intel/ir/gen12: Update assert in brw_stage_has_packed_dispatch().
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
212
213 /* These enums are specifically chosen so that the value of the enum is
214 * also the subgroup size. If any new values are added, they must respect
215 * this invariant.
216 */
217 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
218 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
219 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
220 };
221
222 struct brw_base_prog_key {
223 unsigned program_string_id;
224
225 enum brw_subgroup_size_type subgroup_size_type;
226
227 struct brw_sampler_prog_key_data tex;
228 };
229
230 /**
231 * The VF can't natively handle certain types of attributes, such as GL_FIXED
232 * or most 10_10_10_2 types. These flags enable various VS workarounds to
233 * "fix" attributes at the beginning of shaders.
234 */
235 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
236 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
237 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
238 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
239 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
240
241 /**
242 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
243 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
244 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
245 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
246 */
247 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
248 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
249
250 /** The program key for Vertex Shaders. */
251 struct brw_vs_prog_key {
252 struct brw_base_prog_key base;
253
254 /**
255 * Per-attribute workaround flags
256 *
257 * For each attribute, a combination of BRW_ATTRIB_WA_*.
258 *
259 * For OpenGL, where we expose a maximum of 16 user input atttributes
260 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
261 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
262 * expose up to 28 user input vertex attributes that are mapped to slots
263 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
264 * enough to hold this many slots.
265 */
266 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
267
268 bool copy_edgeflag:1;
269
270 bool clamp_vertex_color:1;
271
272 /**
273 * How many user clipping planes are being uploaded to the vertex shader as
274 * push constants.
275 *
276 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
277 * clip distances.
278 */
279 unsigned nr_userclip_plane_consts:4;
280
281 /**
282 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
283 * are going to be replaced with point coordinates (as a consequence of a
284 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
285 * our SF thread requires exact matching between VS outputs and FS inputs,
286 * these texture coordinates will need to be unconditionally included in
287 * the VUE, even if they aren't written by the vertex shader.
288 */
289 uint8_t point_coord_replace;
290 };
291
292 /** The program key for Tessellation Control Shaders. */
293 struct brw_tcs_prog_key
294 {
295 struct brw_base_prog_key base;
296
297 GLenum tes_primitive_mode;
298
299 unsigned input_vertices;
300
301 /** A bitfield of per-patch outputs written. */
302 uint32_t patch_outputs_written;
303
304 /** A bitfield of per-vertex outputs written. */
305 uint64_t outputs_written;
306
307 bool quads_workaround;
308 };
309
310 /** The program key for Tessellation Evaluation Shaders. */
311 struct brw_tes_prog_key
312 {
313 struct brw_base_prog_key base;
314
315 /** A bitfield of per-patch inputs read. */
316 uint32_t patch_inputs_read;
317
318 /** A bitfield of per-vertex inputs read. */
319 uint64_t inputs_read;
320
321 /**
322 * How many user clipping planes are being uploaded to the tessellation
323 * evaluation shader as push constants.
324 *
325 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
326 * clip distances.
327 */
328 unsigned nr_userclip_plane_consts:4;
329 };
330
331 /** The program key for Geometry Shaders. */
332 struct brw_gs_prog_key
333 {
334 struct brw_base_prog_key base;
335
336 /**
337 * How many user clipping planes are being uploaded to the geometry shader
338 * as push constants.
339 *
340 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
341 * clip distances.
342 */
343 unsigned nr_userclip_plane_consts:4;
344 };
345
346 enum brw_sf_primitive {
347 BRW_SF_PRIM_POINTS = 0,
348 BRW_SF_PRIM_LINES = 1,
349 BRW_SF_PRIM_TRIANGLES = 2,
350 BRW_SF_PRIM_UNFILLED_TRIS = 3,
351 };
352
353 struct brw_sf_prog_key {
354 uint64_t attrs;
355 bool contains_flat_varying;
356 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
357 uint8_t point_sprite_coord_replace;
358 enum brw_sf_primitive primitive:2;
359 bool do_twoside_color:1;
360 bool frontface_ccw:1;
361 bool do_point_sprite:1;
362 bool do_point_coord:1;
363 bool sprite_origin_lower_left:1;
364 bool userclip_active:1;
365 };
366
367 enum brw_clip_mode {
368 BRW_CLIP_MODE_NORMAL = 0,
369 BRW_CLIP_MODE_CLIP_ALL = 1,
370 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
371 BRW_CLIP_MODE_REJECT_ALL = 3,
372 BRW_CLIP_MODE_ACCEPT_ALL = 4,
373 BRW_CLIP_MODE_KERNEL_CLIP = 5,
374 };
375
376 enum brw_clip_fill_mode {
377 BRW_CLIP_FILL_MODE_LINE = 0,
378 BRW_CLIP_FILL_MODE_POINT = 1,
379 BRW_CLIP_FILL_MODE_FILL = 2,
380 BRW_CLIP_FILL_MODE_CULL = 3,
381 };
382
383 /* Note that if unfilled primitives are being emitted, we have to fix
384 * up polygon offset and flatshading at this point:
385 */
386 struct brw_clip_prog_key {
387 uint64_t attrs;
388 bool contains_flat_varying;
389 bool contains_noperspective_varying;
390 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
391 unsigned primitive:4;
392 unsigned nr_userclip:4;
393 bool pv_first:1;
394 bool do_unfilled:1;
395 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
396 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
397 bool offset_cw:1;
398 bool offset_ccw:1;
399 bool copy_bfc_cw:1;
400 bool copy_bfc_ccw:1;
401 enum brw_clip_mode clip_mode:3;
402
403 float offset_factor;
404 float offset_units;
405 float offset_clamp;
406 };
407
408 /* A big lookup table is used to figure out which and how many
409 * additional regs will inserted before the main payload in the WM
410 * program execution. These mainly relate to depth and stencil
411 * processing and the early-depth-test optimization.
412 */
413 enum brw_wm_iz_bits {
414 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
415 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
416 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
417 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
418 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
419 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
420 BRW_WM_IZ_BIT_MAX = 0x40
421 };
422
423 enum brw_wm_aa_enable {
424 BRW_WM_AA_NEVER,
425 BRW_WM_AA_SOMETIMES,
426 BRW_WM_AA_ALWAYS
427 };
428
429 /** The program key for Fragment/Pixel Shaders. */
430 struct brw_wm_prog_key {
431 struct brw_base_prog_key base;
432
433 /* Some collection of BRW_WM_IZ_* */
434 uint8_t iz_lookup;
435 bool stats_wm:1;
436 bool flat_shade:1;
437 unsigned nr_color_regions:5;
438 bool alpha_test_replicate_alpha:1;
439 bool alpha_to_coverage:1;
440 bool clamp_fragment_color:1;
441 bool persample_interp:1;
442 bool multisample_fbo:1;
443 bool frag_coord_adds_sample_pos:1;
444 enum brw_wm_aa_enable line_aa:2;
445 bool high_quality_derivatives:1;
446 bool force_dual_color_blend:1;
447 bool coherent_fb_fetch:1;
448
449 uint8_t color_outputs_valid;
450 uint64_t input_slots_valid;
451 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
452 float alpha_test_ref;
453 };
454
455 struct brw_cs_prog_key {
456 struct brw_base_prog_key base;
457 };
458
459 /* brw_any_prog_key is any of the keys that map to an API stage */
460 union brw_any_prog_key {
461 struct brw_base_prog_key base;
462 struct brw_vs_prog_key vs;
463 struct brw_tcs_prog_key tcs;
464 struct brw_tes_prog_key tes;
465 struct brw_gs_prog_key gs;
466 struct brw_wm_prog_key wm;
467 struct brw_cs_prog_key cs;
468 };
469
470 /*
471 * Image metadata structure as laid out in the shader parameter
472 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
473 * able to use them. That's okay because the padding and any unused
474 * entries [most of them except when we're doing untyped surface
475 * access] will be removed by the uniform packing pass.
476 */
477 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
478 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
479 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
480 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
481 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
482 #define BRW_IMAGE_PARAM_SIZE 20
483
484 struct brw_image_param {
485 /** Offset applied to the X and Y surface coordinates. */
486 uint32_t offset[2];
487
488 /** Surface X, Y and Z dimensions. */
489 uint32_t size[3];
490
491 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
492 * pixels, vertical slice stride in pixels.
493 */
494 uint32_t stride[4];
495
496 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
497 uint32_t tiling[3];
498
499 /**
500 * Right shift to apply for bit 6 address swizzling. Two different
501 * swizzles can be specified and will be applied one after the other. The
502 * resulting address will be:
503 *
504 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
505 * (addr >> swizzling[1])))
506 *
507 * Use \c 0xff if any of the swizzles is not required.
508 */
509 uint32_t swizzling[2];
510 };
511
512 /** Max number of render targets in a shader */
513 #define BRW_MAX_DRAW_BUFFERS 8
514
515 /**
516 * Max number of binding table entries used for stream output.
517 *
518 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
519 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
520 *
521 * On Gen6, the size of transform feedback data is limited not by the number
522 * of components but by the number of binding table entries we set aside. We
523 * use one binding table entry for a float, one entry for a vector, and one
524 * entry per matrix column. Since the only way we can communicate our
525 * transform feedback capabilities to the client is via
526 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
527 * worst case, in which all the varyings are floats, so we use up one binding
528 * table entry per component. Therefore we need to set aside at least 64
529 * binding table entries for use by transform feedback.
530 *
531 * Note: since we don't currently pack varyings, it is currently impossible
532 * for the client to actually use up all of these binding table entries--if
533 * all of their varyings were floats, they would run out of varying slots and
534 * fail to link. But that's a bug, so it seems prudent to go ahead and
535 * allocate the number of binding table entries we will need once the bug is
536 * fixed.
537 */
538 #define BRW_MAX_SOL_BINDINGS 64
539
540 /**
541 * Binding table index for the first gen6 SOL binding.
542 */
543 #define BRW_GEN6_SOL_BINDING_START 0
544
545 /**
546 * Stride in bytes between shader_time entries.
547 *
548 * We separate entries by a cacheline to reduce traffic between EUs writing to
549 * different entries.
550 */
551 #define BRW_SHADER_TIME_STRIDE 64
552
553 struct brw_ubo_range
554 {
555 uint16_t block;
556 uint8_t start;
557 uint8_t length;
558 };
559
560 /* We reserve the first 2^16 values for builtins */
561 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
562
563 enum brw_param_builtin {
564 BRW_PARAM_BUILTIN_ZERO,
565
566 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
571 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
572 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
598
599 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
600 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
601 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
602 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
603 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
604 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
605
606 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
607
608 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
609 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
610 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
611 BRW_PARAM_BUILTIN_SUBGROUP_ID,
612 };
613
614 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
615 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
616
617 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
618 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
619 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
620
621 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
622 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
623
624 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
625 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
626
627 struct brw_stage_prog_data {
628 struct {
629 /** size of our binding table. */
630 uint32_t size_bytes;
631
632 /** @{
633 * surface indices for the various groups of surfaces
634 */
635 uint32_t pull_constants_start;
636 uint32_t texture_start;
637 uint32_t gather_texture_start;
638 uint32_t ubo_start;
639 uint32_t ssbo_start;
640 uint32_t image_start;
641 uint32_t shader_time_start;
642 uint32_t plane_start[3];
643 /** @} */
644 } binding_table;
645
646 struct brw_ubo_range ubo_ranges[4];
647
648 GLuint nr_params; /**< number of float params/constants */
649 GLuint nr_pull_params;
650
651 unsigned curb_read_length;
652 unsigned total_scratch;
653 unsigned total_shared;
654
655 unsigned program_size;
656
657 /** Does this program pull from any UBO or other constant buffers? */
658 bool has_ubo_pull;
659
660 /**
661 * Register where the thread expects to find input data from the URB
662 * (typically uniforms, followed by vertex or fragment attributes).
663 */
664 unsigned dispatch_grf_start_reg;
665
666 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
667
668 /* 32-bit identifiers for all push/pull parameters. These can be anything
669 * the driver wishes them to be; the core of the back-end compiler simply
670 * re-arranges them. The one restriction is that the bottom 2^16 values
671 * are reserved for builtins defined in the brw_param_builtin enum defined
672 * above.
673 */
674 uint32_t *param;
675 uint32_t *pull_param;
676 };
677
678 static inline uint32_t *
679 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
680 unsigned nr_new_params)
681 {
682 unsigned old_nr_params = prog_data->nr_params;
683 prog_data->nr_params += nr_new_params;
684 prog_data->param = reralloc(ralloc_parent(prog_data->param),
685 prog_data->param, uint32_t,
686 prog_data->nr_params);
687 return prog_data->param + old_nr_params;
688 }
689
690 enum brw_barycentric_mode {
691 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
692 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
693 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
694 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
695 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
696 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
697 BRW_BARYCENTRIC_MODE_COUNT = 6
698 };
699 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
700 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
701 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
702 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
703
704 enum brw_pixel_shader_computed_depth_mode {
705 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
706 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
707 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
708 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
709 };
710
711 /* Data about a particular attempt to compile a program. Note that
712 * there can be many of these, each in a different GL state
713 * corresponding to a different brw_wm_prog_key struct, with different
714 * compiled programs.
715 */
716 struct brw_wm_prog_data {
717 struct brw_stage_prog_data base;
718
719 GLuint num_varying_inputs;
720
721 uint8_t reg_blocks_8;
722 uint8_t reg_blocks_16;
723 uint8_t reg_blocks_32;
724
725 uint8_t dispatch_grf_start_reg_16;
726 uint8_t dispatch_grf_start_reg_32;
727 uint32_t prog_offset_16;
728 uint32_t prog_offset_32;
729
730 struct {
731 /** @{
732 * surface indices the WM-specific surfaces
733 */
734 uint32_t render_target_read_start;
735 /** @} */
736 } binding_table;
737
738 uint8_t computed_depth_mode;
739 bool computed_stencil;
740
741 bool early_fragment_tests;
742 bool post_depth_coverage;
743 bool inner_coverage;
744 bool dispatch_8;
745 bool dispatch_16;
746 bool dispatch_32;
747 bool dual_src_blend;
748 bool replicate_alpha;
749 bool persample_dispatch;
750 bool uses_pos_offset;
751 bool uses_omask;
752 bool uses_kill;
753 bool uses_src_depth;
754 bool uses_src_w;
755 bool uses_sample_mask;
756 bool has_render_target_reads;
757 bool has_side_effects;
758 bool pulls_bary;
759
760 bool contains_flat_varying;
761 bool contains_noperspective_varying;
762
763 /**
764 * Mask of which interpolation modes are required by the fragment shader.
765 * Used in hardware setup on gen6+.
766 */
767 uint32_t barycentric_interp_modes;
768
769 /**
770 * Mask of which FS inputs are marked flat by the shader source. This is
771 * needed for setting up 3DSTATE_SF/SBE.
772 */
773 uint32_t flat_inputs;
774
775 /* Mapping of VUE slots to interpolation modes.
776 * Used by the Gen4-5 clip/sf/wm stages.
777 */
778 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
779
780 /**
781 * Map from gl_varying_slot to the position within the FS setup data
782 * payload where the varying's attribute vertex deltas should be delivered.
783 * For varying slots that are not used by the FS, the value is -1.
784 */
785 int urb_setup[VARYING_SLOT_MAX];
786 };
787
788 /** Returns the SIMD width corresponding to a given KSP index
789 *
790 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
791 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
792 * kernel start pointer (KSP) indices that is based on what dispatch widths
793 * are enabled. This function provides, effectively, the reverse mapping.
794 *
795 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
796 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
797 */
798 static inline unsigned
799 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
800 bool simd16_enabled, bool simd32_enabled)
801 {
802 /* This function strictly ignores contiguous dispatch */
803 switch (ksp_idx) {
804 case 0:
805 return simd8_enabled ? 8 :
806 (simd16_enabled && !simd32_enabled) ? 16 :
807 (simd32_enabled && !simd16_enabled) ? 32 : 0;
808 case 1:
809 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
810 case 2:
811 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
812 default:
813 unreachable("Invalid KSP index");
814 }
815 }
816
817 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
818 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
819 (wm_state)._16PixelDispatchEnable, \
820 (wm_state)._32PixelDispatchEnable)
821
822 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
823 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
824
825 static inline uint32_t
826 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
827 unsigned simd_width)
828 {
829 switch (simd_width) {
830 case 8: return 0;
831 case 16: return prog_data->prog_offset_16;
832 case 32: return prog_data->prog_offset_32;
833 default: return 0;
834 }
835 }
836
837 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
838 _brw_wm_prog_data_prog_offset(prog_data, \
839 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
840
841 static inline uint8_t
842 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
843 unsigned simd_width)
844 {
845 switch (simd_width) {
846 case 8: return prog_data->base.dispatch_grf_start_reg;
847 case 16: return prog_data->dispatch_grf_start_reg_16;
848 case 32: return prog_data->dispatch_grf_start_reg_32;
849 default: return 0;
850 }
851 }
852
853 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
854 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
855 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
856
857 static inline uint8_t
858 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
859 unsigned simd_width)
860 {
861 switch (simd_width) {
862 case 8: return prog_data->reg_blocks_8;
863 case 16: return prog_data->reg_blocks_16;
864 case 32: return prog_data->reg_blocks_32;
865 default: return 0;
866 }
867 }
868
869 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
870 _brw_wm_prog_data_reg_blocks(prog_data, \
871 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
872
873 struct brw_push_const_block {
874 unsigned dwords; /* Dword count, not reg aligned */
875 unsigned regs;
876 unsigned size; /* Bytes, register aligned */
877 };
878
879 struct brw_cs_prog_data {
880 struct brw_stage_prog_data base;
881
882 unsigned local_size[3];
883 unsigned simd_size;
884 unsigned threads;
885 unsigned slm_size;
886 bool uses_barrier;
887 bool uses_num_work_groups;
888
889 struct {
890 struct brw_push_const_block cross_thread;
891 struct brw_push_const_block per_thread;
892 struct brw_push_const_block total;
893 } push;
894
895 struct {
896 /** @{
897 * surface indices the CS-specific surfaces
898 */
899 uint32_t work_groups_start;
900 /** @} */
901 } binding_table;
902 };
903
904 /**
905 * Enum representing the i965-specific vertex results that don't correspond
906 * exactly to any element of gl_varying_slot. The values of this enum are
907 * assigned such that they don't conflict with gl_varying_slot.
908 */
909 typedef enum
910 {
911 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
912 BRW_VARYING_SLOT_PAD,
913 /**
914 * Technically this is not a varying but just a placeholder that
915 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
916 * builtin variable to be compiled correctly. see compile_sf_prog() for
917 * more info.
918 */
919 BRW_VARYING_SLOT_PNTC,
920 BRW_VARYING_SLOT_COUNT
921 } brw_varying_slot;
922
923 /**
924 * We always program SF to start reading at an offset of 1 (2 varying slots)
925 * from the start of the vertex URB entry. This causes it to skip:
926 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
927 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
928 */
929 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
930
931 /**
932 * Bitmask indicating which fragment shader inputs represent varyings (and
933 * hence have to be delivered to the fragment shader by the SF/SBE stage).
934 */
935 #define BRW_FS_VARYING_INPUT_MASK \
936 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
937 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
938
939 /**
940 * Data structure recording the relationship between the gl_varying_slot enum
941 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
942 * single octaword within the VUE (128 bits).
943 *
944 * Note that each BRW register contains 256 bits (2 octawords), so when
945 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
946 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
947 * in a vertex shader), each register corresponds to a single VUE slot, since
948 * it contains data for two separate vertices.
949 */
950 struct brw_vue_map {
951 /**
952 * Bitfield representing all varying slots that are (a) stored in this VUE
953 * map, and (b) actually written by the shader. Does not include any of
954 * the additional varying slots defined in brw_varying_slot.
955 */
956 uint64_t slots_valid;
957
958 /**
959 * Is this VUE map for a separate shader pipeline?
960 *
961 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
962 * without the linker having a chance to dead code eliminate unused varyings.
963 *
964 * This means that we have to use a fixed slot layout, based on the output's
965 * location field, rather than assigning slots in a compact contiguous block.
966 */
967 bool separate;
968
969 /**
970 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
971 * not stored in a slot (because they are not written, or because
972 * additional processing is applied before storing them in the VUE), the
973 * value is -1.
974 */
975 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
976
977 /**
978 * Map from VUE slot to gl_varying_slot value. For slots that do not
979 * directly correspond to a gl_varying_slot, the value comes from
980 * brw_varying_slot.
981 *
982 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
983 */
984 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
985
986 /**
987 * Total number of VUE slots in use
988 */
989 int num_slots;
990
991 /**
992 * Number of per-patch VUE slots. Only valid for tessellation control
993 * shader outputs and tessellation evaluation shader inputs.
994 */
995 int num_per_patch_slots;
996
997 /**
998 * Number of per-vertex VUE slots. Only valid for tessellation control
999 * shader outputs and tessellation evaluation shader inputs.
1000 */
1001 int num_per_vertex_slots;
1002 };
1003
1004 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1005
1006 /**
1007 * Convert a VUE slot number into a byte offset within the VUE.
1008 */
1009 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1010 {
1011 return 16*slot;
1012 }
1013
1014 /**
1015 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1016 * VUE.
1017 */
1018 static inline
1019 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1020 {
1021 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1022 }
1023
1024 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1025 struct brw_vue_map *vue_map,
1026 uint64_t slots_valid,
1027 bool separate_shader);
1028
1029 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1030 uint64_t slots_valid,
1031 uint32_t is_patch);
1032
1033 /* brw_interpolation_map.c */
1034 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1035 struct nir_shader *nir,
1036 struct brw_wm_prog_data *prog_data);
1037
1038 enum shader_dispatch_mode {
1039 DISPATCH_MODE_4X1_SINGLE = 0,
1040 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1041 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1042 DISPATCH_MODE_SIMD8 = 3,
1043
1044 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1045 DISPATCH_MODE_TCS_8_PATCH = 2,
1046 };
1047
1048 /**
1049 * @defgroup Tessellator parameter enumerations.
1050 *
1051 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1052 * as part of the tessellation evaluation shader.
1053 *
1054 * @{
1055 */
1056 enum brw_tess_partitioning {
1057 BRW_TESS_PARTITIONING_INTEGER = 0,
1058 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1059 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1060 };
1061
1062 enum brw_tess_output_topology {
1063 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1064 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1065 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1066 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1067 };
1068
1069 enum brw_tess_domain {
1070 BRW_TESS_DOMAIN_QUAD = 0,
1071 BRW_TESS_DOMAIN_TRI = 1,
1072 BRW_TESS_DOMAIN_ISOLINE = 2,
1073 };
1074 /** @} */
1075
1076 struct brw_vue_prog_data {
1077 struct brw_stage_prog_data base;
1078 struct brw_vue_map vue_map;
1079
1080 /** Should the hardware deliver input VUE handles for URB pull loads? */
1081 bool include_vue_handles;
1082
1083 GLuint urb_read_length;
1084 GLuint total_grf;
1085
1086 uint32_t clip_distance_mask;
1087 uint32_t cull_distance_mask;
1088
1089 /* Used for calculating urb partitions. In the VS, this is the size of the
1090 * URB entry used for both input and output to the thread. In the GS, this
1091 * is the size of the URB entry used for output.
1092 */
1093 GLuint urb_entry_size;
1094
1095 enum shader_dispatch_mode dispatch_mode;
1096 };
1097
1098 struct brw_vs_prog_data {
1099 struct brw_vue_prog_data base;
1100
1101 GLbitfield64 inputs_read;
1102 GLbitfield64 double_inputs_read;
1103
1104 unsigned nr_attribute_slots;
1105
1106 bool uses_vertexid;
1107 bool uses_instanceid;
1108 bool uses_is_indexed_draw;
1109 bool uses_firstvertex;
1110 bool uses_baseinstance;
1111 bool uses_drawid;
1112 };
1113
1114 struct brw_tcs_prog_data
1115 {
1116 struct brw_vue_prog_data base;
1117
1118 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1119 bool include_primitive_id;
1120
1121 /** Number vertices in output patch */
1122 int instances;
1123 };
1124
1125
1126 struct brw_tes_prog_data
1127 {
1128 struct brw_vue_prog_data base;
1129
1130 enum brw_tess_partitioning partitioning;
1131 enum brw_tess_output_topology output_topology;
1132 enum brw_tess_domain domain;
1133 };
1134
1135 struct brw_gs_prog_data
1136 {
1137 struct brw_vue_prog_data base;
1138
1139 unsigned vertices_in;
1140
1141 /**
1142 * Size of an output vertex, measured in HWORDS (32 bytes).
1143 */
1144 unsigned output_vertex_size_hwords;
1145
1146 unsigned output_topology;
1147
1148 /**
1149 * Size of the control data (cut bits or StreamID bits), in hwords (32
1150 * bytes). 0 if there is no control data.
1151 */
1152 unsigned control_data_header_size_hwords;
1153
1154 /**
1155 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1156 * if the control data is StreamID bits, or
1157 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1158 * Ignored if control_data_header_size is 0.
1159 */
1160 unsigned control_data_format;
1161
1162 bool include_primitive_id;
1163
1164 /**
1165 * The number of vertices emitted, if constant - otherwise -1.
1166 */
1167 int static_vertex_count;
1168
1169 int invocations;
1170
1171 /**
1172 * Gen6: Provoking vertex convention for odd-numbered triangles
1173 * in tristrips.
1174 */
1175 GLuint pv_first:1;
1176
1177 /**
1178 * Gen6: Number of varyings that are output to transform feedback.
1179 */
1180 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1181
1182 /**
1183 * Gen6: Map from the index of a transform feedback binding table entry to the
1184 * gl_varying_slot that should be streamed out through that binding table
1185 * entry.
1186 */
1187 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1188
1189 /**
1190 * Gen6: Map from the index of a transform feedback binding table entry to the
1191 * swizzles that should be used when streaming out data through that
1192 * binding table entry.
1193 */
1194 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1195 };
1196
1197 struct brw_sf_prog_data {
1198 uint32_t urb_read_length;
1199 uint32_t total_grf;
1200
1201 /* Each vertex may have upto 12 attributes, 4 components each,
1202 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1203 * rows.
1204 *
1205 * Actually we use 4 for each, so call it 12 rows.
1206 */
1207 unsigned urb_entry_size;
1208 };
1209
1210 struct brw_clip_prog_data {
1211 uint32_t curb_read_length; /* user planes? */
1212 uint32_t clip_mode;
1213 uint32_t urb_read_length;
1214 uint32_t total_grf;
1215 };
1216
1217 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1218 union brw_any_prog_data {
1219 struct brw_stage_prog_data base;
1220 struct brw_vue_prog_data vue;
1221 struct brw_vs_prog_data vs;
1222 struct brw_tcs_prog_data tcs;
1223 struct brw_tes_prog_data tes;
1224 struct brw_gs_prog_data gs;
1225 struct brw_wm_prog_data wm;
1226 struct brw_cs_prog_data cs;
1227 };
1228
1229 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1230 static inline struct brw_##stage##_prog_data * \
1231 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1232 { \
1233 return (struct brw_##stage##_prog_data *) prog_data; \
1234 }
1235 DEFINE_PROG_DATA_DOWNCAST(vue)
1236 DEFINE_PROG_DATA_DOWNCAST(vs)
1237 DEFINE_PROG_DATA_DOWNCAST(tcs)
1238 DEFINE_PROG_DATA_DOWNCAST(tes)
1239 DEFINE_PROG_DATA_DOWNCAST(gs)
1240 DEFINE_PROG_DATA_DOWNCAST(wm)
1241 DEFINE_PROG_DATA_DOWNCAST(cs)
1242 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1243 DEFINE_PROG_DATA_DOWNCAST(clip)
1244 DEFINE_PROG_DATA_DOWNCAST(sf)
1245 #undef DEFINE_PROG_DATA_DOWNCAST
1246
1247 struct brw_compile_stats {
1248 uint32_t dispatch_width; /**< 0 for vec4 */
1249 uint32_t instructions;
1250 uint32_t loops;
1251 uint32_t cycles;
1252 uint32_t spills;
1253 uint32_t fills;
1254 };
1255
1256 /** @} */
1257
1258 struct brw_compiler *
1259 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1260
1261 /**
1262 * Returns a compiler configuration for use with disk shader cache
1263 *
1264 * This value only needs to change for settings that can cause different
1265 * program generation between two runs on the same hardware.
1266 *
1267 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1268 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1269 */
1270 uint64_t
1271 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1272
1273 unsigned
1274 brw_prog_data_size(gl_shader_stage stage);
1275
1276 unsigned
1277 brw_prog_key_size(gl_shader_stage stage);
1278
1279 void
1280 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1281
1282 /**
1283 * Compile a vertex shader.
1284 *
1285 * Returns the final assembly and the program's size.
1286 */
1287 const unsigned *
1288 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1289 void *mem_ctx,
1290 const struct brw_vs_prog_key *key,
1291 struct brw_vs_prog_data *prog_data,
1292 struct nir_shader *shader,
1293 int shader_time_index,
1294 struct brw_compile_stats *stats,
1295 char **error_str);
1296
1297 /**
1298 * Compile a tessellation control shader.
1299 *
1300 * Returns the final assembly and the program's size.
1301 */
1302 const unsigned *
1303 brw_compile_tcs(const struct brw_compiler *compiler,
1304 void *log_data,
1305 void *mem_ctx,
1306 const struct brw_tcs_prog_key *key,
1307 struct brw_tcs_prog_data *prog_data,
1308 struct nir_shader *nir,
1309 int shader_time_index,
1310 struct brw_compile_stats *stats,
1311 char **error_str);
1312
1313 /**
1314 * Compile a tessellation evaluation shader.
1315 *
1316 * Returns the final assembly and the program's size.
1317 */
1318 const unsigned *
1319 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1320 void *mem_ctx,
1321 const struct brw_tes_prog_key *key,
1322 const struct brw_vue_map *input_vue_map,
1323 struct brw_tes_prog_data *prog_data,
1324 struct nir_shader *shader,
1325 int shader_time_index,
1326 struct brw_compile_stats *stats,
1327 char **error_str);
1328
1329 /**
1330 * Compile a vertex shader.
1331 *
1332 * Returns the final assembly and the program's size.
1333 */
1334 const unsigned *
1335 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1336 void *mem_ctx,
1337 const struct brw_gs_prog_key *key,
1338 struct brw_gs_prog_data *prog_data,
1339 struct nir_shader *shader,
1340 struct gl_program *prog,
1341 int shader_time_index,
1342 struct brw_compile_stats *stats,
1343 char **error_str);
1344
1345 /**
1346 * Compile a strips and fans shader.
1347 *
1348 * This is a fixed-function shader determined entirely by the shader key and
1349 * a VUE map.
1350 *
1351 * Returns the final assembly and the program's size.
1352 */
1353 const unsigned *
1354 brw_compile_sf(const struct brw_compiler *compiler,
1355 void *mem_ctx,
1356 const struct brw_sf_prog_key *key,
1357 struct brw_sf_prog_data *prog_data,
1358 struct brw_vue_map *vue_map,
1359 unsigned *final_assembly_size);
1360
1361 /**
1362 * Compile a clipper shader.
1363 *
1364 * This is a fixed-function shader determined entirely by the shader key and
1365 * a VUE map.
1366 *
1367 * Returns the final assembly and the program's size.
1368 */
1369 const unsigned *
1370 brw_compile_clip(const struct brw_compiler *compiler,
1371 void *mem_ctx,
1372 const struct brw_clip_prog_key *key,
1373 struct brw_clip_prog_data *prog_data,
1374 struct brw_vue_map *vue_map,
1375 unsigned *final_assembly_size);
1376
1377 /**
1378 * Compile a fragment shader.
1379 *
1380 * Returns the final assembly and the program's size.
1381 */
1382 const unsigned *
1383 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1384 void *mem_ctx,
1385 const struct brw_wm_prog_key *key,
1386 struct brw_wm_prog_data *prog_data,
1387 struct nir_shader *shader,
1388 int shader_time_index8,
1389 int shader_time_index16,
1390 int shader_time_index32,
1391 bool allow_spilling,
1392 bool use_rep_send, struct brw_vue_map *vue_map,
1393 struct brw_compile_stats *stats, /**< Array of three stats */
1394 char **error_str);
1395
1396 /**
1397 * Compile a compute shader.
1398 *
1399 * Returns the final assembly and the program's size.
1400 */
1401 const unsigned *
1402 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1403 void *mem_ctx,
1404 const struct brw_cs_prog_key *key,
1405 struct brw_cs_prog_data *prog_data,
1406 const struct nir_shader *shader,
1407 int shader_time_index,
1408 struct brw_compile_stats *stats,
1409 char **error_str);
1410
1411 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1412 gl_shader_stage stage,
1413 const struct brw_base_prog_key *old_key,
1414 const struct brw_base_prog_key *key);
1415
1416 static inline uint32_t
1417 encode_slm_size(unsigned gen, uint32_t bytes)
1418 {
1419 uint32_t slm_size = 0;
1420
1421 /* Shared Local Memory is specified as powers of two, and encoded in
1422 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1423 *
1424 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1425 * -------------------------------------------------------------------
1426 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1427 * -------------------------------------------------------------------
1428 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1429 */
1430 assert(bytes <= 64 * 1024);
1431
1432 if (bytes > 0) {
1433 /* Shared Local Memory Size is specified as powers of two. */
1434 slm_size = util_next_power_of_two(bytes);
1435
1436 if (gen >= 9) {
1437 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1438 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1439 } else {
1440 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1441 slm_size = MAX2(slm_size, 4096) / 4096;
1442 }
1443 }
1444
1445 return slm_size;
1446 }
1447
1448 /**
1449 * Return true if the given shader stage is dispatched contiguously by the
1450 * relevant fixed function starting from channel 0 of the SIMD thread, which
1451 * implies that the dispatch mask of a thread can be assumed to have the form
1452 * '2^n - 1' for some n.
1453 */
1454 static inline bool
1455 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1456 gl_shader_stage stage,
1457 const struct brw_stage_prog_data *prog_data)
1458 {
1459 /* The code below makes assumptions about the hardware's thread dispatch
1460 * behavior that could be proven wrong in future generations -- Make sure
1461 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1462 * the NIR front-end before changing this assertion.
1463 */
1464 assert(devinfo->gen <= 12);
1465
1466 switch (stage) {
1467 case MESA_SHADER_FRAGMENT: {
1468 /* The PSD discards subspans coming in with no lit samples, which in the
1469 * per-pixel shading case implies that each subspan will either be fully
1470 * lit (due to the VMask being used to allow derivative computations),
1471 * or not dispatched at all. In per-sample dispatch mode individual
1472 * samples from the same subspan have a fixed relative location within
1473 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1474 * general and we should return false.
1475 */
1476 const struct brw_wm_prog_data *wm_prog_data =
1477 (const struct brw_wm_prog_data *)prog_data;
1478 return !wm_prog_data->persample_dispatch;
1479 }
1480 case MESA_SHADER_COMPUTE:
1481 /* Compute shaders will be spawned with either a fully enabled dispatch
1482 * mask or with whatever bottom/right execution mask was given to the
1483 * GPGPU walker command to be used along the workgroup edges -- In both
1484 * cases the dispatch mask is required to be tightly packed for our
1485 * invocation index calculations to work.
1486 */
1487 return true;
1488 default:
1489 /* Most remaining fixed functions are limited to use a packed dispatch
1490 * mask due to the hardware representation of the dispatch mask as a
1491 * single counter representing the number of enabled channels.
1492 */
1493 return true;
1494 }
1495 }
1496
1497 /**
1498 * Computes the first varying slot in the URB produced by the previous stage
1499 * that is used in the next stage. We do this by testing the varying slots in
1500 * the previous stage's vue map against the inputs read in the next stage.
1501 *
1502 * Note that:
1503 *
1504 * - Each URB offset contains two varying slots and we can only skip a
1505 * full offset if both slots are unused, so the value we return here is always
1506 * rounded down to the closest multiple of two.
1507 *
1508 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1509 * part of the vue header, so if these are read we can't skip anything.
1510 */
1511 static inline int
1512 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1513 const struct brw_vue_map *prev_stage_vue_map)
1514 {
1515 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1516 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1517 int varying = prev_stage_vue_map->slot_to_varying[i];
1518 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1519 return ROUND_DOWN_TO(i, 2);
1520 }
1521 }
1522
1523 return 0;
1524 }
1525
1526 #ifdef __cplusplus
1527 } /* extern "C" */
1528 #endif
1529
1530 #endif /* BRW_COMPILER_H */