intel/compiler: Add brw_get_compiler_config_value for disk cache
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115
116 /**
117 * Whether or not the driver supports NIR shader constants. This controls
118 * whether nir_opt_large_constants will be run.
119 */
120 bool supports_shader_constants;
121 };
122
123 /**
124 * We use a constant subgroup size of 32. It really only needs to be a
125 * maximum and, since we do SIMD32 for compute shaders in some cases, it
126 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
127 * subgroup size of 32 but will act as if 16 or 24 of those channels are
128 * disabled.
129 */
130 #define BRW_SUBGROUP_SIZE 32
131
132 /**
133 * Program key structures.
134 *
135 * When drawing, we look for the currently bound shaders in the program
136 * cache. This is essentially a hash table lookup, and these are the keys.
137 *
138 * Sometimes OpenGL features specified as state need to be simulated via
139 * shader code, due to a mismatch between the API and the hardware. This
140 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
141 * in the program key so it's considered when searching for a program. If
142 * we haven't seen a particular combination before, we have to recompile a
143 * new specialized version.
144 *
145 * Shader compilation should not look up state in gl_context directly, but
146 * instead use the copy in the program key. This guarantees recompiles will
147 * happen correctly.
148 *
149 * @{
150 */
151
152 enum PACKED gen6_gather_sampler_wa {
153 WA_SIGN = 1, /* whether we need to sign extend */
154 WA_8BIT = 2, /* if we have an 8bit format needing wa */
155 WA_16BIT = 4, /* if we have a 16bit format needing wa */
156 };
157
158 /**
159 * Sampler information needed by VS, WM, and GS program cache keys.
160 */
161 struct brw_sampler_prog_key_data {
162 /**
163 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
164 */
165 uint16_t swizzles[MAX_SAMPLERS];
166
167 uint32_t gl_clamp_mask[3];
168
169 /**
170 * For RG32F, gather4's channel select is broken.
171 */
172 uint32_t gather_channel_quirk_mask;
173
174 /**
175 * Whether this sampler uses the compressed multisample surface layout.
176 */
177 uint32_t compressed_multisample_layout_mask;
178
179 /**
180 * Whether this sampler is using 16x multisampling. If so fetching from
181 * this sampler will be handled with a different instruction, ld2dms_w
182 * instead of ld2dms.
183 */
184 uint32_t msaa_16;
185
186 /**
187 * For Sandybridge, which shader w/a we need for gather quirks.
188 */
189 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
190
191 /**
192 * Texture units that have a YUV image bound.
193 */
194 uint32_t y_u_v_image_mask;
195 uint32_t y_uv_image_mask;
196 uint32_t yx_xuxv_image_mask;
197 uint32_t xy_uxvx_image_mask;
198 };
199
200 /**
201 * The VF can't natively handle certain types of attributes, such as GL_FIXED
202 * or most 10_10_10_2 types. These flags enable various VS workarounds to
203 * "fix" attributes at the beginning of shaders.
204 */
205 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
206 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
207 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
208 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
209 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
210
211 /**
212 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
213 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
214 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
215 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
216 */
217 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
218 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
219
220 /** The program key for Vertex Shaders. */
221 struct brw_vs_prog_key {
222 unsigned program_string_id;
223
224 /**
225 * Per-attribute workaround flags
226 *
227 * For each attribute, a combination of BRW_ATTRIB_WA_*.
228 *
229 * For OpenGL, where we expose a maximum of 16 user input atttributes
230 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
231 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
232 * expose up to 28 user input vertex attributes that are mapped to slots
233 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
234 * enough to hold this many slots.
235 */
236 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
237
238 bool copy_edgeflag:1;
239
240 bool clamp_vertex_color:1;
241
242 /**
243 * How many user clipping planes are being uploaded to the vertex shader as
244 * push constants.
245 *
246 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
247 * clip distances.
248 */
249 unsigned nr_userclip_plane_consts:4;
250
251 /**
252 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
253 * are going to be replaced with point coordinates (as a consequence of a
254 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
255 * our SF thread requires exact matching between VS outputs and FS inputs,
256 * these texture coordinates will need to be unconditionally included in
257 * the VUE, even if they aren't written by the vertex shader.
258 */
259 uint8_t point_coord_replace;
260
261 struct brw_sampler_prog_key_data tex;
262 };
263
264 /** The program key for Tessellation Control Shaders. */
265 struct brw_tcs_prog_key
266 {
267 unsigned program_string_id;
268
269 GLenum tes_primitive_mode;
270
271 unsigned input_vertices;
272
273 /** A bitfield of per-patch outputs written. */
274 uint32_t patch_outputs_written;
275
276 /** A bitfield of per-vertex outputs written. */
277 uint64_t outputs_written;
278
279 bool quads_workaround;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Tessellation Evaluation Shaders. */
285 struct brw_tes_prog_key
286 {
287 unsigned program_string_id;
288
289 /** A bitfield of per-patch inputs read. */
290 uint32_t patch_inputs_read;
291
292 /** A bitfield of per-vertex inputs read. */
293 uint64_t inputs_read;
294
295 struct brw_sampler_prog_key_data tex;
296 };
297
298 /** The program key for Geometry Shaders. */
299 struct brw_gs_prog_key
300 {
301 unsigned program_string_id;
302
303 struct brw_sampler_prog_key_data tex;
304 };
305
306 enum brw_sf_primitive {
307 BRW_SF_PRIM_POINTS = 0,
308 BRW_SF_PRIM_LINES = 1,
309 BRW_SF_PRIM_TRIANGLES = 2,
310 BRW_SF_PRIM_UNFILLED_TRIS = 3,
311 };
312
313 struct brw_sf_prog_key {
314 uint64_t attrs;
315 bool contains_flat_varying;
316 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
317 uint8_t point_sprite_coord_replace;
318 enum brw_sf_primitive primitive:2;
319 bool do_twoside_color:1;
320 bool frontface_ccw:1;
321 bool do_point_sprite:1;
322 bool do_point_coord:1;
323 bool sprite_origin_lower_left:1;
324 bool userclip_active:1;
325 };
326
327 enum brw_clip_mode {
328 BRW_CLIP_MODE_NORMAL = 0,
329 BRW_CLIP_MODE_CLIP_ALL = 1,
330 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
331 BRW_CLIP_MODE_REJECT_ALL = 3,
332 BRW_CLIP_MODE_ACCEPT_ALL = 4,
333 BRW_CLIP_MODE_KERNEL_CLIP = 5,
334 };
335
336 enum brw_clip_fill_mode {
337 BRW_CLIP_FILL_MODE_LINE = 0,
338 BRW_CLIP_FILL_MODE_POINT = 1,
339 BRW_CLIP_FILL_MODE_FILL = 2,
340 BRW_CLIP_FILL_MODE_CULL = 3,
341 };
342
343 /* Note that if unfilled primitives are being emitted, we have to fix
344 * up polygon offset and flatshading at this point:
345 */
346 struct brw_clip_prog_key {
347 uint64_t attrs;
348 bool contains_flat_varying;
349 bool contains_noperspective_varying;
350 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
351 unsigned primitive:4;
352 unsigned nr_userclip:4;
353 bool pv_first:1;
354 bool do_unfilled:1;
355 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
356 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
357 bool offset_cw:1;
358 bool offset_ccw:1;
359 bool copy_bfc_cw:1;
360 bool copy_bfc_ccw:1;
361 enum brw_clip_mode clip_mode:3;
362
363 float offset_factor;
364 float offset_units;
365 float offset_clamp;
366 };
367
368 /* A big lookup table is used to figure out which and how many
369 * additional regs will inserted before the main payload in the WM
370 * program execution. These mainly relate to depth and stencil
371 * processing and the early-depth-test optimization.
372 */
373 enum brw_wm_iz_bits {
374 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
375 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
376 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
377 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
378 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
379 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
380 BRW_WM_IZ_BIT_MAX = 0x40
381 };
382
383 enum brw_wm_aa_enable {
384 BRW_WM_AA_NEVER,
385 BRW_WM_AA_SOMETIMES,
386 BRW_WM_AA_ALWAYS
387 };
388
389 /** The program key for Fragment/Pixel Shaders. */
390 struct brw_wm_prog_key {
391 /* Some collection of BRW_WM_IZ_* */
392 uint8_t iz_lookup;
393 bool stats_wm:1;
394 bool flat_shade:1;
395 unsigned nr_color_regions:5;
396 bool replicate_alpha:1;
397 bool clamp_fragment_color:1;
398 bool persample_interp:1;
399 bool multisample_fbo:1;
400 bool frag_coord_adds_sample_pos:1;
401 enum brw_wm_aa_enable line_aa:2;
402 bool high_quality_derivatives:1;
403 bool force_dual_color_blend:1;
404 bool coherent_fb_fetch:1;
405
406 uint8_t color_outputs_valid;
407 uint64_t input_slots_valid;
408 unsigned program_string_id;
409 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
410 float alpha_test_ref;
411
412 struct brw_sampler_prog_key_data tex;
413 };
414
415 struct brw_cs_prog_key {
416 uint32_t program_string_id;
417 struct brw_sampler_prog_key_data tex;
418 };
419
420 /* brw_any_prog_key is any of the keys that map to an API stage */
421 union brw_any_prog_key {
422 struct brw_vs_prog_key vs;
423 struct brw_tcs_prog_key tcs;
424 struct brw_tes_prog_key tes;
425 struct brw_gs_prog_key gs;
426 struct brw_wm_prog_key wm;
427 struct brw_cs_prog_key cs;
428 };
429
430 /*
431 * Image metadata structure as laid out in the shader parameter
432 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
433 * able to use them. That's okay because the padding and any unused
434 * entries [most of them except when we're doing untyped surface
435 * access] will be removed by the uniform packing pass.
436 */
437 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
438 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
439 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
440 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
441 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
442 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
443 #define BRW_IMAGE_PARAM_SIZE 24
444
445 struct brw_image_param {
446 /** Surface binding table index. */
447 uint32_t surface_idx;
448
449 /** Offset applied to the X and Y surface coordinates. */
450 uint32_t offset[2];
451
452 /** Surface X, Y and Z dimensions. */
453 uint32_t size[3];
454
455 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
456 * pixels, vertical slice stride in pixels.
457 */
458 uint32_t stride[4];
459
460 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
461 uint32_t tiling[3];
462
463 /**
464 * Right shift to apply for bit 6 address swizzling. Two different
465 * swizzles can be specified and will be applied one after the other. The
466 * resulting address will be:
467 *
468 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
469 * (addr >> swizzling[1])))
470 *
471 * Use \c 0xff if any of the swizzles is not required.
472 */
473 uint32_t swizzling[2];
474 };
475
476 /** Max number of render targets in a shader */
477 #define BRW_MAX_DRAW_BUFFERS 8
478
479 /**
480 * Max number of binding table entries used for stream output.
481 *
482 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
483 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
484 *
485 * On Gen6, the size of transform feedback data is limited not by the number
486 * of components but by the number of binding table entries we set aside. We
487 * use one binding table entry for a float, one entry for a vector, and one
488 * entry per matrix column. Since the only way we can communicate our
489 * transform feedback capabilities to the client is via
490 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
491 * worst case, in which all the varyings are floats, so we use up one binding
492 * table entry per component. Therefore we need to set aside at least 64
493 * binding table entries for use by transform feedback.
494 *
495 * Note: since we don't currently pack varyings, it is currently impossible
496 * for the client to actually use up all of these binding table entries--if
497 * all of their varyings were floats, they would run out of varying slots and
498 * fail to link. But that's a bug, so it seems prudent to go ahead and
499 * allocate the number of binding table entries we will need once the bug is
500 * fixed.
501 */
502 #define BRW_MAX_SOL_BINDINGS 64
503
504 /**
505 * Binding table index for the first gen6 SOL binding.
506 */
507 #define BRW_GEN6_SOL_BINDING_START 0
508
509 /**
510 * Stride in bytes between shader_time entries.
511 *
512 * We separate entries by a cacheline to reduce traffic between EUs writing to
513 * different entries.
514 */
515 #define BRW_SHADER_TIME_STRIDE 64
516
517 struct brw_ubo_range
518 {
519 uint16_t block;
520 uint8_t start;
521 uint8_t length;
522 };
523
524 /* We reserve the first 2^16 values for builtins */
525 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
526
527 enum brw_param_builtin {
528 BRW_PARAM_BUILTIN_ZERO,
529
530 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
562
563 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
564 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
565 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
566 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
567 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
568 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
569
570 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
571 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
572 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
573 BRW_PARAM_BUILTIN_SUBGROUP_ID,
574 };
575
576 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
577 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
578
579 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
580 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
581 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
582
583 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
584 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
585
586 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
587 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
588
589 struct brw_stage_prog_data {
590 struct {
591 /** size of our binding table. */
592 uint32_t size_bytes;
593
594 /** @{
595 * surface indices for the various groups of surfaces
596 */
597 uint32_t pull_constants_start;
598 uint32_t texture_start;
599 uint32_t gather_texture_start;
600 uint32_t ubo_start;
601 uint32_t ssbo_start;
602 uint32_t image_start;
603 uint32_t shader_time_start;
604 uint32_t plane_start[3];
605 /** @} */
606 } binding_table;
607
608 struct brw_ubo_range ubo_ranges[4];
609
610 GLuint nr_params; /**< number of float params/constants */
611 GLuint nr_pull_params;
612
613 unsigned curb_read_length;
614 unsigned total_scratch;
615 unsigned total_shared;
616
617 unsigned program_size;
618
619 /**
620 * Register where the thread expects to find input data from the URB
621 * (typically uniforms, followed by vertex or fragment attributes).
622 */
623 unsigned dispatch_grf_start_reg;
624
625 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
626
627 /* 32-bit identifiers for all push/pull parameters. These can be anything
628 * the driver wishes them to be; the core of the back-end compiler simply
629 * re-arranges them. The one restriction is that the bottom 2^16 values
630 * are reserved for builtins defined in the brw_param_builtin enum defined
631 * above.
632 */
633 uint32_t *param;
634 uint32_t *pull_param;
635 };
636
637 static inline uint32_t *
638 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
639 unsigned nr_new_params)
640 {
641 unsigned old_nr_params = prog_data->nr_params;
642 prog_data->nr_params += nr_new_params;
643 prog_data->param = reralloc(ralloc_parent(prog_data->param),
644 prog_data->param, uint32_t,
645 prog_data->nr_params);
646 return prog_data->param + old_nr_params;
647 }
648
649 static inline void
650 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
651 unsigned surf_index)
652 {
653 /* A binding table index is 8 bits and the top 3 values are reserved for
654 * special things (stateless and SLM).
655 */
656 assert(surf_index <= 252);
657
658 prog_data->binding_table.size_bytes =
659 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
660 }
661
662 enum brw_barycentric_mode {
663 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
664 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
665 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
666 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
667 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
668 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
669 BRW_BARYCENTRIC_MODE_COUNT = 6
670 };
671 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
672 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
673 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
674 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
675
676 enum brw_pixel_shader_computed_depth_mode {
677 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
678 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
679 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
680 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
681 };
682
683 /* Data about a particular attempt to compile a program. Note that
684 * there can be many of these, each in a different GL state
685 * corresponding to a different brw_wm_prog_key struct, with different
686 * compiled programs.
687 */
688 struct brw_wm_prog_data {
689 struct brw_stage_prog_data base;
690
691 GLuint num_varying_inputs;
692
693 uint8_t reg_blocks_8;
694 uint8_t reg_blocks_16;
695 uint8_t reg_blocks_32;
696
697 uint8_t dispatch_grf_start_reg_16;
698 uint8_t dispatch_grf_start_reg_32;
699 uint32_t prog_offset_16;
700 uint32_t prog_offset_32;
701
702 struct {
703 /** @{
704 * surface indices the WM-specific surfaces
705 */
706 uint32_t render_target_read_start;
707 /** @} */
708 } binding_table;
709
710 uint8_t computed_depth_mode;
711 bool computed_stencil;
712
713 bool early_fragment_tests;
714 bool post_depth_coverage;
715 bool inner_coverage;
716 bool dispatch_8;
717 bool dispatch_16;
718 bool dispatch_32;
719 bool dual_src_blend;
720 bool persample_dispatch;
721 bool uses_pos_offset;
722 bool uses_omask;
723 bool uses_kill;
724 bool uses_src_depth;
725 bool uses_src_w;
726 bool uses_sample_mask;
727 bool has_render_target_reads;
728 bool has_side_effects;
729 bool pulls_bary;
730
731 bool contains_flat_varying;
732 bool contains_noperspective_varying;
733
734 /**
735 * Mask of which interpolation modes are required by the fragment shader.
736 * Used in hardware setup on gen6+.
737 */
738 uint32_t barycentric_interp_modes;
739
740 /**
741 * Mask of which FS inputs are marked flat by the shader source. This is
742 * needed for setting up 3DSTATE_SF/SBE.
743 */
744 uint32_t flat_inputs;
745
746 /* Mapping of VUE slots to interpolation modes.
747 * Used by the Gen4-5 clip/sf/wm stages.
748 */
749 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
750
751 /**
752 * Map from gl_varying_slot to the position within the FS setup data
753 * payload where the varying's attribute vertex deltas should be delivered.
754 * For varying slots that are not used by the FS, the value is -1.
755 */
756 int urb_setup[VARYING_SLOT_MAX];
757 };
758
759 /** Returns the SIMD width corresponding to a given KSP index
760 *
761 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
762 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
763 * kernel start pointer (KSP) indices that is based on what dispatch widths
764 * are enabled. This function provides, effectively, the reverse mapping.
765 *
766 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
767 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
768 */
769 static inline unsigned
770 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
771 bool simd16_enabled, bool simd32_enabled)
772 {
773 /* This function strictly ignores contiguous dispatch */
774 switch (ksp_idx) {
775 case 0:
776 return simd8_enabled ? 8 :
777 (simd16_enabled && !simd32_enabled) ? 16 :
778 (simd32_enabled && !simd16_enabled) ? 32 : 0;
779 case 1:
780 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
781 case 2:
782 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
783 default:
784 unreachable("Invalid KSP index");
785 }
786 }
787
788 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
789 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
790 (wm_state)._16PixelDispatchEnable, \
791 (wm_state)._32PixelDispatchEnable)
792
793 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
794 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
795
796 static inline uint32_t
797 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
798 unsigned simd_width)
799 {
800 switch (simd_width) {
801 case 8: return 0;
802 case 16: return prog_data->prog_offset_16;
803 case 32: return prog_data->prog_offset_32;
804 default: return 0;
805 }
806 }
807
808 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
809 _brw_wm_prog_data_prog_offset(prog_data, \
810 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
811
812 static inline uint8_t
813 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
814 unsigned simd_width)
815 {
816 switch (simd_width) {
817 case 8: return prog_data->base.dispatch_grf_start_reg;
818 case 16: return prog_data->dispatch_grf_start_reg_16;
819 case 32: return prog_data->dispatch_grf_start_reg_32;
820 default: return 0;
821 }
822 }
823
824 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
825 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
826 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
827
828 static inline uint8_t
829 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
830 unsigned simd_width)
831 {
832 switch (simd_width) {
833 case 8: return prog_data->reg_blocks_8;
834 case 16: return prog_data->reg_blocks_16;
835 case 32: return prog_data->reg_blocks_32;
836 default: return 0;
837 }
838 }
839
840 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
841 _brw_wm_prog_data_reg_blocks(prog_data, \
842 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
843
844 struct brw_push_const_block {
845 unsigned dwords; /* Dword count, not reg aligned */
846 unsigned regs;
847 unsigned size; /* Bytes, register aligned */
848 };
849
850 struct brw_cs_prog_data {
851 struct brw_stage_prog_data base;
852
853 unsigned local_size[3];
854 unsigned simd_size;
855 unsigned threads;
856 bool uses_barrier;
857 bool uses_num_work_groups;
858
859 struct {
860 struct brw_push_const_block cross_thread;
861 struct brw_push_const_block per_thread;
862 struct brw_push_const_block total;
863 } push;
864
865 struct {
866 /** @{
867 * surface indices the CS-specific surfaces
868 */
869 uint32_t work_groups_start;
870 /** @} */
871 } binding_table;
872 };
873
874 /**
875 * Enum representing the i965-specific vertex results that don't correspond
876 * exactly to any element of gl_varying_slot. The values of this enum are
877 * assigned such that they don't conflict with gl_varying_slot.
878 */
879 typedef enum
880 {
881 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
882 BRW_VARYING_SLOT_PAD,
883 /**
884 * Technically this is not a varying but just a placeholder that
885 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
886 * builtin variable to be compiled correctly. see compile_sf_prog() for
887 * more info.
888 */
889 BRW_VARYING_SLOT_PNTC,
890 BRW_VARYING_SLOT_COUNT
891 } brw_varying_slot;
892
893 /**
894 * We always program SF to start reading at an offset of 1 (2 varying slots)
895 * from the start of the vertex URB entry. This causes it to skip:
896 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
897 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
898 */
899 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
900
901 /**
902 * Bitmask indicating which fragment shader inputs represent varyings (and
903 * hence have to be delivered to the fragment shader by the SF/SBE stage).
904 */
905 #define BRW_FS_VARYING_INPUT_MASK \
906 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
907 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
908
909 /**
910 * Data structure recording the relationship between the gl_varying_slot enum
911 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
912 * single octaword within the VUE (128 bits).
913 *
914 * Note that each BRW register contains 256 bits (2 octawords), so when
915 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
916 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
917 * in a vertex shader), each register corresponds to a single VUE slot, since
918 * it contains data for two separate vertices.
919 */
920 struct brw_vue_map {
921 /**
922 * Bitfield representing all varying slots that are (a) stored in this VUE
923 * map, and (b) actually written by the shader. Does not include any of
924 * the additional varying slots defined in brw_varying_slot.
925 */
926 uint64_t slots_valid;
927
928 /**
929 * Is this VUE map for a separate shader pipeline?
930 *
931 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
932 * without the linker having a chance to dead code eliminate unused varyings.
933 *
934 * This means that we have to use a fixed slot layout, based on the output's
935 * location field, rather than assigning slots in a compact contiguous block.
936 */
937 bool separate;
938
939 /**
940 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
941 * not stored in a slot (because they are not written, or because
942 * additional processing is applied before storing them in the VUE), the
943 * value is -1.
944 */
945 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
946
947 /**
948 * Map from VUE slot to gl_varying_slot value. For slots that do not
949 * directly correspond to a gl_varying_slot, the value comes from
950 * brw_varying_slot.
951 *
952 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
953 */
954 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
955
956 /**
957 * Total number of VUE slots in use
958 */
959 int num_slots;
960
961 /**
962 * Number of per-patch VUE slots. Only valid for tessellation control
963 * shader outputs and tessellation evaluation shader inputs.
964 */
965 int num_per_patch_slots;
966
967 /**
968 * Number of per-vertex VUE slots. Only valid for tessellation control
969 * shader outputs and tessellation evaluation shader inputs.
970 */
971 int num_per_vertex_slots;
972 };
973
974 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
975
976 /**
977 * Convert a VUE slot number into a byte offset within the VUE.
978 */
979 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
980 {
981 return 16*slot;
982 }
983
984 /**
985 * Convert a vertex output (brw_varying_slot) into a byte offset within the
986 * VUE.
987 */
988 static inline
989 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
990 {
991 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
992 }
993
994 void brw_compute_vue_map(const struct gen_device_info *devinfo,
995 struct brw_vue_map *vue_map,
996 uint64_t slots_valid,
997 bool separate_shader);
998
999 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1000 uint64_t slots_valid,
1001 uint32_t is_patch);
1002
1003 /* brw_interpolation_map.c */
1004 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1005 struct nir_shader *nir,
1006 struct brw_wm_prog_data *prog_data,
1007 const struct gen_device_info *devinfo);
1008
1009 enum shader_dispatch_mode {
1010 DISPATCH_MODE_4X1_SINGLE = 0,
1011 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1012 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1013 DISPATCH_MODE_SIMD8 = 3,
1014 };
1015
1016 /**
1017 * @defgroup Tessellator parameter enumerations.
1018 *
1019 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1020 * as part of the tessellation evaluation shader.
1021 *
1022 * @{
1023 */
1024 enum brw_tess_partitioning {
1025 BRW_TESS_PARTITIONING_INTEGER = 0,
1026 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1027 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1028 };
1029
1030 enum brw_tess_output_topology {
1031 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1032 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1033 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1034 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1035 };
1036
1037 enum brw_tess_domain {
1038 BRW_TESS_DOMAIN_QUAD = 0,
1039 BRW_TESS_DOMAIN_TRI = 1,
1040 BRW_TESS_DOMAIN_ISOLINE = 2,
1041 };
1042 /** @} */
1043
1044 struct brw_vue_prog_data {
1045 struct brw_stage_prog_data base;
1046 struct brw_vue_map vue_map;
1047
1048 /** Should the hardware deliver input VUE handles for URB pull loads? */
1049 bool include_vue_handles;
1050
1051 GLuint urb_read_length;
1052 GLuint total_grf;
1053
1054 uint32_t clip_distance_mask;
1055 uint32_t cull_distance_mask;
1056
1057 /* Used for calculating urb partitions. In the VS, this is the size of the
1058 * URB entry used for both input and output to the thread. In the GS, this
1059 * is the size of the URB entry used for output.
1060 */
1061 GLuint urb_entry_size;
1062
1063 enum shader_dispatch_mode dispatch_mode;
1064 };
1065
1066 struct brw_vs_prog_data {
1067 struct brw_vue_prog_data base;
1068
1069 GLbitfield64 inputs_read;
1070 GLbitfield64 double_inputs_read;
1071
1072 unsigned nr_attribute_slots;
1073
1074 bool uses_vertexid;
1075 bool uses_instanceid;
1076 bool uses_is_indexed_draw;
1077 bool uses_firstvertex;
1078 bool uses_baseinstance;
1079 bool uses_drawid;
1080 };
1081
1082 struct brw_tcs_prog_data
1083 {
1084 struct brw_vue_prog_data base;
1085
1086 /** Number vertices in output patch */
1087 int instances;
1088 };
1089
1090
1091 struct brw_tes_prog_data
1092 {
1093 struct brw_vue_prog_data base;
1094
1095 enum brw_tess_partitioning partitioning;
1096 enum brw_tess_output_topology output_topology;
1097 enum brw_tess_domain domain;
1098 };
1099
1100 struct brw_gs_prog_data
1101 {
1102 struct brw_vue_prog_data base;
1103
1104 unsigned vertices_in;
1105
1106 /**
1107 * Size of an output vertex, measured in HWORDS (32 bytes).
1108 */
1109 unsigned output_vertex_size_hwords;
1110
1111 unsigned output_topology;
1112
1113 /**
1114 * Size of the control data (cut bits or StreamID bits), in hwords (32
1115 * bytes). 0 if there is no control data.
1116 */
1117 unsigned control_data_header_size_hwords;
1118
1119 /**
1120 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1121 * if the control data is StreamID bits, or
1122 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1123 * Ignored if control_data_header_size is 0.
1124 */
1125 unsigned control_data_format;
1126
1127 bool include_primitive_id;
1128
1129 /**
1130 * The number of vertices emitted, if constant - otherwise -1.
1131 */
1132 int static_vertex_count;
1133
1134 int invocations;
1135
1136 /**
1137 * Gen6: Provoking vertex convention for odd-numbered triangles
1138 * in tristrips.
1139 */
1140 GLuint pv_first:1;
1141
1142 /**
1143 * Gen6: Number of varyings that are output to transform feedback.
1144 */
1145 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1146
1147 /**
1148 * Gen6: Map from the index of a transform feedback binding table entry to the
1149 * gl_varying_slot that should be streamed out through that binding table
1150 * entry.
1151 */
1152 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1153
1154 /**
1155 * Gen6: Map from the index of a transform feedback binding table entry to the
1156 * swizzles that should be used when streaming out data through that
1157 * binding table entry.
1158 */
1159 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1160 };
1161
1162 struct brw_sf_prog_data {
1163 uint32_t urb_read_length;
1164 uint32_t total_grf;
1165
1166 /* Each vertex may have upto 12 attributes, 4 components each,
1167 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1168 * rows.
1169 *
1170 * Actually we use 4 for each, so call it 12 rows.
1171 */
1172 unsigned urb_entry_size;
1173 };
1174
1175 struct brw_clip_prog_data {
1176 uint32_t curb_read_length; /* user planes? */
1177 uint32_t clip_mode;
1178 uint32_t urb_read_length;
1179 uint32_t total_grf;
1180 };
1181
1182 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1183 union brw_any_prog_data {
1184 struct brw_stage_prog_data base;
1185 struct brw_vue_prog_data vue;
1186 struct brw_vs_prog_data vs;
1187 struct brw_tcs_prog_data tcs;
1188 struct brw_tes_prog_data tes;
1189 struct brw_gs_prog_data gs;
1190 struct brw_wm_prog_data wm;
1191 struct brw_cs_prog_data cs;
1192 };
1193
1194 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1195 static inline struct brw_##stage##_prog_data * \
1196 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1197 { \
1198 return (struct brw_##stage##_prog_data *) prog_data; \
1199 }
1200 DEFINE_PROG_DATA_DOWNCAST(vue)
1201 DEFINE_PROG_DATA_DOWNCAST(vs)
1202 DEFINE_PROG_DATA_DOWNCAST(tcs)
1203 DEFINE_PROG_DATA_DOWNCAST(tes)
1204 DEFINE_PROG_DATA_DOWNCAST(gs)
1205 DEFINE_PROG_DATA_DOWNCAST(wm)
1206 DEFINE_PROG_DATA_DOWNCAST(cs)
1207 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1208 DEFINE_PROG_DATA_DOWNCAST(clip)
1209 DEFINE_PROG_DATA_DOWNCAST(sf)
1210 #undef DEFINE_PROG_DATA_DOWNCAST
1211
1212 /** @} */
1213
1214 struct brw_compiler *
1215 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1216
1217 /**
1218 * Returns a compiler configuration for use with disk shader cache
1219 *
1220 * This value only needs to change for settings that can cause different
1221 * program generation between two runs on the same hardware.
1222 *
1223 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1224 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1225 */
1226 uint64_t
1227 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1228
1229 unsigned
1230 brw_prog_data_size(gl_shader_stage stage);
1231
1232 unsigned
1233 brw_prog_key_size(gl_shader_stage stage);
1234
1235 /**
1236 * Compile a vertex shader.
1237 *
1238 * Returns the final assembly and the program's size.
1239 */
1240 const unsigned *
1241 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1242 void *mem_ctx,
1243 const struct brw_vs_prog_key *key,
1244 struct brw_vs_prog_data *prog_data,
1245 const struct nir_shader *shader,
1246 int shader_time_index,
1247 char **error_str);
1248
1249 /**
1250 * Compile a tessellation control shader.
1251 *
1252 * Returns the final assembly and the program's size.
1253 */
1254 const unsigned *
1255 brw_compile_tcs(const struct brw_compiler *compiler,
1256 void *log_data,
1257 void *mem_ctx,
1258 const struct brw_tcs_prog_key *key,
1259 struct brw_tcs_prog_data *prog_data,
1260 const struct nir_shader *nir,
1261 int shader_time_index,
1262 char **error_str);
1263
1264 /**
1265 * Compile a tessellation evaluation shader.
1266 *
1267 * Returns the final assembly and the program's size.
1268 */
1269 const unsigned *
1270 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1271 void *mem_ctx,
1272 const struct brw_tes_prog_key *key,
1273 const struct brw_vue_map *input_vue_map,
1274 struct brw_tes_prog_data *prog_data,
1275 const struct nir_shader *shader,
1276 struct gl_program *prog,
1277 int shader_time_index,
1278 char **error_str);
1279
1280 /**
1281 * Compile a vertex shader.
1282 *
1283 * Returns the final assembly and the program's size.
1284 */
1285 const unsigned *
1286 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1287 void *mem_ctx,
1288 const struct brw_gs_prog_key *key,
1289 struct brw_gs_prog_data *prog_data,
1290 const struct nir_shader *shader,
1291 struct gl_program *prog,
1292 int shader_time_index,
1293 char **error_str);
1294
1295 /**
1296 * Compile a strips and fans shader.
1297 *
1298 * This is a fixed-function shader determined entirely by the shader key and
1299 * a VUE map.
1300 *
1301 * Returns the final assembly and the program's size.
1302 */
1303 const unsigned *
1304 brw_compile_sf(const struct brw_compiler *compiler,
1305 void *mem_ctx,
1306 const struct brw_sf_prog_key *key,
1307 struct brw_sf_prog_data *prog_data,
1308 struct brw_vue_map *vue_map,
1309 unsigned *final_assembly_size);
1310
1311 /**
1312 * Compile a clipper shader.
1313 *
1314 * This is a fixed-function shader determined entirely by the shader key and
1315 * a VUE map.
1316 *
1317 * Returns the final assembly and the program's size.
1318 */
1319 const unsigned *
1320 brw_compile_clip(const struct brw_compiler *compiler,
1321 void *mem_ctx,
1322 const struct brw_clip_prog_key *key,
1323 struct brw_clip_prog_data *prog_data,
1324 struct brw_vue_map *vue_map,
1325 unsigned *final_assembly_size);
1326
1327 /**
1328 * Compile a fragment shader.
1329 *
1330 * Returns the final assembly and the program's size.
1331 */
1332 const unsigned *
1333 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1334 void *mem_ctx,
1335 const struct brw_wm_prog_key *key,
1336 struct brw_wm_prog_data *prog_data,
1337 const struct nir_shader *shader,
1338 struct gl_program *prog,
1339 int shader_time_index8,
1340 int shader_time_index16,
1341 int shader_time_index32,
1342 bool allow_spilling,
1343 bool use_rep_send, struct brw_vue_map *vue_map,
1344 char **error_str);
1345
1346 /**
1347 * Compile a compute shader.
1348 *
1349 * Returns the final assembly and the program's size.
1350 */
1351 const unsigned *
1352 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1353 void *mem_ctx,
1354 const struct brw_cs_prog_key *key,
1355 struct brw_cs_prog_data *prog_data,
1356 const struct nir_shader *shader,
1357 int shader_time_index,
1358 char **error_str);
1359
1360 static inline uint32_t
1361 encode_slm_size(unsigned gen, uint32_t bytes)
1362 {
1363 uint32_t slm_size = 0;
1364
1365 /* Shared Local Memory is specified as powers of two, and encoded in
1366 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1367 *
1368 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1369 * -------------------------------------------------------------------
1370 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1371 * -------------------------------------------------------------------
1372 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1373 */
1374 assert(bytes <= 64 * 1024);
1375
1376 if (bytes > 0) {
1377 /* Shared Local Memory Size is specified as powers of two. */
1378 slm_size = util_next_power_of_two(bytes);
1379
1380 if (gen >= 9) {
1381 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1382 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1383 } else {
1384 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1385 slm_size = MAX2(slm_size, 4096) / 4096;
1386 }
1387 }
1388
1389 return slm_size;
1390 }
1391
1392 /**
1393 * Return true if the given shader stage is dispatched contiguously by the
1394 * relevant fixed function starting from channel 0 of the SIMD thread, which
1395 * implies that the dispatch mask of a thread can be assumed to have the form
1396 * '2^n - 1' for some n.
1397 */
1398 static inline bool
1399 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1400 gl_shader_stage stage,
1401 const struct brw_stage_prog_data *prog_data)
1402 {
1403 /* The code below makes assumptions about the hardware's thread dispatch
1404 * behavior that could be proven wrong in future generations -- Make sure
1405 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1406 * the NIR front-end before changing this assertion.
1407 */
1408 assert(devinfo->gen <= 11);
1409
1410 switch (stage) {
1411 case MESA_SHADER_FRAGMENT: {
1412 /* The PSD discards subspans coming in with no lit samples, which in the
1413 * per-pixel shading case implies that each subspan will either be fully
1414 * lit (due to the VMask being used to allow derivative computations),
1415 * or not dispatched at all. In per-sample dispatch mode individual
1416 * samples from the same subspan have a fixed relative location within
1417 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1418 * general and we should return false.
1419 */
1420 const struct brw_wm_prog_data *wm_prog_data =
1421 (const struct brw_wm_prog_data *)prog_data;
1422 return !wm_prog_data->persample_dispatch;
1423 }
1424 case MESA_SHADER_COMPUTE:
1425 /* Compute shaders will be spawned with either a fully enabled dispatch
1426 * mask or with whatever bottom/right execution mask was given to the
1427 * GPGPU walker command to be used along the workgroup edges -- In both
1428 * cases the dispatch mask is required to be tightly packed for our
1429 * invocation index calculations to work.
1430 */
1431 return true;
1432 default:
1433 /* Most remaining fixed functions are limited to use a packed dispatch
1434 * mask due to the hardware representation of the dispatch mask as a
1435 * single counter representing the number of enabled channels.
1436 */
1437 return true;
1438 }
1439 }
1440
1441 /**
1442 * Computes the first varying slot in the URB produced by the previous stage
1443 * that is used in the next stage. We do this by testing the varying slots in
1444 * the previous stage's vue map against the inputs read in the next stage.
1445 *
1446 * Note that:
1447 *
1448 * - Each URB offset contains two varying slots and we can only skip a
1449 * full offset if both slots are unused, so the value we return here is always
1450 * rounded down to the closest multiple of two.
1451 *
1452 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1453 * part of the vue header, so if these are read we can't skip anything.
1454 */
1455 static inline int
1456 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1457 const struct brw_vue_map *prev_stage_vue_map)
1458 {
1459 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1460 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1461 int varying = prev_stage_vue_map->slot_to_varying[i];
1462 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1463 return ROUND_DOWN_TO(i, 2);
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 #ifdef __cplusplus
1471 } /* extern "C" */
1472 #endif
1473
1474 #endif /* BRW_COMPILER_H */