intel/compiler: store the FS inputs in WM prog data
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned barycentrics we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_bary_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122
123 /**
124 * Whether or not the driver wants uniform params to be compacted by the
125 * back-end compiler.
126 */
127 bool compact_params;
128 };
129
130 /**
131 * We use a constant subgroup size of 32. It really only needs to be a
132 * maximum and, since we do SIMD32 for compute shaders in some cases, it
133 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
134 * subgroup size of 32 but will act as if 16 or 24 of those channels are
135 * disabled.
136 */
137 #define BRW_SUBGROUP_SIZE 32
138
139 /**
140 * Program key structures.
141 *
142 * When drawing, we look for the currently bound shaders in the program
143 * cache. This is essentially a hash table lookup, and these are the keys.
144 *
145 * Sometimes OpenGL features specified as state need to be simulated via
146 * shader code, due to a mismatch between the API and the hardware. This
147 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
148 * in the program key so it's considered when searching for a program. If
149 * we haven't seen a particular combination before, we have to recompile a
150 * new specialized version.
151 *
152 * Shader compilation should not look up state in gl_context directly, but
153 * instead use the copy in the program key. This guarantees recompiles will
154 * happen correctly.
155 *
156 * @{
157 */
158
159 enum PACKED gen6_gather_sampler_wa {
160 WA_SIGN = 1, /* whether we need to sign extend */
161 WA_8BIT = 2, /* if we have an 8bit format needing wa */
162 WA_16BIT = 4, /* if we have a 16bit format needing wa */
163 };
164
165 /**
166 * Sampler information needed by VS, WM, and GS program cache keys.
167 */
168 struct brw_sampler_prog_key_data {
169 /**
170 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
171 */
172 uint16_t swizzles[MAX_SAMPLERS];
173
174 uint32_t gl_clamp_mask[3];
175
176 /**
177 * For RG32F, gather4's channel select is broken.
178 */
179 uint32_t gather_channel_quirk_mask;
180
181 /**
182 * Whether this sampler uses the compressed multisample surface layout.
183 */
184 uint32_t compressed_multisample_layout_mask;
185
186 /**
187 * Whether this sampler is using 16x multisampling. If so fetching from
188 * this sampler will be handled with a different instruction, ld2dms_w
189 * instead of ld2dms.
190 */
191 uint32_t msaa_16;
192
193 /**
194 * For Sandybridge, which shader w/a we need for gather quirks.
195 */
196 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
197
198 /**
199 * Texture units that have a YUV image bound.
200 */
201 uint32_t y_u_v_image_mask;
202 uint32_t y_uv_image_mask;
203 uint32_t yx_xuxv_image_mask;
204 uint32_t xy_uxvx_image_mask;
205 uint32_t ayuv_image_mask;
206 uint32_t xyuv_image_mask;
207
208 /* Scale factor for each texture. */
209 float scale_factors[32];
210 };
211
212 /** An enum representing what kind of input gl_SubgroupSize is. */
213 enum PACKED brw_subgroup_size_type
214 {
215 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
216 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
217 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
218
219 /* These enums are specifically chosen so that the value of the enum is
220 * also the subgroup size. If any new values are added, they must respect
221 * this invariant.
222 */
223 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
224 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
225 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
226 };
227
228 struct brw_base_prog_key {
229 unsigned program_string_id;
230
231 enum brw_subgroup_size_type subgroup_size_type;
232
233 struct brw_sampler_prog_key_data tex;
234 };
235
236 /**
237 * The VF can't natively handle certain types of attributes, such as GL_FIXED
238 * or most 10_10_10_2 types. These flags enable various VS workarounds to
239 * "fix" attributes at the beginning of shaders.
240 */
241 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
242 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
243 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
244 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
245 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
246
247 /**
248 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
249 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
250 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
251 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
252 */
253 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
254 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
255
256 /** The program key for Vertex Shaders. */
257 struct brw_vs_prog_key {
258 struct brw_base_prog_key base;
259
260 /**
261 * Per-attribute workaround flags
262 *
263 * For each attribute, a combination of BRW_ATTRIB_WA_*.
264 *
265 * For OpenGL, where we expose a maximum of 16 user input atttributes
266 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
267 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
268 * expose up to 28 user input vertex attributes that are mapped to slots
269 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
270 * enough to hold this many slots.
271 */
272 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
273
274 bool copy_edgeflag:1;
275
276 bool clamp_vertex_color:1;
277
278 /**
279 * How many user clipping planes are being uploaded to the vertex shader as
280 * push constants.
281 *
282 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
283 * clip distances.
284 */
285 unsigned nr_userclip_plane_consts:4;
286
287 /**
288 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
289 * are going to be replaced with point coordinates (as a consequence of a
290 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
291 * our SF thread requires exact matching between VS outputs and FS inputs,
292 * these texture coordinates will need to be unconditionally included in
293 * the VUE, even if they aren't written by the vertex shader.
294 */
295 uint8_t point_coord_replace;
296 };
297
298 /** The program key for Tessellation Control Shaders. */
299 struct brw_tcs_prog_key
300 {
301 struct brw_base_prog_key base;
302
303 GLenum tes_primitive_mode;
304
305 unsigned input_vertices;
306
307 /** A bitfield of per-patch outputs written. */
308 uint32_t patch_outputs_written;
309
310 /** A bitfield of per-vertex outputs written. */
311 uint64_t outputs_written;
312
313 bool quads_workaround;
314 };
315
316 /** The program key for Tessellation Evaluation Shaders. */
317 struct brw_tes_prog_key
318 {
319 struct brw_base_prog_key base;
320
321 /** A bitfield of per-patch inputs read. */
322 uint32_t patch_inputs_read;
323
324 /** A bitfield of per-vertex inputs read. */
325 uint64_t inputs_read;
326
327 /**
328 * How many user clipping planes are being uploaded to the tessellation
329 * evaluation shader as push constants.
330 *
331 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
332 * clip distances.
333 */
334 unsigned nr_userclip_plane_consts:4;
335 };
336
337 /** The program key for Geometry Shaders. */
338 struct brw_gs_prog_key
339 {
340 struct brw_base_prog_key base;
341
342 /**
343 * How many user clipping planes are being uploaded to the geometry shader
344 * as push constants.
345 *
346 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
347 * clip distances.
348 */
349 unsigned nr_userclip_plane_consts:4;
350 };
351
352 enum brw_sf_primitive {
353 BRW_SF_PRIM_POINTS = 0,
354 BRW_SF_PRIM_LINES = 1,
355 BRW_SF_PRIM_TRIANGLES = 2,
356 BRW_SF_PRIM_UNFILLED_TRIS = 3,
357 };
358
359 struct brw_sf_prog_key {
360 uint64_t attrs;
361 bool contains_flat_varying;
362 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
363 uint8_t point_sprite_coord_replace;
364 enum brw_sf_primitive primitive:2;
365 bool do_twoside_color:1;
366 bool frontface_ccw:1;
367 bool do_point_sprite:1;
368 bool do_point_coord:1;
369 bool sprite_origin_lower_left:1;
370 bool userclip_active:1;
371 };
372
373 enum brw_clip_mode {
374 BRW_CLIP_MODE_NORMAL = 0,
375 BRW_CLIP_MODE_CLIP_ALL = 1,
376 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
377 BRW_CLIP_MODE_REJECT_ALL = 3,
378 BRW_CLIP_MODE_ACCEPT_ALL = 4,
379 BRW_CLIP_MODE_KERNEL_CLIP = 5,
380 };
381
382 enum brw_clip_fill_mode {
383 BRW_CLIP_FILL_MODE_LINE = 0,
384 BRW_CLIP_FILL_MODE_POINT = 1,
385 BRW_CLIP_FILL_MODE_FILL = 2,
386 BRW_CLIP_FILL_MODE_CULL = 3,
387 };
388
389 /* Note that if unfilled primitives are being emitted, we have to fix
390 * up polygon offset and flatshading at this point:
391 */
392 struct brw_clip_prog_key {
393 uint64_t attrs;
394 bool contains_flat_varying;
395 bool contains_noperspective_varying;
396 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
397 unsigned primitive:4;
398 unsigned nr_userclip:4;
399 bool pv_first:1;
400 bool do_unfilled:1;
401 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
402 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
403 bool offset_cw:1;
404 bool offset_ccw:1;
405 bool copy_bfc_cw:1;
406 bool copy_bfc_ccw:1;
407 enum brw_clip_mode clip_mode:3;
408
409 float offset_factor;
410 float offset_units;
411 float offset_clamp;
412 };
413
414 /* A big lookup table is used to figure out which and how many
415 * additional regs will inserted before the main payload in the WM
416 * program execution. These mainly relate to depth and stencil
417 * processing and the early-depth-test optimization.
418 */
419 enum brw_wm_iz_bits {
420 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
421 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
422 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
423 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
424 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
425 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
426 BRW_WM_IZ_BIT_MAX = 0x40
427 };
428
429 enum brw_wm_aa_enable {
430 BRW_WM_AA_NEVER,
431 BRW_WM_AA_SOMETIMES,
432 BRW_WM_AA_ALWAYS
433 };
434
435 /** The program key for Fragment/Pixel Shaders. */
436 struct brw_wm_prog_key {
437 struct brw_base_prog_key base;
438
439 /* Some collection of BRW_WM_IZ_* */
440 uint8_t iz_lookup;
441 bool stats_wm:1;
442 bool flat_shade:1;
443 unsigned nr_color_regions:5;
444 bool alpha_test_replicate_alpha:1;
445 bool alpha_to_coverage:1;
446 bool clamp_fragment_color:1;
447 bool persample_interp:1;
448 bool multisample_fbo:1;
449 bool frag_coord_adds_sample_pos:1;
450 enum brw_wm_aa_enable line_aa:2;
451 bool high_quality_derivatives:1;
452 bool force_dual_color_blend:1;
453 bool coherent_fb_fetch:1;
454
455 uint8_t color_outputs_valid;
456 uint64_t input_slots_valid;
457 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
458 float alpha_test_ref;
459 };
460
461 struct brw_cs_prog_key {
462 struct brw_base_prog_key base;
463 };
464
465 /* brw_any_prog_key is any of the keys that map to an API stage */
466 union brw_any_prog_key {
467 struct brw_base_prog_key base;
468 struct brw_vs_prog_key vs;
469 struct brw_tcs_prog_key tcs;
470 struct brw_tes_prog_key tes;
471 struct brw_gs_prog_key gs;
472 struct brw_wm_prog_key wm;
473 struct brw_cs_prog_key cs;
474 };
475
476 /*
477 * Image metadata structure as laid out in the shader parameter
478 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
479 * able to use them. That's okay because the padding and any unused
480 * entries [most of them except when we're doing untyped surface
481 * access] will be removed by the uniform packing pass.
482 */
483 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
484 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
485 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
486 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
487 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
488 #define BRW_IMAGE_PARAM_SIZE 20
489
490 struct brw_image_param {
491 /** Offset applied to the X and Y surface coordinates. */
492 uint32_t offset[2];
493
494 /** Surface X, Y and Z dimensions. */
495 uint32_t size[3];
496
497 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
498 * pixels, vertical slice stride in pixels.
499 */
500 uint32_t stride[4];
501
502 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
503 uint32_t tiling[3];
504
505 /**
506 * Right shift to apply for bit 6 address swizzling. Two different
507 * swizzles can be specified and will be applied one after the other. The
508 * resulting address will be:
509 *
510 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
511 * (addr >> swizzling[1])))
512 *
513 * Use \c 0xff if any of the swizzles is not required.
514 */
515 uint32_t swizzling[2];
516 };
517
518 /** Max number of render targets in a shader */
519 #define BRW_MAX_DRAW_BUFFERS 8
520
521 /**
522 * Max number of binding table entries used for stream output.
523 *
524 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
525 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
526 *
527 * On Gen6, the size of transform feedback data is limited not by the number
528 * of components but by the number of binding table entries we set aside. We
529 * use one binding table entry for a float, one entry for a vector, and one
530 * entry per matrix column. Since the only way we can communicate our
531 * transform feedback capabilities to the client is via
532 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
533 * worst case, in which all the varyings are floats, so we use up one binding
534 * table entry per component. Therefore we need to set aside at least 64
535 * binding table entries for use by transform feedback.
536 *
537 * Note: since we don't currently pack varyings, it is currently impossible
538 * for the client to actually use up all of these binding table entries--if
539 * all of their varyings were floats, they would run out of varying slots and
540 * fail to link. But that's a bug, so it seems prudent to go ahead and
541 * allocate the number of binding table entries we will need once the bug is
542 * fixed.
543 */
544 #define BRW_MAX_SOL_BINDINGS 64
545
546 /**
547 * Binding table index for the first gen6 SOL binding.
548 */
549 #define BRW_GEN6_SOL_BINDING_START 0
550
551 /**
552 * Stride in bytes between shader_time entries.
553 *
554 * We separate entries by a cacheline to reduce traffic between EUs writing to
555 * different entries.
556 */
557 #define BRW_SHADER_TIME_STRIDE 64
558
559 struct brw_ubo_range
560 {
561 uint16_t block;
562 uint8_t start;
563 uint8_t length;
564 };
565
566 /* We reserve the first 2^16 values for builtins */
567 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
568
569 enum brw_param_builtin {
570 BRW_PARAM_BUILTIN_ZERO,
571
572 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
604
605 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
606 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
607 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
608 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
609 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
610 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
611
612 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
613
614 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
615 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
616 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
617 BRW_PARAM_BUILTIN_SUBGROUP_ID,
618 };
619
620 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
621 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
622
623 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
624 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
625 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
626
627 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
628 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
629
630 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
631 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
632
633 struct brw_stage_prog_data {
634 struct {
635 /** size of our binding table. */
636 uint32_t size_bytes;
637
638 /** @{
639 * surface indices for the various groups of surfaces
640 */
641 uint32_t pull_constants_start;
642 uint32_t texture_start;
643 uint32_t gather_texture_start;
644 uint32_t ubo_start;
645 uint32_t ssbo_start;
646 uint32_t image_start;
647 uint32_t shader_time_start;
648 uint32_t plane_start[3];
649 /** @} */
650 } binding_table;
651
652 struct brw_ubo_range ubo_ranges[4];
653
654 GLuint nr_params; /**< number of float params/constants */
655 GLuint nr_pull_params;
656
657 unsigned curb_read_length;
658 unsigned total_scratch;
659 unsigned total_shared;
660
661 unsigned program_size;
662
663 /** Does this program pull from any UBO or other constant buffers? */
664 bool has_ubo_pull;
665
666 /**
667 * Register where the thread expects to find input data from the URB
668 * (typically uniforms, followed by vertex or fragment attributes).
669 */
670 unsigned dispatch_grf_start_reg;
671
672 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
673
674 /* 32-bit identifiers for all push/pull parameters. These can be anything
675 * the driver wishes them to be; the core of the back-end compiler simply
676 * re-arranges them. The one restriction is that the bottom 2^16 values
677 * are reserved for builtins defined in the brw_param_builtin enum defined
678 * above.
679 */
680 uint32_t *param;
681 uint32_t *pull_param;
682
683 /* Whether shader uses atomic operations. */
684 bool uses_atomic_load_store;
685 };
686
687 static inline uint32_t *
688 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
689 unsigned nr_new_params)
690 {
691 unsigned old_nr_params = prog_data->nr_params;
692 prog_data->nr_params += nr_new_params;
693 prog_data->param = reralloc(ralloc_parent(prog_data->param),
694 prog_data->param, uint32_t,
695 prog_data->nr_params);
696 return prog_data->param + old_nr_params;
697 }
698
699 enum brw_barycentric_mode {
700 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
701 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
702 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
703 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
704 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
705 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
706 BRW_BARYCENTRIC_MODE_COUNT = 6
707 };
708 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
709 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
710 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
711 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
712
713 enum brw_pixel_shader_computed_depth_mode {
714 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
715 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
716 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
717 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
718 };
719
720 /* Data about a particular attempt to compile a program. Note that
721 * there can be many of these, each in a different GL state
722 * corresponding to a different brw_wm_prog_key struct, with different
723 * compiled programs.
724 */
725 struct brw_wm_prog_data {
726 struct brw_stage_prog_data base;
727
728 GLuint num_varying_inputs;
729
730 uint8_t reg_blocks_8;
731 uint8_t reg_blocks_16;
732 uint8_t reg_blocks_32;
733
734 uint8_t dispatch_grf_start_reg_16;
735 uint8_t dispatch_grf_start_reg_32;
736 uint32_t prog_offset_16;
737 uint32_t prog_offset_32;
738
739 struct {
740 /** @{
741 * surface indices the WM-specific surfaces
742 */
743 uint32_t render_target_read_start;
744 /** @} */
745 } binding_table;
746
747 uint8_t computed_depth_mode;
748 bool computed_stencil;
749
750 bool early_fragment_tests;
751 bool post_depth_coverage;
752 bool inner_coverage;
753 bool dispatch_8;
754 bool dispatch_16;
755 bool dispatch_32;
756 bool dual_src_blend;
757 bool persample_dispatch;
758 bool uses_pos_offset;
759 bool uses_omask;
760 bool uses_kill;
761 bool uses_src_depth;
762 bool uses_src_w;
763 bool uses_sample_mask;
764 bool has_render_target_reads;
765 bool has_side_effects;
766 bool pulls_bary;
767
768 bool contains_flat_varying;
769 bool contains_noperspective_varying;
770
771 /**
772 * Mask of which interpolation modes are required by the fragment shader.
773 * Used in hardware setup on gen6+.
774 */
775 uint32_t barycentric_interp_modes;
776
777 /**
778 * Mask of which FS inputs are marked flat by the shader source. This is
779 * needed for setting up 3DSTATE_SF/SBE.
780 */
781 uint32_t flat_inputs;
782
783 /**
784 * The FS inputs
785 */
786 uint64_t inputs;
787
788 /* Mapping of VUE slots to interpolation modes.
789 * Used by the Gen4-5 clip/sf/wm stages.
790 */
791 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
792
793 /**
794 * Map from gl_varying_slot to the position within the FS setup data
795 * payload where the varying's attribute vertex deltas should be delivered.
796 * For varying slots that are not used by the FS, the value is -1.
797 */
798 int urb_setup[VARYING_SLOT_MAX];
799
800 /**
801 * Cache structure into the urb_setup array above that contains the
802 * attribute numbers of active varyings out of urb_setup.
803 * The actual count is stored in urb_setup_attribs_count.
804 */
805 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
806 uint8_t urb_setup_attribs_count;
807 };
808
809 /** Returns the SIMD width corresponding to a given KSP index
810 *
811 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
812 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
813 * kernel start pointer (KSP) indices that is based on what dispatch widths
814 * are enabled. This function provides, effectively, the reverse mapping.
815 *
816 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
817 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
818 */
819 static inline unsigned
820 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
821 bool simd16_enabled, bool simd32_enabled)
822 {
823 /* This function strictly ignores contiguous dispatch */
824 switch (ksp_idx) {
825 case 0:
826 return simd8_enabled ? 8 :
827 (simd16_enabled && !simd32_enabled) ? 16 :
828 (simd32_enabled && !simd16_enabled) ? 32 : 0;
829 case 1:
830 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
831 case 2:
832 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
833 default:
834 unreachable("Invalid KSP index");
835 }
836 }
837
838 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
839 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
840 (wm_state)._16PixelDispatchEnable, \
841 (wm_state)._32PixelDispatchEnable)
842
843 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
844 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
845
846 static inline uint32_t
847 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
848 unsigned simd_width)
849 {
850 switch (simd_width) {
851 case 8: return 0;
852 case 16: return prog_data->prog_offset_16;
853 case 32: return prog_data->prog_offset_32;
854 default: return 0;
855 }
856 }
857
858 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
859 _brw_wm_prog_data_prog_offset(prog_data, \
860 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
861
862 static inline uint8_t
863 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
864 unsigned simd_width)
865 {
866 switch (simd_width) {
867 case 8: return prog_data->base.dispatch_grf_start_reg;
868 case 16: return prog_data->dispatch_grf_start_reg_16;
869 case 32: return prog_data->dispatch_grf_start_reg_32;
870 default: return 0;
871 }
872 }
873
874 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
875 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
876 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
877
878 static inline uint8_t
879 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
880 unsigned simd_width)
881 {
882 switch (simd_width) {
883 case 8: return prog_data->reg_blocks_8;
884 case 16: return prog_data->reg_blocks_16;
885 case 32: return prog_data->reg_blocks_32;
886 default: return 0;
887 }
888 }
889
890 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
891 _brw_wm_prog_data_reg_blocks(prog_data, \
892 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
893
894 struct brw_push_const_block {
895 unsigned dwords; /* Dword count, not reg aligned */
896 unsigned regs;
897 unsigned size; /* Bytes, register aligned */
898 };
899
900 struct brw_cs_prog_data {
901 struct brw_stage_prog_data base;
902
903 unsigned local_size[3];
904 unsigned simd_size;
905 unsigned threads;
906 unsigned slm_size;
907 bool uses_barrier;
908 bool uses_num_work_groups;
909
910 struct {
911 struct brw_push_const_block cross_thread;
912 struct brw_push_const_block per_thread;
913 struct brw_push_const_block total;
914 } push;
915
916 struct {
917 /** @{
918 * surface indices the CS-specific surfaces
919 */
920 uint32_t work_groups_start;
921 /** @} */
922 } binding_table;
923 };
924
925 /**
926 * Enum representing the i965-specific vertex results that don't correspond
927 * exactly to any element of gl_varying_slot. The values of this enum are
928 * assigned such that they don't conflict with gl_varying_slot.
929 */
930 typedef enum
931 {
932 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
933 BRW_VARYING_SLOT_PAD,
934 /**
935 * Technically this is not a varying but just a placeholder that
936 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
937 * builtin variable to be compiled correctly. see compile_sf_prog() for
938 * more info.
939 */
940 BRW_VARYING_SLOT_PNTC,
941 BRW_VARYING_SLOT_COUNT
942 } brw_varying_slot;
943
944 /**
945 * We always program SF to start reading at an offset of 1 (2 varying slots)
946 * from the start of the vertex URB entry. This causes it to skip:
947 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
948 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
949 */
950 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
951
952 /**
953 * Bitmask indicating which fragment shader inputs represent varyings (and
954 * hence have to be delivered to the fragment shader by the SF/SBE stage).
955 */
956 #define BRW_FS_VARYING_INPUT_MASK \
957 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
958 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
959
960 /**
961 * Data structure recording the relationship between the gl_varying_slot enum
962 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
963 * single octaword within the VUE (128 bits).
964 *
965 * Note that each BRW register contains 256 bits (2 octawords), so when
966 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
967 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
968 * in a vertex shader), each register corresponds to a single VUE slot, since
969 * it contains data for two separate vertices.
970 */
971 struct brw_vue_map {
972 /**
973 * Bitfield representing all varying slots that are (a) stored in this VUE
974 * map, and (b) actually written by the shader. Does not include any of
975 * the additional varying slots defined in brw_varying_slot.
976 */
977 uint64_t slots_valid;
978
979 /**
980 * Is this VUE map for a separate shader pipeline?
981 *
982 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
983 * without the linker having a chance to dead code eliminate unused varyings.
984 *
985 * This means that we have to use a fixed slot layout, based on the output's
986 * location field, rather than assigning slots in a compact contiguous block.
987 */
988 bool separate;
989
990 /**
991 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
992 * not stored in a slot (because they are not written, or because
993 * additional processing is applied before storing them in the VUE), the
994 * value is -1.
995 */
996 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
997
998 /**
999 * Map from VUE slot to gl_varying_slot value. For slots that do not
1000 * directly correspond to a gl_varying_slot, the value comes from
1001 * brw_varying_slot.
1002 *
1003 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1004 */
1005 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1006
1007 /**
1008 * Total number of VUE slots in use
1009 */
1010 int num_slots;
1011
1012 /**
1013 * Number of per-patch VUE slots. Only valid for tessellation control
1014 * shader outputs and tessellation evaluation shader inputs.
1015 */
1016 int num_per_patch_slots;
1017
1018 /**
1019 * Number of per-vertex VUE slots. Only valid for tessellation control
1020 * shader outputs and tessellation evaluation shader inputs.
1021 */
1022 int num_per_vertex_slots;
1023 };
1024
1025 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1026
1027 /**
1028 * Convert a VUE slot number into a byte offset within the VUE.
1029 */
1030 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1031 {
1032 return 16*slot;
1033 }
1034
1035 /**
1036 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1037 * VUE.
1038 */
1039 static inline
1040 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1041 {
1042 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1043 }
1044
1045 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1046 struct brw_vue_map *vue_map,
1047 uint64_t slots_valid,
1048 bool separate_shader);
1049
1050 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1051 uint64_t slots_valid,
1052 uint32_t is_patch);
1053
1054 /* brw_interpolation_map.c */
1055 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1056 struct nir_shader *nir,
1057 struct brw_wm_prog_data *prog_data);
1058
1059 enum shader_dispatch_mode {
1060 DISPATCH_MODE_4X1_SINGLE = 0,
1061 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1062 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1063 DISPATCH_MODE_SIMD8 = 3,
1064
1065 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1066 DISPATCH_MODE_TCS_8_PATCH = 2,
1067 };
1068
1069 /**
1070 * @defgroup Tessellator parameter enumerations.
1071 *
1072 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1073 * as part of the tessellation evaluation shader.
1074 *
1075 * @{
1076 */
1077 enum brw_tess_partitioning {
1078 BRW_TESS_PARTITIONING_INTEGER = 0,
1079 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1080 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1081 };
1082
1083 enum brw_tess_output_topology {
1084 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1085 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1086 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1087 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1088 };
1089
1090 enum brw_tess_domain {
1091 BRW_TESS_DOMAIN_QUAD = 0,
1092 BRW_TESS_DOMAIN_TRI = 1,
1093 BRW_TESS_DOMAIN_ISOLINE = 2,
1094 };
1095 /** @} */
1096
1097 struct brw_vue_prog_data {
1098 struct brw_stage_prog_data base;
1099 struct brw_vue_map vue_map;
1100
1101 /** Should the hardware deliver input VUE handles for URB pull loads? */
1102 bool include_vue_handles;
1103
1104 GLuint urb_read_length;
1105 GLuint total_grf;
1106
1107 uint32_t clip_distance_mask;
1108 uint32_t cull_distance_mask;
1109
1110 /* Used for calculating urb partitions. In the VS, this is the size of the
1111 * URB entry used for both input and output to the thread. In the GS, this
1112 * is the size of the URB entry used for output.
1113 */
1114 GLuint urb_entry_size;
1115
1116 enum shader_dispatch_mode dispatch_mode;
1117 };
1118
1119 struct brw_vs_prog_data {
1120 struct brw_vue_prog_data base;
1121
1122 GLbitfield64 inputs_read;
1123 GLbitfield64 double_inputs_read;
1124
1125 unsigned nr_attribute_slots;
1126
1127 bool uses_vertexid;
1128 bool uses_instanceid;
1129 bool uses_is_indexed_draw;
1130 bool uses_firstvertex;
1131 bool uses_baseinstance;
1132 bool uses_drawid;
1133 };
1134
1135 struct brw_tcs_prog_data
1136 {
1137 struct brw_vue_prog_data base;
1138
1139 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1140 bool include_primitive_id;
1141
1142 /** Number vertices in output patch */
1143 int instances;
1144
1145 /** Track patch count threshold */
1146 int patch_count_threshold;
1147 };
1148
1149
1150 struct brw_tes_prog_data
1151 {
1152 struct brw_vue_prog_data base;
1153
1154 enum brw_tess_partitioning partitioning;
1155 enum brw_tess_output_topology output_topology;
1156 enum brw_tess_domain domain;
1157 };
1158
1159 struct brw_gs_prog_data
1160 {
1161 struct brw_vue_prog_data base;
1162
1163 unsigned vertices_in;
1164
1165 /**
1166 * Size of an output vertex, measured in HWORDS (32 bytes).
1167 */
1168 unsigned output_vertex_size_hwords;
1169
1170 unsigned output_topology;
1171
1172 /**
1173 * Size of the control data (cut bits or StreamID bits), in hwords (32
1174 * bytes). 0 if there is no control data.
1175 */
1176 unsigned control_data_header_size_hwords;
1177
1178 /**
1179 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1180 * if the control data is StreamID bits, or
1181 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1182 * Ignored if control_data_header_size is 0.
1183 */
1184 unsigned control_data_format;
1185
1186 bool include_primitive_id;
1187
1188 /**
1189 * The number of vertices emitted, if constant - otherwise -1.
1190 */
1191 int static_vertex_count;
1192
1193 int invocations;
1194
1195 /**
1196 * Gen6: Provoking vertex convention for odd-numbered triangles
1197 * in tristrips.
1198 */
1199 GLuint pv_first:1;
1200
1201 /**
1202 * Gen6: Number of varyings that are output to transform feedback.
1203 */
1204 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1205
1206 /**
1207 * Gen6: Map from the index of a transform feedback binding table entry to the
1208 * gl_varying_slot that should be streamed out through that binding table
1209 * entry.
1210 */
1211 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1212
1213 /**
1214 * Gen6: Map from the index of a transform feedback binding table entry to the
1215 * swizzles that should be used when streaming out data through that
1216 * binding table entry.
1217 */
1218 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1219 };
1220
1221 struct brw_sf_prog_data {
1222 uint32_t urb_read_length;
1223 uint32_t total_grf;
1224
1225 /* Each vertex may have upto 12 attributes, 4 components each,
1226 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1227 * rows.
1228 *
1229 * Actually we use 4 for each, so call it 12 rows.
1230 */
1231 unsigned urb_entry_size;
1232 };
1233
1234 struct brw_clip_prog_data {
1235 uint32_t curb_read_length; /* user planes? */
1236 uint32_t clip_mode;
1237 uint32_t urb_read_length;
1238 uint32_t total_grf;
1239 };
1240
1241 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1242 union brw_any_prog_data {
1243 struct brw_stage_prog_data base;
1244 struct brw_vue_prog_data vue;
1245 struct brw_vs_prog_data vs;
1246 struct brw_tcs_prog_data tcs;
1247 struct brw_tes_prog_data tes;
1248 struct brw_gs_prog_data gs;
1249 struct brw_wm_prog_data wm;
1250 struct brw_cs_prog_data cs;
1251 };
1252
1253 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1254 static inline struct brw_##stage##_prog_data * \
1255 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1256 { \
1257 return (struct brw_##stage##_prog_data *) prog_data; \
1258 }
1259 DEFINE_PROG_DATA_DOWNCAST(vue)
1260 DEFINE_PROG_DATA_DOWNCAST(vs)
1261 DEFINE_PROG_DATA_DOWNCAST(tcs)
1262 DEFINE_PROG_DATA_DOWNCAST(tes)
1263 DEFINE_PROG_DATA_DOWNCAST(gs)
1264 DEFINE_PROG_DATA_DOWNCAST(wm)
1265 DEFINE_PROG_DATA_DOWNCAST(cs)
1266 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1267 DEFINE_PROG_DATA_DOWNCAST(clip)
1268 DEFINE_PROG_DATA_DOWNCAST(sf)
1269 #undef DEFINE_PROG_DATA_DOWNCAST
1270
1271 struct brw_compile_stats {
1272 uint32_t dispatch_width; /**< 0 for vec4 */
1273 uint32_t instructions;
1274 uint32_t loops;
1275 uint32_t cycles;
1276 uint32_t spills;
1277 uint32_t fills;
1278 };
1279
1280 /** @} */
1281
1282 struct brw_compiler *
1283 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1284
1285 /**
1286 * Returns a compiler configuration for use with disk shader cache
1287 *
1288 * This value only needs to change for settings that can cause different
1289 * program generation between two runs on the same hardware.
1290 *
1291 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1292 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1293 */
1294 uint64_t
1295 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1296
1297 unsigned
1298 brw_prog_data_size(gl_shader_stage stage);
1299
1300 unsigned
1301 brw_prog_key_size(gl_shader_stage stage);
1302
1303 void
1304 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1305
1306 /**
1307 * Compile a vertex shader.
1308 *
1309 * Returns the final assembly and the program's size.
1310 */
1311 const unsigned *
1312 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1313 void *mem_ctx,
1314 const struct brw_vs_prog_key *key,
1315 struct brw_vs_prog_data *prog_data,
1316 struct nir_shader *shader,
1317 int shader_time_index,
1318 struct brw_compile_stats *stats,
1319 char **error_str);
1320
1321 /**
1322 * Compile a tessellation control shader.
1323 *
1324 * Returns the final assembly and the program's size.
1325 */
1326 const unsigned *
1327 brw_compile_tcs(const struct brw_compiler *compiler,
1328 void *log_data,
1329 void *mem_ctx,
1330 const struct brw_tcs_prog_key *key,
1331 struct brw_tcs_prog_data *prog_data,
1332 struct nir_shader *nir,
1333 int shader_time_index,
1334 struct brw_compile_stats *stats,
1335 char **error_str);
1336
1337 /**
1338 * Compile a tessellation evaluation shader.
1339 *
1340 * Returns the final assembly and the program's size.
1341 */
1342 const unsigned *
1343 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1344 void *mem_ctx,
1345 const struct brw_tes_prog_key *key,
1346 const struct brw_vue_map *input_vue_map,
1347 struct brw_tes_prog_data *prog_data,
1348 struct nir_shader *shader,
1349 int shader_time_index,
1350 struct brw_compile_stats *stats,
1351 char **error_str);
1352
1353 /**
1354 * Compile a vertex shader.
1355 *
1356 * Returns the final assembly and the program's size.
1357 */
1358 const unsigned *
1359 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1360 void *mem_ctx,
1361 const struct brw_gs_prog_key *key,
1362 struct brw_gs_prog_data *prog_data,
1363 struct nir_shader *shader,
1364 struct gl_program *prog,
1365 int shader_time_index,
1366 struct brw_compile_stats *stats,
1367 char **error_str);
1368
1369 /**
1370 * Compile a strips and fans shader.
1371 *
1372 * This is a fixed-function shader determined entirely by the shader key and
1373 * a VUE map.
1374 *
1375 * Returns the final assembly and the program's size.
1376 */
1377 const unsigned *
1378 brw_compile_sf(const struct brw_compiler *compiler,
1379 void *mem_ctx,
1380 const struct brw_sf_prog_key *key,
1381 struct brw_sf_prog_data *prog_data,
1382 struct brw_vue_map *vue_map,
1383 unsigned *final_assembly_size);
1384
1385 /**
1386 * Compile a clipper shader.
1387 *
1388 * This is a fixed-function shader determined entirely by the shader key and
1389 * a VUE map.
1390 *
1391 * Returns the final assembly and the program's size.
1392 */
1393 const unsigned *
1394 brw_compile_clip(const struct brw_compiler *compiler,
1395 void *mem_ctx,
1396 const struct brw_clip_prog_key *key,
1397 struct brw_clip_prog_data *prog_data,
1398 struct brw_vue_map *vue_map,
1399 unsigned *final_assembly_size);
1400
1401 /**
1402 * Compile a fragment shader.
1403 *
1404 * Returns the final assembly and the program's size.
1405 */
1406 const unsigned *
1407 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1408 void *mem_ctx,
1409 const struct brw_wm_prog_key *key,
1410 struct brw_wm_prog_data *prog_data,
1411 struct nir_shader *shader,
1412 int shader_time_index8,
1413 int shader_time_index16,
1414 int shader_time_index32,
1415 bool allow_spilling,
1416 bool use_rep_send, struct brw_vue_map *vue_map,
1417 struct brw_compile_stats *stats, /**< Array of three stats */
1418 char **error_str);
1419
1420 /**
1421 * Compile a compute shader.
1422 *
1423 * Returns the final assembly and the program's size.
1424 */
1425 const unsigned *
1426 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1427 void *mem_ctx,
1428 const struct brw_cs_prog_key *key,
1429 struct brw_cs_prog_data *prog_data,
1430 const struct nir_shader *shader,
1431 int shader_time_index,
1432 struct brw_compile_stats *stats,
1433 char **error_str);
1434
1435 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1436 gl_shader_stage stage,
1437 const struct brw_base_prog_key *old_key,
1438 const struct brw_base_prog_key *key);
1439
1440 static inline uint32_t
1441 encode_slm_size(unsigned gen, uint32_t bytes)
1442 {
1443 uint32_t slm_size = 0;
1444
1445 /* Shared Local Memory is specified as powers of two, and encoded in
1446 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1447 *
1448 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1449 * -------------------------------------------------------------------
1450 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1451 * -------------------------------------------------------------------
1452 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1453 */
1454 assert(bytes <= 64 * 1024);
1455
1456 if (bytes > 0) {
1457 /* Shared Local Memory Size is specified as powers of two. */
1458 slm_size = util_next_power_of_two(bytes);
1459
1460 if (gen >= 9) {
1461 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1462 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1463 } else {
1464 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1465 slm_size = MAX2(slm_size, 4096) / 4096;
1466 }
1467 }
1468
1469 return slm_size;
1470 }
1471
1472 /**
1473 * Return true if the given shader stage is dispatched contiguously by the
1474 * relevant fixed function starting from channel 0 of the SIMD thread, which
1475 * implies that the dispatch mask of a thread can be assumed to have the form
1476 * '2^n - 1' for some n.
1477 */
1478 static inline bool
1479 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1480 gl_shader_stage stage,
1481 const struct brw_stage_prog_data *prog_data)
1482 {
1483 /* The code below makes assumptions about the hardware's thread dispatch
1484 * behavior that could be proven wrong in future generations -- Make sure
1485 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1486 * the NIR front-end before changing this assertion.
1487 */
1488 assert(devinfo->gen <= 12);
1489
1490 switch (stage) {
1491 case MESA_SHADER_FRAGMENT: {
1492 /* The PSD discards subspans coming in with no lit samples, which in the
1493 * per-pixel shading case implies that each subspan will either be fully
1494 * lit (due to the VMask being used to allow derivative computations),
1495 * or not dispatched at all. In per-sample dispatch mode individual
1496 * samples from the same subspan have a fixed relative location within
1497 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1498 * general and we should return false.
1499 */
1500 const struct brw_wm_prog_data *wm_prog_data =
1501 (const struct brw_wm_prog_data *)prog_data;
1502 return !wm_prog_data->persample_dispatch;
1503 }
1504 case MESA_SHADER_COMPUTE:
1505 /* Compute shaders will be spawned with either a fully enabled dispatch
1506 * mask or with whatever bottom/right execution mask was given to the
1507 * GPGPU walker command to be used along the workgroup edges -- In both
1508 * cases the dispatch mask is required to be tightly packed for our
1509 * invocation index calculations to work.
1510 */
1511 return true;
1512 default:
1513 /* Most remaining fixed functions are limited to use a packed dispatch
1514 * mask due to the hardware representation of the dispatch mask as a
1515 * single counter representing the number of enabled channels.
1516 */
1517 return true;
1518 }
1519 }
1520
1521 /**
1522 * Computes the first varying slot in the URB produced by the previous stage
1523 * that is used in the next stage. We do this by testing the varying slots in
1524 * the previous stage's vue map against the inputs read in the next stage.
1525 *
1526 * Note that:
1527 *
1528 * - Each URB offset contains two varying slots and we can only skip a
1529 * full offset if both slots are unused, so the value we return here is always
1530 * rounded down to the closest multiple of two.
1531 *
1532 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1533 * part of the vue header, so if these are read we can't skip anything.
1534 */
1535 static inline int
1536 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1537 const struct brw_vue_map *prev_stage_vue_map)
1538 {
1539 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1540 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1541 int varying = prev_stage_vue_map->slot_to_varying[i];
1542 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1543 return ROUND_DOWN_TO(i, 2);
1544 }
1545 }
1546
1547 return 0;
1548 }
1549
1550 #ifdef __cplusplus
1551 } /* extern "C" */
1552 #endif
1553
1554 #endif /* BRW_COMPILER_H */