intel/compiler: Add a helper for growing the prog_data::param array
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "common/gen_device_info.h"
29 #include "main/mtypes.h"
30 #include "main/macros.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117
118 /**
119 * Program key structures.
120 *
121 * When drawing, we look for the currently bound shaders in the program
122 * cache. This is essentially a hash table lookup, and these are the keys.
123 *
124 * Sometimes OpenGL features specified as state need to be simulated via
125 * shader code, due to a mismatch between the API and the hardware. This
126 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
127 * in the program key so it's considered when searching for a program. If
128 * we haven't seen a particular combination before, we have to recompile a
129 * new specialized version.
130 *
131 * Shader compilation should not look up state in gl_context directly, but
132 * instead use the copy in the program key. This guarantees recompiles will
133 * happen correctly.
134 *
135 * @{
136 */
137
138 enum PACKED gen6_gather_sampler_wa {
139 WA_SIGN = 1, /* whether we need to sign extend */
140 WA_8BIT = 2, /* if we have an 8bit format needing wa */
141 WA_16BIT = 4, /* if we have a 16bit format needing wa */
142 };
143
144 /**
145 * Sampler information needed by VS, WM, and GS program cache keys.
146 */
147 struct brw_sampler_prog_key_data {
148 /**
149 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
150 */
151 uint16_t swizzles[MAX_SAMPLERS];
152
153 uint32_t gl_clamp_mask[3];
154
155 /**
156 * For RG32F, gather4's channel select is broken.
157 */
158 uint32_t gather_channel_quirk_mask;
159
160 /**
161 * Whether this sampler uses the compressed multisample surface layout.
162 */
163 uint32_t compressed_multisample_layout_mask;
164
165 /**
166 * Whether this sampler is using 16x multisampling. If so fetching from
167 * this sampler will be handled with a different instruction, ld2dms_w
168 * instead of ld2dms.
169 */
170 uint32_t msaa_16;
171
172 /**
173 * For Sandybridge, which shader w/a we need for gather quirks.
174 */
175 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
176
177 /**
178 * Texture units that have a YUV image bound.
179 */
180 uint32_t y_u_v_image_mask;
181 uint32_t y_uv_image_mask;
182 uint32_t yx_xuxv_image_mask;
183 uint32_t xy_uxvx_image_mask;
184 };
185
186 /**
187 * The VF can't natively handle certain types of attributes, such as GL_FIXED
188 * or most 10_10_10_2 types. These flags enable various VS workarounds to
189 * "fix" attributes at the beginning of shaders.
190 */
191 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
192 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
193 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
194 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
195 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
196
197 /**
198 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
199 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
200 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
201 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
202 */
203 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
204 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
205
206 /** The program key for Vertex Shaders. */
207 struct brw_vs_prog_key {
208 unsigned program_string_id;
209
210 /**
211 * Per-attribute workaround flags
212 *
213 * For each attribute, a combination of BRW_ATTRIB_WA_*.
214 *
215 * For OpenGL, where we expose a maximum of 16 user input atttributes
216 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
217 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
218 * expose up to 28 user input vertex attributes that are mapped to slots
219 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
220 * enough to hold this many slots.
221 */
222 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
223
224 bool copy_edgeflag:1;
225
226 bool clamp_vertex_color:1;
227
228 /**
229 * How many user clipping planes are being uploaded to the vertex shader as
230 * push constants.
231 *
232 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
233 * clip distances.
234 */
235 unsigned nr_userclip_plane_consts:4;
236
237 /**
238 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
239 * are going to be replaced with point coordinates (as a consequence of a
240 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
241 * our SF thread requires exact matching between VS outputs and FS inputs,
242 * these texture coordinates will need to be unconditionally included in
243 * the VUE, even if they aren't written by the vertex shader.
244 */
245 uint8_t point_coord_replace;
246
247 struct brw_sampler_prog_key_data tex;
248 };
249
250 /** The program key for Tessellation Control Shaders. */
251 struct brw_tcs_prog_key
252 {
253 unsigned program_string_id;
254
255 GLenum tes_primitive_mode;
256
257 unsigned input_vertices;
258
259 /** A bitfield of per-patch outputs written. */
260 uint32_t patch_outputs_written;
261
262 /** A bitfield of per-vertex outputs written. */
263 uint64_t outputs_written;
264
265 bool quads_workaround;
266
267 struct brw_sampler_prog_key_data tex;
268 };
269
270 /** The program key for Tessellation Evaluation Shaders. */
271 struct brw_tes_prog_key
272 {
273 unsigned program_string_id;
274
275 /** A bitfield of per-patch inputs read. */
276 uint32_t patch_inputs_read;
277
278 /** A bitfield of per-vertex inputs read. */
279 uint64_t inputs_read;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Geometry Shaders. */
285 struct brw_gs_prog_key
286 {
287 unsigned program_string_id;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 enum brw_sf_primitive {
293 BRW_SF_PRIM_POINTS = 0,
294 BRW_SF_PRIM_LINES = 1,
295 BRW_SF_PRIM_TRIANGLES = 2,
296 BRW_SF_PRIM_UNFILLED_TRIS = 3,
297 };
298
299 struct brw_sf_prog_key {
300 uint64_t attrs;
301 bool contains_flat_varying;
302 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
303 uint8_t point_sprite_coord_replace;
304 enum brw_sf_primitive primitive:2;
305 bool do_twoside_color:1;
306 bool frontface_ccw:1;
307 bool do_point_sprite:1;
308 bool do_point_coord:1;
309 bool sprite_origin_lower_left:1;
310 bool userclip_active:1;
311 };
312
313 enum brw_clip_mode {
314 BRW_CLIP_MODE_NORMAL = 0,
315 BRW_CLIP_MODE_CLIP_ALL = 1,
316 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
317 BRW_CLIP_MODE_REJECT_ALL = 3,
318 BRW_CLIP_MODE_ACCEPT_ALL = 4,
319 BRW_CLIP_MODE_KERNEL_CLIP = 5,
320 };
321
322 enum brw_clip_fill_mode {
323 BRW_CLIP_FILL_MODE_LINE = 0,
324 BRW_CLIP_FILL_MODE_POINT = 1,
325 BRW_CLIP_FILL_MODE_FILL = 2,
326 BRW_CLIP_FILL_MODE_CULL = 3,
327 };
328
329 /* Note that if unfilled primitives are being emitted, we have to fix
330 * up polygon offset and flatshading at this point:
331 */
332 struct brw_clip_prog_key {
333 uint64_t attrs;
334 bool contains_flat_varying;
335 bool contains_noperspective_varying;
336 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
337 unsigned primitive:4;
338 unsigned nr_userclip:4;
339 bool pv_first:1;
340 bool do_unfilled:1;
341 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
342 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
343 bool offset_cw:1;
344 bool offset_ccw:1;
345 bool copy_bfc_cw:1;
346 bool copy_bfc_ccw:1;
347 enum brw_clip_mode clip_mode:3;
348
349 float offset_factor;
350 float offset_units;
351 float offset_clamp;
352 };
353
354 /* A big lookup table is used to figure out which and how many
355 * additional regs will inserted before the main payload in the WM
356 * program execution. These mainly relate to depth and stencil
357 * processing and the early-depth-test optimization.
358 */
359 enum brw_wm_iz_bits {
360 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
361 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
362 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
363 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
364 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
365 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
366 BRW_WM_IZ_BIT_MAX = 0x40
367 };
368
369 enum brw_wm_aa_enable {
370 BRW_WM_AA_NEVER,
371 BRW_WM_AA_SOMETIMES,
372 BRW_WM_AA_ALWAYS
373 };
374
375 /** The program key for Fragment/Pixel Shaders. */
376 struct brw_wm_prog_key {
377 /* Some collection of BRW_WM_IZ_* */
378 uint8_t iz_lookup;
379 bool stats_wm:1;
380 bool flat_shade:1;
381 unsigned nr_color_regions:5;
382 bool replicate_alpha:1;
383 bool clamp_fragment_color:1;
384 bool persample_interp:1;
385 bool multisample_fbo:1;
386 bool frag_coord_adds_sample_pos:1;
387 enum brw_wm_aa_enable line_aa:2;
388 bool high_quality_derivatives:1;
389 bool force_dual_color_blend:1;
390 bool coherent_fb_fetch:1;
391
392 uint16_t drawable_height;
393 uint64_t input_slots_valid;
394 unsigned program_string_id;
395 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
396 float alpha_test_ref;
397
398 struct brw_sampler_prog_key_data tex;
399 };
400
401 struct brw_cs_prog_key {
402 uint32_t program_string_id;
403 struct brw_sampler_prog_key_data tex;
404 };
405
406 /*
407 * Image metadata structure as laid out in the shader parameter
408 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
409 * able to use them. That's okay because the padding and any unused
410 * entries [most of them except when we're doing untyped surface
411 * access] will be removed by the uniform packing pass.
412 */
413 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
414 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
415 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
416 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
417 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
418 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
419 #define BRW_IMAGE_PARAM_SIZE 24
420
421 struct brw_image_param {
422 /** Surface binding table index. */
423 uint32_t surface_idx;
424
425 /** Offset applied to the X and Y surface coordinates. */
426 uint32_t offset[2];
427
428 /** Surface X, Y and Z dimensions. */
429 uint32_t size[3];
430
431 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
432 * pixels, vertical slice stride in pixels.
433 */
434 uint32_t stride[4];
435
436 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
437 uint32_t tiling[3];
438
439 /**
440 * Right shift to apply for bit 6 address swizzling. Two different
441 * swizzles can be specified and will be applied one after the other. The
442 * resulting address will be:
443 *
444 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
445 * (addr >> swizzling[1])))
446 *
447 * Use \c 0xff if any of the swizzles is not required.
448 */
449 uint32_t swizzling[2];
450 };
451
452 /** Max number of render targets in a shader */
453 #define BRW_MAX_DRAW_BUFFERS 8
454
455 /**
456 * Max number of binding table entries used for stream output.
457 *
458 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
459 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
460 *
461 * On Gen6, the size of transform feedback data is limited not by the number
462 * of components but by the number of binding table entries we set aside. We
463 * use one binding table entry for a float, one entry for a vector, and one
464 * entry per matrix column. Since the only way we can communicate our
465 * transform feedback capabilities to the client is via
466 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
467 * worst case, in which all the varyings are floats, so we use up one binding
468 * table entry per component. Therefore we need to set aside at least 64
469 * binding table entries for use by transform feedback.
470 *
471 * Note: since we don't currently pack varyings, it is currently impossible
472 * for the client to actually use up all of these binding table entries--if
473 * all of their varyings were floats, they would run out of varying slots and
474 * fail to link. But that's a bug, so it seems prudent to go ahead and
475 * allocate the number of binding table entries we will need once the bug is
476 * fixed.
477 */
478 #define BRW_MAX_SOL_BINDINGS 64
479
480 /**
481 * Binding table index for the first gen6 SOL binding.
482 */
483 #define BRW_GEN6_SOL_BINDING_START 0
484
485 /**
486 * Stride in bytes between shader_time entries.
487 *
488 * We separate entries by a cacheline to reduce traffic between EUs writing to
489 * different entries.
490 */
491 #define BRW_SHADER_TIME_STRIDE 64
492
493 struct brw_ubo_range
494 {
495 uint16_t block;
496 uint8_t start;
497 uint8_t length;
498 };
499
500 /* We reserve the first 2^16 values for builtins */
501 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
502
503 enum brw_param_builtin {
504 BRW_PARAM_BUILTIN_ZERO,
505
506 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
507 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
508 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
509 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
510 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
511 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
512 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
513 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
514 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
515 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
516 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
517 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
518 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
519 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
520 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
521 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
522 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
538
539 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
540 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
541 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
542 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
543 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
544 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
545 };
546
547 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
548 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
549
550 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
551 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
552 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
553
554 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
555 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
556
557 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
558 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
559
560 struct brw_stage_prog_data {
561 struct {
562 /** size of our binding table. */
563 uint32_t size_bytes;
564
565 /** @{
566 * surface indices for the various groups of surfaces
567 */
568 uint32_t pull_constants_start;
569 uint32_t texture_start;
570 uint32_t gather_texture_start;
571 uint32_t ubo_start;
572 uint32_t ssbo_start;
573 uint32_t abo_start;
574 uint32_t image_start;
575 uint32_t shader_time_start;
576 uint32_t plane_start[3];
577 /** @} */
578 } binding_table;
579
580 struct brw_ubo_range ubo_ranges[4];
581
582 GLuint nr_params; /**< number of float params/constants */
583 GLuint nr_pull_params;
584
585 unsigned curb_read_length;
586 unsigned total_scratch;
587 unsigned total_shared;
588
589 /**
590 * Register where the thread expects to find input data from the URB
591 * (typically uniforms, followed by vertex or fragment attributes).
592 */
593 unsigned dispatch_grf_start_reg;
594
595 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
596
597 /* 32-bit identifiers for all push/pull parameters. These can be anything
598 * the driver wishes them to be; the core of the back-end compiler simply
599 * re-arranges them. The one restriction is that the bottom 2^16 values
600 * are reserved for builtins defined in the brw_param_builtin enum defined
601 * above.
602 */
603 uint32_t *param;
604 uint32_t *pull_param;
605 };
606
607 static inline uint32_t *
608 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
609 unsigned nr_new_params)
610 {
611 unsigned old_nr_params = prog_data->nr_params;
612 prog_data->nr_params += nr_new_params;
613 prog_data->param = reralloc(ralloc_parent(prog_data->param),
614 prog_data->param, uint32_t,
615 prog_data->nr_params);
616 return prog_data->param + old_nr_params;
617 }
618
619 static inline void
620 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
621 unsigned surf_index)
622 {
623 /* A binding table index is 8 bits and the top 3 values are reserved for
624 * special things (stateless and SLM).
625 */
626 assert(surf_index <= 252);
627
628 prog_data->binding_table.size_bytes =
629 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
630 }
631
632 enum brw_barycentric_mode {
633 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
634 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
635 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
636 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
637 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
638 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
639 BRW_BARYCENTRIC_MODE_COUNT = 6
640 };
641 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
642 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
643 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
644 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
645
646 enum brw_pixel_shader_computed_depth_mode {
647 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
648 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
649 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
650 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
651 };
652
653 /* Data about a particular attempt to compile a program. Note that
654 * there can be many of these, each in a different GL state
655 * corresponding to a different brw_wm_prog_key struct, with different
656 * compiled programs.
657 */
658 struct brw_wm_prog_data {
659 struct brw_stage_prog_data base;
660
661 GLuint num_varying_inputs;
662
663 uint8_t reg_blocks_0;
664 uint8_t reg_blocks_2;
665
666 uint8_t dispatch_grf_start_reg_2;
667 uint32_t prog_offset_2;
668
669 struct {
670 /** @{
671 * surface indices the WM-specific surfaces
672 */
673 uint32_t render_target_start;
674 uint32_t render_target_read_start;
675 /** @} */
676 } binding_table;
677
678 uint8_t computed_depth_mode;
679 bool computed_stencil;
680
681 bool early_fragment_tests;
682 bool post_depth_coverage;
683 bool inner_coverage;
684 bool dispatch_8;
685 bool dispatch_16;
686 bool dual_src_blend;
687 bool persample_dispatch;
688 bool uses_pos_offset;
689 bool uses_omask;
690 bool uses_kill;
691 bool uses_src_depth;
692 bool uses_src_w;
693 bool uses_sample_mask;
694 bool has_render_target_reads;
695 bool has_side_effects;
696 bool pulls_bary;
697
698 bool contains_flat_varying;
699 bool contains_noperspective_varying;
700
701 /**
702 * Mask of which interpolation modes are required by the fragment shader.
703 * Used in hardware setup on gen6+.
704 */
705 uint32_t barycentric_interp_modes;
706
707 /**
708 * Mask of which FS inputs are marked flat by the shader source. This is
709 * needed for setting up 3DSTATE_SF/SBE.
710 */
711 uint32_t flat_inputs;
712
713 /* Mapping of VUE slots to interpolation modes.
714 * Used by the Gen4-5 clip/sf/wm stages.
715 */
716 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
717
718 /**
719 * Map from gl_varying_slot to the position within the FS setup data
720 * payload where the varying's attribute vertex deltas should be delivered.
721 * For varying slots that are not used by the FS, the value is -1.
722 */
723 int urb_setup[VARYING_SLOT_MAX];
724 };
725
726 struct brw_push_const_block {
727 unsigned dwords; /* Dword count, not reg aligned */
728 unsigned regs;
729 unsigned size; /* Bytes, register aligned */
730 };
731
732 struct brw_cs_prog_data {
733 struct brw_stage_prog_data base;
734
735 GLuint dispatch_grf_start_reg_16;
736 unsigned local_size[3];
737 unsigned simd_size;
738 unsigned threads;
739 bool uses_barrier;
740 bool uses_num_work_groups;
741 int thread_local_id_index;
742
743 struct {
744 struct brw_push_const_block cross_thread;
745 struct brw_push_const_block per_thread;
746 struct brw_push_const_block total;
747 } push;
748
749 struct {
750 /** @{
751 * surface indices the CS-specific surfaces
752 */
753 uint32_t work_groups_start;
754 /** @} */
755 } binding_table;
756 };
757
758 /**
759 * Enum representing the i965-specific vertex results that don't correspond
760 * exactly to any element of gl_varying_slot. The values of this enum are
761 * assigned such that they don't conflict with gl_varying_slot.
762 */
763 typedef enum
764 {
765 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
766 BRW_VARYING_SLOT_PAD,
767 /**
768 * Technically this is not a varying but just a placeholder that
769 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
770 * builtin variable to be compiled correctly. see compile_sf_prog() for
771 * more info.
772 */
773 BRW_VARYING_SLOT_PNTC,
774 BRW_VARYING_SLOT_COUNT
775 } brw_varying_slot;
776
777 /**
778 * We always program SF to start reading at an offset of 1 (2 varying slots)
779 * from the start of the vertex URB entry. This causes it to skip:
780 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
781 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
782 */
783 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
784
785 /**
786 * Bitmask indicating which fragment shader inputs represent varyings (and
787 * hence have to be delivered to the fragment shader by the SF/SBE stage).
788 */
789 #define BRW_FS_VARYING_INPUT_MASK \
790 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
791 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
792
793 /**
794 * Data structure recording the relationship between the gl_varying_slot enum
795 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
796 * single octaword within the VUE (128 bits).
797 *
798 * Note that each BRW register contains 256 bits (2 octawords), so when
799 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
800 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
801 * in a vertex shader), each register corresponds to a single VUE slot, since
802 * it contains data for two separate vertices.
803 */
804 struct brw_vue_map {
805 /**
806 * Bitfield representing all varying slots that are (a) stored in this VUE
807 * map, and (b) actually written by the shader. Does not include any of
808 * the additional varying slots defined in brw_varying_slot.
809 */
810 uint64_t slots_valid;
811
812 /**
813 * Is this VUE map for a separate shader pipeline?
814 *
815 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
816 * without the linker having a chance to dead code eliminate unused varyings.
817 *
818 * This means that we have to use a fixed slot layout, based on the output's
819 * location field, rather than assigning slots in a compact contiguous block.
820 */
821 bool separate;
822
823 /**
824 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
825 * not stored in a slot (because they are not written, or because
826 * additional processing is applied before storing them in the VUE), the
827 * value is -1.
828 */
829 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
830
831 /**
832 * Map from VUE slot to gl_varying_slot value. For slots that do not
833 * directly correspond to a gl_varying_slot, the value comes from
834 * brw_varying_slot.
835 *
836 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
837 */
838 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
839
840 /**
841 * Total number of VUE slots in use
842 */
843 int num_slots;
844
845 /**
846 * Number of per-patch VUE slots. Only valid for tessellation control
847 * shader outputs and tessellation evaluation shader inputs.
848 */
849 int num_per_patch_slots;
850
851 /**
852 * Number of per-vertex VUE slots. Only valid for tessellation control
853 * shader outputs and tessellation evaluation shader inputs.
854 */
855 int num_per_vertex_slots;
856 };
857
858 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
859
860 /**
861 * Convert a VUE slot number into a byte offset within the VUE.
862 */
863 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
864 {
865 return 16*slot;
866 }
867
868 /**
869 * Convert a vertex output (brw_varying_slot) into a byte offset within the
870 * VUE.
871 */
872 static inline
873 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
874 {
875 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
876 }
877
878 void brw_compute_vue_map(const struct gen_device_info *devinfo,
879 struct brw_vue_map *vue_map,
880 uint64_t slots_valid,
881 bool separate_shader);
882
883 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
884 uint64_t slots_valid,
885 uint32_t is_patch);
886
887 /* brw_interpolation_map.c */
888 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
889 struct nir_shader *nir,
890 struct brw_wm_prog_data *prog_data,
891 const struct gen_device_info *devinfo);
892
893 enum shader_dispatch_mode {
894 DISPATCH_MODE_4X1_SINGLE = 0,
895 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
896 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
897 DISPATCH_MODE_SIMD8 = 3,
898 };
899
900 /**
901 * @defgroup Tessellator parameter enumerations.
902 *
903 * These correspond to the hardware values in 3DSTATE_TE, and are provided
904 * as part of the tessellation evaluation shader.
905 *
906 * @{
907 */
908 enum brw_tess_partitioning {
909 BRW_TESS_PARTITIONING_INTEGER = 0,
910 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
911 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
912 };
913
914 enum brw_tess_output_topology {
915 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
916 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
917 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
918 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
919 };
920
921 enum brw_tess_domain {
922 BRW_TESS_DOMAIN_QUAD = 0,
923 BRW_TESS_DOMAIN_TRI = 1,
924 BRW_TESS_DOMAIN_ISOLINE = 2,
925 };
926 /** @} */
927
928 struct brw_vue_prog_data {
929 struct brw_stage_prog_data base;
930 struct brw_vue_map vue_map;
931
932 /** Should the hardware deliver input VUE handles for URB pull loads? */
933 bool include_vue_handles;
934
935 GLuint urb_read_length;
936 GLuint total_grf;
937
938 uint32_t clip_distance_mask;
939 uint32_t cull_distance_mask;
940
941 /* Used for calculating urb partitions. In the VS, this is the size of the
942 * URB entry used for both input and output to the thread. In the GS, this
943 * is the size of the URB entry used for output.
944 */
945 GLuint urb_entry_size;
946
947 enum shader_dispatch_mode dispatch_mode;
948 };
949
950 struct brw_vs_prog_data {
951 struct brw_vue_prog_data base;
952
953 GLbitfield64 inputs_read;
954 GLbitfield64 double_inputs_read;
955
956 unsigned nr_attributes;
957 unsigned nr_attribute_slots;
958
959 bool uses_vertexid;
960 bool uses_instanceid;
961 bool uses_basevertex;
962 bool uses_baseinstance;
963 bool uses_drawid;
964 };
965
966 struct brw_tcs_prog_data
967 {
968 struct brw_vue_prog_data base;
969
970 /** Number vertices in output patch */
971 int instances;
972 };
973
974
975 struct brw_tes_prog_data
976 {
977 struct brw_vue_prog_data base;
978
979 enum brw_tess_partitioning partitioning;
980 enum brw_tess_output_topology output_topology;
981 enum brw_tess_domain domain;
982 };
983
984 struct brw_gs_prog_data
985 {
986 struct brw_vue_prog_data base;
987
988 unsigned vertices_in;
989
990 /**
991 * Size of an output vertex, measured in HWORDS (32 bytes).
992 */
993 unsigned output_vertex_size_hwords;
994
995 unsigned output_topology;
996
997 /**
998 * Size of the control data (cut bits or StreamID bits), in hwords (32
999 * bytes). 0 if there is no control data.
1000 */
1001 unsigned control_data_header_size_hwords;
1002
1003 /**
1004 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1005 * if the control data is StreamID bits, or
1006 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1007 * Ignored if control_data_header_size is 0.
1008 */
1009 unsigned control_data_format;
1010
1011 bool include_primitive_id;
1012
1013 /**
1014 * The number of vertices emitted, if constant - otherwise -1.
1015 */
1016 int static_vertex_count;
1017
1018 int invocations;
1019
1020 /**
1021 * Gen6: Provoking vertex convention for odd-numbered triangles
1022 * in tristrips.
1023 */
1024 GLuint pv_first:1;
1025
1026 /**
1027 * Gen6: Number of varyings that are output to transform feedback.
1028 */
1029 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1030
1031 /**
1032 * Gen6: Map from the index of a transform feedback binding table entry to the
1033 * gl_varying_slot that should be streamed out through that binding table
1034 * entry.
1035 */
1036 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1037
1038 /**
1039 * Gen6: Map from the index of a transform feedback binding table entry to the
1040 * swizzles that should be used when streaming out data through that
1041 * binding table entry.
1042 */
1043 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1044 };
1045
1046 struct brw_sf_prog_data {
1047 uint32_t urb_read_length;
1048 uint32_t total_grf;
1049
1050 /* Each vertex may have upto 12 attributes, 4 components each,
1051 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1052 * rows.
1053 *
1054 * Actually we use 4 for each, so call it 12 rows.
1055 */
1056 unsigned urb_entry_size;
1057 };
1058
1059 struct brw_clip_prog_data {
1060 uint32_t curb_read_length; /* user planes? */
1061 uint32_t clip_mode;
1062 uint32_t urb_read_length;
1063 uint32_t total_grf;
1064 };
1065
1066 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1067 static inline struct brw_##stage##_prog_data * \
1068 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1069 { \
1070 return (struct brw_##stage##_prog_data *) prog_data; \
1071 }
1072 DEFINE_PROG_DATA_DOWNCAST(vue)
1073 DEFINE_PROG_DATA_DOWNCAST(vs)
1074 DEFINE_PROG_DATA_DOWNCAST(tcs)
1075 DEFINE_PROG_DATA_DOWNCAST(tes)
1076 DEFINE_PROG_DATA_DOWNCAST(gs)
1077 DEFINE_PROG_DATA_DOWNCAST(wm)
1078 DEFINE_PROG_DATA_DOWNCAST(cs)
1079 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1080 DEFINE_PROG_DATA_DOWNCAST(clip)
1081 DEFINE_PROG_DATA_DOWNCAST(sf)
1082 #undef DEFINE_PROG_DATA_DOWNCAST
1083
1084 /** @} */
1085
1086 struct brw_compiler *
1087 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1088
1089 /**
1090 * Compile a vertex shader.
1091 *
1092 * Returns the final assembly and the program's size.
1093 */
1094 const unsigned *
1095 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1096 void *mem_ctx,
1097 const struct brw_vs_prog_key *key,
1098 struct brw_vs_prog_data *prog_data,
1099 const struct nir_shader *shader,
1100 bool use_legacy_snorm_formula,
1101 int shader_time_index,
1102 unsigned *final_assembly_size,
1103 char **error_str);
1104
1105 /**
1106 * Compile a tessellation control shader.
1107 *
1108 * Returns the final assembly and the program's size.
1109 */
1110 const unsigned *
1111 brw_compile_tcs(const struct brw_compiler *compiler,
1112 void *log_data,
1113 void *mem_ctx,
1114 const struct brw_tcs_prog_key *key,
1115 struct brw_tcs_prog_data *prog_data,
1116 const struct nir_shader *nir,
1117 int shader_time_index,
1118 unsigned *final_assembly_size,
1119 char **error_str);
1120
1121 /**
1122 * Compile a tessellation evaluation shader.
1123 *
1124 * Returns the final assembly and the program's size.
1125 */
1126 const unsigned *
1127 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1128 void *mem_ctx,
1129 const struct brw_tes_prog_key *key,
1130 const struct brw_vue_map *input_vue_map,
1131 struct brw_tes_prog_data *prog_data,
1132 const struct nir_shader *shader,
1133 struct gl_program *prog,
1134 int shader_time_index,
1135 unsigned *final_assembly_size,
1136 char **error_str);
1137
1138 /**
1139 * Compile a vertex shader.
1140 *
1141 * Returns the final assembly and the program's size.
1142 */
1143 const unsigned *
1144 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1145 void *mem_ctx,
1146 const struct brw_gs_prog_key *key,
1147 struct brw_gs_prog_data *prog_data,
1148 const struct nir_shader *shader,
1149 struct gl_program *prog,
1150 int shader_time_index,
1151 unsigned *final_assembly_size,
1152 char **error_str);
1153
1154 /**
1155 * Compile a strips and fans shader.
1156 *
1157 * This is a fixed-function shader determined entirely by the shader key and
1158 * a VUE map.
1159 *
1160 * Returns the final assembly and the program's size.
1161 */
1162 const unsigned *
1163 brw_compile_sf(const struct brw_compiler *compiler,
1164 void *mem_ctx,
1165 const struct brw_sf_prog_key *key,
1166 struct brw_sf_prog_data *prog_data,
1167 struct brw_vue_map *vue_map,
1168 unsigned *final_assembly_size);
1169
1170 /**
1171 * Compile a clipper shader.
1172 *
1173 * This is a fixed-function shader determined entirely by the shader key and
1174 * a VUE map.
1175 *
1176 * Returns the final assembly and the program's size.
1177 */
1178 const unsigned *
1179 brw_compile_clip(const struct brw_compiler *compiler,
1180 void *mem_ctx,
1181 const struct brw_clip_prog_key *key,
1182 struct brw_clip_prog_data *prog_data,
1183 struct brw_vue_map *vue_map,
1184 unsigned *final_assembly_size);
1185
1186 /**
1187 * Compile a fragment shader.
1188 *
1189 * Returns the final assembly and the program's size.
1190 */
1191 const unsigned *
1192 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1193 void *mem_ctx,
1194 const struct brw_wm_prog_key *key,
1195 struct brw_wm_prog_data *prog_data,
1196 const struct nir_shader *shader,
1197 struct gl_program *prog,
1198 int shader_time_index8,
1199 int shader_time_index16,
1200 bool allow_spilling,
1201 bool use_rep_send, struct brw_vue_map *vue_map,
1202 unsigned *final_assembly_size,
1203 char **error_str);
1204
1205 /**
1206 * Compile a compute shader.
1207 *
1208 * Returns the final assembly and the program's size.
1209 */
1210 const unsigned *
1211 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1212 void *mem_ctx,
1213 const struct brw_cs_prog_key *key,
1214 struct brw_cs_prog_data *prog_data,
1215 const struct nir_shader *shader,
1216 int shader_time_index,
1217 unsigned *final_assembly_size,
1218 char **error_str);
1219
1220 static inline uint32_t
1221 encode_slm_size(unsigned gen, uint32_t bytes)
1222 {
1223 uint32_t slm_size = 0;
1224
1225 /* Shared Local Memory is specified as powers of two, and encoded in
1226 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1227 *
1228 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1229 * -------------------------------------------------------------------
1230 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1231 * -------------------------------------------------------------------
1232 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1233 */
1234 assert(bytes <= 64 * 1024);
1235
1236 if (bytes > 0) {
1237 /* Shared Local Memory Size is specified as powers of two. */
1238 slm_size = util_next_power_of_two(bytes);
1239
1240 if (gen >= 9) {
1241 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1242 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1243 } else {
1244 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1245 slm_size = MAX2(slm_size, 4096) / 4096;
1246 }
1247 }
1248
1249 return slm_size;
1250 }
1251
1252 /**
1253 * Return true if the given shader stage is dispatched contiguously by the
1254 * relevant fixed function starting from channel 0 of the SIMD thread, which
1255 * implies that the dispatch mask of a thread can be assumed to have the form
1256 * '2^n - 1' for some n.
1257 */
1258 static inline bool
1259 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
1260 gl_shader_stage stage,
1261 const struct brw_stage_prog_data *prog_data)
1262 {
1263 /* The code below makes assumptions about the hardware's thread dispatch
1264 * behavior that could be proven wrong in future generations -- Make sure
1265 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1266 * the NIR front-end before changing this assertion.
1267 */
1268 assert(devinfo->gen <= 10);
1269
1270 switch (stage) {
1271 case MESA_SHADER_FRAGMENT: {
1272 /* The PSD discards subspans coming in with no lit samples, which in the
1273 * per-pixel shading case implies that each subspan will either be fully
1274 * lit (due to the VMask being used to allow derivative computations),
1275 * or not dispatched at all. In per-sample dispatch mode individual
1276 * samples from the same subspan have a fixed relative location within
1277 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1278 * general and we should return false.
1279 */
1280 const struct brw_wm_prog_data *wm_prog_data =
1281 (const struct brw_wm_prog_data *)prog_data;
1282 return !wm_prog_data->persample_dispatch;
1283 }
1284 case MESA_SHADER_COMPUTE:
1285 /* Compute shaders will be spawned with either a fully enabled dispatch
1286 * mask or with whatever bottom/right execution mask was given to the
1287 * GPGPU walker command to be used along the workgroup edges -- In both
1288 * cases the dispatch mask is required to be tightly packed for our
1289 * invocation index calculations to work.
1290 */
1291 return true;
1292 default:
1293 /* Most remaining fixed functions are limited to use a packed dispatch
1294 * mask due to the hardware representation of the dispatch mask as a
1295 * single counter representing the number of enabled channels.
1296 */
1297 return true;
1298 }
1299 }
1300
1301 /**
1302 * Computes the first varying slot in the URB produced by the previous stage
1303 * that is used in the next stage. We do this by testing the varying slots in
1304 * the previous stage's vue map against the inputs read in the next stage.
1305 *
1306 * Note that:
1307 *
1308 * - Each URB offset contains two varying slots and we can only skip a
1309 * full offset if both slots are unused, so the value we return here is always
1310 * rounded down to the closest multiple of two.
1311 *
1312 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1313 * part of the vue header, so if these are read we can't skip anything.
1314 */
1315 static inline int
1316 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1317 const struct brw_vue_map *prev_stage_vue_map)
1318 {
1319 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1320 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1321 int varying = prev_stage_vue_map->slot_to_varying[i];
1322 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1323 return ROUND_DOWN_TO(i, 2);
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 #ifdef __cplusplus
1331 } /* extern "C" */
1332 #endif
1333
1334 #endif /* BRW_COMPILER_H */