 //
718 // The maximum number of stack frames to be included is specified by
719 // the gtest_stack_trace_depth flag. The skip_count parameter
720 // specifies the number of top frames to be skipped, which doesn't
721 // count against the number of frames to be included.
722 //
723 // For example, if Foo() calls Bar(), which in turn calls
724 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
725 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
726 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
727 UnitTest* unit_test, int skip_count);
728
729 // Helpers for suppressing warnings on unreachable code or constant
730 // condition.
731
732 // Always returns true.
733 GTEST_API_ bool AlwaysTrue();
734
735 // Always returns false.
736 inline bool AlwaysFalse() { return !AlwaysTrue(); }
737
738 // Helper for suppressing false warning from Clang on a const char*
739 // variable declared in a conditional expression always being NULL in
740 // the else branch.
741 struct GTEST_API_ ConstCharPtr {
742 ConstCharPtr(const char* str) : value(str) {}
743 operator bool() const { return true; }
744 const char* value;
745 };
746
747 // A simple Linear Congruential Generator for generating random
748 // numbers with a uniform distribution. Unlike rand() and srand(), it
749 // doesn't use global state (and therefore can't interfere with user
750 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
751 // but it's good enough for our purposes.
752 class GTEST_API_ Random {
753 public:
754 static const UInt32 kMaxRange = 1u << 31;
755
756 explicit Random(UInt32 seed) : state_(seed) {}
757
758 void Reseed(UInt32 seed) { state_ = seed; }
759
760 // Generates a random number from [0, range). Crashes if 'range' is
761 // 0 or greater than kMaxRange.
762 UInt32 Generate(UInt32 range);
763
764 private:
765 UInt32 state_;
766 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
767 };
768
769 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
770 // compiler error iff T1 and T2 are different types.
771 template <typename T1, typename T2>
772 struct CompileAssertTypesEqual;
773
774 template <typename T>
775 struct CompileAssertTypesEqual<T, T> {
776 };
777
778 // Removes the reference from a type if it is a reference type,
779 // otherwise leaves it unchanged. This is the same as
780 // tr1::remove_reference, which is not widely available yet.
781 template <typename T>
782 struct RemoveReference { typedef T type; }; // NOLINT
783 template <typename T>
784 struct RemoveReference<T&> { typedef T type; }; // NOLINT
785
786 // A handy wrapper around RemoveReference that works when the argument
787 // T depends on template parameters.
788 #define GTEST_REMOVE_REFERENCE_(T) \
789 typename ::testing::internal::RemoveReference<T>::type
790
791 // Removes const from a type if it is a const type, otherwise leaves
792 // it unchanged. This is the same as tr1::remove_const, which is not
793 // widely available yet.
794 template <typename T>
795 struct RemoveConst { typedef T type; }; // NOLINT
796 template <typename T>
797 struct RemoveConst<const T> { typedef T type; }; // NOLINT
798
799 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
800 // definition to fail to remove the const in 'const int[3]' and 'const
801 // char[3][4]'. The following specialization works around the bug.
802 template <typename T, size_t N>
803 struct RemoveConst<const T[N]> {
804 typedef typename RemoveConst<T>::type type[N];
805 };
806
807 #if defined(_MSC_VER) && _MSC_VER < 1400
808 // This is the only specialization that allows VC++ 7.1 to remove const in
809 // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
810 // and thus needs to be conditionally compiled.
811 template <typename T, size_t N>
812 struct RemoveConst<T[N]> {
813 typedef typename RemoveConst<T>::type type[N];
814 };
815 #endif
816
817 // A handy wrapper around RemoveConst that works when the argument
818 // T depends on template parameters.
819 #define GTEST_REMOVE_CONST_(T) \
820 typename ::testing::internal::RemoveConst<T>::type
821
822 // Turns const U&, U&, const U, and U all into U.
823 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
824 GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
825
826 // Adds reference to a type if it is not a reference type,
827 // otherwise leaves it unchanged. This is the same as
828 // tr1::add_reference, which is not widely available yet.
829 template <typename T>
830 struct AddReference { typedef T& type; }; // NOLINT
831 template <typename T>
832 struct AddReference<T&> { typedef T& type; }; // NOLINT
833
834 // A handy wrapper around AddReference that works when the argument T
835 // depends on template parameters.
836 #define GTEST_ADD_REFERENCE_(T) \
837 typename ::testing::internal::AddReference<T>::type
838
839 // Adds a reference to const on top of T as necessary. For example,
840 // it transforms
841 //
842 // char ==> const char&
843 // const char ==> const char&
844 // char& ==> const char&
845 // const char& ==> const char&
846 //
847 // The argument T must depend on some template parameters.
848 #define GTEST_REFERENCE_TO_CONST_(T) \
849 GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
850
851 // ImplicitlyConvertible<From, To>::value is a compile-time bool
852 // constant that's true iff type From can be implicitly converted to
853 // type To.
854 template <typename From, typename To>
855 class ImplicitlyConvertible {
856 private:
857 // We need the following helper functions only for their types.
858 // They have no implementations.
859
860 // MakeFrom() is an expression whose type is From. We cannot simply
861 // use From(), as the type From may not have a public default
862 // constructor.
863 static typename AddReference<From>::type MakeFrom();
864
865 // These two functions are overloaded. Given an expression
866 // Helper(x), the compiler will pick the first version if x can be
867 // implicitly converted to type To; otherwise it will pick the
868 // second version.
869 //
870 // The first version returns a value of size 1, and the second
871 // version returns a value of size 2. Therefore, by checking the
872 // size of Helper(x), which can be done at compile time, we can tell
873 // which version of Helper() is used, and hence whether x can be
874 // implicitly converted to type To.
875 static char Helper(To);
876 static char (&Helper(...))[2]; // NOLINT
877
878 // We have to put the 'public' section after the 'private' section,
879 // or MSVC refuses to compile the code.
880 public:
881 #if defined(__BORLANDC__)
882 // C++Builder cannot use member overload resolution during template
883 // instantiation. The simplest workaround is to use its C++0x type traits
884 // functions (C++Builder 2009 and above only).
885 static const bool value = __is_convertible(From, To);
886 #else
887 // MSVC warns about implicitly converting from double to int for
888 // possible loss of data, so we need to temporarily disable the
889 // warning.
890 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
891 static const bool value =
892 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
893 GTEST_DISABLE_MSC_WARNINGS_POP_()
894 #endif // __BORLANDC__
895 };
896 template <typename From, typename To>
897 const bool ImplicitlyConvertible<From, To>::value;
898
899 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
900 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
901 // of those.
902 template <typename T>
903 struct IsAProtocolMessage
904 : public bool_constant<
905 ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
906 ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
907 };
908
909 // When the compiler sees expression IsContainerTest<C>(0), if C is an
910 // STL-style container class, the first overload of IsContainerTest
911 // will be viable (since both C::iterator* and C::const_iterator* are
912 // valid types and NULL can be implicitly converted to them). It will
913 // be picked over the second overload as 'int' is a perfect match for
914 // the type of argument 0. If C::iterator or C::const_iterator is not
915 // a valid type, the first overload is not viable, and the second
916 // overload will be picked. Therefore, we can determine whether C is
917 // a container class by checking the type of IsContainerTest<C>(0).
918 // The value of the expression is insignificant.
919 //
920 // Note that we look for both C::iterator and C::const_iterator. The
921 // reason is that C++ injects the name of a class as a member of the
922 // class itself (e.g. you can refer to class iterator as either
923 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
924 // only, for example, we would mistakenly think that a class named
925 // iterator is an STL container.
926 //
927 // Also note that the simpler approach of overloading
928 // IsContainerTest(typename C::const_iterator*) and
929 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
930 typedef int IsContainer;
931 template <class C>
932 IsContainer IsContainerTest(int /* dummy */,
933 typename C::iterator* /* it */ = NULL,
934 typename C::const_iterator* /* const_it */ = NULL) {
935 return 0;
936 }
937
938 typedef char IsNotContainer;
939 template <class C>
940 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
941
942 // EnableIf<condition>::type is void when 'Cond' is true, and
943 // undefined when 'Cond' is false. To use SFINAE to make a function
944 // overload only apply when a particular expression is true, add
945 // "typename EnableIf<expression>::type* = 0" as the last parameter.
946 template<bool> struct EnableIf;
947 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
948
949 // Utilities for native arrays.
950
951 // ArrayEq() compares two k-dimensional native arrays using the
952 // elements' operator==, where k can be any integer >= 0. When k is
953 // 0, ArrayEq() degenerates into comparing a single pair of values.
954
955 template <typename T, typename U>
956 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
957
958 // This generic version is used when k is 0.
959 template <typename T, typename U>
960 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
961
962 // This overload is used when k >= 1.
963 template <typename T, typename U, size_t N>
964 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
965 return internal::ArrayEq(lhs, N, rhs);
966 }
967
968 // This helper reduces code bloat. If we instead put its logic inside
969 // the previous ArrayEq() function, arrays with different sizes would
970 // lead to different copies of the template code.
971 template <typename T, typename U>
972 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
973 for (size_t i = 0; i != size; i++) {
974 if (!internal::ArrayEq(lhs[i], rhs[i]))
975 return false;
976 }
977 return true;
978 }
979
980 // Finds the first element in the iterator range [begin, end) that
981 // equals elem. Element may be a native array type itself.
982 template <typename Iter, typename Element>
983 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
984 for (Iter it = begin; it != end; ++it) {
985 if (internal::ArrayEq(*it, elem))
986 return it;
987 }
988 return end;
989 }
990
991 // CopyArray() copies a k-dimensional native array using the elements'
992 // operator=, where k can be any integer >= 0. When k is 0,
993 // CopyArray() degenerates into copying a single value.
994
995 template <typename T, typename U>
996 void CopyArray(const T* from, size_t size, U* to);
997
998 // This generic version is used when k is 0.
999 template <typename T, typename U>
1000 inline void CopyArray(const T& from, U* to) { *to = from; }
1001
1002 // This overload is used when k >= 1.
1003 template <typename T, typename U, size_t N>
1004 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1005 internal::CopyArray(from, N, *to);
1006 }
1007
1008 // This helper reduces code bloat. If we instead put its logic inside
1009 // the previous CopyArray() function, arrays with different sizes
1010 // would lead to different copies of the template code.
1011 template <typename T, typename U>
1012 void CopyArray(const T* from, size_t size, U* to) {
1013 for (size_t i = 0; i != size; i++) {
1014 internal::CopyArray(from[i], to + i);
1015 }
1016 }
1017
1018 // The relation between an NativeArray object (see below) and the
1019 // native array it represents.
1020 // We use 2 different structs to allow non-copyable types to be used, as long
1021 // as RelationToSourceReference() is passed.
1022 struct RelationToSourceReference {};
1023 struct RelationToSourceCopy {};
1024
1025 // Adapts a native array to a read-only STL-style container. Instead
1026 // of the complete STL container concept, this adaptor only implements
1027 // members useful for Google Mock's container matchers. New members
1028 // should be added as needed. To simplify the implementation, we only
1029 // support Element being a raw type (i.e. having no top-level const or
1030 // reference modifier). It's the client's responsibility to satisfy
1031 // this requirement. Element can be an array type itself (hence
1032 // multi-dimensional arrays are supported).
1033 template <typename Element>
1034 class NativeArray {
1035 public:
1036 // STL-style container typedefs.
1037 typedef Element value_type;
1038 typedef Element* iterator;
1039 typedef const Element* const_iterator;
1040
1041 // Constructs from a native array. References the source.
1042 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1043 InitRef(array, count);
1044 }
1045
1046 // Constructs from a native array. Copies the source.
1047 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1048 InitCopy(array, count);
1049 }
1050
1051 // Copy constructor.
1052 NativeArray(const NativeArray& rhs) {
1053 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1054 }
1055
1056 ~NativeArray() {
1057 if (clone_ != &NativeArray::InitRef)
1058 delete[] array_;
1059 }
1060
1061 // STL-style container methods.
1062 size_t size() const { return size_; }
1063 const_iterator begin() const { return array_; }
1064 const_iterator end() const { return array_ + size_; }
1065 bool operator==(const NativeArray& rhs) const {
1066 return size() == rhs.size() &&
1067 ArrayEq(begin(), size(), rhs.begin());
1068 }
1069
1070 private:
1071 enum {
1072 kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1073 Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1074 };
1075
1076 // Initializes this object with a copy of the input.
1077 void InitCopy(const Element* array, size_t a_size) {
1078 Element* const copy = new Element[a_size];
1079 CopyArray(array, a_size, copy);
1080 array_ = copy;
1081 size_ = a_size;
1082 clone_ = &NativeArray::InitCopy;
1083 }
1084
1085 // Initializes this object with a reference of the input.
1086 void InitRef(const Element* array, size_t a_size) {
1087 array_ = array;
1088 size_ = a_size;
1089 clone_ = &NativeArray::InitRef;
1090 }
1091
1092 const Element* array_;
1093 size_t size_;
1094 void (NativeArray::*clone_)(const Element*, size_t);
1095
1096 GTEST_DISALLOW_ASSIGN_(NativeArray);
1097 };
1098
1099 } // namespace internal
1100 } // namespace testing
1101
1102 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1103 ::testing::internal::AssertHelper(result_type, file, line, message) \
1104 = ::testing::Message()
1105
1106 #define GTEST_MESSAGE_(message, result_type) \
1107 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1108
1109 #define GTEST_FATAL_FAILURE_(message) \
1110 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1111
1112 #define GTEST_NONFATAL_FAILURE_(message) \
1113 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1114
1115 #define GTEST_SUCCESS_(message) \
1116 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1117
1118 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1119 // statement if it returns or throws (or doesn't return or throw in some
1120 // situations).
1121 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1122 if (::testing::internal::AlwaysTrue()) { statement; }
1123
1124 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1125 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1126 if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1127 bool gtest_caught_expected = false; \
1128 try { \
1129 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1130 } \
1131 catch (expected_exception const&) { \
1132 gtest_caught_expected = true; \
1133 } \
1134 catch (...) { \
1135 gtest_msg.value = \
1136 "Expected: " #statement " throws an exception of type " \
1137 #expected_exception ".\n Actual: it throws a different type."; \
1138 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1139 } \
1140 if (!gtest_caught_expected) { \
1141 gtest_msg.value = \
1142 "Expected: " #statement " throws an exception of type " \
1143 #expected_exception ".\n Actual: it throws nothing."; \
1144 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1145 } \
1146 } else \
1147 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1148 fail(gtest_msg.value)
1149
1150 #define GTEST_TEST_NO_THROW_(statement, fail) \
1151 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1152 if (::testing::internal::AlwaysTrue()) { \
1153 try { \
1154 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1155 } \
1156 catch (...) { \
1157 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1158 } \
1159 } else \
1160 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1161 fail("Expected: " #statement " doesn't throw an exception.\n" \
1162 " Actual: it throws.")
1163
1164 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1165 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1166 if (::testing::internal::AlwaysTrue()) { \
1167 bool gtest_caught_any = false; \
1168 try { \
1169 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1170 } \
1171 catch (...) { \
1172 gtest_caught_any = true; \
1173 } \
1174 if (!gtest_caught_any) { \
1175 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1176 } \
1177 } else \
1178 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1179 fail("Expected: " #statement " throws an exception.\n" \
1180 " Actual: it doesn't.")
1181
1182
1183 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1184 // either a boolean expression or an AssertionResult. text is a textual
1185 // represenation of expression as it was passed into the EXPECT_TRUE.
1186 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1187 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1188 if (const ::testing::AssertionResult gtest_ar_ = \
1189 ::testing::AssertionResult(expression)) \
1190 ; \
1191 else \
1192 fail(::testing::internal::GetBoolAssertionFailureMessage(\
1193 gtest_ar_, text, #actual, #expected).c_str())
1194
1195 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1196 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1197 if (::testing::internal::AlwaysTrue()) { \
1198 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1199 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1200 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1201 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1202 } \
1203 } else \
1204 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1205 fail("Expected: " #statement " doesn't generate new fatal " \
1206 "failures in the current thread.\n" \
1207 " Actual: it does.")
1208
1209 // Expands to the name of the class that implements the given test.
1210 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1211 test_case_name##_##test_name##_Test
1212
1213 // Helper macro for defining tests.
1214 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1215 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1216 public:\
1217 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1218 private:\
1219 virtual void TestBody();\
1220 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1221 GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1222 GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1223 };\
1224 \
1225 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1226 ::test_info_ =\
1227 ::testing::internal::MakeAndRegisterTestInfo(\
1228 #test_case_name, #test_name, NULL, NULL, \
1229 ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1230 (parent_id), \
1231 parent_class::SetUpTestCase, \
1232 parent_class::TearDownTestCase, \
1233 new ::testing::internal::TestFactoryImpl<\
1234 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1235 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1236
1237 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_