gtest: Fix up import of gtest 1.6.0
[mesa.git] / src / gtest / include / gtest / internal / gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48
49 #include <ctype.h>
50 #include <string.h>
51 #include <iomanip>
52 #include <limits>
53 #include <set>
54
55 #include "gtest/internal/gtest-string.h"
56 #include "gtest/internal/gtest-filepath.h"
57 #include "gtest/internal/gtest-type-util.h"
58
59 // Due to C++ preprocessor weirdness, we need double indirection to
60 // concatenate two tokens when one of them is __LINE__. Writing
61 //
62 // foo ## __LINE__
63 //
64 // will result in the token foo__LINE__, instead of foo followed by
65 // the current line number. For more details, see
66 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
67 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
68 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
69
70 // Google Test defines the testing::Message class to allow construction of
71 // test messages via the << operator. The idea is that anything
72 // streamable to std::ostream can be streamed to a testing::Message.
73 // This allows a user to use his own types in Google Test assertions by
74 // overloading the << operator.
75 //
76 // util/gtl/stl_logging-inl.h overloads << for STL containers. These
77 // overloads cannot be defined in the std namespace, as that will be
78 // undefined behavior. Therefore, they are defined in the global
79 // namespace instead.
80 //
81 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
82 // overloads are visible in either the std namespace or the global
83 // namespace, but not other namespaces, including the testing
84 // namespace which Google Test's Message class is in.
85 //
86 // To allow STL containers (and other types that has a << operator
87 // defined in the global namespace) to be used in Google Test assertions,
88 // testing::Message must access the custom << operator from the global
89 // namespace. Hence this helper function.
90 //
91 // Note: Jeffrey Yasskin suggested an alternative fix by "using
92 // ::operator<<;" in the definition of Message's operator<<. That fix
93 // doesn't require a helper function, but unfortunately doesn't
94 // compile with MSVC.
95 template <typename T>
96 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
97 *os << val;
98 }
99
100 class ProtocolMessage;
101 namespace proto2 { class Message; }
102
103 namespace testing {
104
105 // Forward declarations.
106
107 class AssertionResult; // Result of an assertion.
108 class Message; // Represents a failure message.
109 class Test; // Represents a test.
110 class TestInfo; // Information about a test.
111 class TestPartResult; // Result of a test part.
112 class UnitTest; // A collection of test cases.
113
114 template <typename T>
115 ::std::string PrintToString(const T& value);
116
117 namespace internal {
118
119 struct TraceInfo; // Information about a trace point.
120 class ScopedTrace; // Implements scoped trace.
121 class TestInfoImpl; // Opaque implementation of TestInfo
122 class UnitTestImpl; // Opaque implementation of UnitTest
123
124 // How many times InitGoogleTest() has been called.
125 extern int g_init_gtest_count;
126
127 // The text used in failure messages to indicate the start of the
128 // stack trace.
129 GTEST_API_ extern const char kStackTraceMarker[];
130
131 // A secret type that Google Test users don't know about. It has no
132 // definition on purpose. Therefore it's impossible to create a
133 // Secret object, which is what we want.
134 class Secret;
135
136 // Two overloaded helpers for checking at compile time whether an
137 // expression is a null pointer literal (i.e. NULL or any 0-valued
138 // compile-time integral constant). Their return values have
139 // different sizes, so we can use sizeof() to test which version is
140 // picked by the compiler. These helpers have no implementations, as
141 // we only need their signatures.
142 //
143 // Given IsNullLiteralHelper(x), the compiler will pick the first
144 // version if x can be implicitly converted to Secret*, and pick the
145 // second version otherwise. Since Secret is a secret and incomplete
146 // type, the only expression a user can write that has type Secret* is
147 // a null pointer literal. Therefore, we know that x is a null
148 // pointer literal if and only if the first version is picked by the
149 // compiler.
150 char IsNullLiteralHelper(Secret* p);
151 char (&IsNullLiteralHelper(...))[2]; // NOLINT
152
153 // A compile-time bool constant that is true if and only if x is a
154 // null pointer literal (i.e. NULL or any 0-valued compile-time
155 // integral constant).
156 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
157 // We lose support for NULL detection where the compiler doesn't like
158 // passing non-POD classes through ellipsis (...).
159 # define GTEST_IS_NULL_LITERAL_(x) false
160 #else
161 # define GTEST_IS_NULL_LITERAL_(x) \
162 (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
163 #endif // GTEST_ELLIPSIS_NEEDS_POD_
164
165 // Appends the user-supplied message to the Google-Test-generated message.
166 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
167 const Message& user_msg);
168
169 // A helper class for creating scoped traces in user programs.
170 class GTEST_API_ ScopedTrace {
171 public:
172 // The c'tor pushes the given source file location and message onto
173 // a trace stack maintained by Google Test.
174 ScopedTrace(const char* file, int line, const Message& message);
175
176 // The d'tor pops the info pushed by the c'tor.
177 //
178 // Note that the d'tor is not virtual in order to be efficient.
179 // Don't inherit from ScopedTrace!
180 ~ScopedTrace();
181
182 private:
183 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
184 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
185 // c'tor and d'tor. Therefore it doesn't
186 // need to be used otherwise.
187
188 // Converts a streamable value to a String. A NULL pointer is
189 // converted to "(null)". When the input value is a ::string,
190 // ::std::string, ::wstring, or ::std::wstring object, each NUL
191 // character in it is replaced with "\\0".
192 // Declared here but defined in gtest.h, so that it has access
193 // to the definition of the Message class, required by the ARM
194 // compiler.
195 template <typename T>
196 String StreamableToString(const T& streamable);
197
198 // The Symbian compiler has a bug that prevents it from selecting the
199 // correct overload of FormatForComparisonFailureMessage (see below)
200 // unless we pass the first argument by reference. If we do that,
201 // however, Visual Age C++ 10.1 generates a compiler error. Therefore
202 // we only apply the work-around for Symbian.
203 #if defined(__SYMBIAN32__)
204 # define GTEST_CREF_WORKAROUND_ const&
205 #else
206 # define GTEST_CREF_WORKAROUND_
207 #endif
208
209 // When this operand is a const char* or char*, if the other operand
210 // is a ::std::string or ::string, we print this operand as a C string
211 // rather than a pointer (we do the same for wide strings); otherwise
212 // we print it as a pointer to be safe.
213
214 // This internal macro is used to avoid duplicated code.
215 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
216 inline String FormatForComparisonFailureMessage(\
217 operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
218 const operand2_type& /*operand2*/) {\
219 return operand1_printer(str);\
220 }\
221 inline String FormatForComparisonFailureMessage(\
222 const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
223 const operand2_type& /*operand2*/) {\
224 return operand1_printer(str);\
225 }
226
227 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
228 #if GTEST_HAS_STD_WSTRING
229 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
230 #endif // GTEST_HAS_STD_WSTRING
231
232 #if GTEST_HAS_GLOBAL_STRING
233 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
234 #endif // GTEST_HAS_GLOBAL_STRING
235 #if GTEST_HAS_GLOBAL_WSTRING
236 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
237 #endif // GTEST_HAS_GLOBAL_WSTRING
238
239 #undef GTEST_FORMAT_IMPL_
240
241 // The next four overloads handle the case where the operand being
242 // printed is a char/wchar_t pointer and the other operand is not a
243 // string/wstring object. In such cases, we just print the operand as
244 // a pointer to be safe.
245 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType) \
246 template <typename T> \
247 String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
248 const T&) { \
249 return PrintToString(static_cast<const void*>(p)); \
250 }
251
252 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
253 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
254 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
255 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
256
257 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
258
259 // Constructs and returns the message for an equality assertion
260 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
261 //
262 // The first four parameters are the expressions used in the assertion
263 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
264 // where foo is 5 and bar is 6, we have:
265 //
266 // expected_expression: "foo"
267 // actual_expression: "bar"
268 // expected_value: "5"
269 // actual_value: "6"
270 //
271 // The ignoring_case parameter is true iff the assertion is a
272 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
273 // be inserted into the message.
274 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
275 const char* actual_expression,
276 const String& expected_value,
277 const String& actual_value,
278 bool ignoring_case);
279
280 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
281 GTEST_API_ String GetBoolAssertionFailureMessage(
282 const AssertionResult& assertion_result,
283 const char* expression_text,
284 const char* actual_predicate_value,
285 const char* expected_predicate_value);
286
287 // This template class represents an IEEE floating-point number
288 // (either single-precision or double-precision, depending on the
289 // template parameters).
290 //
291 // The purpose of this class is to do more sophisticated number
292 // comparison. (Due to round-off error, etc, it's very unlikely that
293 // two floating-points will be equal exactly. Hence a naive
294 // comparison by the == operation often doesn't work.)
295 //
296 // Format of IEEE floating-point:
297 //
298 // The most-significant bit being the leftmost, an IEEE
299 // floating-point looks like
300 //
301 // sign_bit exponent_bits fraction_bits
302 //
303 // Here, sign_bit is a single bit that designates the sign of the
304 // number.
305 //
306 // For float, there are 8 exponent bits and 23 fraction bits.
307 //
308 // For double, there are 11 exponent bits and 52 fraction bits.
309 //
310 // More details can be found at
311 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
312 //
313 // Template parameter:
314 //
315 // RawType: the raw floating-point type (either float or double)
316 template <typename RawType>
317 class FloatingPoint {
318 public:
319 // Defines the unsigned integer type that has the same size as the
320 // floating point number.
321 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
322
323 // Constants.
324
325 // # of bits in a number.
326 static const size_t kBitCount = 8*sizeof(RawType);
327
328 // # of fraction bits in a number.
329 static const size_t kFractionBitCount =
330 std::numeric_limits<RawType>::digits - 1;
331
332 // # of exponent bits in a number.
333 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
334
335 // The mask for the sign bit.
336 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
337
338 // The mask for the fraction bits.
339 static const Bits kFractionBitMask =
340 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
341
342 // The mask for the exponent bits.
343 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
344
345 // How many ULP's (Units in the Last Place) we want to tolerate when
346 // comparing two numbers. The larger the value, the more error we
347 // allow. A 0 value means that two numbers must be exactly the same
348 // to be considered equal.
349 //
350 // The maximum error of a single floating-point operation is 0.5
351 // units in the last place. On Intel CPU's, all floating-point
352 // calculations are done with 80-bit precision, while double has 64
353 // bits. Therefore, 4 should be enough for ordinary use.
354 //
355 // See the following article for more details on ULP:
356 // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
357 static const size_t kMaxUlps = 4;
358
359 // Constructs a FloatingPoint from a raw floating-point number.
360 //
361 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
362 // around may change its bits, although the new value is guaranteed
363 // to be also a NAN. Therefore, don't expect this constructor to
364 // preserve the bits in x when x is a NAN.
365 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
366
367 // Static methods
368
369 // Reinterprets a bit pattern as a floating-point number.
370 //
371 // This function is needed to test the AlmostEquals() method.
372 static RawType ReinterpretBits(const Bits bits) {
373 FloatingPoint fp(0);
374 fp.u_.bits_ = bits;
375 return fp.u_.value_;
376 }
377
378 // Returns the floating-point number that represent positive infinity.
379 static RawType Infinity() {
380 return ReinterpretBits(kExponentBitMask);
381 }
382
383 // Non-static methods
384
385 // Returns the bits that represents this number.
386 const Bits &bits() const { return u_.bits_; }
387
388 // Returns the exponent bits of this number.
389 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
390
391 // Returns the fraction bits of this number.
392 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
393
394 // Returns the sign bit of this number.
395 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
396
397 // Returns true iff this is NAN (not a number).
398 bool is_nan() const {
399 // It's a NAN if the exponent bits are all ones and the fraction
400 // bits are not entirely zeros.
401 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
402 }
403
404 // Returns true iff this number is at most kMaxUlps ULP's away from
405 // rhs. In particular, this function:
406 //
407 // - returns false if either number is (or both are) NAN.
408 // - treats really large numbers as almost equal to infinity.
409 // - thinks +0.0 and -0.0 are 0 DLP's apart.
410 bool AlmostEquals(const FloatingPoint& rhs) const {
411 // The IEEE standard says that any comparison operation involving
412 // a NAN must return false.
413 if (is_nan() || rhs.is_nan()) return false;
414
415 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
416 <= kMaxUlps;
417 }
418
419 private:
420 // The data type used to store the actual floating-point number.
421 union FloatingPointUnion {
422 RawType value_; // The raw floating-point number.
423 Bits bits_; // The bits that represent the number.
424 };
425
426 // Converts an integer from the sign-and-magnitude representation to
427 // the biased representation. More precisely, let N be 2 to the
428 // power of (kBitCount - 1), an integer x is represented by the
429 // unsigned number x + N.
430 //
431 // For instance,
432 //
433 // -N + 1 (the most negative number representable using
434 // sign-and-magnitude) is represented by 1;
435 // 0 is represented by N; and
436 // N - 1 (the biggest number representable using
437 // sign-and-magnitude) is represented by 2N - 1.
438 //
439 // Read http://en.wikipedia.org/wiki/Signed_number_representations
440 // for more details on signed number representations.
441 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
442 if (kSignBitMask & sam) {
443 // sam represents a negative number.
444 return ~sam + 1;
445 } else {
446 // sam represents a positive number.
447 return kSignBitMask | sam;
448 }
449 }
450
451 // Given two numbers in the sign-and-magnitude representation,
452 // returns the distance between them as an unsigned number.
453 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
454 const Bits &sam2) {
455 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
456 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
457 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
458 }
459
460 FloatingPointUnion u_;
461 };
462
463 // Typedefs the instances of the FloatingPoint template class that we
464 // care to use.
465 typedef FloatingPoint<float> Float;
466 typedef FloatingPoint<double> Double;
467
468 // In order to catch the mistake of putting tests that use different
469 // test fixture classes in the same test case, we need to assign
470 // unique IDs to fixture classes and compare them. The TypeId type is
471 // used to hold such IDs. The user should treat TypeId as an opaque
472 // type: the only operation allowed on TypeId values is to compare
473 // them for equality using the == operator.
474 typedef const void* TypeId;
475
476 template <typename T>
477 class TypeIdHelper {
478 public:
479 // dummy_ must not have a const type. Otherwise an overly eager
480 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
481 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
482 static bool dummy_;
483 };
484
485 template <typename T>
486 bool TypeIdHelper<T>::dummy_ = false;
487
488 // GetTypeId<T>() returns the ID of type T. Different values will be
489 // returned for different types. Calling the function twice with the
490 // same type argument is guaranteed to return the same ID.
491 template <typename T>
492 TypeId GetTypeId() {
493 // The compiler is required to allocate a different
494 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
495 // the template. Therefore, the address of dummy_ is guaranteed to
496 // be unique.
497 return &(TypeIdHelper<T>::dummy_);
498 }
499
500 // Returns the type ID of ::testing::Test. Always call this instead
501 // of GetTypeId< ::testing::Test>() to get the type ID of
502 // ::testing::Test, as the latter may give the wrong result due to a
503 // suspected linker bug when compiling Google Test as a Mac OS X
504 // framework.
505 GTEST_API_ TypeId GetTestTypeId();
506
507 // Defines the abstract factory interface that creates instances
508 // of a Test object.
509 class TestFactoryBase {
510 public:
511 virtual ~TestFactoryBase() {}
512
513 // Creates a test instance to run. The instance is both created and destroyed
514 // within TestInfoImpl::Run()
515 virtual Test* CreateTest() = 0;
516
517 protected:
518 TestFactoryBase() {}
519
520 private:
521 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
522 };
523
524 // This class provides implementation of TeastFactoryBase interface.
525 // It is used in TEST and TEST_F macros.
526 template <class TestClass>
527 class TestFactoryImpl : public TestFactoryBase {
528 public:
529 virtual Test* CreateTest() { return new TestClass; }
530 };
531
532 #if GTEST_OS_WINDOWS
533
534 // Predicate-formatters for implementing the HRESULT checking macros
535 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
536 // We pass a long instead of HRESULT to avoid causing an
537 // include dependency for the HRESULT type.
538 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
539 long hr); // NOLINT
540 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
541 long hr); // NOLINT
542
543 #endif // GTEST_OS_WINDOWS
544
545 // Types of SetUpTestCase() and TearDownTestCase() functions.
546 typedef void (*SetUpTestCaseFunc)();
547 typedef void (*TearDownTestCaseFunc)();
548
549 // Creates a new TestInfo object and registers it with Google Test;
550 // returns the created object.
551 //
552 // Arguments:
553 //
554 // test_case_name: name of the test case
555 // name: name of the test
556 // type_param the name of the test's type parameter, or NULL if
557 // this is not a typed or a type-parameterized test.
558 // value_param text representation of the test's value parameter,
559 // or NULL if this is not a type-parameterized test.
560 // fixture_class_id: ID of the test fixture class
561 // set_up_tc: pointer to the function that sets up the test case
562 // tear_down_tc: pointer to the function that tears down the test case
563 // factory: pointer to the factory that creates a test object.
564 // The newly created TestInfo instance will assume
565 // ownership of the factory object.
566 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
567 const char* test_case_name, const char* name,
568 const char* type_param,
569 const char* value_param,
570 TypeId fixture_class_id,
571 SetUpTestCaseFunc set_up_tc,
572 TearDownTestCaseFunc tear_down_tc,
573 TestFactoryBase* factory);
574
575 // If *pstr starts with the given prefix, modifies *pstr to be right
576 // past the prefix and returns true; otherwise leaves *pstr unchanged
577 // and returns false. None of pstr, *pstr, and prefix can be NULL.
578 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
579
580 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
581
582 // State of the definition of a type-parameterized test case.
583 class GTEST_API_ TypedTestCasePState {
584 public:
585 TypedTestCasePState() : registered_(false) {}
586
587 // Adds the given test name to defined_test_names_ and return true
588 // if the test case hasn't been registered; otherwise aborts the
589 // program.
590 bool AddTestName(const char* file, int line, const char* case_name,
591 const char* test_name) {
592 if (registered_) {
593 fprintf(stderr, "%s Test %s must be defined before "
594 "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
595 FormatFileLocation(file, line).c_str(), test_name, case_name);
596 fflush(stderr);
597 posix::Abort();
598 }
599 defined_test_names_.insert(test_name);
600 return true;
601 }
602
603 // Verifies that registered_tests match the test names in
604 // defined_test_names_; returns registered_tests if successful, or
605 // aborts the program otherwise.
606 const char* VerifyRegisteredTestNames(
607 const char* file, int line, const char* registered_tests);
608
609 private:
610 bool registered_;
611 ::std::set<const char*> defined_test_names_;
612 };
613
614 // Skips to the first non-space char after the first comma in 'str';
615 // returns NULL if no comma is found in 'str'.
616 inline const char* SkipComma(const char* str) {
617 const char* comma = strchr(str, ',');
618 if (comma == NULL) {
619 return NULL;
620 }
621 while (IsSpace(*(++comma))) {}
622 return comma;
623 }
624
625 // Returns the prefix of 'str' before the first comma in it; returns
626 // the entire string if it contains no comma.
627 inline String GetPrefixUntilComma(const char* str) {
628 const char* comma = strchr(str, ',');
629 return comma == NULL ? String(str) : String(str, comma - str);
630 }
631
632 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
633 // registers a list of type-parameterized tests with Google Test. The
634 // return value is insignificant - we just need to return something
635 // such that we can call this function in a namespace scope.
636 //
637 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
638 // template parameter. It's defined in gtest-type-util.h.
639 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
640 class TypeParameterizedTest {
641 public:
642 // 'index' is the index of the test in the type list 'Types'
643 // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
644 // Types). Valid values for 'index' are [0, N - 1] where N is the
645 // length of Types.
646 static bool Register(const char* prefix, const char* case_name,
647 const char* test_names, int index) {
648 typedef typename Types::Head Type;
649 typedef Fixture<Type> FixtureClass;
650 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
651
652 // First, registers the first type-parameterized test in the type
653 // list.
654 MakeAndRegisterTestInfo(
655 String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
656 case_name, index).c_str(),
657 GetPrefixUntilComma(test_names).c_str(),
658 GetTypeName<Type>().c_str(),
659 NULL, // No value parameter.
660 GetTypeId<FixtureClass>(),
661 TestClass::SetUpTestCase,
662 TestClass::TearDownTestCase,
663 new TestFactoryImpl<TestClass>);
664
665 // Next, recurses (at compile time) with the tail of the type list.
666 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
667 ::Register(prefix, case_name, test_names, index + 1);
668 }
669 };
670
671 // The base case for the compile time recursion.
672 template <GTEST_TEMPLATE_ Fixture, class TestSel>
673 class TypeParameterizedTest<Fixture, TestSel, Types0> {
674 public:
675 static bool Register(const char* /*prefix*/, const char* /*case_name*/,
676 const char* /*test_names*/, int /*index*/) {
677 return true;
678 }
679 };
680
681 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
682 // registers *all combinations* of 'Tests' and 'Types' with Google
683 // Test. The return value is insignificant - we just need to return
684 // something such that we can call this function in a namespace scope.
685 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
686 class TypeParameterizedTestCase {
687 public:
688 static bool Register(const char* prefix, const char* case_name,
689 const char* test_names) {
690 typedef typename Tests::Head Head;
691
692 // First, register the first test in 'Test' for each type in 'Types'.
693 TypeParameterizedTest<Fixture, Head, Types>::Register(
694 prefix, case_name, test_names, 0);
695
696 // Next, recurses (at compile time) with the tail of the test list.
697 return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
698 ::Register(prefix, case_name, SkipComma(test_names));
699 }
700 };
701
702 // The base case for the compile time recursion.
703 template <GTEST_TEMPLATE_ Fixture, typename Types>
704 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
705 public:
706 static bool Register(const char* /*prefix*/, const char* /*case_name*/,
707 const char* /*test_names*/) {
708 return true;
709 }
710 };
711
712 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
713
714 // Returns the current OS stack trace as a String.
715 //
716 // The maximum number of stack frames to be included is specified by
717 // the gtest_stack_trace_depth flag. The skip_count parameter
718 // specifies the number of top frames to be skipped, which doesn't
719 // count against the number of frames to be included.
720 //
721 // For example, if Foo() calls Bar(), which in turn calls
722 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
723 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
724 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
725 int skip_count);
726
727 // Helpers for suppressing warnings on unreachable code or constant
728 // condition.
729
730 // Always returns true.
731 GTEST_API_ bool AlwaysTrue();
732
733 // Always returns false.
734 inline bool AlwaysFalse() { return !AlwaysTrue(); }
735
736 // Helper for suppressing false warning from Clang on a const char*
737 // variable declared in a conditional expression always being NULL in
738 // the else branch.
739 struct GTEST_API_ ConstCharPtr {
740 ConstCharPtr(const char* str) : value(str) {}
741 operator bool() const { return true; }
742 const char* value;
743 };
744
745 // A simple Linear Congruential Generator for generating random
746 // numbers with a uniform distribution. Unlike rand() and srand(), it
747 // doesn't use global state (and therefore can't interfere with user
748 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
749 // but it's good enough for our purposes.
750 class GTEST_API_ Random {
751 public:
752 static const UInt32 kMaxRange = 1u << 31;
753
754 explicit Random(UInt32 seed) : state_(seed) {}
755
756 void Reseed(UInt32 seed) { state_ = seed; }
757
758 // Generates a random number from [0, range). Crashes if 'range' is
759 // 0 or greater than kMaxRange.
760 UInt32 Generate(UInt32 range);
761
762 private:
763 UInt32 state_;
764 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
765 };
766
767 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
768 // compiler error iff T1 and T2 are different types.
769 template <typename T1, typename T2>
770 struct CompileAssertTypesEqual;
771
772 template <typename T>
773 struct CompileAssertTypesEqual<T, T> {
774 };
775
776 // Removes the reference from a type if it is a reference type,
777 // otherwise leaves it unchanged. This is the same as
778 // tr1::remove_reference, which is not widely available yet.
779 template <typename T>
780 struct RemoveReference { typedef T type; }; // NOLINT
781 template <typename T>
782 struct RemoveReference<T&> { typedef T type; }; // NOLINT
783
784 // A handy wrapper around RemoveReference that works when the argument
785 // T depends on template parameters.
786 #define GTEST_REMOVE_REFERENCE_(T) \
787 typename ::testing::internal::RemoveReference<T>::type
788
789 // Removes const from a type if it is a const type, otherwise leaves
790 // it unchanged. This is the same as tr1::remove_const, which is not
791 // widely available yet.
792 template <typename T>
793 struct RemoveConst { typedef T type; }; // NOLINT
794 template <typename T>
795 struct RemoveConst<const T> { typedef T type; }; // NOLINT
796
797 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
798 // definition to fail to remove the const in 'const int[3]' and 'const
799 // char[3][4]'. The following specialization works around the bug.
800 // However, it causes trouble with GCC and thus needs to be
801 // conditionally compiled.
802 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
803 template <typename T, size_t N>
804 struct RemoveConst<const T[N]> {
805 typedef typename RemoveConst<T>::type type[N];
806 };
807 #endif
808
809 // A handy wrapper around RemoveConst that works when the argument
810 // T depends on template parameters.
811 #define GTEST_REMOVE_CONST_(T) \
812 typename ::testing::internal::RemoveConst<T>::type
813
814 // Turns const U&, U&, const U, and U all into U.
815 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
816 GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
817
818 // Adds reference to a type if it is not a reference type,
819 // otherwise leaves it unchanged. This is the same as
820 // tr1::add_reference, which is not widely available yet.
821 template <typename T>
822 struct AddReference { typedef T& type; }; // NOLINT
823 template <typename T>
824 struct AddReference<T&> { typedef T& type; }; // NOLINT
825
826 // A handy wrapper around AddReference that works when the argument T
827 // depends on template parameters.
828 #define GTEST_ADD_REFERENCE_(T) \
829 typename ::testing::internal::AddReference<T>::type
830
831 // Adds a reference to const on top of T as necessary. For example,
832 // it transforms
833 //
834 // char ==> const char&
835 // const char ==> const char&
836 // char& ==> const char&
837 // const char& ==> const char&
838 //
839 // The argument T must depend on some template parameters.
840 #define GTEST_REFERENCE_TO_CONST_(T) \
841 GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
842
843 // ImplicitlyConvertible<From, To>::value is a compile-time bool
844 // constant that's true iff type From can be implicitly converted to
845 // type To.
846 template <typename From, typename To>
847 class ImplicitlyConvertible {
848 private:
849 // We need the following helper functions only for their types.
850 // They have no implementations.
851
852 // MakeFrom() is an expression whose type is From. We cannot simply
853 // use From(), as the type From may not have a public default
854 // constructor.
855 static From MakeFrom();
856
857 // These two functions are overloaded. Given an expression
858 // Helper(x), the compiler will pick the first version if x can be
859 // implicitly converted to type To; otherwise it will pick the
860 // second version.
861 //
862 // The first version returns a value of size 1, and the second
863 // version returns a value of size 2. Therefore, by checking the
864 // size of Helper(x), which can be done at compile time, we can tell
865 // which version of Helper() is used, and hence whether x can be
866 // implicitly converted to type To.
867 static char Helper(To);
868 static char (&Helper(...))[2]; // NOLINT
869
870 // We have to put the 'public' section after the 'private' section,
871 // or MSVC refuses to compile the code.
872 public:
873 // MSVC warns about implicitly converting from double to int for
874 // possible loss of data, so we need to temporarily disable the
875 // warning.
876 #ifdef _MSC_VER
877 # pragma warning(push) // Saves the current warning state.
878 # pragma warning(disable:4244) // Temporarily disables warning 4244.
879
880 static const bool value =
881 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
882 # pragma warning(pop) // Restores the warning state.
883 #elif defined(__BORLANDC__)
884 // C++Builder cannot use member overload resolution during template
885 // instantiation. The simplest workaround is to use its C++0x type traits
886 // functions (C++Builder 2009 and above only).
887 static const bool value = __is_convertible(From, To);
888 #else
889 static const bool value =
890 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
891 #endif // _MSV_VER
892 };
893 template <typename From, typename To>
894 const bool ImplicitlyConvertible<From, To>::value;
895
896 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
897 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
898 // of those.
899 template <typename T>
900 struct IsAProtocolMessage
901 : public bool_constant<
902 ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
903 ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
904 };
905
906 // When the compiler sees expression IsContainerTest<C>(0), if C is an
907 // STL-style container class, the first overload of IsContainerTest
908 // will be viable (since both C::iterator* and C::const_iterator* are
909 // valid types and NULL can be implicitly converted to them). It will
910 // be picked over the second overload as 'int' is a perfect match for
911 // the type of argument 0. If C::iterator or C::const_iterator is not
912 // a valid type, the first overload is not viable, and the second
913 // overload will be picked. Therefore, we can determine whether C is
914 // a container class by checking the type of IsContainerTest<C>(0).
915 // The value of the expression is insignificant.
916 //
917 // Note that we look for both C::iterator and C::const_iterator. The
918 // reason is that C++ injects the name of a class as a member of the
919 // class itself (e.g. you can refer to class iterator as either
920 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
921 // only, for example, we would mistakenly think that a class named
922 // iterator is an STL container.
923 //
924 // Also note that the simpler approach of overloading
925 // IsContainerTest(typename C::const_iterator*) and
926 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
927 typedef int IsContainer;
928 template <class C>
929 IsContainer IsContainerTest(int /* dummy */,
930 typename C::iterator* /* it */ = NULL,
931 typename C::const_iterator* /* const_it */ = NULL) {
932 return 0;
933 }
934
935 typedef char IsNotContainer;
936 template <class C>
937 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
938
939 // EnableIf<condition>::type is void when 'Cond' is true, and
940 // undefined when 'Cond' is false. To use SFINAE to make a function
941 // overload only apply when a particular expression is true, add
942 // "typename EnableIf<expression>::type* = 0" as the last parameter.
943 template<bool> struct EnableIf;
944 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
945
946 // Utilities for native arrays.
947
948 // ArrayEq() compares two k-dimensional native arrays using the
949 // elements' operator==, where k can be any integer >= 0. When k is
950 // 0, ArrayEq() degenerates into comparing a single pair of values.
951
952 template <typename T, typename U>
953 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
954
955 // This generic version is used when k is 0.
956 template <typename T, typename U>
957 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
958
959 // This overload is used when k >= 1.
960 template <typename T, typename U, size_t N>
961 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
962 return internal::ArrayEq(lhs, N, rhs);
963 }
964
965 // This helper reduces code bloat. If we instead put its logic inside
966 // the previous ArrayEq() function, arrays with different sizes would
967 // lead to different copies of the template code.
968 template <typename T, typename U>
969 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
970 for (size_t i = 0; i != size; i++) {
971 if (!internal::ArrayEq(lhs[i], rhs[i]))
972 return false;
973 }
974 return true;
975 }
976
977 // Finds the first element in the iterator range [begin, end) that
978 // equals elem. Element may be a native array type itself.
979 template <typename Iter, typename Element>
980 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
981 for (Iter it = begin; it != end; ++it) {
982 if (internal::ArrayEq(*it, elem))
983 return it;
984 }
985 return end;
986 }
987
988 // CopyArray() copies a k-dimensional native array using the elements'
989 // operator=, where k can be any integer >= 0. When k is 0,
990 // CopyArray() degenerates into copying a single value.
991
992 template <typename T, typename U>
993 void CopyArray(const T* from, size_t size, U* to);
994
995 // This generic version is used when k is 0.
996 template <typename T, typename U>
997 inline void CopyArray(const T& from, U* to) { *to = from; }
998
999 // This overload is used when k >= 1.
1000 template <typename T, typename U, size_t N>
1001 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1002 internal::CopyArray(from, N, *to);
1003 }
1004
1005 // This helper reduces code bloat. If we instead put its logic inside
1006 // the previous CopyArray() function, arrays with different sizes
1007 // would lead to different copies of the template code.
1008 template <typename T, typename U>
1009 void CopyArray(const T* from, size_t size, U* to) {
1010 for (size_t i = 0; i != size; i++) {
1011 internal::CopyArray(from[i], to + i);
1012 }
1013 }
1014
1015 // The relation between an NativeArray object (see below) and the
1016 // native array it represents.
1017 enum RelationToSource {
1018 kReference, // The NativeArray references the native array.
1019 kCopy // The NativeArray makes a copy of the native array and
1020 // owns the copy.
1021 };
1022
1023 // Adapts a native array to a read-only STL-style container. Instead
1024 // of the complete STL container concept, this adaptor only implements
1025 // members useful for Google Mock's container matchers. New members
1026 // should be added as needed. To simplify the implementation, we only
1027 // support Element being a raw type (i.e. having no top-level const or
1028 // reference modifier). It's the client's responsibility to satisfy
1029 // this requirement. Element can be an array type itself (hence
1030 // multi-dimensional arrays are supported).
1031 template <typename Element>
1032 class NativeArray {
1033 public:
1034 // STL-style container typedefs.
1035 typedef Element value_type;
1036 typedef Element* iterator;
1037 typedef const Element* const_iterator;
1038
1039 // Constructs from a native array.
1040 NativeArray(const Element* array, size_t count, RelationToSource relation) {
1041 Init(array, count, relation);
1042 }
1043
1044 // Copy constructor.
1045 NativeArray(const NativeArray& rhs) {
1046 Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1047 }
1048
1049 ~NativeArray() {
1050 // Ensures that the user doesn't instantiate NativeArray with a
1051 // const or reference type.
1052 static_cast<void>(StaticAssertTypeEqHelper<Element,
1053 GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1054 if (relation_to_source_ == kCopy)
1055 delete[] array_;
1056 }
1057
1058 // STL-style container methods.
1059 size_t size() const { return size_; }
1060 const_iterator begin() const { return array_; }
1061 const_iterator end() const { return array_ + size_; }
1062 bool operator==(const NativeArray& rhs) const {
1063 return size() == rhs.size() &&
1064 ArrayEq(begin(), size(), rhs.begin());
1065 }
1066
1067 private:
1068 // Initializes this object; makes a copy of the input array if
1069 // 'relation' is kCopy.
1070 void Init(const Element* array, size_t a_size, RelationToSource relation) {
1071 if (relation == kReference) {
1072 array_ = array;
1073 } else {
1074 Element* const copy = new Element[a_size];
1075 CopyArray(array, a_size, copy);
1076 array_ = copy;
1077 }
1078 size_ = a_size;
1079 relation_to_source_ = relation;
1080 }
1081
1082 const Element* array_;
1083 size_t size_;
1084 RelationToSource relation_to_source_;
1085
1086 GTEST_DISALLOW_ASSIGN_(NativeArray);
1087 };
1088
1089 } // namespace internal
1090 } // namespace testing
1091
1092 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1093 ::testing::internal::AssertHelper(result_type, file, line, message) \
1094 = ::testing::Message()
1095
1096 #define GTEST_MESSAGE_(message, result_type) \
1097 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1098
1099 #define GTEST_FATAL_FAILURE_(message) \
1100 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1101
1102 #define GTEST_NONFATAL_FAILURE_(message) \
1103 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1104
1105 #define GTEST_SUCCESS_(message) \
1106 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1107
1108 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1109 // statement if it returns or throws (or doesn't return or throw in some
1110 // situations).
1111 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1112 if (::testing::internal::AlwaysTrue()) { statement; }
1113
1114 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1115 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1116 if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1117 bool gtest_caught_expected = false; \
1118 try { \
1119 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1120 } \
1121 catch (expected_exception const&) { \
1122 gtest_caught_expected = true; \
1123 } \
1124 catch (...) { \
1125 gtest_msg.value = \
1126 "Expected: " #statement " throws an exception of type " \
1127 #expected_exception ".\n Actual: it throws a different type."; \
1128 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1129 } \
1130 if (!gtest_caught_expected) { \
1131 gtest_msg.value = \
1132 "Expected: " #statement " throws an exception of type " \
1133 #expected_exception ".\n Actual: it throws nothing."; \
1134 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1135 } \
1136 } else \
1137 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1138 fail(gtest_msg.value)
1139
1140 #define GTEST_TEST_NO_THROW_(statement, fail) \
1141 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1142 if (::testing::internal::AlwaysTrue()) { \
1143 try { \
1144 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1145 } \
1146 catch (...) { \
1147 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1148 } \
1149 } else \
1150 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1151 fail("Expected: " #statement " doesn't throw an exception.\n" \
1152 " Actual: it throws.")
1153
1154 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1155 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1156 if (::testing::internal::AlwaysTrue()) { \
1157 bool gtest_caught_any = false; \
1158 try { \
1159 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1160 } \
1161 catch (...) { \
1162 gtest_caught_any = true; \
1163 } \
1164 if (!gtest_caught_any) { \
1165 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1166 } \
1167 } else \
1168 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1169 fail("Expected: " #statement " throws an exception.\n" \
1170 " Actual: it doesn't.")
1171
1172
1173 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1174 // either a boolean expression or an AssertionResult. text is a textual
1175 // represenation of expression as it was passed into the EXPECT_TRUE.
1176 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1177 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1178 if (const ::testing::AssertionResult gtest_ar_ = \
1179 ::testing::AssertionResult(expression)) \
1180 ; \
1181 else \
1182 fail(::testing::internal::GetBoolAssertionFailureMessage(\
1183 gtest_ar_, text, #actual, #expected).c_str())
1184
1185 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1186 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1187 if (::testing::internal::AlwaysTrue()) { \
1188 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1189 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1190 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1191 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1192 } \
1193 } else \
1194 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1195 fail("Expected: " #statement " doesn't generate new fatal " \
1196 "failures in the current thread.\n" \
1197 " Actual: it does.")
1198
1199 // Expands to the name of the class that implements the given test.
1200 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1201 test_case_name##_##test_name##_Test
1202
1203 // Helper macro for defining tests.
1204 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1205 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1206 public:\
1207 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1208 private:\
1209 virtual void TestBody();\
1210 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1211 GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1212 GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1213 };\
1214 \
1215 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1216 ::test_info_ =\
1217 ::testing::internal::MakeAndRegisterTestInfo(\
1218 #test_case_name, #test_name, NULL, NULL, \
1219 (parent_id), \
1220 parent_class::SetUpTestCase, \
1221 parent_class::TearDownTestCase, \
1222 new ::testing::internal::TestFactoryImpl<\
1223 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1224 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1225
1226 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_