intel: Move brw_prog_key_set_id from i965 to the compiler.
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /**
207 * The VF can't natively handle certain types of attributes, such as GL_FIXED
208 * or most 10_10_10_2 types. These flags enable various VS workarounds to
209 * "fix" attributes at the beginning of shaders.
210 */
211 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
212 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
213 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
214 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
215 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
216
217 /**
218 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
219 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
220 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
221 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
222 */
223 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
224 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
225
226 /** The program key for Vertex Shaders. */
227 struct brw_vs_prog_key {
228 unsigned program_string_id;
229
230 /**
231 * Per-attribute workaround flags
232 *
233 * For each attribute, a combination of BRW_ATTRIB_WA_*.
234 *
235 * For OpenGL, where we expose a maximum of 16 user input atttributes
236 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
237 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
238 * expose up to 28 user input vertex attributes that are mapped to slots
239 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
240 * enough to hold this many slots.
241 */
242 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
243
244 bool copy_edgeflag:1;
245
246 bool clamp_vertex_color:1;
247
248 /**
249 * How many user clipping planes are being uploaded to the vertex shader as
250 * push constants.
251 *
252 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
253 * clip distances.
254 */
255 unsigned nr_userclip_plane_consts:4;
256
257 /**
258 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
259 * are going to be replaced with point coordinates (as a consequence of a
260 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
261 * our SF thread requires exact matching between VS outputs and FS inputs,
262 * these texture coordinates will need to be unconditionally included in
263 * the VUE, even if they aren't written by the vertex shader.
264 */
265 uint8_t point_coord_replace;
266
267 struct brw_sampler_prog_key_data tex;
268 };
269
270 /** The program key for Tessellation Control Shaders. */
271 struct brw_tcs_prog_key
272 {
273 unsigned program_string_id;
274
275 GLenum tes_primitive_mode;
276
277 unsigned input_vertices;
278
279 /** A bitfield of per-patch outputs written. */
280 uint32_t patch_outputs_written;
281
282 /** A bitfield of per-vertex outputs written. */
283 uint64_t outputs_written;
284
285 bool quads_workaround;
286
287 struct brw_sampler_prog_key_data tex;
288 };
289
290 /** The program key for Tessellation Evaluation Shaders. */
291 struct brw_tes_prog_key
292 {
293 unsigned program_string_id;
294
295 /** A bitfield of per-patch inputs read. */
296 uint32_t patch_inputs_read;
297
298 /** A bitfield of per-vertex inputs read. */
299 uint64_t inputs_read;
300
301 struct brw_sampler_prog_key_data tex;
302 };
303
304 /** The program key for Geometry Shaders. */
305 struct brw_gs_prog_key
306 {
307 unsigned program_string_id;
308
309 struct brw_sampler_prog_key_data tex;
310 };
311
312 enum brw_sf_primitive {
313 BRW_SF_PRIM_POINTS = 0,
314 BRW_SF_PRIM_LINES = 1,
315 BRW_SF_PRIM_TRIANGLES = 2,
316 BRW_SF_PRIM_UNFILLED_TRIS = 3,
317 };
318
319 struct brw_sf_prog_key {
320 uint64_t attrs;
321 bool contains_flat_varying;
322 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
323 uint8_t point_sprite_coord_replace;
324 enum brw_sf_primitive primitive:2;
325 bool do_twoside_color:1;
326 bool frontface_ccw:1;
327 bool do_point_sprite:1;
328 bool do_point_coord:1;
329 bool sprite_origin_lower_left:1;
330 bool userclip_active:1;
331 };
332
333 enum brw_clip_mode {
334 BRW_CLIP_MODE_NORMAL = 0,
335 BRW_CLIP_MODE_CLIP_ALL = 1,
336 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
337 BRW_CLIP_MODE_REJECT_ALL = 3,
338 BRW_CLIP_MODE_ACCEPT_ALL = 4,
339 BRW_CLIP_MODE_KERNEL_CLIP = 5,
340 };
341
342 enum brw_clip_fill_mode {
343 BRW_CLIP_FILL_MODE_LINE = 0,
344 BRW_CLIP_FILL_MODE_POINT = 1,
345 BRW_CLIP_FILL_MODE_FILL = 2,
346 BRW_CLIP_FILL_MODE_CULL = 3,
347 };
348
349 /* Note that if unfilled primitives are being emitted, we have to fix
350 * up polygon offset and flatshading at this point:
351 */
352 struct brw_clip_prog_key {
353 uint64_t attrs;
354 bool contains_flat_varying;
355 bool contains_noperspective_varying;
356 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
357 unsigned primitive:4;
358 unsigned nr_userclip:4;
359 bool pv_first:1;
360 bool do_unfilled:1;
361 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
362 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
363 bool offset_cw:1;
364 bool offset_ccw:1;
365 bool copy_bfc_cw:1;
366 bool copy_bfc_ccw:1;
367 enum brw_clip_mode clip_mode:3;
368
369 float offset_factor;
370 float offset_units;
371 float offset_clamp;
372 };
373
374 /* A big lookup table is used to figure out which and how many
375 * additional regs will inserted before the main payload in the WM
376 * program execution. These mainly relate to depth and stencil
377 * processing and the early-depth-test optimization.
378 */
379 enum brw_wm_iz_bits {
380 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
381 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
382 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
383 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
384 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
385 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
386 BRW_WM_IZ_BIT_MAX = 0x40
387 };
388
389 enum brw_wm_aa_enable {
390 BRW_WM_AA_NEVER,
391 BRW_WM_AA_SOMETIMES,
392 BRW_WM_AA_ALWAYS
393 };
394
395 /** The program key for Fragment/Pixel Shaders. */
396 struct brw_wm_prog_key {
397 /* Some collection of BRW_WM_IZ_* */
398 uint8_t iz_lookup;
399 bool stats_wm:1;
400 bool flat_shade:1;
401 unsigned nr_color_regions:5;
402 bool alpha_test_replicate_alpha:1;
403 bool alpha_to_coverage:1;
404 bool clamp_fragment_color:1;
405 bool persample_interp:1;
406 bool multisample_fbo:1;
407 bool frag_coord_adds_sample_pos:1;
408 enum brw_wm_aa_enable line_aa:2;
409 bool high_quality_derivatives:1;
410 bool force_dual_color_blend:1;
411 bool coherent_fb_fetch:1;
412
413 uint8_t color_outputs_valid;
414 uint64_t input_slots_valid;
415 unsigned program_string_id;
416 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
417 float alpha_test_ref;
418
419 struct brw_sampler_prog_key_data tex;
420 };
421
422 struct brw_cs_prog_key {
423 uint32_t program_string_id;
424 struct brw_sampler_prog_key_data tex;
425 };
426
427 /* brw_any_prog_key is any of the keys that map to an API stage */
428 union brw_any_prog_key {
429 struct brw_vs_prog_key vs;
430 struct brw_tcs_prog_key tcs;
431 struct brw_tes_prog_key tes;
432 struct brw_gs_prog_key gs;
433 struct brw_wm_prog_key wm;
434 struct brw_cs_prog_key cs;
435 };
436
437 /*
438 * Image metadata structure as laid out in the shader parameter
439 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
440 * able to use them. That's okay because the padding and any unused
441 * entries [most of them except when we're doing untyped surface
442 * access] will be removed by the uniform packing pass.
443 */
444 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
445 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
446 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
447 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
448 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
449 #define BRW_IMAGE_PARAM_SIZE 20
450
451 struct brw_image_param {
452 /** Offset applied to the X and Y surface coordinates. */
453 uint32_t offset[2];
454
455 /** Surface X, Y and Z dimensions. */
456 uint32_t size[3];
457
458 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
459 * pixels, vertical slice stride in pixels.
460 */
461 uint32_t stride[4];
462
463 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
464 uint32_t tiling[3];
465
466 /**
467 * Right shift to apply for bit 6 address swizzling. Two different
468 * swizzles can be specified and will be applied one after the other. The
469 * resulting address will be:
470 *
471 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
472 * (addr >> swizzling[1])))
473 *
474 * Use \c 0xff if any of the swizzles is not required.
475 */
476 uint32_t swizzling[2];
477 };
478
479 /** Max number of render targets in a shader */
480 #define BRW_MAX_DRAW_BUFFERS 8
481
482 /**
483 * Max number of binding table entries used for stream output.
484 *
485 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
486 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
487 *
488 * On Gen6, the size of transform feedback data is limited not by the number
489 * of components but by the number of binding table entries we set aside. We
490 * use one binding table entry for a float, one entry for a vector, and one
491 * entry per matrix column. Since the only way we can communicate our
492 * transform feedback capabilities to the client is via
493 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
494 * worst case, in which all the varyings are floats, so we use up one binding
495 * table entry per component. Therefore we need to set aside at least 64
496 * binding table entries for use by transform feedback.
497 *
498 * Note: since we don't currently pack varyings, it is currently impossible
499 * for the client to actually use up all of these binding table entries--if
500 * all of their varyings were floats, they would run out of varying slots and
501 * fail to link. But that's a bug, so it seems prudent to go ahead and
502 * allocate the number of binding table entries we will need once the bug is
503 * fixed.
504 */
505 #define BRW_MAX_SOL_BINDINGS 64
506
507 /**
508 * Binding table index for the first gen6 SOL binding.
509 */
510 #define BRW_GEN6_SOL_BINDING_START 0
511
512 /**
513 * Stride in bytes between shader_time entries.
514 *
515 * We separate entries by a cacheline to reduce traffic between EUs writing to
516 * different entries.
517 */
518 #define BRW_SHADER_TIME_STRIDE 64
519
520 struct brw_ubo_range
521 {
522 uint16_t block;
523 uint8_t start;
524 uint8_t length;
525 };
526
527 /* We reserve the first 2^16 values for builtins */
528 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
529
530 enum brw_param_builtin {
531 BRW_PARAM_BUILTIN_ZERO,
532
533 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
564 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
565
566 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
567 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
568 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
569 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
570 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
571 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
572
573 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
574
575 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
576 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
577 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
578 BRW_PARAM_BUILTIN_SUBGROUP_ID,
579 };
580
581 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
582 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
583
584 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
585 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
586 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
587
588 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
589 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
590
591 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
592 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
593
594 struct brw_stage_prog_data {
595 struct {
596 /** size of our binding table. */
597 uint32_t size_bytes;
598
599 /** @{
600 * surface indices for the various groups of surfaces
601 */
602 uint32_t pull_constants_start;
603 uint32_t texture_start;
604 uint32_t gather_texture_start;
605 uint32_t ubo_start;
606 uint32_t ssbo_start;
607 uint32_t image_start;
608 uint32_t shader_time_start;
609 uint32_t plane_start[3];
610 /** @} */
611 } binding_table;
612
613 struct brw_ubo_range ubo_ranges[4];
614
615 GLuint nr_params; /**< number of float params/constants */
616 GLuint nr_pull_params;
617
618 unsigned curb_read_length;
619 unsigned total_scratch;
620 unsigned total_shared;
621
622 unsigned program_size;
623
624 /**
625 * Register where the thread expects to find input data from the URB
626 * (typically uniforms, followed by vertex or fragment attributes).
627 */
628 unsigned dispatch_grf_start_reg;
629
630 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
631
632 /* 32-bit identifiers for all push/pull parameters. These can be anything
633 * the driver wishes them to be; the core of the back-end compiler simply
634 * re-arranges them. The one restriction is that the bottom 2^16 values
635 * are reserved for builtins defined in the brw_param_builtin enum defined
636 * above.
637 */
638 uint32_t *param;
639 uint32_t *pull_param;
640 };
641
642 static inline uint32_t *
643 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
644 unsigned nr_new_params)
645 {
646 unsigned old_nr_params = prog_data->nr_params;
647 prog_data->nr_params += nr_new_params;
648 prog_data->param = reralloc(ralloc_parent(prog_data->param),
649 prog_data->param, uint32_t,
650 prog_data->nr_params);
651 return prog_data->param + old_nr_params;
652 }
653
654 enum brw_barycentric_mode {
655 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
656 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
657 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
658 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
660 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
661 BRW_BARYCENTRIC_MODE_COUNT = 6
662 };
663 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
664 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
665 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
666 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
667
668 enum brw_pixel_shader_computed_depth_mode {
669 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
670 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
671 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
672 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
673 };
674
675 /* Data about a particular attempt to compile a program. Note that
676 * there can be many of these, each in a different GL state
677 * corresponding to a different brw_wm_prog_key struct, with different
678 * compiled programs.
679 */
680 struct brw_wm_prog_data {
681 struct brw_stage_prog_data base;
682
683 GLuint num_varying_inputs;
684
685 uint8_t reg_blocks_8;
686 uint8_t reg_blocks_16;
687 uint8_t reg_blocks_32;
688
689 uint8_t dispatch_grf_start_reg_16;
690 uint8_t dispatch_grf_start_reg_32;
691 uint32_t prog_offset_16;
692 uint32_t prog_offset_32;
693
694 struct {
695 /** @{
696 * surface indices the WM-specific surfaces
697 */
698 uint32_t render_target_read_start;
699 /** @} */
700 } binding_table;
701
702 uint8_t computed_depth_mode;
703 bool computed_stencil;
704
705 bool early_fragment_tests;
706 bool post_depth_coverage;
707 bool inner_coverage;
708 bool dispatch_8;
709 bool dispatch_16;
710 bool dispatch_32;
711 bool dual_src_blend;
712 bool replicate_alpha;
713 bool persample_dispatch;
714 bool uses_pos_offset;
715 bool uses_omask;
716 bool uses_kill;
717 bool uses_src_depth;
718 bool uses_src_w;
719 bool uses_sample_mask;
720 bool has_render_target_reads;
721 bool has_side_effects;
722 bool pulls_bary;
723
724 bool contains_flat_varying;
725 bool contains_noperspective_varying;
726
727 /**
728 * Mask of which interpolation modes are required by the fragment shader.
729 * Used in hardware setup on gen6+.
730 */
731 uint32_t barycentric_interp_modes;
732
733 /**
734 * Mask of which FS inputs are marked flat by the shader source. This is
735 * needed for setting up 3DSTATE_SF/SBE.
736 */
737 uint32_t flat_inputs;
738
739 /* Mapping of VUE slots to interpolation modes.
740 * Used by the Gen4-5 clip/sf/wm stages.
741 */
742 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
743
744 /**
745 * Map from gl_varying_slot to the position within the FS setup data
746 * payload where the varying's attribute vertex deltas should be delivered.
747 * For varying slots that are not used by the FS, the value is -1.
748 */
749 int urb_setup[VARYING_SLOT_MAX];
750 };
751
752 /** Returns the SIMD width corresponding to a given KSP index
753 *
754 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
755 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
756 * kernel start pointer (KSP) indices that is based on what dispatch widths
757 * are enabled. This function provides, effectively, the reverse mapping.
758 *
759 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
760 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
761 */
762 static inline unsigned
763 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
764 bool simd16_enabled, bool simd32_enabled)
765 {
766 /* This function strictly ignores contiguous dispatch */
767 switch (ksp_idx) {
768 case 0:
769 return simd8_enabled ? 8 :
770 (simd16_enabled && !simd32_enabled) ? 16 :
771 (simd32_enabled && !simd16_enabled) ? 32 : 0;
772 case 1:
773 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
774 case 2:
775 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
776 default:
777 unreachable("Invalid KSP index");
778 }
779 }
780
781 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
782 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
783 (wm_state)._16PixelDispatchEnable, \
784 (wm_state)._32PixelDispatchEnable)
785
786 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
787 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
788
789 static inline uint32_t
790 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
791 unsigned simd_width)
792 {
793 switch (simd_width) {
794 case 8: return 0;
795 case 16: return prog_data->prog_offset_16;
796 case 32: return prog_data->prog_offset_32;
797 default: return 0;
798 }
799 }
800
801 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
802 _brw_wm_prog_data_prog_offset(prog_data, \
803 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
804
805 static inline uint8_t
806 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
807 unsigned simd_width)
808 {
809 switch (simd_width) {
810 case 8: return prog_data->base.dispatch_grf_start_reg;
811 case 16: return prog_data->dispatch_grf_start_reg_16;
812 case 32: return prog_data->dispatch_grf_start_reg_32;
813 default: return 0;
814 }
815 }
816
817 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
818 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
819 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
820
821 static inline uint8_t
822 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
823 unsigned simd_width)
824 {
825 switch (simd_width) {
826 case 8: return prog_data->reg_blocks_8;
827 case 16: return prog_data->reg_blocks_16;
828 case 32: return prog_data->reg_blocks_32;
829 default: return 0;
830 }
831 }
832
833 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
834 _brw_wm_prog_data_reg_blocks(prog_data, \
835 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
836
837 struct brw_push_const_block {
838 unsigned dwords; /* Dword count, not reg aligned */
839 unsigned regs;
840 unsigned size; /* Bytes, register aligned */
841 };
842
843 struct brw_cs_prog_data {
844 struct brw_stage_prog_data base;
845
846 unsigned local_size[3];
847 unsigned simd_size;
848 unsigned threads;
849 bool uses_barrier;
850 bool uses_num_work_groups;
851
852 struct {
853 struct brw_push_const_block cross_thread;
854 struct brw_push_const_block per_thread;
855 struct brw_push_const_block total;
856 } push;
857
858 struct {
859 /** @{
860 * surface indices the CS-specific surfaces
861 */
862 uint32_t work_groups_start;
863 /** @} */
864 } binding_table;
865 };
866
867 /**
868 * Enum representing the i965-specific vertex results that don't correspond
869 * exactly to any element of gl_varying_slot. The values of this enum are
870 * assigned such that they don't conflict with gl_varying_slot.
871 */
872 typedef enum
873 {
874 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
875 BRW_VARYING_SLOT_PAD,
876 /**
877 * Technically this is not a varying but just a placeholder that
878 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
879 * builtin variable to be compiled correctly. see compile_sf_prog() for
880 * more info.
881 */
882 BRW_VARYING_SLOT_PNTC,
883 BRW_VARYING_SLOT_COUNT
884 } brw_varying_slot;
885
886 /**
887 * We always program SF to start reading at an offset of 1 (2 varying slots)
888 * from the start of the vertex URB entry. This causes it to skip:
889 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
890 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
891 */
892 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
893
894 /**
895 * Bitmask indicating which fragment shader inputs represent varyings (and
896 * hence have to be delivered to the fragment shader by the SF/SBE stage).
897 */
898 #define BRW_FS_VARYING_INPUT_MASK \
899 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
900 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
901
902 /**
903 * Data structure recording the relationship between the gl_varying_slot enum
904 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
905 * single octaword within the VUE (128 bits).
906 *
907 * Note that each BRW register contains 256 bits (2 octawords), so when
908 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
909 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
910 * in a vertex shader), each register corresponds to a single VUE slot, since
911 * it contains data for two separate vertices.
912 */
913 struct brw_vue_map {
914 /**
915 * Bitfield representing all varying slots that are (a) stored in this VUE
916 * map, and (b) actually written by the shader. Does not include any of
917 * the additional varying slots defined in brw_varying_slot.
918 */
919 uint64_t slots_valid;
920
921 /**
922 * Is this VUE map for a separate shader pipeline?
923 *
924 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
925 * without the linker having a chance to dead code eliminate unused varyings.
926 *
927 * This means that we have to use a fixed slot layout, based on the output's
928 * location field, rather than assigning slots in a compact contiguous block.
929 */
930 bool separate;
931
932 /**
933 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
934 * not stored in a slot (because they are not written, or because
935 * additional processing is applied before storing them in the VUE), the
936 * value is -1.
937 */
938 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
939
940 /**
941 * Map from VUE slot to gl_varying_slot value. For slots that do not
942 * directly correspond to a gl_varying_slot, the value comes from
943 * brw_varying_slot.
944 *
945 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
946 */
947 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
948
949 /**
950 * Total number of VUE slots in use
951 */
952 int num_slots;
953
954 /**
955 * Number of per-patch VUE slots. Only valid for tessellation control
956 * shader outputs and tessellation evaluation shader inputs.
957 */
958 int num_per_patch_slots;
959
960 /**
961 * Number of per-vertex VUE slots. Only valid for tessellation control
962 * shader outputs and tessellation evaluation shader inputs.
963 */
964 int num_per_vertex_slots;
965 };
966
967 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
968
969 /**
970 * Convert a VUE slot number into a byte offset within the VUE.
971 */
972 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
973 {
974 return 16*slot;
975 }
976
977 /**
978 * Convert a vertex output (brw_varying_slot) into a byte offset within the
979 * VUE.
980 */
981 static inline
982 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
983 {
984 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
985 }
986
987 void brw_compute_vue_map(const struct gen_device_info *devinfo,
988 struct brw_vue_map *vue_map,
989 uint64_t slots_valid,
990 bool separate_shader);
991
992 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
993 uint64_t slots_valid,
994 uint32_t is_patch);
995
996 /* brw_interpolation_map.c */
997 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
998 struct nir_shader *nir,
999 struct brw_wm_prog_data *prog_data);
1000
1001 enum shader_dispatch_mode {
1002 DISPATCH_MODE_4X1_SINGLE = 0,
1003 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1004 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1005 DISPATCH_MODE_SIMD8 = 3,
1006
1007 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1008 DISPATCH_MODE_TCS_8_PATCH = 2,
1009 };
1010
1011 /**
1012 * @defgroup Tessellator parameter enumerations.
1013 *
1014 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1015 * as part of the tessellation evaluation shader.
1016 *
1017 * @{
1018 */
1019 enum brw_tess_partitioning {
1020 BRW_TESS_PARTITIONING_INTEGER = 0,
1021 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1022 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1023 };
1024
1025 enum brw_tess_output_topology {
1026 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1027 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1028 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1029 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1030 };
1031
1032 enum brw_tess_domain {
1033 BRW_TESS_DOMAIN_QUAD = 0,
1034 BRW_TESS_DOMAIN_TRI = 1,
1035 BRW_TESS_DOMAIN_ISOLINE = 2,
1036 };
1037 /** @} */
1038
1039 struct brw_vue_prog_data {
1040 struct brw_stage_prog_data base;
1041 struct brw_vue_map vue_map;
1042
1043 /** Should the hardware deliver input VUE handles for URB pull loads? */
1044 bool include_vue_handles;
1045
1046 GLuint urb_read_length;
1047 GLuint total_grf;
1048
1049 uint32_t clip_distance_mask;
1050 uint32_t cull_distance_mask;
1051
1052 /* Used for calculating urb partitions. In the VS, this is the size of the
1053 * URB entry used for both input and output to the thread. In the GS, this
1054 * is the size of the URB entry used for output.
1055 */
1056 GLuint urb_entry_size;
1057
1058 enum shader_dispatch_mode dispatch_mode;
1059 };
1060
1061 struct brw_vs_prog_data {
1062 struct brw_vue_prog_data base;
1063
1064 GLbitfield64 inputs_read;
1065 GLbitfield64 double_inputs_read;
1066
1067 unsigned nr_attribute_slots;
1068
1069 bool uses_vertexid;
1070 bool uses_instanceid;
1071 bool uses_is_indexed_draw;
1072 bool uses_firstvertex;
1073 bool uses_baseinstance;
1074 bool uses_drawid;
1075 };
1076
1077 struct brw_tcs_prog_data
1078 {
1079 struct brw_vue_prog_data base;
1080
1081 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1082 bool include_primitive_id;
1083
1084 /** Number vertices in output patch */
1085 int instances;
1086 };
1087
1088
1089 struct brw_tes_prog_data
1090 {
1091 struct brw_vue_prog_data base;
1092
1093 enum brw_tess_partitioning partitioning;
1094 enum brw_tess_output_topology output_topology;
1095 enum brw_tess_domain domain;
1096 };
1097
1098 struct brw_gs_prog_data
1099 {
1100 struct brw_vue_prog_data base;
1101
1102 unsigned vertices_in;
1103
1104 /**
1105 * Size of an output vertex, measured in HWORDS (32 bytes).
1106 */
1107 unsigned output_vertex_size_hwords;
1108
1109 unsigned output_topology;
1110
1111 /**
1112 * Size of the control data (cut bits or StreamID bits), in hwords (32
1113 * bytes). 0 if there is no control data.
1114 */
1115 unsigned control_data_header_size_hwords;
1116
1117 /**
1118 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1119 * if the control data is StreamID bits, or
1120 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1121 * Ignored if control_data_header_size is 0.
1122 */
1123 unsigned control_data_format;
1124
1125 bool include_primitive_id;
1126
1127 /**
1128 * The number of vertices emitted, if constant - otherwise -1.
1129 */
1130 int static_vertex_count;
1131
1132 int invocations;
1133
1134 /**
1135 * Gen6: Provoking vertex convention for odd-numbered triangles
1136 * in tristrips.
1137 */
1138 GLuint pv_first:1;
1139
1140 /**
1141 * Gen6: Number of varyings that are output to transform feedback.
1142 */
1143 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1144
1145 /**
1146 * Gen6: Map from the index of a transform feedback binding table entry to the
1147 * gl_varying_slot that should be streamed out through that binding table
1148 * entry.
1149 */
1150 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1151
1152 /**
1153 * Gen6: Map from the index of a transform feedback binding table entry to the
1154 * swizzles that should be used when streaming out data through that
1155 * binding table entry.
1156 */
1157 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1158 };
1159
1160 struct brw_sf_prog_data {
1161 uint32_t urb_read_length;
1162 uint32_t total_grf;
1163
1164 /* Each vertex may have upto 12 attributes, 4 components each,
1165 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1166 * rows.
1167 *
1168 * Actually we use 4 for each, so call it 12 rows.
1169 */
1170 unsigned urb_entry_size;
1171 };
1172
1173 struct brw_clip_prog_data {
1174 uint32_t curb_read_length; /* user planes? */
1175 uint32_t clip_mode;
1176 uint32_t urb_read_length;
1177 uint32_t total_grf;
1178 };
1179
1180 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1181 union brw_any_prog_data {
1182 struct brw_stage_prog_data base;
1183 struct brw_vue_prog_data vue;
1184 struct brw_vs_prog_data vs;
1185 struct brw_tcs_prog_data tcs;
1186 struct brw_tes_prog_data tes;
1187 struct brw_gs_prog_data gs;
1188 struct brw_wm_prog_data wm;
1189 struct brw_cs_prog_data cs;
1190 };
1191
1192 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1193 static inline struct brw_##stage##_prog_data * \
1194 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1195 { \
1196 return (struct brw_##stage##_prog_data *) prog_data; \
1197 }
1198 DEFINE_PROG_DATA_DOWNCAST(vue)
1199 DEFINE_PROG_DATA_DOWNCAST(vs)
1200 DEFINE_PROG_DATA_DOWNCAST(tcs)
1201 DEFINE_PROG_DATA_DOWNCAST(tes)
1202 DEFINE_PROG_DATA_DOWNCAST(gs)
1203 DEFINE_PROG_DATA_DOWNCAST(wm)
1204 DEFINE_PROG_DATA_DOWNCAST(cs)
1205 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1206 DEFINE_PROG_DATA_DOWNCAST(clip)
1207 DEFINE_PROG_DATA_DOWNCAST(sf)
1208 #undef DEFINE_PROG_DATA_DOWNCAST
1209
1210 /** @} */
1211
1212 struct brw_compiler *
1213 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1214
1215 /**
1216 * Returns a compiler configuration for use with disk shader cache
1217 *
1218 * This value only needs to change for settings that can cause different
1219 * program generation between two runs on the same hardware.
1220 *
1221 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1222 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1223 */
1224 uint64_t
1225 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1226
1227 unsigned
1228 brw_prog_data_size(gl_shader_stage stage);
1229
1230 unsigned
1231 brw_prog_key_size(gl_shader_stage stage);
1232
1233 void
1234 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1235
1236 /**
1237 * Compile a vertex shader.
1238 *
1239 * Returns the final assembly and the program's size.
1240 */
1241 const unsigned *
1242 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1243 void *mem_ctx,
1244 const struct brw_vs_prog_key *key,
1245 struct brw_vs_prog_data *prog_data,
1246 struct nir_shader *shader,
1247 int shader_time_index,
1248 char **error_str);
1249
1250 /**
1251 * Compile a tessellation control shader.
1252 *
1253 * Returns the final assembly and the program's size.
1254 */
1255 const unsigned *
1256 brw_compile_tcs(const struct brw_compiler *compiler,
1257 void *log_data,
1258 void *mem_ctx,
1259 const struct brw_tcs_prog_key *key,
1260 struct brw_tcs_prog_data *prog_data,
1261 struct nir_shader *nir,
1262 int shader_time_index,
1263 char **error_str);
1264
1265 /**
1266 * Compile a tessellation evaluation shader.
1267 *
1268 * Returns the final assembly and the program's size.
1269 */
1270 const unsigned *
1271 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1272 void *mem_ctx,
1273 const struct brw_tes_prog_key *key,
1274 const struct brw_vue_map *input_vue_map,
1275 struct brw_tes_prog_data *prog_data,
1276 struct nir_shader *shader,
1277 struct gl_program *prog,
1278 int shader_time_index,
1279 char **error_str);
1280
1281 /**
1282 * Compile a vertex shader.
1283 *
1284 * Returns the final assembly and the program's size.
1285 */
1286 const unsigned *
1287 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1288 void *mem_ctx,
1289 const struct brw_gs_prog_key *key,
1290 struct brw_gs_prog_data *prog_data,
1291 struct nir_shader *shader,
1292 struct gl_program *prog,
1293 int shader_time_index,
1294 char **error_str);
1295
1296 /**
1297 * Compile a strips and fans shader.
1298 *
1299 * This is a fixed-function shader determined entirely by the shader key and
1300 * a VUE map.
1301 *
1302 * Returns the final assembly and the program's size.
1303 */
1304 const unsigned *
1305 brw_compile_sf(const struct brw_compiler *compiler,
1306 void *mem_ctx,
1307 const struct brw_sf_prog_key *key,
1308 struct brw_sf_prog_data *prog_data,
1309 struct brw_vue_map *vue_map,
1310 unsigned *final_assembly_size);
1311
1312 /**
1313 * Compile a clipper shader.
1314 *
1315 * This is a fixed-function shader determined entirely by the shader key and
1316 * a VUE map.
1317 *
1318 * Returns the final assembly and the program's size.
1319 */
1320 const unsigned *
1321 brw_compile_clip(const struct brw_compiler *compiler,
1322 void *mem_ctx,
1323 const struct brw_clip_prog_key *key,
1324 struct brw_clip_prog_data *prog_data,
1325 struct brw_vue_map *vue_map,
1326 unsigned *final_assembly_size);
1327
1328 /**
1329 * Compile a fragment shader.
1330 *
1331 * Returns the final assembly and the program's size.
1332 */
1333 const unsigned *
1334 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1335 void *mem_ctx,
1336 const struct brw_wm_prog_key *key,
1337 struct brw_wm_prog_data *prog_data,
1338 struct nir_shader *shader,
1339 struct gl_program *prog,
1340 int shader_time_index8,
1341 int shader_time_index16,
1342 int shader_time_index32,
1343 bool allow_spilling,
1344 bool use_rep_send, struct brw_vue_map *vue_map,
1345 char **error_str);
1346
1347 /**
1348 * Compile a compute shader.
1349 *
1350 * Returns the final assembly and the program's size.
1351 */
1352 const unsigned *
1353 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1354 void *mem_ctx,
1355 const struct brw_cs_prog_key *key,
1356 struct brw_cs_prog_data *prog_data,
1357 const struct nir_shader *shader,
1358 int shader_time_index,
1359 char **error_str);
1360
1361 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1362 gl_shader_stage stage,
1363 const void *old_key, const void *key);
1364
1365 static inline uint32_t
1366 encode_slm_size(unsigned gen, uint32_t bytes)
1367 {
1368 uint32_t slm_size = 0;
1369
1370 /* Shared Local Memory is specified as powers of two, and encoded in
1371 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1372 *
1373 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1374 * -------------------------------------------------------------------
1375 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1376 * -------------------------------------------------------------------
1377 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1378 */
1379 assert(bytes <= 64 * 1024);
1380
1381 if (bytes > 0) {
1382 /* Shared Local Memory Size is specified as powers of two. */
1383 slm_size = util_next_power_of_two(bytes);
1384
1385 if (gen >= 9) {
1386 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1387 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1388 } else {
1389 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1390 slm_size = MAX2(slm_size, 4096) / 4096;
1391 }
1392 }
1393
1394 return slm_size;
1395 }
1396
1397 /**
1398 * Return true if the given shader stage is dispatched contiguously by the
1399 * relevant fixed function starting from channel 0 of the SIMD thread, which
1400 * implies that the dispatch mask of a thread can be assumed to have the form
1401 * '2^n - 1' for some n.
1402 */
1403 static inline bool
1404 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1405 gl_shader_stage stage,
1406 const struct brw_stage_prog_data *prog_data)
1407 {
1408 /* The code below makes assumptions about the hardware's thread dispatch
1409 * behavior that could be proven wrong in future generations -- Make sure
1410 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1411 * the NIR front-end before changing this assertion.
1412 */
1413 assert(devinfo->gen <= 11);
1414
1415 switch (stage) {
1416 case MESA_SHADER_FRAGMENT: {
1417 /* The PSD discards subspans coming in with no lit samples, which in the
1418 * per-pixel shading case implies that each subspan will either be fully
1419 * lit (due to the VMask being used to allow derivative computations),
1420 * or not dispatched at all. In per-sample dispatch mode individual
1421 * samples from the same subspan have a fixed relative location within
1422 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1423 * general and we should return false.
1424 */
1425 const struct brw_wm_prog_data *wm_prog_data =
1426 (const struct brw_wm_prog_data *)prog_data;
1427 return !wm_prog_data->persample_dispatch;
1428 }
1429 case MESA_SHADER_COMPUTE:
1430 /* Compute shaders will be spawned with either a fully enabled dispatch
1431 * mask or with whatever bottom/right execution mask was given to the
1432 * GPGPU walker command to be used along the workgroup edges -- In both
1433 * cases the dispatch mask is required to be tightly packed for our
1434 * invocation index calculations to work.
1435 */
1436 return true;
1437 default:
1438 /* Most remaining fixed functions are limited to use a packed dispatch
1439 * mask due to the hardware representation of the dispatch mask as a
1440 * single counter representing the number of enabled channels.
1441 */
1442 return true;
1443 }
1444 }
1445
1446 /**
1447 * Computes the first varying slot in the URB produced by the previous stage
1448 * that is used in the next stage. We do this by testing the varying slots in
1449 * the previous stage's vue map against the inputs read in the next stage.
1450 *
1451 * Note that:
1452 *
1453 * - Each URB offset contains two varying slots and we can only skip a
1454 * full offset if both slots are unused, so the value we return here is always
1455 * rounded down to the closest multiple of two.
1456 *
1457 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1458 * part of the vue header, so if these are read we can't skip anything.
1459 */
1460 static inline int
1461 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1462 const struct brw_vue_map *prev_stage_vue_map)
1463 {
1464 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1465 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1466 int varying = prev_stage_vue_map->slot_to_varying[i];
1467 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1468 return ROUND_DOWN_TO(i, 2);
1469 }
1470 }
1471
1472 return 0;
1473 }
1474
1475 #ifdef __cplusplus
1476 } /* extern "C" */
1477 #endif
1478
1479 #endif /* BRW_COMPILER_H */