intel/fs: Add helper to get prog_offset and simd_size
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned barycentrics we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_bary_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122
123 /**
124 * Whether or not the driver wants uniform params to be compacted by the
125 * back-end compiler.
126 */
127 bool compact_params;
128
129 /**
130 * Whether or not the driver wants variable group size to be lowered by the
131 * back-end compiler.
132 */
133 bool lower_variable_group_size;
134 };
135
136 /**
137 * We use a constant subgroup size of 32. It really only needs to be a
138 * maximum and, since we do SIMD32 for compute shaders in some cases, it
139 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
140 * subgroup size of 32 but will act as if 16 or 24 of those channels are
141 * disabled.
142 */
143 #define BRW_SUBGROUP_SIZE 32
144
145 /**
146 * Program key structures.
147 *
148 * When drawing, we look for the currently bound shaders in the program
149 * cache. This is essentially a hash table lookup, and these are the keys.
150 *
151 * Sometimes OpenGL features specified as state need to be simulated via
152 * shader code, due to a mismatch between the API and the hardware. This
153 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
154 * in the program key so it's considered when searching for a program. If
155 * we haven't seen a particular combination before, we have to recompile a
156 * new specialized version.
157 *
158 * Shader compilation should not look up state in gl_context directly, but
159 * instead use the copy in the program key. This guarantees recompiles will
160 * happen correctly.
161 *
162 * @{
163 */
164
165 enum PACKED gen6_gather_sampler_wa {
166 WA_SIGN = 1, /* whether we need to sign extend */
167 WA_8BIT = 2, /* if we have an 8bit format needing wa */
168 WA_16BIT = 4, /* if we have a 16bit format needing wa */
169 };
170
171 /**
172 * Sampler information needed by VS, WM, and GS program cache keys.
173 */
174 struct brw_sampler_prog_key_data {
175 /**
176 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
177 */
178 uint16_t swizzles[MAX_SAMPLERS];
179
180 uint32_t gl_clamp_mask[3];
181
182 /**
183 * For RG32F, gather4's channel select is broken.
184 */
185 uint32_t gather_channel_quirk_mask;
186
187 /**
188 * Whether this sampler uses the compressed multisample surface layout.
189 */
190 uint32_t compressed_multisample_layout_mask;
191
192 /**
193 * Whether this sampler is using 16x multisampling. If so fetching from
194 * this sampler will be handled with a different instruction, ld2dms_w
195 * instead of ld2dms.
196 */
197 uint32_t msaa_16;
198
199 /**
200 * For Sandybridge, which shader w/a we need for gather quirks.
201 */
202 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
203
204 /**
205 * Texture units that have a YUV image bound.
206 */
207 uint32_t y_u_v_image_mask;
208 uint32_t y_uv_image_mask;
209 uint32_t yx_xuxv_image_mask;
210 uint32_t xy_uxvx_image_mask;
211 uint32_t ayuv_image_mask;
212 uint32_t xyuv_image_mask;
213
214 /* Scale factor for each texture. */
215 float scale_factors[32];
216 };
217
218 /** An enum representing what kind of input gl_SubgroupSize is. */
219 enum PACKED brw_subgroup_size_type
220 {
221 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
222 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
223 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
224
225 /* These enums are specifically chosen so that the value of the enum is
226 * also the subgroup size. If any new values are added, they must respect
227 * this invariant.
228 */
229 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
230 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
231 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
232 };
233
234 struct brw_base_prog_key {
235 unsigned program_string_id;
236
237 enum brw_subgroup_size_type subgroup_size_type;
238
239 struct brw_sampler_prog_key_data tex;
240 };
241
242 /**
243 * The VF can't natively handle certain types of attributes, such as GL_FIXED
244 * or most 10_10_10_2 types. These flags enable various VS workarounds to
245 * "fix" attributes at the beginning of shaders.
246 */
247 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
248 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
249 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
250 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
251 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
252
253 /**
254 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
255 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
256 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
257 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
258 */
259 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
260 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
261
262 /** The program key for Vertex Shaders. */
263 struct brw_vs_prog_key {
264 struct brw_base_prog_key base;
265
266 /**
267 * Per-attribute workaround flags
268 *
269 * For each attribute, a combination of BRW_ATTRIB_WA_*.
270 *
271 * For OpenGL, where we expose a maximum of 16 user input atttributes
272 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
273 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
274 * expose up to 28 user input vertex attributes that are mapped to slots
275 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
276 * enough to hold this many slots.
277 */
278 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
279
280 bool copy_edgeflag:1;
281
282 bool clamp_vertex_color:1;
283
284 /**
285 * How many user clipping planes are being uploaded to the vertex shader as
286 * push constants.
287 *
288 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
289 * clip distances.
290 */
291 unsigned nr_userclip_plane_consts:4;
292
293 /**
294 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
295 * are going to be replaced with point coordinates (as a consequence of a
296 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
297 * our SF thread requires exact matching between VS outputs and FS inputs,
298 * these texture coordinates will need to be unconditionally included in
299 * the VUE, even if they aren't written by the vertex shader.
300 */
301 uint8_t point_coord_replace;
302 };
303
304 /** The program key for Tessellation Control Shaders. */
305 struct brw_tcs_prog_key
306 {
307 struct brw_base_prog_key base;
308
309 GLenum tes_primitive_mode;
310
311 unsigned input_vertices;
312
313 /** A bitfield of per-patch outputs written. */
314 uint32_t patch_outputs_written;
315
316 /** A bitfield of per-vertex outputs written. */
317 uint64_t outputs_written;
318
319 bool quads_workaround;
320 };
321
322 /** The program key for Tessellation Evaluation Shaders. */
323 struct brw_tes_prog_key
324 {
325 struct brw_base_prog_key base;
326
327 /** A bitfield of per-patch inputs read. */
328 uint32_t patch_inputs_read;
329
330 /** A bitfield of per-vertex inputs read. */
331 uint64_t inputs_read;
332
333 /**
334 * How many user clipping planes are being uploaded to the tessellation
335 * evaluation shader as push constants.
336 *
337 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
338 * clip distances.
339 */
340 unsigned nr_userclip_plane_consts:4;
341 };
342
343 /** The program key for Geometry Shaders. */
344 struct brw_gs_prog_key
345 {
346 struct brw_base_prog_key base;
347
348 /**
349 * How many user clipping planes are being uploaded to the geometry shader
350 * as push constants.
351 *
352 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
353 * clip distances.
354 */
355 unsigned nr_userclip_plane_consts:4;
356 };
357
358 enum brw_sf_primitive {
359 BRW_SF_PRIM_POINTS = 0,
360 BRW_SF_PRIM_LINES = 1,
361 BRW_SF_PRIM_TRIANGLES = 2,
362 BRW_SF_PRIM_UNFILLED_TRIS = 3,
363 };
364
365 struct brw_sf_prog_key {
366 uint64_t attrs;
367 bool contains_flat_varying;
368 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
369 uint8_t point_sprite_coord_replace;
370 enum brw_sf_primitive primitive:2;
371 bool do_twoside_color:1;
372 bool frontface_ccw:1;
373 bool do_point_sprite:1;
374 bool do_point_coord:1;
375 bool sprite_origin_lower_left:1;
376 bool userclip_active:1;
377 };
378
379 enum brw_clip_mode {
380 BRW_CLIP_MODE_NORMAL = 0,
381 BRW_CLIP_MODE_CLIP_ALL = 1,
382 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
383 BRW_CLIP_MODE_REJECT_ALL = 3,
384 BRW_CLIP_MODE_ACCEPT_ALL = 4,
385 BRW_CLIP_MODE_KERNEL_CLIP = 5,
386 };
387
388 enum brw_clip_fill_mode {
389 BRW_CLIP_FILL_MODE_LINE = 0,
390 BRW_CLIP_FILL_MODE_POINT = 1,
391 BRW_CLIP_FILL_MODE_FILL = 2,
392 BRW_CLIP_FILL_MODE_CULL = 3,
393 };
394
395 /* Note that if unfilled primitives are being emitted, we have to fix
396 * up polygon offset and flatshading at this point:
397 */
398 struct brw_clip_prog_key {
399 uint64_t attrs;
400 bool contains_flat_varying;
401 bool contains_noperspective_varying;
402 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
403 unsigned primitive:4;
404 unsigned nr_userclip:4;
405 bool pv_first:1;
406 bool do_unfilled:1;
407 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
408 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
409 bool offset_cw:1;
410 bool offset_ccw:1;
411 bool copy_bfc_cw:1;
412 bool copy_bfc_ccw:1;
413 enum brw_clip_mode clip_mode:3;
414
415 float offset_factor;
416 float offset_units;
417 float offset_clamp;
418 };
419
420 /* A big lookup table is used to figure out which and how many
421 * additional regs will inserted before the main payload in the WM
422 * program execution. These mainly relate to depth and stencil
423 * processing and the early-depth-test optimization.
424 */
425 enum brw_wm_iz_bits {
426 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
427 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
428 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
429 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
430 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
431 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
432 BRW_WM_IZ_BIT_MAX = 0x40
433 };
434
435 enum brw_wm_aa_enable {
436 BRW_WM_AA_NEVER,
437 BRW_WM_AA_SOMETIMES,
438 BRW_WM_AA_ALWAYS
439 };
440
441 /** The program key for Fragment/Pixel Shaders. */
442 struct brw_wm_prog_key {
443 struct brw_base_prog_key base;
444
445 /* Some collection of BRW_WM_IZ_* */
446 uint8_t iz_lookup;
447 bool stats_wm:1;
448 bool flat_shade:1;
449 unsigned nr_color_regions:5;
450 bool alpha_test_replicate_alpha:1;
451 bool alpha_to_coverage:1;
452 bool clamp_fragment_color:1;
453 bool persample_interp:1;
454 bool multisample_fbo:1;
455 bool frag_coord_adds_sample_pos:1;
456 enum brw_wm_aa_enable line_aa:2;
457 bool high_quality_derivatives:1;
458 bool force_dual_color_blend:1;
459 bool coherent_fb_fetch:1;
460
461 uint8_t color_outputs_valid;
462 uint64_t input_slots_valid;
463 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
464 float alpha_test_ref;
465 };
466
467 struct brw_cs_prog_key {
468 struct brw_base_prog_key base;
469 };
470
471 /* brw_any_prog_key is any of the keys that map to an API stage */
472 union brw_any_prog_key {
473 struct brw_base_prog_key base;
474 struct brw_vs_prog_key vs;
475 struct brw_tcs_prog_key tcs;
476 struct brw_tes_prog_key tes;
477 struct brw_gs_prog_key gs;
478 struct brw_wm_prog_key wm;
479 struct brw_cs_prog_key cs;
480 };
481
482 /*
483 * Image metadata structure as laid out in the shader parameter
484 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
485 * able to use them. That's okay because the padding and any unused
486 * entries [most of them except when we're doing untyped surface
487 * access] will be removed by the uniform packing pass.
488 */
489 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
490 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
491 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
492 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
493 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
494 #define BRW_IMAGE_PARAM_SIZE 20
495
496 struct brw_image_param {
497 /** Offset applied to the X and Y surface coordinates. */
498 uint32_t offset[2];
499
500 /** Surface X, Y and Z dimensions. */
501 uint32_t size[3];
502
503 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
504 * pixels, vertical slice stride in pixels.
505 */
506 uint32_t stride[4];
507
508 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
509 uint32_t tiling[3];
510
511 /**
512 * Right shift to apply for bit 6 address swizzling. Two different
513 * swizzles can be specified and will be applied one after the other. The
514 * resulting address will be:
515 *
516 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
517 * (addr >> swizzling[1])))
518 *
519 * Use \c 0xff if any of the swizzles is not required.
520 */
521 uint32_t swizzling[2];
522 };
523
524 /** Max number of render targets in a shader */
525 #define BRW_MAX_DRAW_BUFFERS 8
526
527 /**
528 * Max number of binding table entries used for stream output.
529 *
530 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
531 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
532 *
533 * On Gen6, the size of transform feedback data is limited not by the number
534 * of components but by the number of binding table entries we set aside. We
535 * use one binding table entry for a float, one entry for a vector, and one
536 * entry per matrix column. Since the only way we can communicate our
537 * transform feedback capabilities to the client is via
538 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
539 * worst case, in which all the varyings are floats, so we use up one binding
540 * table entry per component. Therefore we need to set aside at least 64
541 * binding table entries for use by transform feedback.
542 *
543 * Note: since we don't currently pack varyings, it is currently impossible
544 * for the client to actually use up all of these binding table entries--if
545 * all of their varyings were floats, they would run out of varying slots and
546 * fail to link. But that's a bug, so it seems prudent to go ahead and
547 * allocate the number of binding table entries we will need once the bug is
548 * fixed.
549 */
550 #define BRW_MAX_SOL_BINDINGS 64
551
552 /**
553 * Binding table index for the first gen6 SOL binding.
554 */
555 #define BRW_GEN6_SOL_BINDING_START 0
556
557 /**
558 * Stride in bytes between shader_time entries.
559 *
560 * We separate entries by a cacheline to reduce traffic between EUs writing to
561 * different entries.
562 */
563 #define BRW_SHADER_TIME_STRIDE 64
564
565 struct brw_ubo_range
566 {
567 uint16_t block;
568 uint8_t start;
569 uint8_t length;
570 };
571
572 /* We reserve the first 2^16 values for builtins */
573 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
574
575 enum brw_param_builtin {
576 BRW_PARAM_BUILTIN_ZERO,
577
578 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
604 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
605 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
606 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
607 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
608 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
609 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
610
611 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
612 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
613 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
614 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
615 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
616 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
617
618 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
619
620 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
621 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
622 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
623 BRW_PARAM_BUILTIN_SUBGROUP_ID,
624 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
625 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
626 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
627 };
628
629 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
630 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
631
632 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
633 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
634 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
635
636 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
637 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
638
639 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
640 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
641
642 struct brw_stage_prog_data {
643 struct {
644 /** size of our binding table. */
645 uint32_t size_bytes;
646
647 /** @{
648 * surface indices for the various groups of surfaces
649 */
650 uint32_t pull_constants_start;
651 uint32_t texture_start;
652 uint32_t gather_texture_start;
653 uint32_t ubo_start;
654 uint32_t ssbo_start;
655 uint32_t image_start;
656 uint32_t shader_time_start;
657 uint32_t plane_start[3];
658 /** @} */
659 } binding_table;
660
661 struct brw_ubo_range ubo_ranges[4];
662
663 GLuint nr_params; /**< number of float params/constants */
664 GLuint nr_pull_params;
665
666 /* zero_push_reg is a bitfield which indicates what push registers (if any)
667 * should be zeroed by SW at the start of the shader. The corresponding
668 * push_reg_mask_param specifies the param index (in 32-bit units) where
669 * the actual runtime 64-bit mask will be pushed. The shader will zero
670 * push reg i if
671 *
672 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
673 *
674 * If this field is set, brw_compiler::compact_params must be false.
675 */
676 uint64_t zero_push_reg;
677 unsigned push_reg_mask_param;
678
679 unsigned curb_read_length;
680 unsigned total_scratch;
681 unsigned total_shared;
682
683 unsigned program_size;
684
685 /** Does this program pull from any UBO or other constant buffers? */
686 bool has_ubo_pull;
687
688 /**
689 * Register where the thread expects to find input data from the URB
690 * (typically uniforms, followed by vertex or fragment attributes).
691 */
692 unsigned dispatch_grf_start_reg;
693
694 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
695
696 /* 32-bit identifiers for all push/pull parameters. These can be anything
697 * the driver wishes them to be; the core of the back-end compiler simply
698 * re-arranges them. The one restriction is that the bottom 2^16 values
699 * are reserved for builtins defined in the brw_param_builtin enum defined
700 * above.
701 */
702 uint32_t *param;
703 uint32_t *pull_param;
704
705 /* Whether shader uses atomic operations. */
706 bool uses_atomic_load_store;
707 };
708
709 static inline uint32_t *
710 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
711 unsigned nr_new_params)
712 {
713 unsigned old_nr_params = prog_data->nr_params;
714 prog_data->nr_params += nr_new_params;
715 prog_data->param = reralloc(ralloc_parent(prog_data->param),
716 prog_data->param, uint32_t,
717 prog_data->nr_params);
718 return prog_data->param + old_nr_params;
719 }
720
721 enum brw_barycentric_mode {
722 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
723 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
724 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
725 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
726 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
727 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
728 BRW_BARYCENTRIC_MODE_COUNT = 6
729 };
730 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
731 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
732 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
733 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
734
735 enum brw_pixel_shader_computed_depth_mode {
736 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
737 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
738 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
739 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
740 };
741
742 /* Data about a particular attempt to compile a program. Note that
743 * there can be many of these, each in a different GL state
744 * corresponding to a different brw_wm_prog_key struct, with different
745 * compiled programs.
746 */
747 struct brw_wm_prog_data {
748 struct brw_stage_prog_data base;
749
750 GLuint num_varying_inputs;
751
752 uint8_t reg_blocks_8;
753 uint8_t reg_blocks_16;
754 uint8_t reg_blocks_32;
755
756 uint8_t dispatch_grf_start_reg_16;
757 uint8_t dispatch_grf_start_reg_32;
758 uint32_t prog_offset_16;
759 uint32_t prog_offset_32;
760
761 struct {
762 /** @{
763 * surface indices the WM-specific surfaces
764 */
765 uint32_t render_target_read_start;
766 /** @} */
767 } binding_table;
768
769 uint8_t computed_depth_mode;
770 bool computed_stencil;
771
772 bool early_fragment_tests;
773 bool post_depth_coverage;
774 bool inner_coverage;
775 bool dispatch_8;
776 bool dispatch_16;
777 bool dispatch_32;
778 bool dual_src_blend;
779 bool persample_dispatch;
780 bool uses_pos_offset;
781 bool uses_omask;
782 bool uses_kill;
783 bool uses_src_depth;
784 bool uses_src_w;
785 bool uses_sample_mask;
786 bool has_render_target_reads;
787 bool has_side_effects;
788 bool pulls_bary;
789
790 bool contains_flat_varying;
791 bool contains_noperspective_varying;
792
793 /**
794 * Mask of which interpolation modes are required by the fragment shader.
795 * Used in hardware setup on gen6+.
796 */
797 uint32_t barycentric_interp_modes;
798
799 /**
800 * Mask of which FS inputs are marked flat by the shader source. This is
801 * needed for setting up 3DSTATE_SF/SBE.
802 */
803 uint32_t flat_inputs;
804
805 /**
806 * The FS inputs
807 */
808 uint64_t inputs;
809
810 /* Mapping of VUE slots to interpolation modes.
811 * Used by the Gen4-5 clip/sf/wm stages.
812 */
813 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
814
815 /**
816 * Map from gl_varying_slot to the position within the FS setup data
817 * payload where the varying's attribute vertex deltas should be delivered.
818 * For varying slots that are not used by the FS, the value is -1.
819 */
820 int urb_setup[VARYING_SLOT_MAX];
821
822 /**
823 * Cache structure into the urb_setup array above that contains the
824 * attribute numbers of active varyings out of urb_setup.
825 * The actual count is stored in urb_setup_attribs_count.
826 */
827 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
828 uint8_t urb_setup_attribs_count;
829 };
830
831 /** Returns the SIMD width corresponding to a given KSP index
832 *
833 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
834 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
835 * kernel start pointer (KSP) indices that is based on what dispatch widths
836 * are enabled. This function provides, effectively, the reverse mapping.
837 *
838 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
839 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
840 */
841 static inline unsigned
842 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
843 bool simd16_enabled, bool simd32_enabled)
844 {
845 /* This function strictly ignores contiguous dispatch */
846 switch (ksp_idx) {
847 case 0:
848 return simd8_enabled ? 8 :
849 (simd16_enabled && !simd32_enabled) ? 16 :
850 (simd32_enabled && !simd16_enabled) ? 32 : 0;
851 case 1:
852 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
853 case 2:
854 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
855 default:
856 unreachable("Invalid KSP index");
857 }
858 }
859
860 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
861 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
862 (wm_state)._16PixelDispatchEnable, \
863 (wm_state)._32PixelDispatchEnable)
864
865 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
866 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
867
868 static inline uint32_t
869 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
870 unsigned simd_width)
871 {
872 switch (simd_width) {
873 case 8: return 0;
874 case 16: return prog_data->prog_offset_16;
875 case 32: return prog_data->prog_offset_32;
876 default: return 0;
877 }
878 }
879
880 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
881 _brw_wm_prog_data_prog_offset(prog_data, \
882 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
883
884 static inline uint8_t
885 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
886 unsigned simd_width)
887 {
888 switch (simd_width) {
889 case 8: return prog_data->base.dispatch_grf_start_reg;
890 case 16: return prog_data->dispatch_grf_start_reg_16;
891 case 32: return prog_data->dispatch_grf_start_reg_32;
892 default: return 0;
893 }
894 }
895
896 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
897 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
898 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
899
900 static inline uint8_t
901 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
902 unsigned simd_width)
903 {
904 switch (simd_width) {
905 case 8: return prog_data->reg_blocks_8;
906 case 16: return prog_data->reg_blocks_16;
907 case 32: return prog_data->reg_blocks_32;
908 default: return 0;
909 }
910 }
911
912 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
913 _brw_wm_prog_data_reg_blocks(prog_data, \
914 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
915
916 struct brw_push_const_block {
917 unsigned dwords; /* Dword count, not reg aligned */
918 unsigned regs;
919 unsigned size; /* Bytes, register aligned */
920 };
921
922 struct brw_cs_prog_data {
923 struct brw_stage_prog_data base;
924
925 unsigned local_size[3];
926 unsigned simd_size;
927 unsigned slm_size;
928 bool uses_barrier;
929 bool uses_num_work_groups;
930
931 struct {
932 struct brw_push_const_block cross_thread;
933 struct brw_push_const_block per_thread;
934 } push;
935
936 struct {
937 /** @{
938 * surface indices the CS-specific surfaces
939 */
940 uint32_t work_groups_start;
941 /** @} */
942 } binding_table;
943 };
944
945 static inline uint32_t
946 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
947 unsigned dispatch_width)
948 {
949 /* For now, we generate code for one program, so offset is always 0. */
950 assert(dispatch_width == prog_data->simd_size);
951 return 0;
952 }
953
954 /**
955 * Enum representing the i965-specific vertex results that don't correspond
956 * exactly to any element of gl_varying_slot. The values of this enum are
957 * assigned such that they don't conflict with gl_varying_slot.
958 */
959 typedef enum
960 {
961 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
962 BRW_VARYING_SLOT_PAD,
963 /**
964 * Technically this is not a varying but just a placeholder that
965 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
966 * builtin variable to be compiled correctly. see compile_sf_prog() for
967 * more info.
968 */
969 BRW_VARYING_SLOT_PNTC,
970 BRW_VARYING_SLOT_COUNT
971 } brw_varying_slot;
972
973 /**
974 * We always program SF to start reading at an offset of 1 (2 varying slots)
975 * from the start of the vertex URB entry. This causes it to skip:
976 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
977 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
978 */
979 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
980
981 /**
982 * Bitmask indicating which fragment shader inputs represent varyings (and
983 * hence have to be delivered to the fragment shader by the SF/SBE stage).
984 */
985 #define BRW_FS_VARYING_INPUT_MASK \
986 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
987 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
988
989 /**
990 * Data structure recording the relationship between the gl_varying_slot enum
991 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
992 * single octaword within the VUE (128 bits).
993 *
994 * Note that each BRW register contains 256 bits (2 octawords), so when
995 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
996 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
997 * in a vertex shader), each register corresponds to a single VUE slot, since
998 * it contains data for two separate vertices.
999 */
1000 struct brw_vue_map {
1001 /**
1002 * Bitfield representing all varying slots that are (a) stored in this VUE
1003 * map, and (b) actually written by the shader. Does not include any of
1004 * the additional varying slots defined in brw_varying_slot.
1005 */
1006 uint64_t slots_valid;
1007
1008 /**
1009 * Is this VUE map for a separate shader pipeline?
1010 *
1011 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1012 * without the linker having a chance to dead code eliminate unused varyings.
1013 *
1014 * This means that we have to use a fixed slot layout, based on the output's
1015 * location field, rather than assigning slots in a compact contiguous block.
1016 */
1017 bool separate;
1018
1019 /**
1020 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
1021 * not stored in a slot (because they are not written, or because
1022 * additional processing is applied before storing them in the VUE), the
1023 * value is -1.
1024 */
1025 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1026
1027 /**
1028 * Map from VUE slot to gl_varying_slot value. For slots that do not
1029 * directly correspond to a gl_varying_slot, the value comes from
1030 * brw_varying_slot.
1031 *
1032 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1033 */
1034 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1035
1036 /**
1037 * Total number of VUE slots in use
1038 */
1039 int num_slots;
1040
1041 /**
1042 * Number of per-patch VUE slots. Only valid for tessellation control
1043 * shader outputs and tessellation evaluation shader inputs.
1044 */
1045 int num_per_patch_slots;
1046
1047 /**
1048 * Number of per-vertex VUE slots. Only valid for tessellation control
1049 * shader outputs and tessellation evaluation shader inputs.
1050 */
1051 int num_per_vertex_slots;
1052 };
1053
1054 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1055
1056 /**
1057 * Convert a VUE slot number into a byte offset within the VUE.
1058 */
1059 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1060 {
1061 return 16*slot;
1062 }
1063
1064 /**
1065 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1066 * VUE.
1067 */
1068 static inline
1069 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1070 {
1071 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1072 }
1073
1074 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1075 struct brw_vue_map *vue_map,
1076 uint64_t slots_valid,
1077 bool separate_shader,
1078 uint32_t pos_slots);
1079
1080 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1081 uint64_t slots_valid,
1082 uint32_t is_patch);
1083
1084 /* brw_interpolation_map.c */
1085 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1086 struct nir_shader *nir,
1087 struct brw_wm_prog_data *prog_data);
1088
1089 enum shader_dispatch_mode {
1090 DISPATCH_MODE_4X1_SINGLE = 0,
1091 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1092 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1093 DISPATCH_MODE_SIMD8 = 3,
1094
1095 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1096 DISPATCH_MODE_TCS_8_PATCH = 2,
1097 };
1098
1099 /**
1100 * @defgroup Tessellator parameter enumerations.
1101 *
1102 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1103 * as part of the tessellation evaluation shader.
1104 *
1105 * @{
1106 */
1107 enum brw_tess_partitioning {
1108 BRW_TESS_PARTITIONING_INTEGER = 0,
1109 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1110 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1111 };
1112
1113 enum brw_tess_output_topology {
1114 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1115 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1116 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1117 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1118 };
1119
1120 enum brw_tess_domain {
1121 BRW_TESS_DOMAIN_QUAD = 0,
1122 BRW_TESS_DOMAIN_TRI = 1,
1123 BRW_TESS_DOMAIN_ISOLINE = 2,
1124 };
1125 /** @} */
1126
1127 struct brw_vue_prog_data {
1128 struct brw_stage_prog_data base;
1129 struct brw_vue_map vue_map;
1130
1131 /** Should the hardware deliver input VUE handles for URB pull loads? */
1132 bool include_vue_handles;
1133
1134 GLuint urb_read_length;
1135 GLuint total_grf;
1136
1137 uint32_t clip_distance_mask;
1138 uint32_t cull_distance_mask;
1139
1140 /* Used for calculating urb partitions. In the VS, this is the size of the
1141 * URB entry used for both input and output to the thread. In the GS, this
1142 * is the size of the URB entry used for output.
1143 */
1144 GLuint urb_entry_size;
1145
1146 enum shader_dispatch_mode dispatch_mode;
1147 };
1148
1149 struct brw_vs_prog_data {
1150 struct brw_vue_prog_data base;
1151
1152 GLbitfield64 inputs_read;
1153 GLbitfield64 double_inputs_read;
1154
1155 unsigned nr_attribute_slots;
1156
1157 bool uses_vertexid;
1158 bool uses_instanceid;
1159 bool uses_is_indexed_draw;
1160 bool uses_firstvertex;
1161 bool uses_baseinstance;
1162 bool uses_drawid;
1163 };
1164
1165 struct brw_tcs_prog_data
1166 {
1167 struct brw_vue_prog_data base;
1168
1169 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1170 bool include_primitive_id;
1171
1172 /** Number vertices in output patch */
1173 int instances;
1174
1175 /** Track patch count threshold */
1176 int patch_count_threshold;
1177 };
1178
1179
1180 struct brw_tes_prog_data
1181 {
1182 struct brw_vue_prog_data base;
1183
1184 enum brw_tess_partitioning partitioning;
1185 enum brw_tess_output_topology output_topology;
1186 enum brw_tess_domain domain;
1187 };
1188
1189 struct brw_gs_prog_data
1190 {
1191 struct brw_vue_prog_data base;
1192
1193 unsigned vertices_in;
1194
1195 /**
1196 * Size of an output vertex, measured in HWORDS (32 bytes).
1197 */
1198 unsigned output_vertex_size_hwords;
1199
1200 unsigned output_topology;
1201
1202 /**
1203 * Size of the control data (cut bits or StreamID bits), in hwords (32
1204 * bytes). 0 if there is no control data.
1205 */
1206 unsigned control_data_header_size_hwords;
1207
1208 /**
1209 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1210 * if the control data is StreamID bits, or
1211 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1212 * Ignored if control_data_header_size is 0.
1213 */
1214 unsigned control_data_format;
1215
1216 bool include_primitive_id;
1217
1218 /**
1219 * The number of vertices emitted, if constant - otherwise -1.
1220 */
1221 int static_vertex_count;
1222
1223 int invocations;
1224
1225 /**
1226 * Gen6: Provoking vertex convention for odd-numbered triangles
1227 * in tristrips.
1228 */
1229 GLuint pv_first:1;
1230
1231 /**
1232 * Gen6: Number of varyings that are output to transform feedback.
1233 */
1234 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1235
1236 /**
1237 * Gen6: Map from the index of a transform feedback binding table entry to the
1238 * gl_varying_slot that should be streamed out through that binding table
1239 * entry.
1240 */
1241 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1242
1243 /**
1244 * Gen6: Map from the index of a transform feedback binding table entry to the
1245 * swizzles that should be used when streaming out data through that
1246 * binding table entry.
1247 */
1248 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1249 };
1250
1251 struct brw_sf_prog_data {
1252 uint32_t urb_read_length;
1253 uint32_t total_grf;
1254
1255 /* Each vertex may have upto 12 attributes, 4 components each,
1256 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1257 * rows.
1258 *
1259 * Actually we use 4 for each, so call it 12 rows.
1260 */
1261 unsigned urb_entry_size;
1262 };
1263
1264 struct brw_clip_prog_data {
1265 uint32_t curb_read_length; /* user planes? */
1266 uint32_t clip_mode;
1267 uint32_t urb_read_length;
1268 uint32_t total_grf;
1269 };
1270
1271 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1272 union brw_any_prog_data {
1273 struct brw_stage_prog_data base;
1274 struct brw_vue_prog_data vue;
1275 struct brw_vs_prog_data vs;
1276 struct brw_tcs_prog_data tcs;
1277 struct brw_tes_prog_data tes;
1278 struct brw_gs_prog_data gs;
1279 struct brw_wm_prog_data wm;
1280 struct brw_cs_prog_data cs;
1281 };
1282
1283 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1284 static inline struct brw_##stage##_prog_data * \
1285 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1286 { \
1287 return (struct brw_##stage##_prog_data *) prog_data; \
1288 } \
1289 static inline const struct brw_##stage##_prog_data * \
1290 brw_##stage##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1291 { \
1292 return (const struct brw_##stage##_prog_data *) prog_data; \
1293 }
1294 DEFINE_PROG_DATA_DOWNCAST(vue)
1295 DEFINE_PROG_DATA_DOWNCAST(vs)
1296 DEFINE_PROG_DATA_DOWNCAST(tcs)
1297 DEFINE_PROG_DATA_DOWNCAST(tes)
1298 DEFINE_PROG_DATA_DOWNCAST(gs)
1299 DEFINE_PROG_DATA_DOWNCAST(wm)
1300 DEFINE_PROG_DATA_DOWNCAST(cs)
1301 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1302 DEFINE_PROG_DATA_DOWNCAST(clip)
1303 DEFINE_PROG_DATA_DOWNCAST(sf)
1304 #undef DEFINE_PROG_DATA_DOWNCAST
1305
1306 struct brw_compile_stats {
1307 uint32_t dispatch_width; /**< 0 for vec4 */
1308 uint32_t instructions;
1309 uint32_t sends;
1310 uint32_t loops;
1311 uint32_t cycles;
1312 uint32_t spills;
1313 uint32_t fills;
1314 };
1315
1316 /** @} */
1317
1318 struct brw_compiler *
1319 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1320
1321 /**
1322 * Returns a compiler configuration for use with disk shader cache
1323 *
1324 * This value only needs to change for settings that can cause different
1325 * program generation between two runs on the same hardware.
1326 *
1327 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1328 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1329 */
1330 uint64_t
1331 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1332
1333 unsigned
1334 brw_prog_data_size(gl_shader_stage stage);
1335
1336 unsigned
1337 brw_prog_key_size(gl_shader_stage stage);
1338
1339 void
1340 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1341
1342 /**
1343 * Compile a vertex shader.
1344 *
1345 * Returns the final assembly and the program's size.
1346 */
1347 const unsigned *
1348 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1349 void *mem_ctx,
1350 const struct brw_vs_prog_key *key,
1351 struct brw_vs_prog_data *prog_data,
1352 struct nir_shader *shader,
1353 int shader_time_index,
1354 struct brw_compile_stats *stats,
1355 char **error_str);
1356
1357 /**
1358 * Compile a tessellation control shader.
1359 *
1360 * Returns the final assembly and the program's size.
1361 */
1362 const unsigned *
1363 brw_compile_tcs(const struct brw_compiler *compiler,
1364 void *log_data,
1365 void *mem_ctx,
1366 const struct brw_tcs_prog_key *key,
1367 struct brw_tcs_prog_data *prog_data,
1368 struct nir_shader *nir,
1369 int shader_time_index,
1370 struct brw_compile_stats *stats,
1371 char **error_str);
1372
1373 /**
1374 * Compile a tessellation evaluation shader.
1375 *
1376 * Returns the final assembly and the program's size.
1377 */
1378 const unsigned *
1379 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1380 void *mem_ctx,
1381 const struct brw_tes_prog_key *key,
1382 const struct brw_vue_map *input_vue_map,
1383 struct brw_tes_prog_data *prog_data,
1384 struct nir_shader *shader,
1385 int shader_time_index,
1386 struct brw_compile_stats *stats,
1387 char **error_str);
1388
1389 /**
1390 * Compile a vertex shader.
1391 *
1392 * Returns the final assembly and the program's size.
1393 */
1394 const unsigned *
1395 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1396 void *mem_ctx,
1397 const struct brw_gs_prog_key *key,
1398 struct brw_gs_prog_data *prog_data,
1399 struct nir_shader *shader,
1400 struct gl_program *prog,
1401 int shader_time_index,
1402 struct brw_compile_stats *stats,
1403 char **error_str);
1404
1405 /**
1406 * Compile a strips and fans shader.
1407 *
1408 * This is a fixed-function shader determined entirely by the shader key and
1409 * a VUE map.
1410 *
1411 * Returns the final assembly and the program's size.
1412 */
1413 const unsigned *
1414 brw_compile_sf(const struct brw_compiler *compiler,
1415 void *mem_ctx,
1416 const struct brw_sf_prog_key *key,
1417 struct brw_sf_prog_data *prog_data,
1418 struct brw_vue_map *vue_map,
1419 unsigned *final_assembly_size);
1420
1421 /**
1422 * Compile a clipper shader.
1423 *
1424 * This is a fixed-function shader determined entirely by the shader key and
1425 * a VUE map.
1426 *
1427 * Returns the final assembly and the program's size.
1428 */
1429 const unsigned *
1430 brw_compile_clip(const struct brw_compiler *compiler,
1431 void *mem_ctx,
1432 const struct brw_clip_prog_key *key,
1433 struct brw_clip_prog_data *prog_data,
1434 struct brw_vue_map *vue_map,
1435 unsigned *final_assembly_size);
1436
1437 /**
1438 * Compile a fragment shader.
1439 *
1440 * Returns the final assembly and the program's size.
1441 */
1442 const unsigned *
1443 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1444 void *mem_ctx,
1445 const struct brw_wm_prog_key *key,
1446 struct brw_wm_prog_data *prog_data,
1447 struct nir_shader *shader,
1448 int shader_time_index8,
1449 int shader_time_index16,
1450 int shader_time_index32,
1451 bool allow_spilling,
1452 bool use_rep_send, struct brw_vue_map *vue_map,
1453 struct brw_compile_stats *stats, /**< Array of three stats */
1454 char **error_str);
1455
1456 /**
1457 * Compile a compute shader.
1458 *
1459 * Returns the final assembly and the program's size.
1460 */
1461 const unsigned *
1462 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1463 void *mem_ctx,
1464 const struct brw_cs_prog_key *key,
1465 struct brw_cs_prog_data *prog_data,
1466 const struct nir_shader *shader,
1467 int shader_time_index,
1468 struct brw_compile_stats *stats,
1469 char **error_str);
1470
1471 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1472 gl_shader_stage stage,
1473 const struct brw_base_prog_key *old_key,
1474 const struct brw_base_prog_key *key);
1475
1476 static inline uint32_t
1477 encode_slm_size(unsigned gen, uint32_t bytes)
1478 {
1479 uint32_t slm_size = 0;
1480
1481 /* Shared Local Memory is specified as powers of two, and encoded in
1482 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1483 *
1484 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1485 * -------------------------------------------------------------------
1486 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1487 * -------------------------------------------------------------------
1488 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1489 */
1490 assert(bytes <= 64 * 1024);
1491
1492 if (bytes > 0) {
1493 /* Shared Local Memory Size is specified as powers of two. */
1494 slm_size = util_next_power_of_two(bytes);
1495
1496 if (gen >= 9) {
1497 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1498 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1499 } else {
1500 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1501 slm_size = MAX2(slm_size, 4096) / 4096;
1502 }
1503 }
1504
1505 return slm_size;
1506 }
1507
1508 unsigned
1509 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1510 unsigned threads);
1511
1512 unsigned
1513 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
1514 const struct brw_cs_prog_data *cs_prog_data,
1515 unsigned group_size);
1516
1517 /**
1518 * Return true if the given shader stage is dispatched contiguously by the
1519 * relevant fixed function starting from channel 0 of the SIMD thread, which
1520 * implies that the dispatch mask of a thread can be assumed to have the form
1521 * '2^n - 1' for some n.
1522 */
1523 static inline bool
1524 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1525 gl_shader_stage stage,
1526 const struct brw_stage_prog_data *prog_data)
1527 {
1528 /* The code below makes assumptions about the hardware's thread dispatch
1529 * behavior that could be proven wrong in future generations -- Make sure
1530 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1531 * the NIR front-end before changing this assertion.
1532 */
1533 assert(devinfo->gen <= 12);
1534
1535 switch (stage) {
1536 case MESA_SHADER_FRAGMENT: {
1537 /* The PSD discards subspans coming in with no lit samples, which in the
1538 * per-pixel shading case implies that each subspan will either be fully
1539 * lit (due to the VMask being used to allow derivative computations),
1540 * or not dispatched at all. In per-sample dispatch mode individual
1541 * samples from the same subspan have a fixed relative location within
1542 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1543 * general and we should return false.
1544 */
1545 const struct brw_wm_prog_data *wm_prog_data =
1546 (const struct brw_wm_prog_data *)prog_data;
1547 return !wm_prog_data->persample_dispatch;
1548 }
1549 case MESA_SHADER_COMPUTE:
1550 /* Compute shaders will be spawned with either a fully enabled dispatch
1551 * mask or with whatever bottom/right execution mask was given to the
1552 * GPGPU walker command to be used along the workgroup edges -- In both
1553 * cases the dispatch mask is required to be tightly packed for our
1554 * invocation index calculations to work.
1555 */
1556 return true;
1557 default:
1558 /* Most remaining fixed functions are limited to use a packed dispatch
1559 * mask due to the hardware representation of the dispatch mask as a
1560 * single counter representing the number of enabled channels.
1561 */
1562 return true;
1563 }
1564 }
1565
1566 /**
1567 * Computes the first varying slot in the URB produced by the previous stage
1568 * that is used in the next stage. We do this by testing the varying slots in
1569 * the previous stage's vue map against the inputs read in the next stage.
1570 *
1571 * Note that:
1572 *
1573 * - Each URB offset contains two varying slots and we can only skip a
1574 * full offset if both slots are unused, so the value we return here is always
1575 * rounded down to the closest multiple of two.
1576 *
1577 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1578 * part of the vue header, so if these are read we can't skip anything.
1579 */
1580 static inline int
1581 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1582 const struct brw_vue_map *prev_stage_vue_map)
1583 {
1584 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1585 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1586 int varying = prev_stage_vue_map->slot_to_varying[i];
1587 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1588 return ROUND_DOWN_TO(i, 2);
1589 }
1590 }
1591
1592 return 0;
1593 }
1594
1595 #ifdef __cplusplus
1596 } /* extern "C" */
1597 #endif
1598
1599 #endif /* BRW_COMPILER_H */