i965/i915: Add colorspace support to YUV sampling
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned barycentrics we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_bary_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122
123 /**
124 * Whether or not the driver wants uniform params to be compacted by the
125 * back-end compiler.
126 */
127 bool compact_params;
128
129 /**
130 * Whether or not the driver wants variable group size to be lowered by the
131 * back-end compiler.
132 */
133 bool lower_variable_group_size;
134 };
135
136 /**
137 * We use a constant subgroup size of 32. It really only needs to be a
138 * maximum and, since we do SIMD32 for compute shaders in some cases, it
139 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
140 * subgroup size of 32 but will act as if 16 or 24 of those channels are
141 * disabled.
142 */
143 #define BRW_SUBGROUP_SIZE 32
144
145 /**
146 * Program key structures.
147 *
148 * When drawing, we look for the currently bound shaders in the program
149 * cache. This is essentially a hash table lookup, and these are the keys.
150 *
151 * Sometimes OpenGL features specified as state need to be simulated via
152 * shader code, due to a mismatch between the API and the hardware. This
153 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
154 * in the program key so it's considered when searching for a program. If
155 * we haven't seen a particular combination before, we have to recompile a
156 * new specialized version.
157 *
158 * Shader compilation should not look up state in gl_context directly, but
159 * instead use the copy in the program key. This guarantees recompiles will
160 * happen correctly.
161 *
162 * @{
163 */
164
165 enum PACKED gen6_gather_sampler_wa {
166 WA_SIGN = 1, /* whether we need to sign extend */
167 WA_8BIT = 2, /* if we have an 8bit format needing wa */
168 WA_16BIT = 4, /* if we have a 16bit format needing wa */
169 };
170
171 /**
172 * Sampler information needed by VS, WM, and GS program cache keys.
173 */
174 struct brw_sampler_prog_key_data {
175 /**
176 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
177 */
178 uint16_t swizzles[MAX_SAMPLERS];
179
180 uint32_t gl_clamp_mask[3];
181
182 /**
183 * For RG32F, gather4's channel select is broken.
184 */
185 uint32_t gather_channel_quirk_mask;
186
187 /**
188 * Whether this sampler uses the compressed multisample surface layout.
189 */
190 uint32_t compressed_multisample_layout_mask;
191
192 /**
193 * Whether this sampler is using 16x multisampling. If so fetching from
194 * this sampler will be handled with a different instruction, ld2dms_w
195 * instead of ld2dms.
196 */
197 uint32_t msaa_16;
198
199 /**
200 * For Sandybridge, which shader w/a we need for gather quirks.
201 */
202 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
203
204 /**
205 * Texture units that have a YUV image bound.
206 */
207 uint32_t y_u_v_image_mask;
208 uint32_t y_uv_image_mask;
209 uint32_t yx_xuxv_image_mask;
210 uint32_t xy_uxvx_image_mask;
211 uint32_t ayuv_image_mask;
212 uint32_t xyuv_image_mask;
213 uint32_t bt709_mask;
214 uint32_t bt2020_mask;
215
216 /* Scale factor for each texture. */
217 float scale_factors[32];
218 };
219
220 /** An enum representing what kind of input gl_SubgroupSize is. */
221 enum PACKED brw_subgroup_size_type
222 {
223 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
224 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
225 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
226
227 /* These enums are specifically chosen so that the value of the enum is
228 * also the subgroup size. If any new values are added, they must respect
229 * this invariant.
230 */
231 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
232 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
233 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
234 };
235
236 struct brw_base_prog_key {
237 unsigned program_string_id;
238
239 enum brw_subgroup_size_type subgroup_size_type;
240
241 struct brw_sampler_prog_key_data tex;
242 };
243
244 /**
245 * The VF can't natively handle certain types of attributes, such as GL_FIXED
246 * or most 10_10_10_2 types. These flags enable various VS workarounds to
247 * "fix" attributes at the beginning of shaders.
248 */
249 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
250 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
251 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
252 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
253 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
254
255 /**
256 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
257 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
258 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
259 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
260 */
261 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
262 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
263
264 /** The program key for Vertex Shaders. */
265 struct brw_vs_prog_key {
266 struct brw_base_prog_key base;
267
268 /**
269 * Per-attribute workaround flags
270 *
271 * For each attribute, a combination of BRW_ATTRIB_WA_*.
272 *
273 * For OpenGL, where we expose a maximum of 16 user input atttributes
274 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
275 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
276 * expose up to 28 user input vertex attributes that are mapped to slots
277 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
278 * enough to hold this many slots.
279 */
280 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
281
282 bool copy_edgeflag:1;
283
284 bool clamp_vertex_color:1;
285
286 /**
287 * How many user clipping planes are being uploaded to the vertex shader as
288 * push constants.
289 *
290 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
291 * clip distances.
292 */
293 unsigned nr_userclip_plane_consts:4;
294
295 /**
296 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
297 * are going to be replaced with point coordinates (as a consequence of a
298 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
299 * our SF thread requires exact matching between VS outputs and FS inputs,
300 * these texture coordinates will need to be unconditionally included in
301 * the VUE, even if they aren't written by the vertex shader.
302 */
303 uint8_t point_coord_replace;
304 };
305
306 /** The program key for Tessellation Control Shaders. */
307 struct brw_tcs_prog_key
308 {
309 struct brw_base_prog_key base;
310
311 GLenum tes_primitive_mode;
312
313 unsigned input_vertices;
314
315 /** A bitfield of per-patch outputs written. */
316 uint32_t patch_outputs_written;
317
318 /** A bitfield of per-vertex outputs written. */
319 uint64_t outputs_written;
320
321 bool quads_workaround;
322 };
323
324 /** The program key for Tessellation Evaluation Shaders. */
325 struct brw_tes_prog_key
326 {
327 struct brw_base_prog_key base;
328
329 /** A bitfield of per-patch inputs read. */
330 uint32_t patch_inputs_read;
331
332 /** A bitfield of per-vertex inputs read. */
333 uint64_t inputs_read;
334
335 /**
336 * How many user clipping planes are being uploaded to the tessellation
337 * evaluation shader as push constants.
338 *
339 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
340 * clip distances.
341 */
342 unsigned nr_userclip_plane_consts:4;
343 };
344
345 /** The program key for Geometry Shaders. */
346 struct brw_gs_prog_key
347 {
348 struct brw_base_prog_key base;
349
350 /**
351 * How many user clipping planes are being uploaded to the geometry shader
352 * as push constants.
353 *
354 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
355 * clip distances.
356 */
357 unsigned nr_userclip_plane_consts:4;
358 };
359
360 enum brw_sf_primitive {
361 BRW_SF_PRIM_POINTS = 0,
362 BRW_SF_PRIM_LINES = 1,
363 BRW_SF_PRIM_TRIANGLES = 2,
364 BRW_SF_PRIM_UNFILLED_TRIS = 3,
365 };
366
367 struct brw_sf_prog_key {
368 uint64_t attrs;
369 bool contains_flat_varying;
370 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
371 uint8_t point_sprite_coord_replace;
372 enum brw_sf_primitive primitive:2;
373 bool do_twoside_color:1;
374 bool frontface_ccw:1;
375 bool do_point_sprite:1;
376 bool do_point_coord:1;
377 bool sprite_origin_lower_left:1;
378 bool userclip_active:1;
379 };
380
381 enum brw_clip_mode {
382 BRW_CLIP_MODE_NORMAL = 0,
383 BRW_CLIP_MODE_CLIP_ALL = 1,
384 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
385 BRW_CLIP_MODE_REJECT_ALL = 3,
386 BRW_CLIP_MODE_ACCEPT_ALL = 4,
387 BRW_CLIP_MODE_KERNEL_CLIP = 5,
388 };
389
390 enum brw_clip_fill_mode {
391 BRW_CLIP_FILL_MODE_LINE = 0,
392 BRW_CLIP_FILL_MODE_POINT = 1,
393 BRW_CLIP_FILL_MODE_FILL = 2,
394 BRW_CLIP_FILL_MODE_CULL = 3,
395 };
396
397 /* Note that if unfilled primitives are being emitted, we have to fix
398 * up polygon offset and flatshading at this point:
399 */
400 struct brw_clip_prog_key {
401 uint64_t attrs;
402 bool contains_flat_varying;
403 bool contains_noperspective_varying;
404 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
405 unsigned primitive:4;
406 unsigned nr_userclip:4;
407 bool pv_first:1;
408 bool do_unfilled:1;
409 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
410 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
411 bool offset_cw:1;
412 bool offset_ccw:1;
413 bool copy_bfc_cw:1;
414 bool copy_bfc_ccw:1;
415 enum brw_clip_mode clip_mode:3;
416
417 float offset_factor;
418 float offset_units;
419 float offset_clamp;
420 };
421
422 /* A big lookup table is used to figure out which and how many
423 * additional regs will inserted before the main payload in the WM
424 * program execution. These mainly relate to depth and stencil
425 * processing and the early-depth-test optimization.
426 */
427 enum brw_wm_iz_bits {
428 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
429 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
430 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
431 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
432 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
433 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
434 BRW_WM_IZ_BIT_MAX = 0x40
435 };
436
437 enum brw_wm_aa_enable {
438 BRW_WM_AA_NEVER,
439 BRW_WM_AA_SOMETIMES,
440 BRW_WM_AA_ALWAYS
441 };
442
443 /** The program key for Fragment/Pixel Shaders. */
444 struct brw_wm_prog_key {
445 struct brw_base_prog_key base;
446
447 /* Some collection of BRW_WM_IZ_* */
448 uint8_t iz_lookup;
449 bool stats_wm:1;
450 bool flat_shade:1;
451 unsigned nr_color_regions:5;
452 bool alpha_test_replicate_alpha:1;
453 bool alpha_to_coverage:1;
454 bool clamp_fragment_color:1;
455 bool persample_interp:1;
456 bool multisample_fbo:1;
457 bool frag_coord_adds_sample_pos:1;
458 enum brw_wm_aa_enable line_aa:2;
459 bool high_quality_derivatives:1;
460 bool force_dual_color_blend:1;
461 bool coherent_fb_fetch:1;
462 bool ignore_sample_mask_out:1;
463
464 uint8_t color_outputs_valid;
465 uint64_t input_slots_valid;
466 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
467 float alpha_test_ref;
468 };
469
470 struct brw_cs_prog_key {
471 struct brw_base_prog_key base;
472 };
473
474 /* brw_any_prog_key is any of the keys that map to an API stage */
475 union brw_any_prog_key {
476 struct brw_base_prog_key base;
477 struct brw_vs_prog_key vs;
478 struct brw_tcs_prog_key tcs;
479 struct brw_tes_prog_key tes;
480 struct brw_gs_prog_key gs;
481 struct brw_wm_prog_key wm;
482 struct brw_cs_prog_key cs;
483 };
484
485 /*
486 * Image metadata structure as laid out in the shader parameter
487 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
488 * able to use them. That's okay because the padding and any unused
489 * entries [most of them except when we're doing untyped surface
490 * access] will be removed by the uniform packing pass.
491 */
492 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
493 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
494 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
495 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
496 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
497 #define BRW_IMAGE_PARAM_SIZE 20
498
499 struct brw_image_param {
500 /** Offset applied to the X and Y surface coordinates. */
501 uint32_t offset[2];
502
503 /** Surface X, Y and Z dimensions. */
504 uint32_t size[3];
505
506 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
507 * pixels, vertical slice stride in pixels.
508 */
509 uint32_t stride[4];
510
511 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
512 uint32_t tiling[3];
513
514 /**
515 * Right shift to apply for bit 6 address swizzling. Two different
516 * swizzles can be specified and will be applied one after the other. The
517 * resulting address will be:
518 *
519 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
520 * (addr >> swizzling[1])))
521 *
522 * Use \c 0xff if any of the swizzles is not required.
523 */
524 uint32_t swizzling[2];
525 };
526
527 /** Max number of render targets in a shader */
528 #define BRW_MAX_DRAW_BUFFERS 8
529
530 /**
531 * Max number of binding table entries used for stream output.
532 *
533 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
534 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
535 *
536 * On Gen6, the size of transform feedback data is limited not by the number
537 * of components but by the number of binding table entries we set aside. We
538 * use one binding table entry for a float, one entry for a vector, and one
539 * entry per matrix column. Since the only way we can communicate our
540 * transform feedback capabilities to the client is via
541 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
542 * worst case, in which all the varyings are floats, so we use up one binding
543 * table entry per component. Therefore we need to set aside at least 64
544 * binding table entries for use by transform feedback.
545 *
546 * Note: since we don't currently pack varyings, it is currently impossible
547 * for the client to actually use up all of these binding table entries--if
548 * all of their varyings were floats, they would run out of varying slots and
549 * fail to link. But that's a bug, so it seems prudent to go ahead and
550 * allocate the number of binding table entries we will need once the bug is
551 * fixed.
552 */
553 #define BRW_MAX_SOL_BINDINGS 64
554
555 /**
556 * Binding table index for the first gen6 SOL binding.
557 */
558 #define BRW_GEN6_SOL_BINDING_START 0
559
560 /**
561 * Stride in bytes between shader_time entries.
562 *
563 * We separate entries by a cacheline to reduce traffic between EUs writing to
564 * different entries.
565 */
566 #define BRW_SHADER_TIME_STRIDE 64
567
568 struct brw_ubo_range
569 {
570 uint16_t block;
571 uint8_t start;
572 uint8_t length;
573 };
574
575 /* We reserve the first 2^16 values for builtins */
576 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
577
578 enum brw_param_builtin {
579 BRW_PARAM_BUILTIN_ZERO,
580
581 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
604 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
605 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
606 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
607 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
608 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
609 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
610 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
611 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
612 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
613
614 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
615 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
616 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
617 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
618 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
619 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
620
621 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
622
623 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
624 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
625 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
626 BRW_PARAM_BUILTIN_SUBGROUP_ID,
627 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
628 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
629 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
630 };
631
632 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
633 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
634
635 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
636 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
637 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
638
639 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
640 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
641
642 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
643 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
644
645 struct brw_stage_prog_data {
646 struct {
647 /** size of our binding table. */
648 uint32_t size_bytes;
649
650 /** @{
651 * surface indices for the various groups of surfaces
652 */
653 uint32_t pull_constants_start;
654 uint32_t texture_start;
655 uint32_t gather_texture_start;
656 uint32_t ubo_start;
657 uint32_t ssbo_start;
658 uint32_t image_start;
659 uint32_t shader_time_start;
660 uint32_t plane_start[3];
661 /** @} */
662 } binding_table;
663
664 struct brw_ubo_range ubo_ranges[4];
665
666 GLuint nr_params; /**< number of float params/constants */
667 GLuint nr_pull_params;
668
669 /* zero_push_reg is a bitfield which indicates what push registers (if any)
670 * should be zeroed by SW at the start of the shader. The corresponding
671 * push_reg_mask_param specifies the param index (in 32-bit units) where
672 * the actual runtime 64-bit mask will be pushed. The shader will zero
673 * push reg i if
674 *
675 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
676 *
677 * If this field is set, brw_compiler::compact_params must be false.
678 */
679 uint64_t zero_push_reg;
680 unsigned push_reg_mask_param;
681
682 unsigned curb_read_length;
683 unsigned total_scratch;
684 unsigned total_shared;
685
686 unsigned program_size;
687
688 /** Does this program pull from any UBO or other constant buffers? */
689 bool has_ubo_pull;
690
691 /**
692 * Register where the thread expects to find input data from the URB
693 * (typically uniforms, followed by vertex or fragment attributes).
694 */
695 unsigned dispatch_grf_start_reg;
696
697 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
698
699 /* 32-bit identifiers for all push/pull parameters. These can be anything
700 * the driver wishes them to be; the core of the back-end compiler simply
701 * re-arranges them. The one restriction is that the bottom 2^16 values
702 * are reserved for builtins defined in the brw_param_builtin enum defined
703 * above.
704 */
705 uint32_t *param;
706 uint32_t *pull_param;
707
708 /* Whether shader uses atomic operations. */
709 bool uses_atomic_load_store;
710 };
711
712 static inline uint32_t *
713 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
714 unsigned nr_new_params)
715 {
716 unsigned old_nr_params = prog_data->nr_params;
717 prog_data->nr_params += nr_new_params;
718 prog_data->param = reralloc(ralloc_parent(prog_data->param),
719 prog_data->param, uint32_t,
720 prog_data->nr_params);
721 return prog_data->param + old_nr_params;
722 }
723
724 enum brw_barycentric_mode {
725 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
726 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
727 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
728 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
729 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
730 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
731 BRW_BARYCENTRIC_MODE_COUNT = 6
732 };
733 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
734 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
735 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
736 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
737
738 enum brw_pixel_shader_computed_depth_mode {
739 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
740 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
741 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
742 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
743 };
744
745 /* Data about a particular attempt to compile a program. Note that
746 * there can be many of these, each in a different GL state
747 * corresponding to a different brw_wm_prog_key struct, with different
748 * compiled programs.
749 */
750 struct brw_wm_prog_data {
751 struct brw_stage_prog_data base;
752
753 GLuint num_varying_inputs;
754
755 uint8_t reg_blocks_8;
756 uint8_t reg_blocks_16;
757 uint8_t reg_blocks_32;
758
759 uint8_t dispatch_grf_start_reg_16;
760 uint8_t dispatch_grf_start_reg_32;
761 uint32_t prog_offset_16;
762 uint32_t prog_offset_32;
763
764 struct {
765 /** @{
766 * surface indices the WM-specific surfaces
767 */
768 uint32_t render_target_read_start;
769 /** @} */
770 } binding_table;
771
772 uint8_t computed_depth_mode;
773 bool computed_stencil;
774
775 bool early_fragment_tests;
776 bool post_depth_coverage;
777 bool inner_coverage;
778 bool dispatch_8;
779 bool dispatch_16;
780 bool dispatch_32;
781 bool dual_src_blend;
782 bool persample_dispatch;
783 bool uses_pos_offset;
784 bool uses_omask;
785 bool uses_kill;
786 bool uses_src_depth;
787 bool uses_src_w;
788 bool uses_sample_mask;
789 bool has_render_target_reads;
790 bool has_side_effects;
791 bool pulls_bary;
792
793 bool contains_flat_varying;
794 bool contains_noperspective_varying;
795
796 /**
797 * Mask of which interpolation modes are required by the fragment shader.
798 * Used in hardware setup on gen6+.
799 */
800 uint32_t barycentric_interp_modes;
801
802 /**
803 * Mask of which FS inputs are marked flat by the shader source. This is
804 * needed for setting up 3DSTATE_SF/SBE.
805 */
806 uint32_t flat_inputs;
807
808 /**
809 * The FS inputs
810 */
811 uint64_t inputs;
812
813 /* Mapping of VUE slots to interpolation modes.
814 * Used by the Gen4-5 clip/sf/wm stages.
815 */
816 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
817
818 /**
819 * Map from gl_varying_slot to the position within the FS setup data
820 * payload where the varying's attribute vertex deltas should be delivered.
821 * For varying slots that are not used by the FS, the value is -1.
822 */
823 int urb_setup[VARYING_SLOT_MAX];
824
825 /**
826 * Cache structure into the urb_setup array above that contains the
827 * attribute numbers of active varyings out of urb_setup.
828 * The actual count is stored in urb_setup_attribs_count.
829 */
830 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
831 uint8_t urb_setup_attribs_count;
832 };
833
834 /** Returns the SIMD width corresponding to a given KSP index
835 *
836 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
837 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
838 * kernel start pointer (KSP) indices that is based on what dispatch widths
839 * are enabled. This function provides, effectively, the reverse mapping.
840 *
841 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
842 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
843 */
844 static inline unsigned
845 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
846 bool simd16_enabled, bool simd32_enabled)
847 {
848 /* This function strictly ignores contiguous dispatch */
849 switch (ksp_idx) {
850 case 0:
851 return simd8_enabled ? 8 :
852 (simd16_enabled && !simd32_enabled) ? 16 :
853 (simd32_enabled && !simd16_enabled) ? 32 : 0;
854 case 1:
855 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
856 case 2:
857 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
858 default:
859 unreachable("Invalid KSP index");
860 }
861 }
862
863 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
864 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
865 (wm_state)._16PixelDispatchEnable, \
866 (wm_state)._32PixelDispatchEnable)
867
868 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
869 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
870
871 static inline uint32_t
872 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
873 unsigned simd_width)
874 {
875 switch (simd_width) {
876 case 8: return 0;
877 case 16: return prog_data->prog_offset_16;
878 case 32: return prog_data->prog_offset_32;
879 default: return 0;
880 }
881 }
882
883 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
884 _brw_wm_prog_data_prog_offset(prog_data, \
885 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
886
887 static inline uint8_t
888 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
889 unsigned simd_width)
890 {
891 switch (simd_width) {
892 case 8: return prog_data->base.dispatch_grf_start_reg;
893 case 16: return prog_data->dispatch_grf_start_reg_16;
894 case 32: return prog_data->dispatch_grf_start_reg_32;
895 default: return 0;
896 }
897 }
898
899 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
900 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
901 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
902
903 static inline uint8_t
904 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
905 unsigned simd_width)
906 {
907 switch (simd_width) {
908 case 8: return prog_data->reg_blocks_8;
909 case 16: return prog_data->reg_blocks_16;
910 case 32: return prog_data->reg_blocks_32;
911 default: return 0;
912 }
913 }
914
915 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
916 _brw_wm_prog_data_reg_blocks(prog_data, \
917 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
918
919 struct brw_push_const_block {
920 unsigned dwords; /* Dword count, not reg aligned */
921 unsigned regs;
922 unsigned size; /* Bytes, register aligned */
923 };
924
925 struct brw_cs_prog_data {
926 struct brw_stage_prog_data base;
927
928 unsigned local_size[3];
929 unsigned slm_size;
930
931 /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
932 * kept when using variable group size, and the right one can only be
933 * decided at dispatch time.
934 */
935 unsigned prog_offset[3];
936
937 /* Bitmask indicating which program offsets are valid. */
938 unsigned prog_mask;
939
940 /* Bitmask indicating which programs have spilled. */
941 unsigned prog_spilled;
942
943 bool uses_barrier;
944 bool uses_num_work_groups;
945
946 struct {
947 struct brw_push_const_block cross_thread;
948 struct brw_push_const_block per_thread;
949 } push;
950
951 struct {
952 /** @{
953 * surface indices the CS-specific surfaces
954 */
955 uint32_t work_groups_start;
956 /** @} */
957 } binding_table;
958 };
959
960 static inline uint32_t
961 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
962 unsigned dispatch_width)
963 {
964 assert(dispatch_width == 8 ||
965 dispatch_width == 16 ||
966 dispatch_width == 32);
967 const unsigned index = dispatch_width / 16;
968 assert(prog_data->prog_mask & (1 << index));
969 return prog_data->prog_offset[index];
970 }
971
972 /**
973 * Enum representing the i965-specific vertex results that don't correspond
974 * exactly to any element of gl_varying_slot. The values of this enum are
975 * assigned such that they don't conflict with gl_varying_slot.
976 */
977 typedef enum
978 {
979 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
980 BRW_VARYING_SLOT_PAD,
981 /**
982 * Technically this is not a varying but just a placeholder that
983 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
984 * builtin variable to be compiled correctly. see compile_sf_prog() for
985 * more info.
986 */
987 BRW_VARYING_SLOT_PNTC,
988 BRW_VARYING_SLOT_COUNT
989 } brw_varying_slot;
990
991 /**
992 * We always program SF to start reading at an offset of 1 (2 varying slots)
993 * from the start of the vertex URB entry. This causes it to skip:
994 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
995 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
996 */
997 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
998
999 /**
1000 * Bitmask indicating which fragment shader inputs represent varyings (and
1001 * hence have to be delivered to the fragment shader by the SF/SBE stage).
1002 */
1003 #define BRW_FS_VARYING_INPUT_MASK \
1004 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1005 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1006
1007 /**
1008 * Data structure recording the relationship between the gl_varying_slot enum
1009 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
1010 * single octaword within the VUE (128 bits).
1011 *
1012 * Note that each BRW register contains 256 bits (2 octawords), so when
1013 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1014 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
1015 * in a vertex shader), each register corresponds to a single VUE slot, since
1016 * it contains data for two separate vertices.
1017 */
1018 struct brw_vue_map {
1019 /**
1020 * Bitfield representing all varying slots that are (a) stored in this VUE
1021 * map, and (b) actually written by the shader. Does not include any of
1022 * the additional varying slots defined in brw_varying_slot.
1023 */
1024 uint64_t slots_valid;
1025
1026 /**
1027 * Is this VUE map for a separate shader pipeline?
1028 *
1029 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1030 * without the linker having a chance to dead code eliminate unused varyings.
1031 *
1032 * This means that we have to use a fixed slot layout, based on the output's
1033 * location field, rather than assigning slots in a compact contiguous block.
1034 */
1035 bool separate;
1036
1037 /**
1038 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
1039 * not stored in a slot (because they are not written, or because
1040 * additional processing is applied before storing them in the VUE), the
1041 * value is -1.
1042 */
1043 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1044
1045 /**
1046 * Map from VUE slot to gl_varying_slot value. For slots that do not
1047 * directly correspond to a gl_varying_slot, the value comes from
1048 * brw_varying_slot.
1049 *
1050 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1051 */
1052 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1053
1054 /**
1055 * Total number of VUE slots in use
1056 */
1057 int num_slots;
1058
1059 /**
1060 * Number of per-patch VUE slots. Only valid for tessellation control
1061 * shader outputs and tessellation evaluation shader inputs.
1062 */
1063 int num_per_patch_slots;
1064
1065 /**
1066 * Number of per-vertex VUE slots. Only valid for tessellation control
1067 * shader outputs and tessellation evaluation shader inputs.
1068 */
1069 int num_per_vertex_slots;
1070 };
1071
1072 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1073
1074 /**
1075 * Convert a VUE slot number into a byte offset within the VUE.
1076 */
1077 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1078 {
1079 return 16*slot;
1080 }
1081
1082 /**
1083 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1084 * VUE.
1085 */
1086 static inline
1087 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1088 {
1089 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1090 }
1091
1092 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1093 struct brw_vue_map *vue_map,
1094 uint64_t slots_valid,
1095 bool separate_shader,
1096 uint32_t pos_slots);
1097
1098 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1099 uint64_t slots_valid,
1100 uint32_t is_patch);
1101
1102 /* brw_interpolation_map.c */
1103 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1104 struct nir_shader *nir,
1105 struct brw_wm_prog_data *prog_data);
1106
1107 enum shader_dispatch_mode {
1108 DISPATCH_MODE_4X1_SINGLE = 0,
1109 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1110 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1111 DISPATCH_MODE_SIMD8 = 3,
1112
1113 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1114 DISPATCH_MODE_TCS_8_PATCH = 2,
1115 };
1116
1117 /**
1118 * @defgroup Tessellator parameter enumerations.
1119 *
1120 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1121 * as part of the tessellation evaluation shader.
1122 *
1123 * @{
1124 */
1125 enum brw_tess_partitioning {
1126 BRW_TESS_PARTITIONING_INTEGER = 0,
1127 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1128 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1129 };
1130
1131 enum brw_tess_output_topology {
1132 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1133 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1134 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1135 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1136 };
1137
1138 enum brw_tess_domain {
1139 BRW_TESS_DOMAIN_QUAD = 0,
1140 BRW_TESS_DOMAIN_TRI = 1,
1141 BRW_TESS_DOMAIN_ISOLINE = 2,
1142 };
1143 /** @} */
1144
1145 struct brw_vue_prog_data {
1146 struct brw_stage_prog_data base;
1147 struct brw_vue_map vue_map;
1148
1149 /** Should the hardware deliver input VUE handles for URB pull loads? */
1150 bool include_vue_handles;
1151
1152 GLuint urb_read_length;
1153 GLuint total_grf;
1154
1155 uint32_t clip_distance_mask;
1156 uint32_t cull_distance_mask;
1157
1158 /* Used for calculating urb partitions. In the VS, this is the size of the
1159 * URB entry used for both input and output to the thread. In the GS, this
1160 * is the size of the URB entry used for output.
1161 */
1162 GLuint urb_entry_size;
1163
1164 enum shader_dispatch_mode dispatch_mode;
1165 };
1166
1167 struct brw_vs_prog_data {
1168 struct brw_vue_prog_data base;
1169
1170 GLbitfield64 inputs_read;
1171 GLbitfield64 double_inputs_read;
1172
1173 unsigned nr_attribute_slots;
1174
1175 bool uses_vertexid;
1176 bool uses_instanceid;
1177 bool uses_is_indexed_draw;
1178 bool uses_firstvertex;
1179 bool uses_baseinstance;
1180 bool uses_drawid;
1181 };
1182
1183 struct brw_tcs_prog_data
1184 {
1185 struct brw_vue_prog_data base;
1186
1187 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1188 bool include_primitive_id;
1189
1190 /** Number vertices in output patch */
1191 int instances;
1192
1193 /** Track patch count threshold */
1194 int patch_count_threshold;
1195 };
1196
1197
1198 struct brw_tes_prog_data
1199 {
1200 struct brw_vue_prog_data base;
1201
1202 enum brw_tess_partitioning partitioning;
1203 enum brw_tess_output_topology output_topology;
1204 enum brw_tess_domain domain;
1205 };
1206
1207 struct brw_gs_prog_data
1208 {
1209 struct brw_vue_prog_data base;
1210
1211 unsigned vertices_in;
1212
1213 /**
1214 * Size of an output vertex, measured in HWORDS (32 bytes).
1215 */
1216 unsigned output_vertex_size_hwords;
1217
1218 unsigned output_topology;
1219
1220 /**
1221 * Size of the control data (cut bits or StreamID bits), in hwords (32
1222 * bytes). 0 if there is no control data.
1223 */
1224 unsigned control_data_header_size_hwords;
1225
1226 /**
1227 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1228 * if the control data is StreamID bits, or
1229 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1230 * Ignored if control_data_header_size is 0.
1231 */
1232 unsigned control_data_format;
1233
1234 bool include_primitive_id;
1235
1236 /**
1237 * The number of vertices emitted, if constant - otherwise -1.
1238 */
1239 int static_vertex_count;
1240
1241 int invocations;
1242
1243 /**
1244 * Gen6: Provoking vertex convention for odd-numbered triangles
1245 * in tristrips.
1246 */
1247 GLuint pv_first:1;
1248
1249 /**
1250 * Gen6: Number of varyings that are output to transform feedback.
1251 */
1252 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1253
1254 /**
1255 * Gen6: Map from the index of a transform feedback binding table entry to the
1256 * gl_varying_slot that should be streamed out through that binding table
1257 * entry.
1258 */
1259 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1260
1261 /**
1262 * Gen6: Map from the index of a transform feedback binding table entry to the
1263 * swizzles that should be used when streaming out data through that
1264 * binding table entry.
1265 */
1266 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1267 };
1268
1269 struct brw_sf_prog_data {
1270 uint32_t urb_read_length;
1271 uint32_t total_grf;
1272
1273 /* Each vertex may have upto 12 attributes, 4 components each,
1274 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1275 * rows.
1276 *
1277 * Actually we use 4 for each, so call it 12 rows.
1278 */
1279 unsigned urb_entry_size;
1280 };
1281
1282 struct brw_clip_prog_data {
1283 uint32_t curb_read_length; /* user planes? */
1284 uint32_t clip_mode;
1285 uint32_t urb_read_length;
1286 uint32_t total_grf;
1287 };
1288
1289 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1290 union brw_any_prog_data {
1291 struct brw_stage_prog_data base;
1292 struct brw_vue_prog_data vue;
1293 struct brw_vs_prog_data vs;
1294 struct brw_tcs_prog_data tcs;
1295 struct brw_tes_prog_data tes;
1296 struct brw_gs_prog_data gs;
1297 struct brw_wm_prog_data wm;
1298 struct brw_cs_prog_data cs;
1299 };
1300
1301 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1302 static inline struct brw_##stage##_prog_data * \
1303 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1304 { \
1305 return (struct brw_##stage##_prog_data *) prog_data; \
1306 } \
1307 static inline const struct brw_##stage##_prog_data * \
1308 brw_##stage##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1309 { \
1310 return (const struct brw_##stage##_prog_data *) prog_data; \
1311 }
1312 DEFINE_PROG_DATA_DOWNCAST(vue)
1313 DEFINE_PROG_DATA_DOWNCAST(vs)
1314 DEFINE_PROG_DATA_DOWNCAST(tcs)
1315 DEFINE_PROG_DATA_DOWNCAST(tes)
1316 DEFINE_PROG_DATA_DOWNCAST(gs)
1317 DEFINE_PROG_DATA_DOWNCAST(wm)
1318 DEFINE_PROG_DATA_DOWNCAST(cs)
1319 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1320 DEFINE_PROG_DATA_DOWNCAST(clip)
1321 DEFINE_PROG_DATA_DOWNCAST(sf)
1322 #undef DEFINE_PROG_DATA_DOWNCAST
1323
1324 struct brw_compile_stats {
1325 uint32_t dispatch_width; /**< 0 for vec4 */
1326 uint32_t instructions;
1327 uint32_t sends;
1328 uint32_t loops;
1329 uint32_t cycles;
1330 uint32_t spills;
1331 uint32_t fills;
1332 };
1333
1334 /** @} */
1335
1336 struct brw_compiler *
1337 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1338
1339 /**
1340 * Returns a compiler configuration for use with disk shader cache
1341 *
1342 * This value only needs to change for settings that can cause different
1343 * program generation between two runs on the same hardware.
1344 *
1345 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1346 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1347 */
1348 uint64_t
1349 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1350
1351 unsigned
1352 brw_prog_data_size(gl_shader_stage stage);
1353
1354 unsigned
1355 brw_prog_key_size(gl_shader_stage stage);
1356
1357 void
1358 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1359
1360 /**
1361 * Compile a vertex shader.
1362 *
1363 * Returns the final assembly and the program's size.
1364 */
1365 const unsigned *
1366 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1367 void *mem_ctx,
1368 const struct brw_vs_prog_key *key,
1369 struct brw_vs_prog_data *prog_data,
1370 struct nir_shader *shader,
1371 int shader_time_index,
1372 struct brw_compile_stats *stats,
1373 char **error_str);
1374
1375 /**
1376 * Compile a tessellation control shader.
1377 *
1378 * Returns the final assembly and the program's size.
1379 */
1380 const unsigned *
1381 brw_compile_tcs(const struct brw_compiler *compiler,
1382 void *log_data,
1383 void *mem_ctx,
1384 const struct brw_tcs_prog_key *key,
1385 struct brw_tcs_prog_data *prog_data,
1386 struct nir_shader *nir,
1387 int shader_time_index,
1388 struct brw_compile_stats *stats,
1389 char **error_str);
1390
1391 /**
1392 * Compile a tessellation evaluation shader.
1393 *
1394 * Returns the final assembly and the program's size.
1395 */
1396 const unsigned *
1397 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1398 void *mem_ctx,
1399 const struct brw_tes_prog_key *key,
1400 const struct brw_vue_map *input_vue_map,
1401 struct brw_tes_prog_data *prog_data,
1402 struct nir_shader *shader,
1403 int shader_time_index,
1404 struct brw_compile_stats *stats,
1405 char **error_str);
1406
1407 /**
1408 * Compile a vertex shader.
1409 *
1410 * Returns the final assembly and the program's size.
1411 */
1412 const unsigned *
1413 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1414 void *mem_ctx,
1415 const struct brw_gs_prog_key *key,
1416 struct brw_gs_prog_data *prog_data,
1417 struct nir_shader *shader,
1418 struct gl_program *prog,
1419 int shader_time_index,
1420 struct brw_compile_stats *stats,
1421 char **error_str);
1422
1423 /**
1424 * Compile a strips and fans shader.
1425 *
1426 * This is a fixed-function shader determined entirely by the shader key and
1427 * a VUE map.
1428 *
1429 * Returns the final assembly and the program's size.
1430 */
1431 const unsigned *
1432 brw_compile_sf(const struct brw_compiler *compiler,
1433 void *mem_ctx,
1434 const struct brw_sf_prog_key *key,
1435 struct brw_sf_prog_data *prog_data,
1436 struct brw_vue_map *vue_map,
1437 unsigned *final_assembly_size);
1438
1439 /**
1440 * Compile a clipper shader.
1441 *
1442 * This is a fixed-function shader determined entirely by the shader key and
1443 * a VUE map.
1444 *
1445 * Returns the final assembly and the program's size.
1446 */
1447 const unsigned *
1448 brw_compile_clip(const struct brw_compiler *compiler,
1449 void *mem_ctx,
1450 const struct brw_clip_prog_key *key,
1451 struct brw_clip_prog_data *prog_data,
1452 struct brw_vue_map *vue_map,
1453 unsigned *final_assembly_size);
1454
1455 /**
1456 * Compile a fragment shader.
1457 *
1458 * Returns the final assembly and the program's size.
1459 */
1460 const unsigned *
1461 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1462 void *mem_ctx,
1463 const struct brw_wm_prog_key *key,
1464 struct brw_wm_prog_data *prog_data,
1465 struct nir_shader *shader,
1466 int shader_time_index8,
1467 int shader_time_index16,
1468 int shader_time_index32,
1469 bool allow_spilling,
1470 bool use_rep_send, struct brw_vue_map *vue_map,
1471 struct brw_compile_stats *stats, /**< Array of three stats */
1472 char **error_str);
1473
1474 /**
1475 * Compile a compute shader.
1476 *
1477 * Returns the final assembly and the program's size.
1478 */
1479 const unsigned *
1480 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1481 void *mem_ctx,
1482 const struct brw_cs_prog_key *key,
1483 struct brw_cs_prog_data *prog_data,
1484 const struct nir_shader *shader,
1485 int shader_time_index,
1486 struct brw_compile_stats *stats,
1487 char **error_str);
1488
1489 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1490 gl_shader_stage stage,
1491 const struct brw_base_prog_key *old_key,
1492 const struct brw_base_prog_key *key);
1493
1494 static inline uint32_t
1495 encode_slm_size(unsigned gen, uint32_t bytes)
1496 {
1497 uint32_t slm_size = 0;
1498
1499 /* Shared Local Memory is specified as powers of two, and encoded in
1500 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1501 *
1502 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1503 * -------------------------------------------------------------------
1504 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1505 * -------------------------------------------------------------------
1506 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1507 */
1508 assert(bytes <= 64 * 1024);
1509
1510 if (bytes > 0) {
1511 /* Shared Local Memory Size is specified as powers of two. */
1512 slm_size = util_next_power_of_two(bytes);
1513
1514 if (gen >= 9) {
1515 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1516 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1517 } else {
1518 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1519 slm_size = MAX2(slm_size, 4096) / 4096;
1520 }
1521 }
1522
1523 return slm_size;
1524 }
1525
1526 unsigned
1527 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1528 unsigned threads);
1529
1530 unsigned
1531 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
1532 const struct brw_cs_prog_data *cs_prog_data,
1533 unsigned group_size);
1534
1535 /**
1536 * Calculate the RightExecutionMask field used in GPGPU_WALKER.
1537 */
1538 static inline unsigned
1539 brw_cs_right_mask(unsigned group_size, unsigned simd_size)
1540 {
1541 const uint32_t remainder = group_size & (simd_size - 1);
1542 if (remainder > 0)
1543 return ~0u >> (32 - remainder);
1544 else
1545 return ~0u >> (32 - simd_size);
1546 }
1547
1548 /**
1549 * Return true if the given shader stage is dispatched contiguously by the
1550 * relevant fixed function starting from channel 0 of the SIMD thread, which
1551 * implies that the dispatch mask of a thread can be assumed to have the form
1552 * '2^n - 1' for some n.
1553 */
1554 static inline bool
1555 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1556 gl_shader_stage stage,
1557 const struct brw_stage_prog_data *prog_data)
1558 {
1559 /* The code below makes assumptions about the hardware's thread dispatch
1560 * behavior that could be proven wrong in future generations -- Make sure
1561 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1562 * the NIR front-end before changing this assertion.
1563 */
1564 assert(devinfo->gen <= 12);
1565
1566 switch (stage) {
1567 case MESA_SHADER_FRAGMENT: {
1568 /* The PSD discards subspans coming in with no lit samples, which in the
1569 * per-pixel shading case implies that each subspan will either be fully
1570 * lit (due to the VMask being used to allow derivative computations),
1571 * or not dispatched at all. In per-sample dispatch mode individual
1572 * samples from the same subspan have a fixed relative location within
1573 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1574 * general and we should return false.
1575 */
1576 const struct brw_wm_prog_data *wm_prog_data =
1577 (const struct brw_wm_prog_data *)prog_data;
1578 return !wm_prog_data->persample_dispatch;
1579 }
1580 case MESA_SHADER_COMPUTE:
1581 /* Compute shaders will be spawned with either a fully enabled dispatch
1582 * mask or with whatever bottom/right execution mask was given to the
1583 * GPGPU walker command to be used along the workgroup edges -- In both
1584 * cases the dispatch mask is required to be tightly packed for our
1585 * invocation index calculations to work.
1586 */
1587 return true;
1588 default:
1589 /* Most remaining fixed functions are limited to use a packed dispatch
1590 * mask due to the hardware representation of the dispatch mask as a
1591 * single counter representing the number of enabled channels.
1592 */
1593 return true;
1594 }
1595 }
1596
1597 /**
1598 * Computes the first varying slot in the URB produced by the previous stage
1599 * that is used in the next stage. We do this by testing the varying slots in
1600 * the previous stage's vue map against the inputs read in the next stage.
1601 *
1602 * Note that:
1603 *
1604 * - Each URB offset contains two varying slots and we can only skip a
1605 * full offset if both slots are unused, so the value we return here is always
1606 * rounded down to the closest multiple of two.
1607 *
1608 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1609 * part of the vue header, so if these are read we can't skip anything.
1610 */
1611 static inline int
1612 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1613 const struct brw_vue_map *prev_stage_vue_map)
1614 {
1615 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1616 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1617 int varying = prev_stage_vue_map->slot_to_varying[i];
1618 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1619 return ROUND_DOWN_TO(i, 2);
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 #ifdef __cplusplus
1627 } /* extern "C" */
1628 #endif
1629
1630 #endif /* BRW_COMPILER_H */