anv: Add support for SPIR-V 1.3 subgroup operations
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "util/ralloc.h"
31
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35
36 struct ra_regs;
37 struct nir_shader;
38 struct brw_program;
39
40 struct brw_compiler {
41 const struct gen_device_info *devinfo;
42
43 struct {
44 struct ra_regs *regs;
45
46 /**
47 * Array of the ra classes for the unaligned contiguous register
48 * block sizes used.
49 */
50 int *classes;
51
52 /**
53 * Mapping for register-allocated objects in *regs to the first
54 * GRF for that object.
55 */
56 uint8_t *ra_reg_to_grf;
57 } vec4_reg_set;
58
59 struct {
60 struct ra_regs *regs;
61
62 /**
63 * Array of the ra classes for the unaligned contiguous register
64 * block sizes used, indexed by register size.
65 */
66 int classes[16];
67
68 /**
69 * Mapping from classes to ra_reg ranges. Each of the per-size
70 * classes corresponds to a range of ra_reg nodes. This array stores
71 * those ranges in the form of first ra_reg in each class and the
72 * total number of ra_reg elements in the last array element. This
73 * way the range of the i'th class is given by:
74 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
75 */
76 int class_to_ra_reg_range[17];
77
78 /**
79 * Mapping for register-allocated objects in *regs to the first
80 * GRF for that object.
81 */
82 uint8_t *ra_reg_to_grf;
83
84 /**
85 * ra class for the aligned pairs we use for PLN, which doesn't
86 * appear in *classes.
87 */
88 int aligned_pairs_class;
89 } fs_reg_sets[3];
90
91 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
92 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93
94 bool scalar_stage[MESA_SHADER_STAGES];
95 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
96
97 /**
98 * Apply workarounds for SIN and COS output range problems.
99 * This can negatively impact performance.
100 */
101 bool precise_trig;
102
103 /**
104 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
105 * Base Address? (If not, it's a normal GPU address.)
106 */
107 bool constant_buffer_0_is_relative;
108
109 /**
110 * Whether or not the driver supports pull constants. If not, the compiler
111 * will attempt to push everything.
112 */
113 bool supports_pull_constants;
114 };
115
116 /**
117 * We use a constant subgroup size of 32. It really only needs to be a
118 * maximum and, since we do SIMD32 for compute shaders in some cases, it
119 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
120 * subgroup size of 32 but will act as if 16 or 24 of those channels are
121 * disabled.
122 */
123 #define BRW_SUBGROUP_SIZE 32
124
125 /**
126 * Program key structures.
127 *
128 * When drawing, we look for the currently bound shaders in the program
129 * cache. This is essentially a hash table lookup, and these are the keys.
130 *
131 * Sometimes OpenGL features specified as state need to be simulated via
132 * shader code, due to a mismatch between the API and the hardware. This
133 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
134 * in the program key so it's considered when searching for a program. If
135 * we haven't seen a particular combination before, we have to recompile a
136 * new specialized version.
137 *
138 * Shader compilation should not look up state in gl_context directly, but
139 * instead use the copy in the program key. This guarantees recompiles will
140 * happen correctly.
141 *
142 * @{
143 */
144
145 enum PACKED gen6_gather_sampler_wa {
146 WA_SIGN = 1, /* whether we need to sign extend */
147 WA_8BIT = 2, /* if we have an 8bit format needing wa */
148 WA_16BIT = 4, /* if we have a 16bit format needing wa */
149 };
150
151 /**
152 * Sampler information needed by VS, WM, and GS program cache keys.
153 */
154 struct brw_sampler_prog_key_data {
155 /**
156 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
157 */
158 uint16_t swizzles[MAX_SAMPLERS];
159
160 uint32_t gl_clamp_mask[3];
161
162 /**
163 * For RG32F, gather4's channel select is broken.
164 */
165 uint32_t gather_channel_quirk_mask;
166
167 /**
168 * Whether this sampler uses the compressed multisample surface layout.
169 */
170 uint32_t compressed_multisample_layout_mask;
171
172 /**
173 * Whether this sampler is using 16x multisampling. If so fetching from
174 * this sampler will be handled with a different instruction, ld2dms_w
175 * instead of ld2dms.
176 */
177 uint32_t msaa_16;
178
179 /**
180 * For Sandybridge, which shader w/a we need for gather quirks.
181 */
182 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
183
184 /**
185 * Texture units that have a YUV image bound.
186 */
187 uint32_t y_u_v_image_mask;
188 uint32_t y_uv_image_mask;
189 uint32_t yx_xuxv_image_mask;
190 uint32_t xy_uxvx_image_mask;
191 };
192
193 /**
194 * The VF can't natively handle certain types of attributes, such as GL_FIXED
195 * or most 10_10_10_2 types. These flags enable various VS workarounds to
196 * "fix" attributes at the beginning of shaders.
197 */
198 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
199 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
200 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
201 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
202 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
203
204 /**
205 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
206 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
207 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
208 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
209 */
210 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
211 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
212
213 /** The program key for Vertex Shaders. */
214 struct brw_vs_prog_key {
215 unsigned program_string_id;
216
217 /**
218 * Per-attribute workaround flags
219 *
220 * For each attribute, a combination of BRW_ATTRIB_WA_*.
221 *
222 * For OpenGL, where we expose a maximum of 16 user input atttributes
223 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
224 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
225 * expose up to 28 user input vertex attributes that are mapped to slots
226 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
227 * enough to hold this many slots.
228 */
229 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
230
231 bool copy_edgeflag:1;
232
233 bool clamp_vertex_color:1;
234
235 /**
236 * How many user clipping planes are being uploaded to the vertex shader as
237 * push constants.
238 *
239 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
240 * clip distances.
241 */
242 unsigned nr_userclip_plane_consts:4;
243
244 /**
245 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
246 * are going to be replaced with point coordinates (as a consequence of a
247 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
248 * our SF thread requires exact matching between VS outputs and FS inputs,
249 * these texture coordinates will need to be unconditionally included in
250 * the VUE, even if they aren't written by the vertex shader.
251 */
252 uint8_t point_coord_replace;
253
254 struct brw_sampler_prog_key_data tex;
255 };
256
257 /** The program key for Tessellation Control Shaders. */
258 struct brw_tcs_prog_key
259 {
260 unsigned program_string_id;
261
262 GLenum tes_primitive_mode;
263
264 unsigned input_vertices;
265
266 /** A bitfield of per-patch outputs written. */
267 uint32_t patch_outputs_written;
268
269 /** A bitfield of per-vertex outputs written. */
270 uint64_t outputs_written;
271
272 bool quads_workaround;
273
274 struct brw_sampler_prog_key_data tex;
275 };
276
277 /** The program key for Tessellation Evaluation Shaders. */
278 struct brw_tes_prog_key
279 {
280 unsigned program_string_id;
281
282 /** A bitfield of per-patch inputs read. */
283 uint32_t patch_inputs_read;
284
285 /** A bitfield of per-vertex inputs read. */
286 uint64_t inputs_read;
287
288 struct brw_sampler_prog_key_data tex;
289 };
290
291 /** The program key for Geometry Shaders. */
292 struct brw_gs_prog_key
293 {
294 unsigned program_string_id;
295
296 struct brw_sampler_prog_key_data tex;
297 };
298
299 enum brw_sf_primitive {
300 BRW_SF_PRIM_POINTS = 0,
301 BRW_SF_PRIM_LINES = 1,
302 BRW_SF_PRIM_TRIANGLES = 2,
303 BRW_SF_PRIM_UNFILLED_TRIS = 3,
304 };
305
306 struct brw_sf_prog_key {
307 uint64_t attrs;
308 bool contains_flat_varying;
309 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
310 uint8_t point_sprite_coord_replace;
311 enum brw_sf_primitive primitive:2;
312 bool do_twoside_color:1;
313 bool frontface_ccw:1;
314 bool do_point_sprite:1;
315 bool do_point_coord:1;
316 bool sprite_origin_lower_left:1;
317 bool userclip_active:1;
318 };
319
320 enum brw_clip_mode {
321 BRW_CLIP_MODE_NORMAL = 0,
322 BRW_CLIP_MODE_CLIP_ALL = 1,
323 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
324 BRW_CLIP_MODE_REJECT_ALL = 3,
325 BRW_CLIP_MODE_ACCEPT_ALL = 4,
326 BRW_CLIP_MODE_KERNEL_CLIP = 5,
327 };
328
329 enum brw_clip_fill_mode {
330 BRW_CLIP_FILL_MODE_LINE = 0,
331 BRW_CLIP_FILL_MODE_POINT = 1,
332 BRW_CLIP_FILL_MODE_FILL = 2,
333 BRW_CLIP_FILL_MODE_CULL = 3,
334 };
335
336 /* Note that if unfilled primitives are being emitted, we have to fix
337 * up polygon offset and flatshading at this point:
338 */
339 struct brw_clip_prog_key {
340 uint64_t attrs;
341 bool contains_flat_varying;
342 bool contains_noperspective_varying;
343 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
344 unsigned primitive:4;
345 unsigned nr_userclip:4;
346 bool pv_first:1;
347 bool do_unfilled:1;
348 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
349 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
350 bool offset_cw:1;
351 bool offset_ccw:1;
352 bool copy_bfc_cw:1;
353 bool copy_bfc_ccw:1;
354 enum brw_clip_mode clip_mode:3;
355
356 float offset_factor;
357 float offset_units;
358 float offset_clamp;
359 };
360
361 /* A big lookup table is used to figure out which and how many
362 * additional regs will inserted before the main payload in the WM
363 * program execution. These mainly relate to depth and stencil
364 * processing and the early-depth-test optimization.
365 */
366 enum brw_wm_iz_bits {
367 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
368 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
369 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
370 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
371 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
372 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
373 BRW_WM_IZ_BIT_MAX = 0x40
374 };
375
376 enum brw_wm_aa_enable {
377 BRW_WM_AA_NEVER,
378 BRW_WM_AA_SOMETIMES,
379 BRW_WM_AA_ALWAYS
380 };
381
382 /** The program key for Fragment/Pixel Shaders. */
383 struct brw_wm_prog_key {
384 /* Some collection of BRW_WM_IZ_* */
385 uint8_t iz_lookup;
386 bool stats_wm:1;
387 bool flat_shade:1;
388 unsigned nr_color_regions:5;
389 bool replicate_alpha:1;
390 bool clamp_fragment_color:1;
391 bool persample_interp:1;
392 bool multisample_fbo:1;
393 bool frag_coord_adds_sample_pos:1;
394 enum brw_wm_aa_enable line_aa:2;
395 bool high_quality_derivatives:1;
396 bool force_dual_color_blend:1;
397 bool coherent_fb_fetch:1;
398
399 uint64_t input_slots_valid;
400 unsigned program_string_id;
401 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
402 float alpha_test_ref;
403
404 struct brw_sampler_prog_key_data tex;
405 };
406
407 struct brw_cs_prog_key {
408 uint32_t program_string_id;
409 struct brw_sampler_prog_key_data tex;
410 };
411
412 /* brw_any_prog_key is any of the keys that map to an API stage */
413 union brw_any_prog_key {
414 struct brw_vs_prog_key vs;
415 struct brw_tcs_prog_key tcs;
416 struct brw_tes_prog_key tes;
417 struct brw_gs_prog_key gs;
418 struct brw_wm_prog_key wm;
419 struct brw_cs_prog_key cs;
420 };
421
422 /*
423 * Image metadata structure as laid out in the shader parameter
424 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
425 * able to use them. That's okay because the padding and any unused
426 * entries [most of them except when we're doing untyped surface
427 * access] will be removed by the uniform packing pass.
428 */
429 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
430 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
431 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
432 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
433 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
434 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
435 #define BRW_IMAGE_PARAM_SIZE 24
436
437 struct brw_image_param {
438 /** Surface binding table index. */
439 uint32_t surface_idx;
440
441 /** Offset applied to the X and Y surface coordinates. */
442 uint32_t offset[2];
443
444 /** Surface X, Y and Z dimensions. */
445 uint32_t size[3];
446
447 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
448 * pixels, vertical slice stride in pixels.
449 */
450 uint32_t stride[4];
451
452 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
453 uint32_t tiling[3];
454
455 /**
456 * Right shift to apply for bit 6 address swizzling. Two different
457 * swizzles can be specified and will be applied one after the other. The
458 * resulting address will be:
459 *
460 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
461 * (addr >> swizzling[1])))
462 *
463 * Use \c 0xff if any of the swizzles is not required.
464 */
465 uint32_t swizzling[2];
466 };
467
468 /** Max number of render targets in a shader */
469 #define BRW_MAX_DRAW_BUFFERS 8
470
471 /**
472 * Max number of binding table entries used for stream output.
473 *
474 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
475 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
476 *
477 * On Gen6, the size of transform feedback data is limited not by the number
478 * of components but by the number of binding table entries we set aside. We
479 * use one binding table entry for a float, one entry for a vector, and one
480 * entry per matrix column. Since the only way we can communicate our
481 * transform feedback capabilities to the client is via
482 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
483 * worst case, in which all the varyings are floats, so we use up one binding
484 * table entry per component. Therefore we need to set aside at least 64
485 * binding table entries for use by transform feedback.
486 *
487 * Note: since we don't currently pack varyings, it is currently impossible
488 * for the client to actually use up all of these binding table entries--if
489 * all of their varyings were floats, they would run out of varying slots and
490 * fail to link. But that's a bug, so it seems prudent to go ahead and
491 * allocate the number of binding table entries we will need once the bug is
492 * fixed.
493 */
494 #define BRW_MAX_SOL_BINDINGS 64
495
496 /**
497 * Binding table index for the first gen6 SOL binding.
498 */
499 #define BRW_GEN6_SOL_BINDING_START 0
500
501 /**
502 * Stride in bytes between shader_time entries.
503 *
504 * We separate entries by a cacheline to reduce traffic between EUs writing to
505 * different entries.
506 */
507 #define BRW_SHADER_TIME_STRIDE 64
508
509 struct brw_ubo_range
510 {
511 uint16_t block;
512 uint8_t start;
513 uint8_t length;
514 };
515
516 /* We reserve the first 2^16 values for builtins */
517 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
518
519 enum brw_param_builtin {
520 BRW_PARAM_BUILTIN_ZERO,
521
522 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
554
555 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
556 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
557 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
558 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
559 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
560 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
561
562 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
563 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
564 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
565 BRW_PARAM_BUILTIN_SUBGROUP_ID,
566 };
567
568 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
569 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
570
571 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
572 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
573 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
574
575 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
576 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
577
578 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
579 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
580
581 struct brw_stage_prog_data {
582 struct {
583 /** size of our binding table. */
584 uint32_t size_bytes;
585
586 /** @{
587 * surface indices for the various groups of surfaces
588 */
589 uint32_t pull_constants_start;
590 uint32_t texture_start;
591 uint32_t gather_texture_start;
592 uint32_t ubo_start;
593 uint32_t ssbo_start;
594 uint32_t image_start;
595 uint32_t shader_time_start;
596 uint32_t plane_start[3];
597 /** @} */
598 } binding_table;
599
600 struct brw_ubo_range ubo_ranges[4];
601
602 GLuint nr_params; /**< number of float params/constants */
603 GLuint nr_pull_params;
604
605 unsigned curb_read_length;
606 unsigned total_scratch;
607 unsigned total_shared;
608
609 unsigned program_size;
610
611 /**
612 * Register where the thread expects to find input data from the URB
613 * (typically uniforms, followed by vertex or fragment attributes).
614 */
615 unsigned dispatch_grf_start_reg;
616
617 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
618
619 /* 32-bit identifiers for all push/pull parameters. These can be anything
620 * the driver wishes them to be; the core of the back-end compiler simply
621 * re-arranges them. The one restriction is that the bottom 2^16 values
622 * are reserved for builtins defined in the brw_param_builtin enum defined
623 * above.
624 */
625 uint32_t *param;
626 uint32_t *pull_param;
627 };
628
629 static inline uint32_t *
630 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
631 unsigned nr_new_params)
632 {
633 unsigned old_nr_params = prog_data->nr_params;
634 prog_data->nr_params += nr_new_params;
635 prog_data->param = reralloc(ralloc_parent(prog_data->param),
636 prog_data->param, uint32_t,
637 prog_data->nr_params);
638 return prog_data->param + old_nr_params;
639 }
640
641 static inline void
642 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
643 unsigned surf_index)
644 {
645 /* A binding table index is 8 bits and the top 3 values are reserved for
646 * special things (stateless and SLM).
647 */
648 assert(surf_index <= 252);
649
650 prog_data->binding_table.size_bytes =
651 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
652 }
653
654 enum brw_barycentric_mode {
655 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
656 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
657 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
658 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
660 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
661 BRW_BARYCENTRIC_MODE_COUNT = 6
662 };
663 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
664 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
665 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
666 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
667
668 enum brw_pixel_shader_computed_depth_mode {
669 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
670 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
671 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
672 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
673 };
674
675 /* Data about a particular attempt to compile a program. Note that
676 * there can be many of these, each in a different GL state
677 * corresponding to a different brw_wm_prog_key struct, with different
678 * compiled programs.
679 */
680 struct brw_wm_prog_data {
681 struct brw_stage_prog_data base;
682
683 GLuint num_varying_inputs;
684
685 uint8_t reg_blocks_0;
686 uint8_t reg_blocks_2;
687
688 uint8_t dispatch_grf_start_reg_2;
689 uint32_t prog_offset_2;
690
691 struct {
692 /** @{
693 * surface indices the WM-specific surfaces
694 */
695 uint32_t render_target_read_start;
696 /** @} */
697 } binding_table;
698
699 uint8_t computed_depth_mode;
700 bool computed_stencil;
701
702 bool early_fragment_tests;
703 bool post_depth_coverage;
704 bool inner_coverage;
705 bool dispatch_8;
706 bool dispatch_16;
707 bool dual_src_blend;
708 bool persample_dispatch;
709 bool uses_pos_offset;
710 bool uses_omask;
711 bool uses_kill;
712 bool uses_src_depth;
713 bool uses_src_w;
714 bool uses_sample_mask;
715 bool has_render_target_reads;
716 bool has_side_effects;
717 bool pulls_bary;
718
719 bool contains_flat_varying;
720 bool contains_noperspective_varying;
721
722 /**
723 * Mask of which interpolation modes are required by the fragment shader.
724 * Used in hardware setup on gen6+.
725 */
726 uint32_t barycentric_interp_modes;
727
728 /**
729 * Mask of which FS inputs are marked flat by the shader source. This is
730 * needed for setting up 3DSTATE_SF/SBE.
731 */
732 uint32_t flat_inputs;
733
734 /* Mapping of VUE slots to interpolation modes.
735 * Used by the Gen4-5 clip/sf/wm stages.
736 */
737 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
738
739 /**
740 * Map from gl_varying_slot to the position within the FS setup data
741 * payload where the varying's attribute vertex deltas should be delivered.
742 * For varying slots that are not used by the FS, the value is -1.
743 */
744 int urb_setup[VARYING_SLOT_MAX];
745 };
746
747 struct brw_push_const_block {
748 unsigned dwords; /* Dword count, not reg aligned */
749 unsigned regs;
750 unsigned size; /* Bytes, register aligned */
751 };
752
753 struct brw_cs_prog_data {
754 struct brw_stage_prog_data base;
755
756 unsigned local_size[3];
757 unsigned simd_size;
758 unsigned threads;
759 bool uses_barrier;
760 bool uses_num_work_groups;
761
762 struct {
763 struct brw_push_const_block cross_thread;
764 struct brw_push_const_block per_thread;
765 struct brw_push_const_block total;
766 } push;
767
768 struct {
769 /** @{
770 * surface indices the CS-specific surfaces
771 */
772 uint32_t work_groups_start;
773 /** @} */
774 } binding_table;
775 };
776
777 /**
778 * Enum representing the i965-specific vertex results that don't correspond
779 * exactly to any element of gl_varying_slot. The values of this enum are
780 * assigned such that they don't conflict with gl_varying_slot.
781 */
782 typedef enum
783 {
784 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
785 BRW_VARYING_SLOT_PAD,
786 /**
787 * Technically this is not a varying but just a placeholder that
788 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
789 * builtin variable to be compiled correctly. see compile_sf_prog() for
790 * more info.
791 */
792 BRW_VARYING_SLOT_PNTC,
793 BRW_VARYING_SLOT_COUNT
794 } brw_varying_slot;
795
796 /**
797 * We always program SF to start reading at an offset of 1 (2 varying slots)
798 * from the start of the vertex URB entry. This causes it to skip:
799 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
800 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
801 */
802 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
803
804 /**
805 * Bitmask indicating which fragment shader inputs represent varyings (and
806 * hence have to be delivered to the fragment shader by the SF/SBE stage).
807 */
808 #define BRW_FS_VARYING_INPUT_MASK \
809 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
810 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
811
812 /**
813 * Data structure recording the relationship between the gl_varying_slot enum
814 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
815 * single octaword within the VUE (128 bits).
816 *
817 * Note that each BRW register contains 256 bits (2 octawords), so when
818 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
819 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
820 * in a vertex shader), each register corresponds to a single VUE slot, since
821 * it contains data for two separate vertices.
822 */
823 struct brw_vue_map {
824 /**
825 * Bitfield representing all varying slots that are (a) stored in this VUE
826 * map, and (b) actually written by the shader. Does not include any of
827 * the additional varying slots defined in brw_varying_slot.
828 */
829 uint64_t slots_valid;
830
831 /**
832 * Is this VUE map for a separate shader pipeline?
833 *
834 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
835 * without the linker having a chance to dead code eliminate unused varyings.
836 *
837 * This means that we have to use a fixed slot layout, based on the output's
838 * location field, rather than assigning slots in a compact contiguous block.
839 */
840 bool separate;
841
842 /**
843 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
844 * not stored in a slot (because they are not written, or because
845 * additional processing is applied before storing them in the VUE), the
846 * value is -1.
847 */
848 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
849
850 /**
851 * Map from VUE slot to gl_varying_slot value. For slots that do not
852 * directly correspond to a gl_varying_slot, the value comes from
853 * brw_varying_slot.
854 *
855 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
856 */
857 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
858
859 /**
860 * Total number of VUE slots in use
861 */
862 int num_slots;
863
864 /**
865 * Number of per-patch VUE slots. Only valid for tessellation control
866 * shader outputs and tessellation evaluation shader inputs.
867 */
868 int num_per_patch_slots;
869
870 /**
871 * Number of per-vertex VUE slots. Only valid for tessellation control
872 * shader outputs and tessellation evaluation shader inputs.
873 */
874 int num_per_vertex_slots;
875 };
876
877 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
878
879 /**
880 * Convert a VUE slot number into a byte offset within the VUE.
881 */
882 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
883 {
884 return 16*slot;
885 }
886
887 /**
888 * Convert a vertex output (brw_varying_slot) into a byte offset within the
889 * VUE.
890 */
891 static inline
892 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
893 {
894 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
895 }
896
897 void brw_compute_vue_map(const struct gen_device_info *devinfo,
898 struct brw_vue_map *vue_map,
899 uint64_t slots_valid,
900 bool separate_shader);
901
902 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
903 uint64_t slots_valid,
904 uint32_t is_patch);
905
906 /* brw_interpolation_map.c */
907 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
908 struct nir_shader *nir,
909 struct brw_wm_prog_data *prog_data,
910 const struct gen_device_info *devinfo);
911
912 enum shader_dispatch_mode {
913 DISPATCH_MODE_4X1_SINGLE = 0,
914 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
915 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
916 DISPATCH_MODE_SIMD8 = 3,
917 };
918
919 /**
920 * @defgroup Tessellator parameter enumerations.
921 *
922 * These correspond to the hardware values in 3DSTATE_TE, and are provided
923 * as part of the tessellation evaluation shader.
924 *
925 * @{
926 */
927 enum brw_tess_partitioning {
928 BRW_TESS_PARTITIONING_INTEGER = 0,
929 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
930 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
931 };
932
933 enum brw_tess_output_topology {
934 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
935 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
936 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
937 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
938 };
939
940 enum brw_tess_domain {
941 BRW_TESS_DOMAIN_QUAD = 0,
942 BRW_TESS_DOMAIN_TRI = 1,
943 BRW_TESS_DOMAIN_ISOLINE = 2,
944 };
945 /** @} */
946
947 struct brw_vue_prog_data {
948 struct brw_stage_prog_data base;
949 struct brw_vue_map vue_map;
950
951 /** Should the hardware deliver input VUE handles for URB pull loads? */
952 bool include_vue_handles;
953
954 GLuint urb_read_length;
955 GLuint total_grf;
956
957 uint32_t clip_distance_mask;
958 uint32_t cull_distance_mask;
959
960 /* Used for calculating urb partitions. In the VS, this is the size of the
961 * URB entry used for both input and output to the thread. In the GS, this
962 * is the size of the URB entry used for output.
963 */
964 GLuint urb_entry_size;
965
966 enum shader_dispatch_mode dispatch_mode;
967 };
968
969 struct brw_vs_prog_data {
970 struct brw_vue_prog_data base;
971
972 GLbitfield64 inputs_read;
973 GLbitfield64 double_inputs_read;
974
975 unsigned nr_attribute_slots;
976
977 bool uses_vertexid;
978 bool uses_instanceid;
979 bool uses_basevertex;
980 bool uses_baseinstance;
981 bool uses_drawid;
982 };
983
984 struct brw_tcs_prog_data
985 {
986 struct brw_vue_prog_data base;
987
988 /** Number vertices in output patch */
989 int instances;
990 };
991
992
993 struct brw_tes_prog_data
994 {
995 struct brw_vue_prog_data base;
996
997 enum brw_tess_partitioning partitioning;
998 enum brw_tess_output_topology output_topology;
999 enum brw_tess_domain domain;
1000 };
1001
1002 struct brw_gs_prog_data
1003 {
1004 struct brw_vue_prog_data base;
1005
1006 unsigned vertices_in;
1007
1008 /**
1009 * Size of an output vertex, measured in HWORDS (32 bytes).
1010 */
1011 unsigned output_vertex_size_hwords;
1012
1013 unsigned output_topology;
1014
1015 /**
1016 * Size of the control data (cut bits or StreamID bits), in hwords (32
1017 * bytes). 0 if there is no control data.
1018 */
1019 unsigned control_data_header_size_hwords;
1020
1021 /**
1022 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1023 * if the control data is StreamID bits, or
1024 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1025 * Ignored if control_data_header_size is 0.
1026 */
1027 unsigned control_data_format;
1028
1029 bool include_primitive_id;
1030
1031 /**
1032 * The number of vertices emitted, if constant - otherwise -1.
1033 */
1034 int static_vertex_count;
1035
1036 int invocations;
1037
1038 /**
1039 * Gen6: Provoking vertex convention for odd-numbered triangles
1040 * in tristrips.
1041 */
1042 GLuint pv_first:1;
1043
1044 /**
1045 * Gen6: Number of varyings that are output to transform feedback.
1046 */
1047 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1048
1049 /**
1050 * Gen6: Map from the index of a transform feedback binding table entry to the
1051 * gl_varying_slot that should be streamed out through that binding table
1052 * entry.
1053 */
1054 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1055
1056 /**
1057 * Gen6: Map from the index of a transform feedback binding table entry to the
1058 * swizzles that should be used when streaming out data through that
1059 * binding table entry.
1060 */
1061 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1062 };
1063
1064 struct brw_sf_prog_data {
1065 uint32_t urb_read_length;
1066 uint32_t total_grf;
1067
1068 /* Each vertex may have upto 12 attributes, 4 components each,
1069 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1070 * rows.
1071 *
1072 * Actually we use 4 for each, so call it 12 rows.
1073 */
1074 unsigned urb_entry_size;
1075 };
1076
1077 struct brw_clip_prog_data {
1078 uint32_t curb_read_length; /* user planes? */
1079 uint32_t clip_mode;
1080 uint32_t urb_read_length;
1081 uint32_t total_grf;
1082 };
1083
1084 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1085 union brw_any_prog_data {
1086 struct brw_stage_prog_data base;
1087 struct brw_vue_prog_data vue;
1088 struct brw_vs_prog_data vs;
1089 struct brw_tcs_prog_data tcs;
1090 struct brw_tes_prog_data tes;
1091 struct brw_gs_prog_data gs;
1092 struct brw_wm_prog_data wm;
1093 struct brw_cs_prog_data cs;
1094 };
1095
1096 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1097 static inline struct brw_##stage##_prog_data * \
1098 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1099 { \
1100 return (struct brw_##stage##_prog_data *) prog_data; \
1101 }
1102 DEFINE_PROG_DATA_DOWNCAST(vue)
1103 DEFINE_PROG_DATA_DOWNCAST(vs)
1104 DEFINE_PROG_DATA_DOWNCAST(tcs)
1105 DEFINE_PROG_DATA_DOWNCAST(tes)
1106 DEFINE_PROG_DATA_DOWNCAST(gs)
1107 DEFINE_PROG_DATA_DOWNCAST(wm)
1108 DEFINE_PROG_DATA_DOWNCAST(cs)
1109 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1110 DEFINE_PROG_DATA_DOWNCAST(clip)
1111 DEFINE_PROG_DATA_DOWNCAST(sf)
1112 #undef DEFINE_PROG_DATA_DOWNCAST
1113
1114 /** @} */
1115
1116 struct brw_compiler *
1117 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1118
1119 unsigned
1120 brw_prog_data_size(gl_shader_stage stage);
1121
1122 unsigned
1123 brw_prog_key_size(gl_shader_stage stage);
1124
1125 /**
1126 * Compile a vertex shader.
1127 *
1128 * Returns the final assembly and the program's size.
1129 */
1130 const unsigned *
1131 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1132 void *mem_ctx,
1133 const struct brw_vs_prog_key *key,
1134 struct brw_vs_prog_data *prog_data,
1135 const struct nir_shader *shader,
1136 int shader_time_index,
1137 char **error_str);
1138
1139 /**
1140 * Compile a tessellation control shader.
1141 *
1142 * Returns the final assembly and the program's size.
1143 */
1144 const unsigned *
1145 brw_compile_tcs(const struct brw_compiler *compiler,
1146 void *log_data,
1147 void *mem_ctx,
1148 const struct brw_tcs_prog_key *key,
1149 struct brw_tcs_prog_data *prog_data,
1150 const struct nir_shader *nir,
1151 int shader_time_index,
1152 char **error_str);
1153
1154 /**
1155 * Compile a tessellation evaluation shader.
1156 *
1157 * Returns the final assembly and the program's size.
1158 */
1159 const unsigned *
1160 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1161 void *mem_ctx,
1162 const struct brw_tes_prog_key *key,
1163 const struct brw_vue_map *input_vue_map,
1164 struct brw_tes_prog_data *prog_data,
1165 const struct nir_shader *shader,
1166 struct gl_program *prog,
1167 int shader_time_index,
1168 char **error_str);
1169
1170 /**
1171 * Compile a vertex shader.
1172 *
1173 * Returns the final assembly and the program's size.
1174 */
1175 const unsigned *
1176 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1177 void *mem_ctx,
1178 const struct brw_gs_prog_key *key,
1179 struct brw_gs_prog_data *prog_data,
1180 const struct nir_shader *shader,
1181 struct gl_program *prog,
1182 int shader_time_index,
1183 char **error_str);
1184
1185 /**
1186 * Compile a strips and fans shader.
1187 *
1188 * This is a fixed-function shader determined entirely by the shader key and
1189 * a VUE map.
1190 *
1191 * Returns the final assembly and the program's size.
1192 */
1193 const unsigned *
1194 brw_compile_sf(const struct brw_compiler *compiler,
1195 void *mem_ctx,
1196 const struct brw_sf_prog_key *key,
1197 struct brw_sf_prog_data *prog_data,
1198 struct brw_vue_map *vue_map,
1199 unsigned *final_assembly_size);
1200
1201 /**
1202 * Compile a clipper shader.
1203 *
1204 * This is a fixed-function shader determined entirely by the shader key and
1205 * a VUE map.
1206 *
1207 * Returns the final assembly and the program's size.
1208 */
1209 const unsigned *
1210 brw_compile_clip(const struct brw_compiler *compiler,
1211 void *mem_ctx,
1212 const struct brw_clip_prog_key *key,
1213 struct brw_clip_prog_data *prog_data,
1214 struct brw_vue_map *vue_map,
1215 unsigned *final_assembly_size);
1216
1217 /**
1218 * Compile a fragment shader.
1219 *
1220 * Returns the final assembly and the program's size.
1221 */
1222 const unsigned *
1223 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1224 void *mem_ctx,
1225 const struct brw_wm_prog_key *key,
1226 struct brw_wm_prog_data *prog_data,
1227 const struct nir_shader *shader,
1228 struct gl_program *prog,
1229 int shader_time_index8,
1230 int shader_time_index16,
1231 bool allow_spilling,
1232 bool use_rep_send, struct brw_vue_map *vue_map,
1233 char **error_str);
1234
1235 /**
1236 * Compile a compute shader.
1237 *
1238 * Returns the final assembly and the program's size.
1239 */
1240 const unsigned *
1241 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1242 void *mem_ctx,
1243 const struct brw_cs_prog_key *key,
1244 struct brw_cs_prog_data *prog_data,
1245 const struct nir_shader *shader,
1246 int shader_time_index,
1247 char **error_str);
1248
1249 static inline uint32_t
1250 encode_slm_size(unsigned gen, uint32_t bytes)
1251 {
1252 uint32_t slm_size = 0;
1253
1254 /* Shared Local Memory is specified as powers of two, and encoded in
1255 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1256 *
1257 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1258 * -------------------------------------------------------------------
1259 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1260 * -------------------------------------------------------------------
1261 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1262 */
1263 assert(bytes <= 64 * 1024);
1264
1265 if (bytes > 0) {
1266 /* Shared Local Memory Size is specified as powers of two. */
1267 slm_size = util_next_power_of_two(bytes);
1268
1269 if (gen >= 9) {
1270 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1271 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1272 } else {
1273 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1274 slm_size = MAX2(slm_size, 4096) / 4096;
1275 }
1276 }
1277
1278 return slm_size;
1279 }
1280
1281 /**
1282 * Return true if the given shader stage is dispatched contiguously by the
1283 * relevant fixed function starting from channel 0 of the SIMD thread, which
1284 * implies that the dispatch mask of a thread can be assumed to have the form
1285 * '2^n - 1' for some n.
1286 */
1287 static inline bool
1288 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1289 gl_shader_stage stage,
1290 const struct brw_stage_prog_data *prog_data)
1291 {
1292 /* The code below makes assumptions about the hardware's thread dispatch
1293 * behavior that could be proven wrong in future generations -- Make sure
1294 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1295 * the NIR front-end before changing this assertion.
1296 */
1297 assert(devinfo->gen <= 10);
1298
1299 switch (stage) {
1300 case MESA_SHADER_FRAGMENT: {
1301 /* The PSD discards subspans coming in with no lit samples, which in the
1302 * per-pixel shading case implies that each subspan will either be fully
1303 * lit (due to the VMask being used to allow derivative computations),
1304 * or not dispatched at all. In per-sample dispatch mode individual
1305 * samples from the same subspan have a fixed relative location within
1306 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1307 * general and we should return false.
1308 */
1309 const struct brw_wm_prog_data *wm_prog_data =
1310 (const struct brw_wm_prog_data *)prog_data;
1311 return !wm_prog_data->persample_dispatch;
1312 }
1313 case MESA_SHADER_COMPUTE:
1314 /* Compute shaders will be spawned with either a fully enabled dispatch
1315 * mask or with whatever bottom/right execution mask was given to the
1316 * GPGPU walker command to be used along the workgroup edges -- In both
1317 * cases the dispatch mask is required to be tightly packed for our
1318 * invocation index calculations to work.
1319 */
1320 return true;
1321 default:
1322 /* Most remaining fixed functions are limited to use a packed dispatch
1323 * mask due to the hardware representation of the dispatch mask as a
1324 * single counter representing the number of enabled channels.
1325 */
1326 return true;
1327 }
1328 }
1329
1330 /**
1331 * Computes the first varying slot in the URB produced by the previous stage
1332 * that is used in the next stage. We do this by testing the varying slots in
1333 * the previous stage's vue map against the inputs read in the next stage.
1334 *
1335 * Note that:
1336 *
1337 * - Each URB offset contains two varying slots and we can only skip a
1338 * full offset if both slots are unused, so the value we return here is always
1339 * rounded down to the closest multiple of two.
1340 *
1341 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1342 * part of the vue header, so if these are read we can't skip anything.
1343 */
1344 static inline int
1345 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1346 const struct brw_vue_map *prev_stage_vue_map)
1347 {
1348 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1349 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1350 int varying = prev_stage_vue_map->slot_to_varying[i];
1351 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1352 return ROUND_DOWN_TO(i, 2);
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 #ifdef __cplusplus
1360 } /* extern "C" */
1361 #endif
1362
1363 #endif /* BRW_COMPILER_H */