intel/compiler: Allow for required subgroup sizes
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
212
213 /* These enums are specifically chosen so that the value of the enum is
214 * also the subgroup size. If any new values are added, they must respect
215 * this invariant.
216 */
217 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
218 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
219 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
220 };
221
222 struct brw_base_prog_key {
223 unsigned program_string_id;
224
225 enum brw_subgroup_size_type subgroup_size_type;
226
227 struct brw_sampler_prog_key_data tex;
228 };
229
230 /**
231 * The VF can't natively handle certain types of attributes, such as GL_FIXED
232 * or most 10_10_10_2 types. These flags enable various VS workarounds to
233 * "fix" attributes at the beginning of shaders.
234 */
235 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
236 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
237 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
238 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
239 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
240
241 /**
242 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
243 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
244 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
245 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
246 */
247 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
248 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
249
250 /** The program key for Vertex Shaders. */
251 struct brw_vs_prog_key {
252 struct brw_base_prog_key base;
253
254 /**
255 * Per-attribute workaround flags
256 *
257 * For each attribute, a combination of BRW_ATTRIB_WA_*.
258 *
259 * For OpenGL, where we expose a maximum of 16 user input atttributes
260 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
261 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
262 * expose up to 28 user input vertex attributes that are mapped to slots
263 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
264 * enough to hold this many slots.
265 */
266 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
267
268 bool copy_edgeflag:1;
269
270 bool clamp_vertex_color:1;
271
272 /**
273 * How many user clipping planes are being uploaded to the vertex shader as
274 * push constants.
275 *
276 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
277 * clip distances.
278 */
279 unsigned nr_userclip_plane_consts:4;
280
281 /**
282 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
283 * are going to be replaced with point coordinates (as a consequence of a
284 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
285 * our SF thread requires exact matching between VS outputs and FS inputs,
286 * these texture coordinates will need to be unconditionally included in
287 * the VUE, even if they aren't written by the vertex shader.
288 */
289 uint8_t point_coord_replace;
290 };
291
292 /** The program key for Tessellation Control Shaders. */
293 struct brw_tcs_prog_key
294 {
295 struct brw_base_prog_key base;
296
297 GLenum tes_primitive_mode;
298
299 unsigned input_vertices;
300
301 /** A bitfield of per-patch outputs written. */
302 uint32_t patch_outputs_written;
303
304 /** A bitfield of per-vertex outputs written. */
305 uint64_t outputs_written;
306
307 bool quads_workaround;
308 };
309
310 /** The program key for Tessellation Evaluation Shaders. */
311 struct brw_tes_prog_key
312 {
313 struct brw_base_prog_key base;
314
315 /** A bitfield of per-patch inputs read. */
316 uint32_t patch_inputs_read;
317
318 /** A bitfield of per-vertex inputs read. */
319 uint64_t inputs_read;
320 };
321
322 /** The program key for Geometry Shaders. */
323 struct brw_gs_prog_key
324 {
325 struct brw_base_prog_key base;
326 };
327
328 enum brw_sf_primitive {
329 BRW_SF_PRIM_POINTS = 0,
330 BRW_SF_PRIM_LINES = 1,
331 BRW_SF_PRIM_TRIANGLES = 2,
332 BRW_SF_PRIM_UNFILLED_TRIS = 3,
333 };
334
335 struct brw_sf_prog_key {
336 uint64_t attrs;
337 bool contains_flat_varying;
338 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
339 uint8_t point_sprite_coord_replace;
340 enum brw_sf_primitive primitive:2;
341 bool do_twoside_color:1;
342 bool frontface_ccw:1;
343 bool do_point_sprite:1;
344 bool do_point_coord:1;
345 bool sprite_origin_lower_left:1;
346 bool userclip_active:1;
347 };
348
349 enum brw_clip_mode {
350 BRW_CLIP_MODE_NORMAL = 0,
351 BRW_CLIP_MODE_CLIP_ALL = 1,
352 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
353 BRW_CLIP_MODE_REJECT_ALL = 3,
354 BRW_CLIP_MODE_ACCEPT_ALL = 4,
355 BRW_CLIP_MODE_KERNEL_CLIP = 5,
356 };
357
358 enum brw_clip_fill_mode {
359 BRW_CLIP_FILL_MODE_LINE = 0,
360 BRW_CLIP_FILL_MODE_POINT = 1,
361 BRW_CLIP_FILL_MODE_FILL = 2,
362 BRW_CLIP_FILL_MODE_CULL = 3,
363 };
364
365 /* Note that if unfilled primitives are being emitted, we have to fix
366 * up polygon offset and flatshading at this point:
367 */
368 struct brw_clip_prog_key {
369 uint64_t attrs;
370 bool contains_flat_varying;
371 bool contains_noperspective_varying;
372 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
373 unsigned primitive:4;
374 unsigned nr_userclip:4;
375 bool pv_first:1;
376 bool do_unfilled:1;
377 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
378 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
379 bool offset_cw:1;
380 bool offset_ccw:1;
381 bool copy_bfc_cw:1;
382 bool copy_bfc_ccw:1;
383 enum brw_clip_mode clip_mode:3;
384
385 float offset_factor;
386 float offset_units;
387 float offset_clamp;
388 };
389
390 /* A big lookup table is used to figure out which and how many
391 * additional regs will inserted before the main payload in the WM
392 * program execution. These mainly relate to depth and stencil
393 * processing and the early-depth-test optimization.
394 */
395 enum brw_wm_iz_bits {
396 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
397 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
398 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
399 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
400 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
401 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
402 BRW_WM_IZ_BIT_MAX = 0x40
403 };
404
405 enum brw_wm_aa_enable {
406 BRW_WM_AA_NEVER,
407 BRW_WM_AA_SOMETIMES,
408 BRW_WM_AA_ALWAYS
409 };
410
411 /** The program key for Fragment/Pixel Shaders. */
412 struct brw_wm_prog_key {
413 struct brw_base_prog_key base;
414
415 /* Some collection of BRW_WM_IZ_* */
416 uint8_t iz_lookup;
417 bool stats_wm:1;
418 bool flat_shade:1;
419 unsigned nr_color_regions:5;
420 bool alpha_test_replicate_alpha:1;
421 bool alpha_to_coverage:1;
422 bool clamp_fragment_color:1;
423 bool persample_interp:1;
424 bool multisample_fbo:1;
425 bool frag_coord_adds_sample_pos:1;
426 enum brw_wm_aa_enable line_aa:2;
427 bool high_quality_derivatives:1;
428 bool force_dual_color_blend:1;
429 bool coherent_fb_fetch:1;
430
431 uint8_t color_outputs_valid;
432 uint64_t input_slots_valid;
433 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
434 float alpha_test_ref;
435 };
436
437 struct brw_cs_prog_key {
438 struct brw_base_prog_key base;
439 };
440
441 /* brw_any_prog_key is any of the keys that map to an API stage */
442 union brw_any_prog_key {
443 struct brw_base_prog_key base;
444 struct brw_vs_prog_key vs;
445 struct brw_tcs_prog_key tcs;
446 struct brw_tes_prog_key tes;
447 struct brw_gs_prog_key gs;
448 struct brw_wm_prog_key wm;
449 struct brw_cs_prog_key cs;
450 };
451
452 /*
453 * Image metadata structure as laid out in the shader parameter
454 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
455 * able to use them. That's okay because the padding and any unused
456 * entries [most of them except when we're doing untyped surface
457 * access] will be removed by the uniform packing pass.
458 */
459 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
460 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
461 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
462 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
463 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
464 #define BRW_IMAGE_PARAM_SIZE 20
465
466 struct brw_image_param {
467 /** Offset applied to the X and Y surface coordinates. */
468 uint32_t offset[2];
469
470 /** Surface X, Y and Z dimensions. */
471 uint32_t size[3];
472
473 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
474 * pixels, vertical slice stride in pixels.
475 */
476 uint32_t stride[4];
477
478 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
479 uint32_t tiling[3];
480
481 /**
482 * Right shift to apply for bit 6 address swizzling. Two different
483 * swizzles can be specified and will be applied one after the other. The
484 * resulting address will be:
485 *
486 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
487 * (addr >> swizzling[1])))
488 *
489 * Use \c 0xff if any of the swizzles is not required.
490 */
491 uint32_t swizzling[2];
492 };
493
494 /** Max number of render targets in a shader */
495 #define BRW_MAX_DRAW_BUFFERS 8
496
497 /**
498 * Max number of binding table entries used for stream output.
499 *
500 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
501 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
502 *
503 * On Gen6, the size of transform feedback data is limited not by the number
504 * of components but by the number of binding table entries we set aside. We
505 * use one binding table entry for a float, one entry for a vector, and one
506 * entry per matrix column. Since the only way we can communicate our
507 * transform feedback capabilities to the client is via
508 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
509 * worst case, in which all the varyings are floats, so we use up one binding
510 * table entry per component. Therefore we need to set aside at least 64
511 * binding table entries for use by transform feedback.
512 *
513 * Note: since we don't currently pack varyings, it is currently impossible
514 * for the client to actually use up all of these binding table entries--if
515 * all of their varyings were floats, they would run out of varying slots and
516 * fail to link. But that's a bug, so it seems prudent to go ahead and
517 * allocate the number of binding table entries we will need once the bug is
518 * fixed.
519 */
520 #define BRW_MAX_SOL_BINDINGS 64
521
522 /**
523 * Binding table index for the first gen6 SOL binding.
524 */
525 #define BRW_GEN6_SOL_BINDING_START 0
526
527 /**
528 * Stride in bytes between shader_time entries.
529 *
530 * We separate entries by a cacheline to reduce traffic between EUs writing to
531 * different entries.
532 */
533 #define BRW_SHADER_TIME_STRIDE 64
534
535 struct brw_ubo_range
536 {
537 uint16_t block;
538 uint8_t start;
539 uint8_t length;
540 };
541
542 /* We reserve the first 2^16 values for builtins */
543 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
544
545 enum brw_param_builtin {
546 BRW_PARAM_BUILTIN_ZERO,
547
548 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
564 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
565 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
566 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
571 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
572 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
580
581 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
582 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
583 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
584 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
585 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
586 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
587
588 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
589
590 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
591 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
592 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
593 BRW_PARAM_BUILTIN_SUBGROUP_ID,
594 };
595
596 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
597 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
598
599 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
600 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
601 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
602
603 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
604 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
605
606 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
607 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
608
609 struct brw_stage_prog_data {
610 struct {
611 /** size of our binding table. */
612 uint32_t size_bytes;
613
614 /** @{
615 * surface indices for the various groups of surfaces
616 */
617 uint32_t pull_constants_start;
618 uint32_t texture_start;
619 uint32_t gather_texture_start;
620 uint32_t ubo_start;
621 uint32_t ssbo_start;
622 uint32_t image_start;
623 uint32_t shader_time_start;
624 uint32_t plane_start[3];
625 /** @} */
626 } binding_table;
627
628 struct brw_ubo_range ubo_ranges[4];
629
630 GLuint nr_params; /**< number of float params/constants */
631 GLuint nr_pull_params;
632
633 unsigned curb_read_length;
634 unsigned total_scratch;
635 unsigned total_shared;
636
637 unsigned program_size;
638
639 /**
640 * Register where the thread expects to find input data from the URB
641 * (typically uniforms, followed by vertex or fragment attributes).
642 */
643 unsigned dispatch_grf_start_reg;
644
645 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
646
647 /* 32-bit identifiers for all push/pull parameters. These can be anything
648 * the driver wishes them to be; the core of the back-end compiler simply
649 * re-arranges them. The one restriction is that the bottom 2^16 values
650 * are reserved for builtins defined in the brw_param_builtin enum defined
651 * above.
652 */
653 uint32_t *param;
654 uint32_t *pull_param;
655 };
656
657 static inline uint32_t *
658 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
659 unsigned nr_new_params)
660 {
661 unsigned old_nr_params = prog_data->nr_params;
662 prog_data->nr_params += nr_new_params;
663 prog_data->param = reralloc(ralloc_parent(prog_data->param),
664 prog_data->param, uint32_t,
665 prog_data->nr_params);
666 return prog_data->param + old_nr_params;
667 }
668
669 enum brw_barycentric_mode {
670 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
671 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
672 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
673 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
674 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
675 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
676 BRW_BARYCENTRIC_MODE_COUNT = 6
677 };
678 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
679 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
680 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
681 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
682
683 enum brw_pixel_shader_computed_depth_mode {
684 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
685 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
686 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
687 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
688 };
689
690 /* Data about a particular attempt to compile a program. Note that
691 * there can be many of these, each in a different GL state
692 * corresponding to a different brw_wm_prog_key struct, with different
693 * compiled programs.
694 */
695 struct brw_wm_prog_data {
696 struct brw_stage_prog_data base;
697
698 GLuint num_varying_inputs;
699
700 uint8_t reg_blocks_8;
701 uint8_t reg_blocks_16;
702 uint8_t reg_blocks_32;
703
704 uint8_t dispatch_grf_start_reg_16;
705 uint8_t dispatch_grf_start_reg_32;
706 uint32_t prog_offset_16;
707 uint32_t prog_offset_32;
708
709 struct {
710 /** @{
711 * surface indices the WM-specific surfaces
712 */
713 uint32_t render_target_read_start;
714 /** @} */
715 } binding_table;
716
717 uint8_t computed_depth_mode;
718 bool computed_stencil;
719
720 bool early_fragment_tests;
721 bool post_depth_coverage;
722 bool inner_coverage;
723 bool dispatch_8;
724 bool dispatch_16;
725 bool dispatch_32;
726 bool dual_src_blend;
727 bool replicate_alpha;
728 bool persample_dispatch;
729 bool uses_pos_offset;
730 bool uses_omask;
731 bool uses_kill;
732 bool uses_src_depth;
733 bool uses_src_w;
734 bool uses_sample_mask;
735 bool has_render_target_reads;
736 bool has_side_effects;
737 bool pulls_bary;
738
739 bool contains_flat_varying;
740 bool contains_noperspective_varying;
741
742 /**
743 * Mask of which interpolation modes are required by the fragment shader.
744 * Used in hardware setup on gen6+.
745 */
746 uint32_t barycentric_interp_modes;
747
748 /**
749 * Mask of which FS inputs are marked flat by the shader source. This is
750 * needed for setting up 3DSTATE_SF/SBE.
751 */
752 uint32_t flat_inputs;
753
754 /* Mapping of VUE slots to interpolation modes.
755 * Used by the Gen4-5 clip/sf/wm stages.
756 */
757 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
758
759 /**
760 * Map from gl_varying_slot to the position within the FS setup data
761 * payload where the varying's attribute vertex deltas should be delivered.
762 * For varying slots that are not used by the FS, the value is -1.
763 */
764 int urb_setup[VARYING_SLOT_MAX];
765 };
766
767 /** Returns the SIMD width corresponding to a given KSP index
768 *
769 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
770 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
771 * kernel start pointer (KSP) indices that is based on what dispatch widths
772 * are enabled. This function provides, effectively, the reverse mapping.
773 *
774 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
775 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
776 */
777 static inline unsigned
778 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
779 bool simd16_enabled, bool simd32_enabled)
780 {
781 /* This function strictly ignores contiguous dispatch */
782 switch (ksp_idx) {
783 case 0:
784 return simd8_enabled ? 8 :
785 (simd16_enabled && !simd32_enabled) ? 16 :
786 (simd32_enabled && !simd16_enabled) ? 32 : 0;
787 case 1:
788 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
789 case 2:
790 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
791 default:
792 unreachable("Invalid KSP index");
793 }
794 }
795
796 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
797 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
798 (wm_state)._16PixelDispatchEnable, \
799 (wm_state)._32PixelDispatchEnable)
800
801 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
802 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
803
804 static inline uint32_t
805 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
806 unsigned simd_width)
807 {
808 switch (simd_width) {
809 case 8: return 0;
810 case 16: return prog_data->prog_offset_16;
811 case 32: return prog_data->prog_offset_32;
812 default: return 0;
813 }
814 }
815
816 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
817 _brw_wm_prog_data_prog_offset(prog_data, \
818 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
819
820 static inline uint8_t
821 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
822 unsigned simd_width)
823 {
824 switch (simd_width) {
825 case 8: return prog_data->base.dispatch_grf_start_reg;
826 case 16: return prog_data->dispatch_grf_start_reg_16;
827 case 32: return prog_data->dispatch_grf_start_reg_32;
828 default: return 0;
829 }
830 }
831
832 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
833 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
834 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
835
836 static inline uint8_t
837 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
838 unsigned simd_width)
839 {
840 switch (simd_width) {
841 case 8: return prog_data->reg_blocks_8;
842 case 16: return prog_data->reg_blocks_16;
843 case 32: return prog_data->reg_blocks_32;
844 default: return 0;
845 }
846 }
847
848 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
849 _brw_wm_prog_data_reg_blocks(prog_data, \
850 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
851
852 struct brw_push_const_block {
853 unsigned dwords; /* Dword count, not reg aligned */
854 unsigned regs;
855 unsigned size; /* Bytes, register aligned */
856 };
857
858 struct brw_cs_prog_data {
859 struct brw_stage_prog_data base;
860
861 unsigned local_size[3];
862 unsigned simd_size;
863 unsigned threads;
864 bool uses_barrier;
865 bool uses_num_work_groups;
866
867 struct {
868 struct brw_push_const_block cross_thread;
869 struct brw_push_const_block per_thread;
870 struct brw_push_const_block total;
871 } push;
872
873 struct {
874 /** @{
875 * surface indices the CS-specific surfaces
876 */
877 uint32_t work_groups_start;
878 /** @} */
879 } binding_table;
880 };
881
882 /**
883 * Enum representing the i965-specific vertex results that don't correspond
884 * exactly to any element of gl_varying_slot. The values of this enum are
885 * assigned such that they don't conflict with gl_varying_slot.
886 */
887 typedef enum
888 {
889 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
890 BRW_VARYING_SLOT_PAD,
891 /**
892 * Technically this is not a varying but just a placeholder that
893 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
894 * builtin variable to be compiled correctly. see compile_sf_prog() for
895 * more info.
896 */
897 BRW_VARYING_SLOT_PNTC,
898 BRW_VARYING_SLOT_COUNT
899 } brw_varying_slot;
900
901 /**
902 * We always program SF to start reading at an offset of 1 (2 varying slots)
903 * from the start of the vertex URB entry. This causes it to skip:
904 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
905 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
906 */
907 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
908
909 /**
910 * Bitmask indicating which fragment shader inputs represent varyings (and
911 * hence have to be delivered to the fragment shader by the SF/SBE stage).
912 */
913 #define BRW_FS_VARYING_INPUT_MASK \
914 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
915 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
916
917 /**
918 * Data structure recording the relationship between the gl_varying_slot enum
919 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
920 * single octaword within the VUE (128 bits).
921 *
922 * Note that each BRW register contains 256 bits (2 octawords), so when
923 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
924 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
925 * in a vertex shader), each register corresponds to a single VUE slot, since
926 * it contains data for two separate vertices.
927 */
928 struct brw_vue_map {
929 /**
930 * Bitfield representing all varying slots that are (a) stored in this VUE
931 * map, and (b) actually written by the shader. Does not include any of
932 * the additional varying slots defined in brw_varying_slot.
933 */
934 uint64_t slots_valid;
935
936 /**
937 * Is this VUE map for a separate shader pipeline?
938 *
939 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
940 * without the linker having a chance to dead code eliminate unused varyings.
941 *
942 * This means that we have to use a fixed slot layout, based on the output's
943 * location field, rather than assigning slots in a compact contiguous block.
944 */
945 bool separate;
946
947 /**
948 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
949 * not stored in a slot (because they are not written, or because
950 * additional processing is applied before storing them in the VUE), the
951 * value is -1.
952 */
953 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
954
955 /**
956 * Map from VUE slot to gl_varying_slot value. For slots that do not
957 * directly correspond to a gl_varying_slot, the value comes from
958 * brw_varying_slot.
959 *
960 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
961 */
962 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
963
964 /**
965 * Total number of VUE slots in use
966 */
967 int num_slots;
968
969 /**
970 * Number of per-patch VUE slots. Only valid for tessellation control
971 * shader outputs and tessellation evaluation shader inputs.
972 */
973 int num_per_patch_slots;
974
975 /**
976 * Number of per-vertex VUE slots. Only valid for tessellation control
977 * shader outputs and tessellation evaluation shader inputs.
978 */
979 int num_per_vertex_slots;
980 };
981
982 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
983
984 /**
985 * Convert a VUE slot number into a byte offset within the VUE.
986 */
987 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
988 {
989 return 16*slot;
990 }
991
992 /**
993 * Convert a vertex output (brw_varying_slot) into a byte offset within the
994 * VUE.
995 */
996 static inline
997 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
998 {
999 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1000 }
1001
1002 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1003 struct brw_vue_map *vue_map,
1004 uint64_t slots_valid,
1005 bool separate_shader);
1006
1007 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1008 uint64_t slots_valid,
1009 uint32_t is_patch);
1010
1011 /* brw_interpolation_map.c */
1012 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1013 struct nir_shader *nir,
1014 struct brw_wm_prog_data *prog_data);
1015
1016 enum shader_dispatch_mode {
1017 DISPATCH_MODE_4X1_SINGLE = 0,
1018 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1019 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1020 DISPATCH_MODE_SIMD8 = 3,
1021
1022 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1023 DISPATCH_MODE_TCS_8_PATCH = 2,
1024 };
1025
1026 /**
1027 * @defgroup Tessellator parameter enumerations.
1028 *
1029 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1030 * as part of the tessellation evaluation shader.
1031 *
1032 * @{
1033 */
1034 enum brw_tess_partitioning {
1035 BRW_TESS_PARTITIONING_INTEGER = 0,
1036 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1037 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1038 };
1039
1040 enum brw_tess_output_topology {
1041 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1042 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1043 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1044 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1045 };
1046
1047 enum brw_tess_domain {
1048 BRW_TESS_DOMAIN_QUAD = 0,
1049 BRW_TESS_DOMAIN_TRI = 1,
1050 BRW_TESS_DOMAIN_ISOLINE = 2,
1051 };
1052 /** @} */
1053
1054 struct brw_vue_prog_data {
1055 struct brw_stage_prog_data base;
1056 struct brw_vue_map vue_map;
1057
1058 /** Should the hardware deliver input VUE handles for URB pull loads? */
1059 bool include_vue_handles;
1060
1061 GLuint urb_read_length;
1062 GLuint total_grf;
1063
1064 uint32_t clip_distance_mask;
1065 uint32_t cull_distance_mask;
1066
1067 /* Used for calculating urb partitions. In the VS, this is the size of the
1068 * URB entry used for both input and output to the thread. In the GS, this
1069 * is the size of the URB entry used for output.
1070 */
1071 GLuint urb_entry_size;
1072
1073 enum shader_dispatch_mode dispatch_mode;
1074 };
1075
1076 struct brw_vs_prog_data {
1077 struct brw_vue_prog_data base;
1078
1079 GLbitfield64 inputs_read;
1080 GLbitfield64 double_inputs_read;
1081
1082 unsigned nr_attribute_slots;
1083
1084 bool uses_vertexid;
1085 bool uses_instanceid;
1086 bool uses_is_indexed_draw;
1087 bool uses_firstvertex;
1088 bool uses_baseinstance;
1089 bool uses_drawid;
1090 };
1091
1092 struct brw_tcs_prog_data
1093 {
1094 struct brw_vue_prog_data base;
1095
1096 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1097 bool include_primitive_id;
1098
1099 /** Number vertices in output patch */
1100 int instances;
1101 };
1102
1103
1104 struct brw_tes_prog_data
1105 {
1106 struct brw_vue_prog_data base;
1107
1108 enum brw_tess_partitioning partitioning;
1109 enum brw_tess_output_topology output_topology;
1110 enum brw_tess_domain domain;
1111 };
1112
1113 struct brw_gs_prog_data
1114 {
1115 struct brw_vue_prog_data base;
1116
1117 unsigned vertices_in;
1118
1119 /**
1120 * Size of an output vertex, measured in HWORDS (32 bytes).
1121 */
1122 unsigned output_vertex_size_hwords;
1123
1124 unsigned output_topology;
1125
1126 /**
1127 * Size of the control data (cut bits or StreamID bits), in hwords (32
1128 * bytes). 0 if there is no control data.
1129 */
1130 unsigned control_data_header_size_hwords;
1131
1132 /**
1133 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1134 * if the control data is StreamID bits, or
1135 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1136 * Ignored if control_data_header_size is 0.
1137 */
1138 unsigned control_data_format;
1139
1140 bool include_primitive_id;
1141
1142 /**
1143 * The number of vertices emitted, if constant - otherwise -1.
1144 */
1145 int static_vertex_count;
1146
1147 int invocations;
1148
1149 /**
1150 * Gen6: Provoking vertex convention for odd-numbered triangles
1151 * in tristrips.
1152 */
1153 GLuint pv_first:1;
1154
1155 /**
1156 * Gen6: Number of varyings that are output to transform feedback.
1157 */
1158 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1159
1160 /**
1161 * Gen6: Map from the index of a transform feedback binding table entry to the
1162 * gl_varying_slot that should be streamed out through that binding table
1163 * entry.
1164 */
1165 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1166
1167 /**
1168 * Gen6: Map from the index of a transform feedback binding table entry to the
1169 * swizzles that should be used when streaming out data through that
1170 * binding table entry.
1171 */
1172 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1173 };
1174
1175 struct brw_sf_prog_data {
1176 uint32_t urb_read_length;
1177 uint32_t total_grf;
1178
1179 /* Each vertex may have upto 12 attributes, 4 components each,
1180 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1181 * rows.
1182 *
1183 * Actually we use 4 for each, so call it 12 rows.
1184 */
1185 unsigned urb_entry_size;
1186 };
1187
1188 struct brw_clip_prog_data {
1189 uint32_t curb_read_length; /* user planes? */
1190 uint32_t clip_mode;
1191 uint32_t urb_read_length;
1192 uint32_t total_grf;
1193 };
1194
1195 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1196 union brw_any_prog_data {
1197 struct brw_stage_prog_data base;
1198 struct brw_vue_prog_data vue;
1199 struct brw_vs_prog_data vs;
1200 struct brw_tcs_prog_data tcs;
1201 struct brw_tes_prog_data tes;
1202 struct brw_gs_prog_data gs;
1203 struct brw_wm_prog_data wm;
1204 struct brw_cs_prog_data cs;
1205 };
1206
1207 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1208 static inline struct brw_##stage##_prog_data * \
1209 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1210 { \
1211 return (struct brw_##stage##_prog_data *) prog_data; \
1212 }
1213 DEFINE_PROG_DATA_DOWNCAST(vue)
1214 DEFINE_PROG_DATA_DOWNCAST(vs)
1215 DEFINE_PROG_DATA_DOWNCAST(tcs)
1216 DEFINE_PROG_DATA_DOWNCAST(tes)
1217 DEFINE_PROG_DATA_DOWNCAST(gs)
1218 DEFINE_PROG_DATA_DOWNCAST(wm)
1219 DEFINE_PROG_DATA_DOWNCAST(cs)
1220 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1221 DEFINE_PROG_DATA_DOWNCAST(clip)
1222 DEFINE_PROG_DATA_DOWNCAST(sf)
1223 #undef DEFINE_PROG_DATA_DOWNCAST
1224
1225 /** @} */
1226
1227 struct brw_compiler *
1228 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1229
1230 /**
1231 * Returns a compiler configuration for use with disk shader cache
1232 *
1233 * This value only needs to change for settings that can cause different
1234 * program generation between two runs on the same hardware.
1235 *
1236 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1237 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1238 */
1239 uint64_t
1240 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1241
1242 unsigned
1243 brw_prog_data_size(gl_shader_stage stage);
1244
1245 unsigned
1246 brw_prog_key_size(gl_shader_stage stage);
1247
1248 void
1249 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1250
1251 /**
1252 * Compile a vertex shader.
1253 *
1254 * Returns the final assembly and the program's size.
1255 */
1256 const unsigned *
1257 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1258 void *mem_ctx,
1259 const struct brw_vs_prog_key *key,
1260 struct brw_vs_prog_data *prog_data,
1261 struct nir_shader *shader,
1262 int shader_time_index,
1263 char **error_str);
1264
1265 /**
1266 * Compile a tessellation control shader.
1267 *
1268 * Returns the final assembly and the program's size.
1269 */
1270 const unsigned *
1271 brw_compile_tcs(const struct brw_compiler *compiler,
1272 void *log_data,
1273 void *mem_ctx,
1274 const struct brw_tcs_prog_key *key,
1275 struct brw_tcs_prog_data *prog_data,
1276 struct nir_shader *nir,
1277 int shader_time_index,
1278 char **error_str);
1279
1280 /**
1281 * Compile a tessellation evaluation shader.
1282 *
1283 * Returns the final assembly and the program's size.
1284 */
1285 const unsigned *
1286 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1287 void *mem_ctx,
1288 const struct brw_tes_prog_key *key,
1289 const struct brw_vue_map *input_vue_map,
1290 struct brw_tes_prog_data *prog_data,
1291 struct nir_shader *shader,
1292 struct gl_program *prog,
1293 int shader_time_index,
1294 char **error_str);
1295
1296 /**
1297 * Compile a vertex shader.
1298 *
1299 * Returns the final assembly and the program's size.
1300 */
1301 const unsigned *
1302 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1303 void *mem_ctx,
1304 const struct brw_gs_prog_key *key,
1305 struct brw_gs_prog_data *prog_data,
1306 struct nir_shader *shader,
1307 struct gl_program *prog,
1308 int shader_time_index,
1309 char **error_str);
1310
1311 /**
1312 * Compile a strips and fans shader.
1313 *
1314 * This is a fixed-function shader determined entirely by the shader key and
1315 * a VUE map.
1316 *
1317 * Returns the final assembly and the program's size.
1318 */
1319 const unsigned *
1320 brw_compile_sf(const struct brw_compiler *compiler,
1321 void *mem_ctx,
1322 const struct brw_sf_prog_key *key,
1323 struct brw_sf_prog_data *prog_data,
1324 struct brw_vue_map *vue_map,
1325 unsigned *final_assembly_size);
1326
1327 /**
1328 * Compile a clipper shader.
1329 *
1330 * This is a fixed-function shader determined entirely by the shader key and
1331 * a VUE map.
1332 *
1333 * Returns the final assembly and the program's size.
1334 */
1335 const unsigned *
1336 brw_compile_clip(const struct brw_compiler *compiler,
1337 void *mem_ctx,
1338 const struct brw_clip_prog_key *key,
1339 struct brw_clip_prog_data *prog_data,
1340 struct brw_vue_map *vue_map,
1341 unsigned *final_assembly_size);
1342
1343 /**
1344 * Compile a fragment shader.
1345 *
1346 * Returns the final assembly and the program's size.
1347 */
1348 const unsigned *
1349 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1350 void *mem_ctx,
1351 const struct brw_wm_prog_key *key,
1352 struct brw_wm_prog_data *prog_data,
1353 struct nir_shader *shader,
1354 struct gl_program *prog,
1355 int shader_time_index8,
1356 int shader_time_index16,
1357 int shader_time_index32,
1358 bool allow_spilling,
1359 bool use_rep_send, struct brw_vue_map *vue_map,
1360 char **error_str);
1361
1362 /**
1363 * Compile a compute shader.
1364 *
1365 * Returns the final assembly and the program's size.
1366 */
1367 const unsigned *
1368 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1369 void *mem_ctx,
1370 const struct brw_cs_prog_key *key,
1371 struct brw_cs_prog_data *prog_data,
1372 const struct nir_shader *shader,
1373 int shader_time_index,
1374 char **error_str);
1375
1376 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1377 gl_shader_stage stage,
1378 const struct brw_base_prog_key *old_key,
1379 const struct brw_base_prog_key *key);
1380
1381 static inline uint32_t
1382 encode_slm_size(unsigned gen, uint32_t bytes)
1383 {
1384 uint32_t slm_size = 0;
1385
1386 /* Shared Local Memory is specified as powers of two, and encoded in
1387 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1388 *
1389 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1390 * -------------------------------------------------------------------
1391 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1392 * -------------------------------------------------------------------
1393 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1394 */
1395 assert(bytes <= 64 * 1024);
1396
1397 if (bytes > 0) {
1398 /* Shared Local Memory Size is specified as powers of two. */
1399 slm_size = util_next_power_of_two(bytes);
1400
1401 if (gen >= 9) {
1402 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1403 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1404 } else {
1405 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1406 slm_size = MAX2(slm_size, 4096) / 4096;
1407 }
1408 }
1409
1410 return slm_size;
1411 }
1412
1413 /**
1414 * Return true if the given shader stage is dispatched contiguously by the
1415 * relevant fixed function starting from channel 0 of the SIMD thread, which
1416 * implies that the dispatch mask of a thread can be assumed to have the form
1417 * '2^n - 1' for some n.
1418 */
1419 static inline bool
1420 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1421 gl_shader_stage stage,
1422 const struct brw_stage_prog_data *prog_data)
1423 {
1424 /* The code below makes assumptions about the hardware's thread dispatch
1425 * behavior that could be proven wrong in future generations -- Make sure
1426 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1427 * the NIR front-end before changing this assertion.
1428 */
1429 assert(devinfo->gen <= 11);
1430
1431 switch (stage) {
1432 case MESA_SHADER_FRAGMENT: {
1433 /* The PSD discards subspans coming in with no lit samples, which in the
1434 * per-pixel shading case implies that each subspan will either be fully
1435 * lit (due to the VMask being used to allow derivative computations),
1436 * or not dispatched at all. In per-sample dispatch mode individual
1437 * samples from the same subspan have a fixed relative location within
1438 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1439 * general and we should return false.
1440 */
1441 const struct brw_wm_prog_data *wm_prog_data =
1442 (const struct brw_wm_prog_data *)prog_data;
1443 return !wm_prog_data->persample_dispatch;
1444 }
1445 case MESA_SHADER_COMPUTE:
1446 /* Compute shaders will be spawned with either a fully enabled dispatch
1447 * mask or with whatever bottom/right execution mask was given to the
1448 * GPGPU walker command to be used along the workgroup edges -- In both
1449 * cases the dispatch mask is required to be tightly packed for our
1450 * invocation index calculations to work.
1451 */
1452 return true;
1453 default:
1454 /* Most remaining fixed functions are limited to use a packed dispatch
1455 * mask due to the hardware representation of the dispatch mask as a
1456 * single counter representing the number of enabled channels.
1457 */
1458 return true;
1459 }
1460 }
1461
1462 /**
1463 * Computes the first varying slot in the URB produced by the previous stage
1464 * that is used in the next stage. We do this by testing the varying slots in
1465 * the previous stage's vue map against the inputs read in the next stage.
1466 *
1467 * Note that:
1468 *
1469 * - Each URB offset contains two varying slots and we can only skip a
1470 * full offset if both slots are unused, so the value we return here is always
1471 * rounded down to the closest multiple of two.
1472 *
1473 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1474 * part of the vue header, so if these are read we can't skip anything.
1475 */
1476 static inline int
1477 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1478 const struct brw_vue_map *prev_stage_vue_map)
1479 {
1480 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1481 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1482 int varying = prev_stage_vue_map->slot_to_varying[i];
1483 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1484 return ROUND_DOWN_TO(i, 2);
1485 }
1486 }
1487
1488 return 0;
1489 }
1490
1491 #ifdef __cplusplus
1492 } /* extern "C" */
1493 #endif
1494
1495 #endif /* BRW_COMPILER_H */