c5c861f7dbc2d9b07fc02ca4e0701cac3caaf43d
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 typedef struct nir_shader nir_shader;
42
43 struct brw_compiler {
44 const struct gen_device_info *devinfo;
45
46 struct {
47 struct ra_regs *regs;
48
49 /**
50 * Array of the ra classes for the unaligned contiguous register
51 * block sizes used.
52 */
53 int *classes;
54
55 /**
56 * Mapping for register-allocated objects in *regs to the first
57 * GRF for that object.
58 */
59 uint8_t *ra_reg_to_grf;
60 } vec4_reg_set;
61
62 struct {
63 struct ra_regs *regs;
64
65 /**
66 * Array of the ra classes for the unaligned contiguous register
67 * block sizes used, indexed by register size.
68 */
69 int classes[16];
70
71 /**
72 * Mapping from classes to ra_reg ranges. Each of the per-size
73 * classes corresponds to a range of ra_reg nodes. This array stores
74 * those ranges in the form of first ra_reg in each class and the
75 * total number of ra_reg elements in the last array element. This
76 * way the range of the i'th class is given by:
77 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
78 */
79 int class_to_ra_reg_range[17];
80
81 /**
82 * Mapping for register-allocated objects in *regs to the first
83 * GRF for that object.
84 */
85 uint8_t *ra_reg_to_grf;
86
87 /**
88 * ra class for the aligned barycentrics we use for PLN, which doesn't
89 * appear in *classes.
90 */
91 int aligned_bary_class;
92 } fs_reg_sets[3];
93
94 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
95 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
96
97 bool scalar_stage[MESA_ALL_SHADER_STAGES];
98 bool use_tcs_8_patch;
99 struct gl_shader_compiler_options glsl_compiler_options[MESA_ALL_SHADER_STAGES];
100
101 /**
102 * Apply workarounds for SIN and COS output range problems.
103 * This can negatively impact performance.
104 */
105 bool precise_trig;
106
107 /**
108 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
109 * Base Address? (If not, it's a normal GPU address.)
110 */
111 bool constant_buffer_0_is_relative;
112
113 /**
114 * Whether or not the driver supports pull constants. If not, the compiler
115 * will attempt to push everything.
116 */
117 bool supports_pull_constants;
118
119 /**
120 * Whether or not the driver supports NIR shader constants. This controls
121 * whether nir_opt_large_constants will be run.
122 */
123 bool supports_shader_constants;
124
125 /**
126 * Whether or not the driver wants uniform params to be compacted by the
127 * back-end compiler.
128 */
129 bool compact_params;
130
131 /**
132 * Whether or not the driver wants variable group size to be lowered by the
133 * back-end compiler.
134 */
135 bool lower_variable_group_size;
136 };
137
138 /**
139 * We use a constant subgroup size of 32. It really only needs to be a
140 * maximum and, since we do SIMD32 for compute shaders in some cases, it
141 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
142 * subgroup size of 32 but will act as if 16 or 24 of those channels are
143 * disabled.
144 */
145 #define BRW_SUBGROUP_SIZE 32
146
147 /**
148 * Program key structures.
149 *
150 * When drawing, we look for the currently bound shaders in the program
151 * cache. This is essentially a hash table lookup, and these are the keys.
152 *
153 * Sometimes OpenGL features specified as state need to be simulated via
154 * shader code, due to a mismatch between the API and the hardware. This
155 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
156 * in the program key so it's considered when searching for a program. If
157 * we haven't seen a particular combination before, we have to recompile a
158 * new specialized version.
159 *
160 * Shader compilation should not look up state in gl_context directly, but
161 * instead use the copy in the program key. This guarantees recompiles will
162 * happen correctly.
163 *
164 * @{
165 */
166
167 enum PACKED gen6_gather_sampler_wa {
168 WA_SIGN = 1, /* whether we need to sign extend */
169 WA_8BIT = 2, /* if we have an 8bit format needing wa */
170 WA_16BIT = 4, /* if we have a 16bit format needing wa */
171 };
172
173 /**
174 * Sampler information needed by VS, WM, and GS program cache keys.
175 */
176 struct brw_sampler_prog_key_data {
177 /**
178 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
179 */
180 uint16_t swizzles[MAX_SAMPLERS];
181
182 uint32_t gl_clamp_mask[3];
183
184 /**
185 * For RG32F, gather4's channel select is broken.
186 */
187 uint32_t gather_channel_quirk_mask;
188
189 /**
190 * Whether this sampler uses the compressed multisample surface layout.
191 */
192 uint32_t compressed_multisample_layout_mask;
193
194 /**
195 * Whether this sampler is using 16x multisampling. If so fetching from
196 * this sampler will be handled with a different instruction, ld2dms_w
197 * instead of ld2dms.
198 */
199 uint32_t msaa_16;
200
201 /**
202 * For Sandybridge, which shader w/a we need for gather quirks.
203 */
204 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
205
206 /**
207 * Texture units that have a YUV image bound.
208 */
209 uint32_t y_u_v_image_mask;
210 uint32_t y_uv_image_mask;
211 uint32_t yx_xuxv_image_mask;
212 uint32_t xy_uxvx_image_mask;
213 uint32_t ayuv_image_mask;
214 uint32_t xyuv_image_mask;
215 uint32_t bt709_mask;
216 uint32_t bt2020_mask;
217
218 /* Scale factor for each texture. */
219 float scale_factors[32];
220 };
221
222 /** An enum representing what kind of input gl_SubgroupSize is. */
223 enum PACKED brw_subgroup_size_type
224 {
225 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
226 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
227 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
228
229 /* These enums are specifically chosen so that the value of the enum is
230 * also the subgroup size. If any new values are added, they must respect
231 * this invariant.
232 */
233 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
234 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
235 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
236 };
237
238 struct brw_base_prog_key {
239 unsigned program_string_id;
240
241 enum brw_subgroup_size_type subgroup_size_type;
242
243 struct brw_sampler_prog_key_data tex;
244 };
245
246 /**
247 * The VF can't natively handle certain types of attributes, such as GL_FIXED
248 * or most 10_10_10_2 types. These flags enable various VS workarounds to
249 * "fix" attributes at the beginning of shaders.
250 */
251 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
252 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
253 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
254 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
255 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
256
257 /**
258 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
259 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
260 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
261 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
262 */
263 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
264 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
265
266 /** The program key for Vertex Shaders. */
267 struct brw_vs_prog_key {
268 struct brw_base_prog_key base;
269
270 /**
271 * Per-attribute workaround flags
272 *
273 * For each attribute, a combination of BRW_ATTRIB_WA_*.
274 *
275 * For OpenGL, where we expose a maximum of 16 user input atttributes
276 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
277 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
278 * expose up to 28 user input vertex attributes that are mapped to slots
279 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
280 * enough to hold this many slots.
281 */
282 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
283
284 bool copy_edgeflag:1;
285
286 bool clamp_vertex_color:1;
287
288 /**
289 * How many user clipping planes are being uploaded to the vertex shader as
290 * push constants.
291 *
292 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
293 * clip distances.
294 */
295 unsigned nr_userclip_plane_consts:4;
296
297 /**
298 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
299 * are going to be replaced with point coordinates (as a consequence of a
300 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
301 * our SF thread requires exact matching between VS outputs and FS inputs,
302 * these texture coordinates will need to be unconditionally included in
303 * the VUE, even if they aren't written by the vertex shader.
304 */
305 uint8_t point_coord_replace;
306 };
307
308 /** The program key for Tessellation Control Shaders. */
309 struct brw_tcs_prog_key
310 {
311 struct brw_base_prog_key base;
312
313 GLenum tes_primitive_mode;
314
315 unsigned input_vertices;
316
317 /** A bitfield of per-patch outputs written. */
318 uint32_t patch_outputs_written;
319
320 /** A bitfield of per-vertex outputs written. */
321 uint64_t outputs_written;
322
323 bool quads_workaround;
324 };
325
326 /** The program key for Tessellation Evaluation Shaders. */
327 struct brw_tes_prog_key
328 {
329 struct brw_base_prog_key base;
330
331 /** A bitfield of per-patch inputs read. */
332 uint32_t patch_inputs_read;
333
334 /** A bitfield of per-vertex inputs read. */
335 uint64_t inputs_read;
336
337 /**
338 * How many user clipping planes are being uploaded to the tessellation
339 * evaluation shader as push constants.
340 *
341 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
342 * clip distances.
343 */
344 unsigned nr_userclip_plane_consts:4;
345 };
346
347 /** The program key for Geometry Shaders. */
348 struct brw_gs_prog_key
349 {
350 struct brw_base_prog_key base;
351
352 /**
353 * How many user clipping planes are being uploaded to the geometry shader
354 * as push constants.
355 *
356 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
357 * clip distances.
358 */
359 unsigned nr_userclip_plane_consts:4;
360 };
361
362 enum brw_sf_primitive {
363 BRW_SF_PRIM_POINTS = 0,
364 BRW_SF_PRIM_LINES = 1,
365 BRW_SF_PRIM_TRIANGLES = 2,
366 BRW_SF_PRIM_UNFILLED_TRIS = 3,
367 };
368
369 struct brw_sf_prog_key {
370 uint64_t attrs;
371 bool contains_flat_varying;
372 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
373 uint8_t point_sprite_coord_replace;
374 enum brw_sf_primitive primitive:2;
375 bool do_twoside_color:1;
376 bool frontface_ccw:1;
377 bool do_point_sprite:1;
378 bool do_point_coord:1;
379 bool sprite_origin_lower_left:1;
380 bool userclip_active:1;
381 };
382
383 enum brw_clip_mode {
384 BRW_CLIP_MODE_NORMAL = 0,
385 BRW_CLIP_MODE_CLIP_ALL = 1,
386 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
387 BRW_CLIP_MODE_REJECT_ALL = 3,
388 BRW_CLIP_MODE_ACCEPT_ALL = 4,
389 BRW_CLIP_MODE_KERNEL_CLIP = 5,
390 };
391
392 enum brw_clip_fill_mode {
393 BRW_CLIP_FILL_MODE_LINE = 0,
394 BRW_CLIP_FILL_MODE_POINT = 1,
395 BRW_CLIP_FILL_MODE_FILL = 2,
396 BRW_CLIP_FILL_MODE_CULL = 3,
397 };
398
399 /* Note that if unfilled primitives are being emitted, we have to fix
400 * up polygon offset and flatshading at this point:
401 */
402 struct brw_clip_prog_key {
403 uint64_t attrs;
404 bool contains_flat_varying;
405 bool contains_noperspective_varying;
406 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
407 unsigned primitive:4;
408 unsigned nr_userclip:4;
409 bool pv_first:1;
410 bool do_unfilled:1;
411 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
412 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
413 bool offset_cw:1;
414 bool offset_ccw:1;
415 bool copy_bfc_cw:1;
416 bool copy_bfc_ccw:1;
417 enum brw_clip_mode clip_mode:3;
418
419 float offset_factor;
420 float offset_units;
421 float offset_clamp;
422 };
423
424 /* A big lookup table is used to figure out which and how many
425 * additional regs will inserted before the main payload in the WM
426 * program execution. These mainly relate to depth and stencil
427 * processing and the early-depth-test optimization.
428 */
429 enum brw_wm_iz_bits {
430 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
431 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
432 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
433 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
434 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
435 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
436 BRW_WM_IZ_BIT_MAX = 0x40
437 };
438
439 enum brw_wm_aa_enable {
440 BRW_WM_AA_NEVER,
441 BRW_WM_AA_SOMETIMES,
442 BRW_WM_AA_ALWAYS
443 };
444
445 /** The program key for Fragment/Pixel Shaders. */
446 struct brw_wm_prog_key {
447 struct brw_base_prog_key base;
448
449 /* Some collection of BRW_WM_IZ_* */
450 uint8_t iz_lookup;
451 bool stats_wm:1;
452 bool flat_shade:1;
453 unsigned nr_color_regions:5;
454 bool alpha_test_replicate_alpha:1;
455 bool alpha_to_coverage:1;
456 bool clamp_fragment_color:1;
457 bool persample_interp:1;
458 bool multisample_fbo:1;
459 bool frag_coord_adds_sample_pos:1;
460 enum brw_wm_aa_enable line_aa:2;
461 bool high_quality_derivatives:1;
462 bool force_dual_color_blend:1;
463 bool coherent_fb_fetch:1;
464 bool ignore_sample_mask_out:1;
465
466 uint8_t color_outputs_valid;
467 uint64_t input_slots_valid;
468 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
469 float alpha_test_ref;
470 };
471
472 struct brw_cs_prog_key {
473 struct brw_base_prog_key base;
474 };
475
476 /* brw_any_prog_key is any of the keys that map to an API stage */
477 union brw_any_prog_key {
478 struct brw_base_prog_key base;
479 struct brw_vs_prog_key vs;
480 struct brw_tcs_prog_key tcs;
481 struct brw_tes_prog_key tes;
482 struct brw_gs_prog_key gs;
483 struct brw_wm_prog_key wm;
484 struct brw_cs_prog_key cs;
485 };
486
487 /*
488 * Image metadata structure as laid out in the shader parameter
489 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
490 * able to use them. That's okay because the padding and any unused
491 * entries [most of them except when we're doing untyped surface
492 * access] will be removed by the uniform packing pass.
493 */
494 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
495 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
496 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
497 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
498 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
499 #define BRW_IMAGE_PARAM_SIZE 20
500
501 struct brw_image_param {
502 /** Offset applied to the X and Y surface coordinates. */
503 uint32_t offset[2];
504
505 /** Surface X, Y and Z dimensions. */
506 uint32_t size[3];
507
508 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
509 * pixels, vertical slice stride in pixels.
510 */
511 uint32_t stride[4];
512
513 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
514 uint32_t tiling[3];
515
516 /**
517 * Right shift to apply for bit 6 address swizzling. Two different
518 * swizzles can be specified and will be applied one after the other. The
519 * resulting address will be:
520 *
521 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
522 * (addr >> swizzling[1])))
523 *
524 * Use \c 0xff if any of the swizzles is not required.
525 */
526 uint32_t swizzling[2];
527 };
528
529 /** Max number of render targets in a shader */
530 #define BRW_MAX_DRAW_BUFFERS 8
531
532 /**
533 * Max number of binding table entries used for stream output.
534 *
535 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
536 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
537 *
538 * On Gen6, the size of transform feedback data is limited not by the number
539 * of components but by the number of binding table entries we set aside. We
540 * use one binding table entry for a float, one entry for a vector, and one
541 * entry per matrix column. Since the only way we can communicate our
542 * transform feedback capabilities to the client is via
543 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
544 * worst case, in which all the varyings are floats, so we use up one binding
545 * table entry per component. Therefore we need to set aside at least 64
546 * binding table entries for use by transform feedback.
547 *
548 * Note: since we don't currently pack varyings, it is currently impossible
549 * for the client to actually use up all of these binding table entries--if
550 * all of their varyings were floats, they would run out of varying slots and
551 * fail to link. But that's a bug, so it seems prudent to go ahead and
552 * allocate the number of binding table entries we will need once the bug is
553 * fixed.
554 */
555 #define BRW_MAX_SOL_BINDINGS 64
556
557 /**
558 * Binding table index for the first gen6 SOL binding.
559 */
560 #define BRW_GEN6_SOL_BINDING_START 0
561
562 /**
563 * Stride in bytes between shader_time entries.
564 *
565 * We separate entries by a cacheline to reduce traffic between EUs writing to
566 * different entries.
567 */
568 #define BRW_SHADER_TIME_STRIDE 64
569
570 struct brw_ubo_range
571 {
572 uint16_t block;
573 uint8_t start;
574 uint8_t length;
575 };
576
577 /* We reserve the first 2^16 values for builtins */
578 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
579
580 enum brw_param_builtin {
581 BRW_PARAM_BUILTIN_ZERO,
582
583 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
604 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
605 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
606 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
607 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
608 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
609 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
610 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
611 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
612 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
613 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
614 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
615
616 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
617 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
618 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
619 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
620 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
621 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
622
623 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
624
625 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
626 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
627 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
628 BRW_PARAM_BUILTIN_SUBGROUP_ID,
629 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
630 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
631 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
632 };
633
634 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
635 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
636
637 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
638 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
639 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
640
641 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
642 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
643
644 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
645 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
646
647 /** Represents a code relocation
648 *
649 * Relocatable constants are immediates in the code which we want to be able
650 * to replace post-compile with the actual value.
651 */
652 struct brw_shader_reloc {
653 /** The 32-bit ID of the relocatable constant */
654 uint32_t id;
655
656 /** The offset in the shader to the relocatable instruction
657 *
658 * This is the offset to the instruction rather than the immediate value
659 * itself. This allows us to do some sanity checking while we relocate.
660 */
661 uint32_t offset;
662 };
663
664 /** A value to write to a relocation */
665 struct brw_shader_reloc_value {
666 /** The 32-bit ID of the relocatable constant */
667 uint32_t id;
668
669 /** The value with which to replace the relocated immediate */
670 uint32_t value;
671 };
672
673 struct brw_stage_prog_data {
674 struct {
675 /** size of our binding table. */
676 uint32_t size_bytes;
677
678 /** @{
679 * surface indices for the various groups of surfaces
680 */
681 uint32_t pull_constants_start;
682 uint32_t texture_start;
683 uint32_t gather_texture_start;
684 uint32_t ubo_start;
685 uint32_t ssbo_start;
686 uint32_t image_start;
687 uint32_t shader_time_start;
688 uint32_t plane_start[3];
689 /** @} */
690 } binding_table;
691
692 struct brw_ubo_range ubo_ranges[4];
693
694 GLuint nr_params; /**< number of float params/constants */
695 GLuint nr_pull_params;
696
697 /* zero_push_reg is a bitfield which indicates what push registers (if any)
698 * should be zeroed by SW at the start of the shader. The corresponding
699 * push_reg_mask_param specifies the param index (in 32-bit units) where
700 * the actual runtime 64-bit mask will be pushed. The shader will zero
701 * push reg i if
702 *
703 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
704 *
705 * If this field is set, brw_compiler::compact_params must be false.
706 */
707 uint64_t zero_push_reg;
708 unsigned push_reg_mask_param;
709
710 unsigned curb_read_length;
711 unsigned total_scratch;
712 unsigned total_shared;
713
714 unsigned program_size;
715
716 unsigned const_data_size;
717 unsigned const_data_offset;
718
719 unsigned num_relocs;
720 const struct brw_shader_reloc *relocs;
721
722 /** Does this program pull from any UBO or other constant buffers? */
723 bool has_ubo_pull;
724
725 /**
726 * Register where the thread expects to find input data from the URB
727 * (typically uniforms, followed by vertex or fragment attributes).
728 */
729 unsigned dispatch_grf_start_reg;
730
731 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
732
733 /* 32-bit identifiers for all push/pull parameters. These can be anything
734 * the driver wishes them to be; the core of the back-end compiler simply
735 * re-arranges them. The one restriction is that the bottom 2^16 values
736 * are reserved for builtins defined in the brw_param_builtin enum defined
737 * above.
738 */
739 uint32_t *param;
740 uint32_t *pull_param;
741
742 /* Whether shader uses atomic operations. */
743 bool uses_atomic_load_store;
744 };
745
746 static inline uint32_t *
747 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
748 unsigned nr_new_params)
749 {
750 unsigned old_nr_params = prog_data->nr_params;
751 prog_data->nr_params += nr_new_params;
752 prog_data->param = reralloc(ralloc_parent(prog_data->param),
753 prog_data->param, uint32_t,
754 prog_data->nr_params);
755 return prog_data->param + old_nr_params;
756 }
757
758 enum brw_barycentric_mode {
759 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
760 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
761 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
762 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
763 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
764 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
765 BRW_BARYCENTRIC_MODE_COUNT = 6
766 };
767 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
768 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
769 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
770 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
771
772 enum brw_pixel_shader_computed_depth_mode {
773 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
774 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
775 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
776 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
777 };
778
779 /* Data about a particular attempt to compile a program. Note that
780 * there can be many of these, each in a different GL state
781 * corresponding to a different brw_wm_prog_key struct, with different
782 * compiled programs.
783 */
784 struct brw_wm_prog_data {
785 struct brw_stage_prog_data base;
786
787 GLuint num_varying_inputs;
788
789 uint8_t reg_blocks_8;
790 uint8_t reg_blocks_16;
791 uint8_t reg_blocks_32;
792
793 uint8_t dispatch_grf_start_reg_16;
794 uint8_t dispatch_grf_start_reg_32;
795 uint32_t prog_offset_16;
796 uint32_t prog_offset_32;
797
798 struct {
799 /** @{
800 * surface indices the WM-specific surfaces
801 */
802 uint32_t render_target_read_start;
803 /** @} */
804 } binding_table;
805
806 uint8_t computed_depth_mode;
807 bool computed_stencil;
808
809 bool early_fragment_tests;
810 bool post_depth_coverage;
811 bool inner_coverage;
812 bool dispatch_8;
813 bool dispatch_16;
814 bool dispatch_32;
815 bool dual_src_blend;
816 bool persample_dispatch;
817 bool uses_pos_offset;
818 bool uses_omask;
819 bool uses_kill;
820 bool uses_src_depth;
821 bool uses_src_w;
822 bool uses_sample_mask;
823 bool has_render_target_reads;
824 bool has_side_effects;
825 bool pulls_bary;
826
827 bool contains_flat_varying;
828 bool contains_noperspective_varying;
829
830 /**
831 * Mask of which interpolation modes are required by the fragment shader.
832 * Used in hardware setup on gen6+.
833 */
834 uint32_t barycentric_interp_modes;
835
836 /**
837 * Mask of which FS inputs are marked flat by the shader source. This is
838 * needed for setting up 3DSTATE_SF/SBE.
839 */
840 uint32_t flat_inputs;
841
842 /**
843 * The FS inputs
844 */
845 uint64_t inputs;
846
847 /* Mapping of VUE slots to interpolation modes.
848 * Used by the Gen4-5 clip/sf/wm stages.
849 */
850 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
851
852 /**
853 * Map from gl_varying_slot to the position within the FS setup data
854 * payload where the varying's attribute vertex deltas should be delivered.
855 * For varying slots that are not used by the FS, the value is -1.
856 */
857 int urb_setup[VARYING_SLOT_MAX];
858
859 /**
860 * Cache structure into the urb_setup array above that contains the
861 * attribute numbers of active varyings out of urb_setup.
862 * The actual count is stored in urb_setup_attribs_count.
863 */
864 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
865 uint8_t urb_setup_attribs_count;
866 };
867
868 /** Returns the SIMD width corresponding to a given KSP index
869 *
870 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
871 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
872 * kernel start pointer (KSP) indices that is based on what dispatch widths
873 * are enabled. This function provides, effectively, the reverse mapping.
874 *
875 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
876 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
877 */
878 static inline unsigned
879 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
880 bool simd16_enabled, bool simd32_enabled)
881 {
882 /* This function strictly ignores contiguous dispatch */
883 switch (ksp_idx) {
884 case 0:
885 return simd8_enabled ? 8 :
886 (simd16_enabled && !simd32_enabled) ? 16 :
887 (simd32_enabled && !simd16_enabled) ? 32 : 0;
888 case 1:
889 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
890 case 2:
891 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
892 default:
893 unreachable("Invalid KSP index");
894 }
895 }
896
897 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
898 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
899 (wm_state)._16PixelDispatchEnable, \
900 (wm_state)._32PixelDispatchEnable)
901
902 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
903 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
904
905 static inline uint32_t
906 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
907 unsigned simd_width)
908 {
909 switch (simd_width) {
910 case 8: return 0;
911 case 16: return prog_data->prog_offset_16;
912 case 32: return prog_data->prog_offset_32;
913 default: return 0;
914 }
915 }
916
917 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
918 _brw_wm_prog_data_prog_offset(prog_data, \
919 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
920
921 static inline uint8_t
922 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
923 unsigned simd_width)
924 {
925 switch (simd_width) {
926 case 8: return prog_data->base.dispatch_grf_start_reg;
927 case 16: return prog_data->dispatch_grf_start_reg_16;
928 case 32: return prog_data->dispatch_grf_start_reg_32;
929 default: return 0;
930 }
931 }
932
933 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
934 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
935 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
936
937 static inline uint8_t
938 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
939 unsigned simd_width)
940 {
941 switch (simd_width) {
942 case 8: return prog_data->reg_blocks_8;
943 case 16: return prog_data->reg_blocks_16;
944 case 32: return prog_data->reg_blocks_32;
945 default: return 0;
946 }
947 }
948
949 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
950 _brw_wm_prog_data_reg_blocks(prog_data, \
951 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
952
953 struct brw_push_const_block {
954 unsigned dwords; /* Dword count, not reg aligned */
955 unsigned regs;
956 unsigned size; /* Bytes, register aligned */
957 };
958
959 struct brw_cs_prog_data {
960 struct brw_stage_prog_data base;
961
962 unsigned local_size[3];
963 unsigned slm_size;
964
965 /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
966 * kept when using variable group size, and the right one can only be
967 * decided at dispatch time.
968 */
969 unsigned prog_offset[3];
970
971 /* Bitmask indicating which program offsets are valid. */
972 unsigned prog_mask;
973
974 /* Bitmask indicating which programs have spilled. */
975 unsigned prog_spilled;
976
977 bool uses_barrier;
978 bool uses_num_work_groups;
979
980 struct {
981 struct brw_push_const_block cross_thread;
982 struct brw_push_const_block per_thread;
983 } push;
984
985 struct {
986 /** @{
987 * surface indices the CS-specific surfaces
988 */
989 uint32_t work_groups_start;
990 /** @} */
991 } binding_table;
992 };
993
994 static inline uint32_t
995 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
996 unsigned dispatch_width)
997 {
998 assert(dispatch_width == 8 ||
999 dispatch_width == 16 ||
1000 dispatch_width == 32);
1001 const unsigned index = dispatch_width / 16;
1002 assert(prog_data->prog_mask & (1 << index));
1003 return prog_data->prog_offset[index];
1004 }
1005
1006 /**
1007 * Enum representing the i965-specific vertex results that don't correspond
1008 * exactly to any element of gl_varying_slot. The values of this enum are
1009 * assigned such that they don't conflict with gl_varying_slot.
1010 */
1011 typedef enum
1012 {
1013 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
1014 BRW_VARYING_SLOT_PAD,
1015 /**
1016 * Technically this is not a varying but just a placeholder that
1017 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
1018 * builtin variable to be compiled correctly. see compile_sf_prog() for
1019 * more info.
1020 */
1021 BRW_VARYING_SLOT_PNTC,
1022 BRW_VARYING_SLOT_COUNT
1023 } brw_varying_slot;
1024
1025 /**
1026 * We always program SF to start reading at an offset of 1 (2 varying slots)
1027 * from the start of the vertex URB entry. This causes it to skip:
1028 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1029 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
1030 */
1031 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
1032
1033 /**
1034 * Bitmask indicating which fragment shader inputs represent varyings (and
1035 * hence have to be delivered to the fragment shader by the SF/SBE stage).
1036 */
1037 #define BRW_FS_VARYING_INPUT_MASK \
1038 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1039 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1040
1041 /**
1042 * Data structure recording the relationship between the gl_varying_slot enum
1043 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
1044 * single octaword within the VUE (128 bits).
1045 *
1046 * Note that each BRW register contains 256 bits (2 octawords), so when
1047 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1048 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
1049 * in a vertex shader), each register corresponds to a single VUE slot, since
1050 * it contains data for two separate vertices.
1051 */
1052 struct brw_vue_map {
1053 /**
1054 * Bitfield representing all varying slots that are (a) stored in this VUE
1055 * map, and (b) actually written by the shader. Does not include any of
1056 * the additional varying slots defined in brw_varying_slot.
1057 */
1058 uint64_t slots_valid;
1059
1060 /**
1061 * Is this VUE map for a separate shader pipeline?
1062 *
1063 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1064 * without the linker having a chance to dead code eliminate unused varyings.
1065 *
1066 * This means that we have to use a fixed slot layout, based on the output's
1067 * location field, rather than assigning slots in a compact contiguous block.
1068 */
1069 bool separate;
1070
1071 /**
1072 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
1073 * not stored in a slot (because they are not written, or because
1074 * additional processing is applied before storing them in the VUE), the
1075 * value is -1.
1076 */
1077 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1078
1079 /**
1080 * Map from VUE slot to gl_varying_slot value. For slots that do not
1081 * directly correspond to a gl_varying_slot, the value comes from
1082 * brw_varying_slot.
1083 *
1084 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1085 */
1086 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1087
1088 /**
1089 * Total number of VUE slots in use
1090 */
1091 int num_slots;
1092
1093 /**
1094 * Number of per-patch VUE slots. Only valid for tessellation control
1095 * shader outputs and tessellation evaluation shader inputs.
1096 */
1097 int num_per_patch_slots;
1098
1099 /**
1100 * Number of per-vertex VUE slots. Only valid for tessellation control
1101 * shader outputs and tessellation evaluation shader inputs.
1102 */
1103 int num_per_vertex_slots;
1104 };
1105
1106 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1107
1108 /**
1109 * Convert a VUE slot number into a byte offset within the VUE.
1110 */
1111 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1112 {
1113 return 16*slot;
1114 }
1115
1116 /**
1117 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1118 * VUE.
1119 */
1120 static inline
1121 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1122 {
1123 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1124 }
1125
1126 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1127 struct brw_vue_map *vue_map,
1128 uint64_t slots_valid,
1129 bool separate_shader,
1130 uint32_t pos_slots);
1131
1132 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1133 uint64_t slots_valid,
1134 uint32_t is_patch);
1135
1136 /* brw_interpolation_map.c */
1137 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1138 struct nir_shader *nir,
1139 struct brw_wm_prog_data *prog_data);
1140
1141 enum shader_dispatch_mode {
1142 DISPATCH_MODE_4X1_SINGLE = 0,
1143 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1144 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1145 DISPATCH_MODE_SIMD8 = 3,
1146
1147 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1148 DISPATCH_MODE_TCS_8_PATCH = 2,
1149 };
1150
1151 /**
1152 * @defgroup Tessellator parameter enumerations.
1153 *
1154 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1155 * as part of the tessellation evaluation shader.
1156 *
1157 * @{
1158 */
1159 enum brw_tess_partitioning {
1160 BRW_TESS_PARTITIONING_INTEGER = 0,
1161 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1162 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1163 };
1164
1165 enum brw_tess_output_topology {
1166 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1167 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1168 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1169 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1170 };
1171
1172 enum brw_tess_domain {
1173 BRW_TESS_DOMAIN_QUAD = 0,
1174 BRW_TESS_DOMAIN_TRI = 1,
1175 BRW_TESS_DOMAIN_ISOLINE = 2,
1176 };
1177 /** @} */
1178
1179 struct brw_vue_prog_data {
1180 struct brw_stage_prog_data base;
1181 struct brw_vue_map vue_map;
1182
1183 /** Should the hardware deliver input VUE handles for URB pull loads? */
1184 bool include_vue_handles;
1185
1186 GLuint urb_read_length;
1187 GLuint total_grf;
1188
1189 uint32_t clip_distance_mask;
1190 uint32_t cull_distance_mask;
1191
1192 /* Used for calculating urb partitions. In the VS, this is the size of the
1193 * URB entry used for both input and output to the thread. In the GS, this
1194 * is the size of the URB entry used for output.
1195 */
1196 GLuint urb_entry_size;
1197
1198 enum shader_dispatch_mode dispatch_mode;
1199 };
1200
1201 struct brw_vs_prog_data {
1202 struct brw_vue_prog_data base;
1203
1204 GLbitfield64 inputs_read;
1205 GLbitfield64 double_inputs_read;
1206
1207 unsigned nr_attribute_slots;
1208
1209 bool uses_vertexid;
1210 bool uses_instanceid;
1211 bool uses_is_indexed_draw;
1212 bool uses_firstvertex;
1213 bool uses_baseinstance;
1214 bool uses_drawid;
1215 };
1216
1217 struct brw_tcs_prog_data
1218 {
1219 struct brw_vue_prog_data base;
1220
1221 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1222 bool include_primitive_id;
1223
1224 /** Number vertices in output patch */
1225 int instances;
1226
1227 /** Track patch count threshold */
1228 int patch_count_threshold;
1229 };
1230
1231
1232 struct brw_tes_prog_data
1233 {
1234 struct brw_vue_prog_data base;
1235
1236 enum brw_tess_partitioning partitioning;
1237 enum brw_tess_output_topology output_topology;
1238 enum brw_tess_domain domain;
1239 };
1240
1241 struct brw_gs_prog_data
1242 {
1243 struct brw_vue_prog_data base;
1244
1245 unsigned vertices_in;
1246
1247 /**
1248 * Size of an output vertex, measured in HWORDS (32 bytes).
1249 */
1250 unsigned output_vertex_size_hwords;
1251
1252 unsigned output_topology;
1253
1254 /**
1255 * Size of the control data (cut bits or StreamID bits), in hwords (32
1256 * bytes). 0 if there is no control data.
1257 */
1258 unsigned control_data_header_size_hwords;
1259
1260 /**
1261 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1262 * if the control data is StreamID bits, or
1263 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1264 * Ignored if control_data_header_size is 0.
1265 */
1266 unsigned control_data_format;
1267
1268 bool include_primitive_id;
1269
1270 /**
1271 * The number of vertices emitted, if constant - otherwise -1.
1272 */
1273 int static_vertex_count;
1274
1275 int invocations;
1276
1277 /**
1278 * Gen6: Provoking vertex convention for odd-numbered triangles
1279 * in tristrips.
1280 */
1281 GLuint pv_first:1;
1282
1283 /**
1284 * Gen6: Number of varyings that are output to transform feedback.
1285 */
1286 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1287
1288 /**
1289 * Gen6: Map from the index of a transform feedback binding table entry to the
1290 * gl_varying_slot that should be streamed out through that binding table
1291 * entry.
1292 */
1293 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1294
1295 /**
1296 * Gen6: Map from the index of a transform feedback binding table entry to the
1297 * swizzles that should be used when streaming out data through that
1298 * binding table entry.
1299 */
1300 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1301 };
1302
1303 struct brw_sf_prog_data {
1304 uint32_t urb_read_length;
1305 uint32_t total_grf;
1306
1307 /* Each vertex may have upto 12 attributes, 4 components each,
1308 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1309 * rows.
1310 *
1311 * Actually we use 4 for each, so call it 12 rows.
1312 */
1313 unsigned urb_entry_size;
1314 };
1315
1316 struct brw_clip_prog_data {
1317 uint32_t curb_read_length; /* user planes? */
1318 uint32_t clip_mode;
1319 uint32_t urb_read_length;
1320 uint32_t total_grf;
1321 };
1322
1323 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1324 union brw_any_prog_data {
1325 struct brw_stage_prog_data base;
1326 struct brw_vue_prog_data vue;
1327 struct brw_vs_prog_data vs;
1328 struct brw_tcs_prog_data tcs;
1329 struct brw_tes_prog_data tes;
1330 struct brw_gs_prog_data gs;
1331 struct brw_wm_prog_data wm;
1332 struct brw_cs_prog_data cs;
1333 };
1334
1335 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1336 static inline struct brw_##stage##_prog_data * \
1337 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1338 { \
1339 return (struct brw_##stage##_prog_data *) prog_data; \
1340 } \
1341 static inline const struct brw_##stage##_prog_data * \
1342 brw_##stage##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1343 { \
1344 return (const struct brw_##stage##_prog_data *) prog_data; \
1345 }
1346 DEFINE_PROG_DATA_DOWNCAST(vue)
1347 DEFINE_PROG_DATA_DOWNCAST(vs)
1348 DEFINE_PROG_DATA_DOWNCAST(tcs)
1349 DEFINE_PROG_DATA_DOWNCAST(tes)
1350 DEFINE_PROG_DATA_DOWNCAST(gs)
1351 DEFINE_PROG_DATA_DOWNCAST(wm)
1352 DEFINE_PROG_DATA_DOWNCAST(cs)
1353 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1354 DEFINE_PROG_DATA_DOWNCAST(clip)
1355 DEFINE_PROG_DATA_DOWNCAST(sf)
1356 #undef DEFINE_PROG_DATA_DOWNCAST
1357
1358 struct brw_compile_stats {
1359 uint32_t dispatch_width; /**< 0 for vec4 */
1360 uint32_t instructions;
1361 uint32_t sends;
1362 uint32_t loops;
1363 uint32_t cycles;
1364 uint32_t spills;
1365 uint32_t fills;
1366 };
1367
1368 /** @} */
1369
1370 struct brw_compiler *
1371 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1372
1373 /**
1374 * Returns a compiler configuration for use with disk shader cache
1375 *
1376 * This value only needs to change for settings that can cause different
1377 * program generation between two runs on the same hardware.
1378 *
1379 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1380 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1381 */
1382 uint64_t
1383 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1384
1385 unsigned
1386 brw_prog_data_size(gl_shader_stage stage);
1387
1388 unsigned
1389 brw_prog_key_size(gl_shader_stage stage);
1390
1391 void
1392 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1393
1394 /**
1395 * Compile a vertex shader.
1396 *
1397 * Returns the final assembly and the program's size.
1398 */
1399 const unsigned *
1400 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1401 void *mem_ctx,
1402 const struct brw_vs_prog_key *key,
1403 struct brw_vs_prog_data *prog_data,
1404 nir_shader *shader,
1405 int shader_time_index,
1406 struct brw_compile_stats *stats,
1407 char **error_str);
1408
1409 /**
1410 * Compile a tessellation control shader.
1411 *
1412 * Returns the final assembly and the program's size.
1413 */
1414 const unsigned *
1415 brw_compile_tcs(const struct brw_compiler *compiler,
1416 void *log_data,
1417 void *mem_ctx,
1418 const struct brw_tcs_prog_key *key,
1419 struct brw_tcs_prog_data *prog_data,
1420 nir_shader *nir,
1421 int shader_time_index,
1422 struct brw_compile_stats *stats,
1423 char **error_str);
1424
1425 /**
1426 * Compile a tessellation evaluation shader.
1427 *
1428 * Returns the final assembly and the program's size.
1429 */
1430 const unsigned *
1431 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1432 void *mem_ctx,
1433 const struct brw_tes_prog_key *key,
1434 const struct brw_vue_map *input_vue_map,
1435 struct brw_tes_prog_data *prog_data,
1436 nir_shader *shader,
1437 int shader_time_index,
1438 struct brw_compile_stats *stats,
1439 char **error_str);
1440
1441 /**
1442 * Compile a vertex shader.
1443 *
1444 * Returns the final assembly and the program's size.
1445 */
1446 const unsigned *
1447 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1448 void *mem_ctx,
1449 const struct brw_gs_prog_key *key,
1450 struct brw_gs_prog_data *prog_data,
1451 nir_shader *shader,
1452 struct gl_program *prog,
1453 int shader_time_index,
1454 struct brw_compile_stats *stats,
1455 char **error_str);
1456
1457 /**
1458 * Compile a strips and fans shader.
1459 *
1460 * This is a fixed-function shader determined entirely by the shader key and
1461 * a VUE map.
1462 *
1463 * Returns the final assembly and the program's size.
1464 */
1465 const unsigned *
1466 brw_compile_sf(const struct brw_compiler *compiler,
1467 void *mem_ctx,
1468 const struct brw_sf_prog_key *key,
1469 struct brw_sf_prog_data *prog_data,
1470 struct brw_vue_map *vue_map,
1471 unsigned *final_assembly_size);
1472
1473 /**
1474 * Compile a clipper shader.
1475 *
1476 * This is a fixed-function shader determined entirely by the shader key and
1477 * a VUE map.
1478 *
1479 * Returns the final assembly and the program's size.
1480 */
1481 const unsigned *
1482 brw_compile_clip(const struct brw_compiler *compiler,
1483 void *mem_ctx,
1484 const struct brw_clip_prog_key *key,
1485 struct brw_clip_prog_data *prog_data,
1486 struct brw_vue_map *vue_map,
1487 unsigned *final_assembly_size);
1488
1489 /**
1490 * Compile a fragment shader.
1491 *
1492 * Returns the final assembly and the program's size.
1493 */
1494 const unsigned *
1495 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1496 void *mem_ctx,
1497 const struct brw_wm_prog_key *key,
1498 struct brw_wm_prog_data *prog_data,
1499 nir_shader *shader,
1500 int shader_time_index8,
1501 int shader_time_index16,
1502 int shader_time_index32,
1503 bool allow_spilling,
1504 bool use_rep_send, struct brw_vue_map *vue_map,
1505 struct brw_compile_stats *stats, /**< Array of three stats */
1506 char **error_str);
1507
1508 /**
1509 * Compile a compute shader.
1510 *
1511 * Returns the final assembly and the program's size.
1512 */
1513 const unsigned *
1514 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1515 void *mem_ctx,
1516 const struct brw_cs_prog_key *key,
1517 struct brw_cs_prog_data *prog_data,
1518 const nir_shader *shader,
1519 int shader_time_index,
1520 struct brw_compile_stats *stats,
1521 char **error_str);
1522
1523 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1524 gl_shader_stage stage,
1525 const struct brw_base_prog_key *old_key,
1526 const struct brw_base_prog_key *key);
1527
1528 static inline uint32_t
1529 encode_slm_size(unsigned gen, uint32_t bytes)
1530 {
1531 uint32_t slm_size = 0;
1532
1533 /* Shared Local Memory is specified as powers of two, and encoded in
1534 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1535 *
1536 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1537 * -------------------------------------------------------------------
1538 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1539 * -------------------------------------------------------------------
1540 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1541 */
1542 assert(bytes <= 64 * 1024);
1543
1544 if (bytes > 0) {
1545 /* Shared Local Memory Size is specified as powers of two. */
1546 slm_size = util_next_power_of_two(bytes);
1547
1548 if (gen >= 9) {
1549 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1550 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1551 } else {
1552 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1553 slm_size = MAX2(slm_size, 4096) / 4096;
1554 }
1555 }
1556
1557 return slm_size;
1558 }
1559
1560 unsigned
1561 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1562 unsigned threads);
1563
1564 unsigned
1565 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
1566 const struct brw_cs_prog_data *cs_prog_data,
1567 unsigned group_size);
1568
1569 void
1570 brw_write_shader_relocs(const struct gen_device_info *devinfo,
1571 void *program,
1572 const struct brw_stage_prog_data *prog_data,
1573 struct brw_shader_reloc_value *values,
1574 unsigned num_values);
1575
1576 /**
1577 * Calculate the RightExecutionMask field used in GPGPU_WALKER.
1578 */
1579 static inline unsigned
1580 brw_cs_right_mask(unsigned group_size, unsigned simd_size)
1581 {
1582 const uint32_t remainder = group_size & (simd_size - 1);
1583 if (remainder > 0)
1584 return ~0u >> (32 - remainder);
1585 else
1586 return ~0u >> (32 - simd_size);
1587 }
1588
1589 /**
1590 * Return true if the given shader stage is dispatched contiguously by the
1591 * relevant fixed function starting from channel 0 of the SIMD thread, which
1592 * implies that the dispatch mask of a thread can be assumed to have the form
1593 * '2^n - 1' for some n.
1594 */
1595 static inline bool
1596 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1597 gl_shader_stage stage,
1598 const struct brw_stage_prog_data *prog_data)
1599 {
1600 /* The code below makes assumptions about the hardware's thread dispatch
1601 * behavior that could be proven wrong in future generations -- Make sure
1602 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1603 * the NIR front-end before changing this assertion.
1604 */
1605 assert(devinfo->gen <= 12);
1606
1607 switch (stage) {
1608 case MESA_SHADER_FRAGMENT: {
1609 /* The PSD discards subspans coming in with no lit samples, which in the
1610 * per-pixel shading case implies that each subspan will either be fully
1611 * lit (due to the VMask being used to allow derivative computations),
1612 * or not dispatched at all. In per-sample dispatch mode individual
1613 * samples from the same subspan have a fixed relative location within
1614 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1615 * general and we should return false.
1616 */
1617 const struct brw_wm_prog_data *wm_prog_data =
1618 (const struct brw_wm_prog_data *)prog_data;
1619 return !wm_prog_data->persample_dispatch;
1620 }
1621 case MESA_SHADER_COMPUTE:
1622 /* Compute shaders will be spawned with either a fully enabled dispatch
1623 * mask or with whatever bottom/right execution mask was given to the
1624 * GPGPU walker command to be used along the workgroup edges -- In both
1625 * cases the dispatch mask is required to be tightly packed for our
1626 * invocation index calculations to work.
1627 */
1628 return true;
1629 default:
1630 /* Most remaining fixed functions are limited to use a packed dispatch
1631 * mask due to the hardware representation of the dispatch mask as a
1632 * single counter representing the number of enabled channels.
1633 */
1634 return true;
1635 }
1636 }
1637
1638 /**
1639 * Computes the first varying slot in the URB produced by the previous stage
1640 * that is used in the next stage. We do this by testing the varying slots in
1641 * the previous stage's vue map against the inputs read in the next stage.
1642 *
1643 * Note that:
1644 *
1645 * - Each URB offset contains two varying slots and we can only skip a
1646 * full offset if both slots are unused, so the value we return here is always
1647 * rounded down to the closest multiple of two.
1648 *
1649 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1650 * part of the vue header, so if these are read we can't skip anything.
1651 */
1652 static inline int
1653 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1654 const struct brw_vue_map *prev_stage_vue_map)
1655 {
1656 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1657 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1658 int varying = prev_stage_vue_map->slot_to_varying[i];
1659 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1660 return ROUND_DOWN_TO(i, 2);
1661 }
1662 }
1663
1664 return 0;
1665 }
1666
1667 #ifdef __cplusplus
1668 } /* extern "C" */
1669 #endif
1670
1671 #endif /* BRW_COMPILER_H */