intel/cs: Stop setting dispatch_grf_start_reg
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "common/gen_device_info.h"
29 #include "main/mtypes.h"
30 #include "main/macros.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117
118 /**
119 * Program key structures.
120 *
121 * When drawing, we look for the currently bound shaders in the program
122 * cache. This is essentially a hash table lookup, and these are the keys.
123 *
124 * Sometimes OpenGL features specified as state need to be simulated via
125 * shader code, due to a mismatch between the API and the hardware. This
126 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
127 * in the program key so it's considered when searching for a program. If
128 * we haven't seen a particular combination before, we have to recompile a
129 * new specialized version.
130 *
131 * Shader compilation should not look up state in gl_context directly, but
132 * instead use the copy in the program key. This guarantees recompiles will
133 * happen correctly.
134 *
135 * @{
136 */
137
138 enum PACKED gen6_gather_sampler_wa {
139 WA_SIGN = 1, /* whether we need to sign extend */
140 WA_8BIT = 2, /* if we have an 8bit format needing wa */
141 WA_16BIT = 4, /* if we have a 16bit format needing wa */
142 };
143
144 /**
145 * Sampler information needed by VS, WM, and GS program cache keys.
146 */
147 struct brw_sampler_prog_key_data {
148 /**
149 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
150 */
151 uint16_t swizzles[MAX_SAMPLERS];
152
153 uint32_t gl_clamp_mask[3];
154
155 /**
156 * For RG32F, gather4's channel select is broken.
157 */
158 uint32_t gather_channel_quirk_mask;
159
160 /**
161 * Whether this sampler uses the compressed multisample surface layout.
162 */
163 uint32_t compressed_multisample_layout_mask;
164
165 /**
166 * Whether this sampler is using 16x multisampling. If so fetching from
167 * this sampler will be handled with a different instruction, ld2dms_w
168 * instead of ld2dms.
169 */
170 uint32_t msaa_16;
171
172 /**
173 * For Sandybridge, which shader w/a we need for gather quirks.
174 */
175 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
176
177 /**
178 * Texture units that have a YUV image bound.
179 */
180 uint32_t y_u_v_image_mask;
181 uint32_t y_uv_image_mask;
182 uint32_t yx_xuxv_image_mask;
183 uint32_t xy_uxvx_image_mask;
184 };
185
186 /**
187 * The VF can't natively handle certain types of attributes, such as GL_FIXED
188 * or most 10_10_10_2 types. These flags enable various VS workarounds to
189 * "fix" attributes at the beginning of shaders.
190 */
191 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
192 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
193 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
194 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
195 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
196
197 /**
198 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
199 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
200 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
201 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
202 */
203 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
204 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
205
206 /** The program key for Vertex Shaders. */
207 struct brw_vs_prog_key {
208 unsigned program_string_id;
209
210 /**
211 * Per-attribute workaround flags
212 *
213 * For each attribute, a combination of BRW_ATTRIB_WA_*.
214 *
215 * For OpenGL, where we expose a maximum of 16 user input atttributes
216 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
217 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
218 * expose up to 28 user input vertex attributes that are mapped to slots
219 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
220 * enough to hold this many slots.
221 */
222 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
223
224 bool copy_edgeflag:1;
225
226 bool clamp_vertex_color:1;
227
228 /**
229 * How many user clipping planes are being uploaded to the vertex shader as
230 * push constants.
231 *
232 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
233 * clip distances.
234 */
235 unsigned nr_userclip_plane_consts:4;
236
237 /**
238 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
239 * are going to be replaced with point coordinates (as a consequence of a
240 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
241 * our SF thread requires exact matching between VS outputs and FS inputs,
242 * these texture coordinates will need to be unconditionally included in
243 * the VUE, even if they aren't written by the vertex shader.
244 */
245 uint8_t point_coord_replace;
246
247 struct brw_sampler_prog_key_data tex;
248 };
249
250 /** The program key for Tessellation Control Shaders. */
251 struct brw_tcs_prog_key
252 {
253 unsigned program_string_id;
254
255 GLenum tes_primitive_mode;
256
257 unsigned input_vertices;
258
259 /** A bitfield of per-patch outputs written. */
260 uint32_t patch_outputs_written;
261
262 /** A bitfield of per-vertex outputs written. */
263 uint64_t outputs_written;
264
265 bool quads_workaround;
266
267 struct brw_sampler_prog_key_data tex;
268 };
269
270 /** The program key for Tessellation Evaluation Shaders. */
271 struct brw_tes_prog_key
272 {
273 unsigned program_string_id;
274
275 /** A bitfield of per-patch inputs read. */
276 uint32_t patch_inputs_read;
277
278 /** A bitfield of per-vertex inputs read. */
279 uint64_t inputs_read;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Geometry Shaders. */
285 struct brw_gs_prog_key
286 {
287 unsigned program_string_id;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 enum brw_sf_primitive {
293 BRW_SF_PRIM_POINTS = 0,
294 BRW_SF_PRIM_LINES = 1,
295 BRW_SF_PRIM_TRIANGLES = 2,
296 BRW_SF_PRIM_UNFILLED_TRIS = 3,
297 };
298
299 struct brw_sf_prog_key {
300 uint64_t attrs;
301 bool contains_flat_varying;
302 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
303 uint8_t point_sprite_coord_replace;
304 enum brw_sf_primitive primitive:2;
305 bool do_twoside_color:1;
306 bool frontface_ccw:1;
307 bool do_point_sprite:1;
308 bool do_point_coord:1;
309 bool sprite_origin_lower_left:1;
310 bool userclip_active:1;
311 };
312
313 enum brw_clip_mode {
314 BRW_CLIP_MODE_NORMAL = 0,
315 BRW_CLIP_MODE_CLIP_ALL = 1,
316 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
317 BRW_CLIP_MODE_REJECT_ALL = 3,
318 BRW_CLIP_MODE_ACCEPT_ALL = 4,
319 BRW_CLIP_MODE_KERNEL_CLIP = 5,
320 };
321
322 enum brw_clip_fill_mode {
323 BRW_CLIP_FILL_MODE_LINE = 0,
324 BRW_CLIP_FILL_MODE_POINT = 1,
325 BRW_CLIP_FILL_MODE_FILL = 2,
326 BRW_CLIP_FILL_MODE_CULL = 3,
327 };
328
329 /* Note that if unfilled primitives are being emitted, we have to fix
330 * up polygon offset and flatshading at this point:
331 */
332 struct brw_clip_prog_key {
333 uint64_t attrs;
334 bool contains_flat_varying;
335 bool contains_noperspective_varying;
336 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
337 unsigned primitive:4;
338 unsigned nr_userclip:4;
339 bool pv_first:1;
340 bool do_unfilled:1;
341 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
342 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
343 bool offset_cw:1;
344 bool offset_ccw:1;
345 bool copy_bfc_cw:1;
346 bool copy_bfc_ccw:1;
347 enum brw_clip_mode clip_mode:3;
348
349 float offset_factor;
350 float offset_units;
351 float offset_clamp;
352 };
353
354 /* A big lookup table is used to figure out which and how many
355 * additional regs will inserted before the main payload in the WM
356 * program execution. These mainly relate to depth and stencil
357 * processing and the early-depth-test optimization.
358 */
359 enum brw_wm_iz_bits {
360 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
361 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
362 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
363 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
364 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
365 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
366 BRW_WM_IZ_BIT_MAX = 0x40
367 };
368
369 enum brw_wm_aa_enable {
370 BRW_WM_AA_NEVER,
371 BRW_WM_AA_SOMETIMES,
372 BRW_WM_AA_ALWAYS
373 };
374
375 /** The program key for Fragment/Pixel Shaders. */
376 struct brw_wm_prog_key {
377 /* Some collection of BRW_WM_IZ_* */
378 uint8_t iz_lookup;
379 bool stats_wm:1;
380 bool flat_shade:1;
381 unsigned nr_color_regions:5;
382 bool replicate_alpha:1;
383 bool clamp_fragment_color:1;
384 bool persample_interp:1;
385 bool multisample_fbo:1;
386 bool frag_coord_adds_sample_pos:1;
387 enum brw_wm_aa_enable line_aa:2;
388 bool high_quality_derivatives:1;
389 bool force_dual_color_blend:1;
390 bool coherent_fb_fetch:1;
391
392 uint64_t input_slots_valid;
393 unsigned program_string_id;
394 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
395 float alpha_test_ref;
396
397 struct brw_sampler_prog_key_data tex;
398 };
399
400 struct brw_cs_prog_key {
401 uint32_t program_string_id;
402 struct brw_sampler_prog_key_data tex;
403 };
404
405 /* brw_any_prog_key is any of the keys that map to an API stage */
406 union brw_any_prog_key {
407 struct brw_vs_prog_key vs;
408 struct brw_tcs_prog_key tcs;
409 struct brw_tes_prog_key tes;
410 struct brw_gs_prog_key gs;
411 struct brw_wm_prog_key wm;
412 struct brw_cs_prog_key cs;
413 };
414
415 /*
416 * Image metadata structure as laid out in the shader parameter
417 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
418 * able to use them. That's okay because the padding and any unused
419 * entries [most of them except when we're doing untyped surface
420 * access] will be removed by the uniform packing pass.
421 */
422 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
423 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
424 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
425 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
426 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
427 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
428 #define BRW_IMAGE_PARAM_SIZE 24
429
430 struct brw_image_param {
431 /** Surface binding table index. */
432 uint32_t surface_idx;
433
434 /** Offset applied to the X and Y surface coordinates. */
435 uint32_t offset[2];
436
437 /** Surface X, Y and Z dimensions. */
438 uint32_t size[3];
439
440 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
441 * pixels, vertical slice stride in pixels.
442 */
443 uint32_t stride[4];
444
445 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
446 uint32_t tiling[3];
447
448 /**
449 * Right shift to apply for bit 6 address swizzling. Two different
450 * swizzles can be specified and will be applied one after the other. The
451 * resulting address will be:
452 *
453 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
454 * (addr >> swizzling[1])))
455 *
456 * Use \c 0xff if any of the swizzles is not required.
457 */
458 uint32_t swizzling[2];
459 };
460
461 /** Max number of render targets in a shader */
462 #define BRW_MAX_DRAW_BUFFERS 8
463
464 /**
465 * Max number of binding table entries used for stream output.
466 *
467 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
468 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
469 *
470 * On Gen6, the size of transform feedback data is limited not by the number
471 * of components but by the number of binding table entries we set aside. We
472 * use one binding table entry for a float, one entry for a vector, and one
473 * entry per matrix column. Since the only way we can communicate our
474 * transform feedback capabilities to the client is via
475 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
476 * worst case, in which all the varyings are floats, so we use up one binding
477 * table entry per component. Therefore we need to set aside at least 64
478 * binding table entries for use by transform feedback.
479 *
480 * Note: since we don't currently pack varyings, it is currently impossible
481 * for the client to actually use up all of these binding table entries--if
482 * all of their varyings were floats, they would run out of varying slots and
483 * fail to link. But that's a bug, so it seems prudent to go ahead and
484 * allocate the number of binding table entries we will need once the bug is
485 * fixed.
486 */
487 #define BRW_MAX_SOL_BINDINGS 64
488
489 /**
490 * Binding table index for the first gen6 SOL binding.
491 */
492 #define BRW_GEN6_SOL_BINDING_START 0
493
494 /**
495 * Stride in bytes between shader_time entries.
496 *
497 * We separate entries by a cacheline to reduce traffic between EUs writing to
498 * different entries.
499 */
500 #define BRW_SHADER_TIME_STRIDE 64
501
502 struct brw_ubo_range
503 {
504 uint16_t block;
505 uint8_t start;
506 uint8_t length;
507 };
508
509 /* We reserve the first 2^16 values for builtins */
510 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
511
512 enum brw_param_builtin {
513 BRW_PARAM_BUILTIN_ZERO,
514
515 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
516 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
517 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
518 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
519 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
520 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
521 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
522 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
547
548 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
549 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
550 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
551 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
552 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
553 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
554
555 BRW_PARAM_BUILTIN_THREAD_LOCAL_ID,
556 };
557
558 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
559 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
560
561 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
562 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
563 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
564
565 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
566 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
567
568 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
569 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
570
571 struct brw_stage_prog_data {
572 struct {
573 /** size of our binding table. */
574 uint32_t size_bytes;
575
576 /** @{
577 * surface indices for the various groups of surfaces
578 */
579 uint32_t pull_constants_start;
580 uint32_t texture_start;
581 uint32_t gather_texture_start;
582 uint32_t ubo_start;
583 uint32_t ssbo_start;
584 uint32_t abo_start;
585 uint32_t image_start;
586 uint32_t shader_time_start;
587 uint32_t plane_start[3];
588 /** @} */
589 } binding_table;
590
591 struct brw_ubo_range ubo_ranges[4];
592
593 GLuint nr_params; /**< number of float params/constants */
594 GLuint nr_pull_params;
595
596 unsigned curb_read_length;
597 unsigned total_scratch;
598 unsigned total_shared;
599
600 unsigned program_size;
601
602 /**
603 * Register where the thread expects to find input data from the URB
604 * (typically uniforms, followed by vertex or fragment attributes).
605 */
606 unsigned dispatch_grf_start_reg;
607
608 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
609
610 /* 32-bit identifiers for all push/pull parameters. These can be anything
611 * the driver wishes them to be; the core of the back-end compiler simply
612 * re-arranges them. The one restriction is that the bottom 2^16 values
613 * are reserved for builtins defined in the brw_param_builtin enum defined
614 * above.
615 */
616 uint32_t *param;
617 uint32_t *pull_param;
618 };
619
620 static inline uint32_t *
621 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
622 unsigned nr_new_params)
623 {
624 unsigned old_nr_params = prog_data->nr_params;
625 prog_data->nr_params += nr_new_params;
626 prog_data->param = reralloc(ralloc_parent(prog_data->param),
627 prog_data->param, uint32_t,
628 prog_data->nr_params);
629 return prog_data->param + old_nr_params;
630 }
631
632 static inline void
633 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
634 unsigned surf_index)
635 {
636 /* A binding table index is 8 bits and the top 3 values are reserved for
637 * special things (stateless and SLM).
638 */
639 assert(surf_index <= 252);
640
641 prog_data->binding_table.size_bytes =
642 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
643 }
644
645 enum brw_barycentric_mode {
646 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
647 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
648 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
649 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
650 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
651 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
652 BRW_BARYCENTRIC_MODE_COUNT = 6
653 };
654 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
655 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
656 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
657 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
658
659 enum brw_pixel_shader_computed_depth_mode {
660 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
661 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
662 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
663 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
664 };
665
666 /* Data about a particular attempt to compile a program. Note that
667 * there can be many of these, each in a different GL state
668 * corresponding to a different brw_wm_prog_key struct, with different
669 * compiled programs.
670 */
671 struct brw_wm_prog_data {
672 struct brw_stage_prog_data base;
673
674 GLuint num_varying_inputs;
675
676 uint8_t reg_blocks_0;
677 uint8_t reg_blocks_2;
678
679 uint8_t dispatch_grf_start_reg_2;
680 uint32_t prog_offset_2;
681
682 struct {
683 /** @{
684 * surface indices the WM-specific surfaces
685 */
686 uint32_t render_target_start;
687 uint32_t render_target_read_start;
688 /** @} */
689 } binding_table;
690
691 uint8_t computed_depth_mode;
692 bool computed_stencil;
693
694 bool early_fragment_tests;
695 bool post_depth_coverage;
696 bool inner_coverage;
697 bool dispatch_8;
698 bool dispatch_16;
699 bool dual_src_blend;
700 bool persample_dispatch;
701 bool uses_pos_offset;
702 bool uses_omask;
703 bool uses_kill;
704 bool uses_src_depth;
705 bool uses_src_w;
706 bool uses_sample_mask;
707 bool has_render_target_reads;
708 bool has_side_effects;
709 bool pulls_bary;
710
711 bool contains_flat_varying;
712 bool contains_noperspective_varying;
713
714 /**
715 * Mask of which interpolation modes are required by the fragment shader.
716 * Used in hardware setup on gen6+.
717 */
718 uint32_t barycentric_interp_modes;
719
720 /**
721 * Mask of which FS inputs are marked flat by the shader source. This is
722 * needed for setting up 3DSTATE_SF/SBE.
723 */
724 uint32_t flat_inputs;
725
726 /* Mapping of VUE slots to interpolation modes.
727 * Used by the Gen4-5 clip/sf/wm stages.
728 */
729 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
730
731 /**
732 * Map from gl_varying_slot to the position within the FS setup data
733 * payload where the varying's attribute vertex deltas should be delivered.
734 * For varying slots that are not used by the FS, the value is -1.
735 */
736 int urb_setup[VARYING_SLOT_MAX];
737 };
738
739 struct brw_push_const_block {
740 unsigned dwords; /* Dword count, not reg aligned */
741 unsigned regs;
742 unsigned size; /* Bytes, register aligned */
743 };
744
745 struct brw_cs_prog_data {
746 struct brw_stage_prog_data base;
747
748 unsigned local_size[3];
749 unsigned simd_size;
750 unsigned threads;
751 bool uses_barrier;
752 bool uses_num_work_groups;
753
754 struct {
755 struct brw_push_const_block cross_thread;
756 struct brw_push_const_block per_thread;
757 struct brw_push_const_block total;
758 } push;
759
760 struct {
761 /** @{
762 * surface indices the CS-specific surfaces
763 */
764 uint32_t work_groups_start;
765 /** @} */
766 } binding_table;
767 };
768
769 /**
770 * Enum representing the i965-specific vertex results that don't correspond
771 * exactly to any element of gl_varying_slot. The values of this enum are
772 * assigned such that they don't conflict with gl_varying_slot.
773 */
774 typedef enum
775 {
776 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
777 BRW_VARYING_SLOT_PAD,
778 /**
779 * Technically this is not a varying but just a placeholder that
780 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
781 * builtin variable to be compiled correctly. see compile_sf_prog() for
782 * more info.
783 */
784 BRW_VARYING_SLOT_PNTC,
785 BRW_VARYING_SLOT_COUNT
786 } brw_varying_slot;
787
788 /**
789 * We always program SF to start reading at an offset of 1 (2 varying slots)
790 * from the start of the vertex URB entry. This causes it to skip:
791 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
792 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
793 */
794 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
795
796 /**
797 * Bitmask indicating which fragment shader inputs represent varyings (and
798 * hence have to be delivered to the fragment shader by the SF/SBE stage).
799 */
800 #define BRW_FS_VARYING_INPUT_MASK \
801 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
802 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
803
804 /**
805 * Data structure recording the relationship between the gl_varying_slot enum
806 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
807 * single octaword within the VUE (128 bits).
808 *
809 * Note that each BRW register contains 256 bits (2 octawords), so when
810 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
811 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
812 * in a vertex shader), each register corresponds to a single VUE slot, since
813 * it contains data for two separate vertices.
814 */
815 struct brw_vue_map {
816 /**
817 * Bitfield representing all varying slots that are (a) stored in this VUE
818 * map, and (b) actually written by the shader. Does not include any of
819 * the additional varying slots defined in brw_varying_slot.
820 */
821 uint64_t slots_valid;
822
823 /**
824 * Is this VUE map for a separate shader pipeline?
825 *
826 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
827 * without the linker having a chance to dead code eliminate unused varyings.
828 *
829 * This means that we have to use a fixed slot layout, based on the output's
830 * location field, rather than assigning slots in a compact contiguous block.
831 */
832 bool separate;
833
834 /**
835 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
836 * not stored in a slot (because they are not written, or because
837 * additional processing is applied before storing them in the VUE), the
838 * value is -1.
839 */
840 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
841
842 /**
843 * Map from VUE slot to gl_varying_slot value. For slots that do not
844 * directly correspond to a gl_varying_slot, the value comes from
845 * brw_varying_slot.
846 *
847 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
848 */
849 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
850
851 /**
852 * Total number of VUE slots in use
853 */
854 int num_slots;
855
856 /**
857 * Number of per-patch VUE slots. Only valid for tessellation control
858 * shader outputs and tessellation evaluation shader inputs.
859 */
860 int num_per_patch_slots;
861
862 /**
863 * Number of per-vertex VUE slots. Only valid for tessellation control
864 * shader outputs and tessellation evaluation shader inputs.
865 */
866 int num_per_vertex_slots;
867 };
868
869 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
870
871 /**
872 * Convert a VUE slot number into a byte offset within the VUE.
873 */
874 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
875 {
876 return 16*slot;
877 }
878
879 /**
880 * Convert a vertex output (brw_varying_slot) into a byte offset within the
881 * VUE.
882 */
883 static inline
884 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
885 {
886 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
887 }
888
889 void brw_compute_vue_map(const struct gen_device_info *devinfo,
890 struct brw_vue_map *vue_map,
891 uint64_t slots_valid,
892 bool separate_shader);
893
894 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
895 uint64_t slots_valid,
896 uint32_t is_patch);
897
898 /* brw_interpolation_map.c */
899 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
900 struct nir_shader *nir,
901 struct brw_wm_prog_data *prog_data,
902 const struct gen_device_info *devinfo);
903
904 enum shader_dispatch_mode {
905 DISPATCH_MODE_4X1_SINGLE = 0,
906 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
907 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
908 DISPATCH_MODE_SIMD8 = 3,
909 };
910
911 /**
912 * @defgroup Tessellator parameter enumerations.
913 *
914 * These correspond to the hardware values in 3DSTATE_TE, and are provided
915 * as part of the tessellation evaluation shader.
916 *
917 * @{
918 */
919 enum brw_tess_partitioning {
920 BRW_TESS_PARTITIONING_INTEGER = 0,
921 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
922 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
923 };
924
925 enum brw_tess_output_topology {
926 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
927 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
928 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
929 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
930 };
931
932 enum brw_tess_domain {
933 BRW_TESS_DOMAIN_QUAD = 0,
934 BRW_TESS_DOMAIN_TRI = 1,
935 BRW_TESS_DOMAIN_ISOLINE = 2,
936 };
937 /** @} */
938
939 struct brw_vue_prog_data {
940 struct brw_stage_prog_data base;
941 struct brw_vue_map vue_map;
942
943 /** Should the hardware deliver input VUE handles for URB pull loads? */
944 bool include_vue_handles;
945
946 GLuint urb_read_length;
947 GLuint total_grf;
948
949 uint32_t clip_distance_mask;
950 uint32_t cull_distance_mask;
951
952 /* Used for calculating urb partitions. In the VS, this is the size of the
953 * URB entry used for both input and output to the thread. In the GS, this
954 * is the size of the URB entry used for output.
955 */
956 GLuint urb_entry_size;
957
958 enum shader_dispatch_mode dispatch_mode;
959 };
960
961 struct brw_vs_prog_data {
962 struct brw_vue_prog_data base;
963
964 GLbitfield64 inputs_read;
965 GLbitfield64 double_inputs_read;
966
967 unsigned nr_attribute_slots;
968
969 bool uses_vertexid;
970 bool uses_instanceid;
971 bool uses_basevertex;
972 bool uses_baseinstance;
973 bool uses_drawid;
974 };
975
976 struct brw_tcs_prog_data
977 {
978 struct brw_vue_prog_data base;
979
980 /** Number vertices in output patch */
981 int instances;
982 };
983
984
985 struct brw_tes_prog_data
986 {
987 struct brw_vue_prog_data base;
988
989 enum brw_tess_partitioning partitioning;
990 enum brw_tess_output_topology output_topology;
991 enum brw_tess_domain domain;
992 };
993
994 struct brw_gs_prog_data
995 {
996 struct brw_vue_prog_data base;
997
998 unsigned vertices_in;
999
1000 /**
1001 * Size of an output vertex, measured in HWORDS (32 bytes).
1002 */
1003 unsigned output_vertex_size_hwords;
1004
1005 unsigned output_topology;
1006
1007 /**
1008 * Size of the control data (cut bits or StreamID bits), in hwords (32
1009 * bytes). 0 if there is no control data.
1010 */
1011 unsigned control_data_header_size_hwords;
1012
1013 /**
1014 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1015 * if the control data is StreamID bits, or
1016 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1017 * Ignored if control_data_header_size is 0.
1018 */
1019 unsigned control_data_format;
1020
1021 bool include_primitive_id;
1022
1023 /**
1024 * The number of vertices emitted, if constant - otherwise -1.
1025 */
1026 int static_vertex_count;
1027
1028 int invocations;
1029
1030 /**
1031 * Gen6: Provoking vertex convention for odd-numbered triangles
1032 * in tristrips.
1033 */
1034 GLuint pv_first:1;
1035
1036 /**
1037 * Gen6: Number of varyings that are output to transform feedback.
1038 */
1039 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1040
1041 /**
1042 * Gen6: Map from the index of a transform feedback binding table entry to the
1043 * gl_varying_slot that should be streamed out through that binding table
1044 * entry.
1045 */
1046 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1047
1048 /**
1049 * Gen6: Map from the index of a transform feedback binding table entry to the
1050 * swizzles that should be used when streaming out data through that
1051 * binding table entry.
1052 */
1053 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1054 };
1055
1056 struct brw_sf_prog_data {
1057 uint32_t urb_read_length;
1058 uint32_t total_grf;
1059
1060 /* Each vertex may have upto 12 attributes, 4 components each,
1061 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1062 * rows.
1063 *
1064 * Actually we use 4 for each, so call it 12 rows.
1065 */
1066 unsigned urb_entry_size;
1067 };
1068
1069 struct brw_clip_prog_data {
1070 uint32_t curb_read_length; /* user planes? */
1071 uint32_t clip_mode;
1072 uint32_t urb_read_length;
1073 uint32_t total_grf;
1074 };
1075
1076 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1077 union brw_any_prog_data {
1078 struct brw_stage_prog_data base;
1079 struct brw_vue_prog_data vue;
1080 struct brw_vs_prog_data vs;
1081 struct brw_tcs_prog_data tcs;
1082 struct brw_tes_prog_data tes;
1083 struct brw_gs_prog_data gs;
1084 struct brw_wm_prog_data wm;
1085 struct brw_cs_prog_data cs;
1086 };
1087
1088 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1089 static inline struct brw_##stage##_prog_data * \
1090 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1091 { \
1092 return (struct brw_##stage##_prog_data *) prog_data; \
1093 }
1094 DEFINE_PROG_DATA_DOWNCAST(vue)
1095 DEFINE_PROG_DATA_DOWNCAST(vs)
1096 DEFINE_PROG_DATA_DOWNCAST(tcs)
1097 DEFINE_PROG_DATA_DOWNCAST(tes)
1098 DEFINE_PROG_DATA_DOWNCAST(gs)
1099 DEFINE_PROG_DATA_DOWNCAST(wm)
1100 DEFINE_PROG_DATA_DOWNCAST(cs)
1101 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1102 DEFINE_PROG_DATA_DOWNCAST(clip)
1103 DEFINE_PROG_DATA_DOWNCAST(sf)
1104 #undef DEFINE_PROG_DATA_DOWNCAST
1105
1106 /** @} */
1107
1108 struct brw_compiler *
1109 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1110
1111 unsigned
1112 brw_prog_data_size(gl_shader_stage stage);
1113
1114 unsigned
1115 brw_prog_key_size(gl_shader_stage stage);
1116
1117 /**
1118 * Compile a vertex shader.
1119 *
1120 * Returns the final assembly and the program's size.
1121 */
1122 const unsigned *
1123 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1124 void *mem_ctx,
1125 const struct brw_vs_prog_key *key,
1126 struct brw_vs_prog_data *prog_data,
1127 const struct nir_shader *shader,
1128 bool use_legacy_snorm_formula,
1129 int shader_time_index,
1130 char **error_str);
1131
1132 /**
1133 * Compile a tessellation control shader.
1134 *
1135 * Returns the final assembly and the program's size.
1136 */
1137 const unsigned *
1138 brw_compile_tcs(const struct brw_compiler *compiler,
1139 void *log_data,
1140 void *mem_ctx,
1141 const struct brw_tcs_prog_key *key,
1142 struct brw_tcs_prog_data *prog_data,
1143 const struct nir_shader *nir,
1144 int shader_time_index,
1145 char **error_str);
1146
1147 /**
1148 * Compile a tessellation evaluation shader.
1149 *
1150 * Returns the final assembly and the program's size.
1151 */
1152 const unsigned *
1153 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1154 void *mem_ctx,
1155 const struct brw_tes_prog_key *key,
1156 const struct brw_vue_map *input_vue_map,
1157 struct brw_tes_prog_data *prog_data,
1158 const struct nir_shader *shader,
1159 struct gl_program *prog,
1160 int shader_time_index,
1161 char **error_str);
1162
1163 /**
1164 * Compile a vertex shader.
1165 *
1166 * Returns the final assembly and the program's size.
1167 */
1168 const unsigned *
1169 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1170 void *mem_ctx,
1171 const struct brw_gs_prog_key *key,
1172 struct brw_gs_prog_data *prog_data,
1173 const struct nir_shader *shader,
1174 struct gl_program *prog,
1175 int shader_time_index,
1176 char **error_str);
1177
1178 /**
1179 * Compile a strips and fans shader.
1180 *
1181 * This is a fixed-function shader determined entirely by the shader key and
1182 * a VUE map.
1183 *
1184 * Returns the final assembly and the program's size.
1185 */
1186 const unsigned *
1187 brw_compile_sf(const struct brw_compiler *compiler,
1188 void *mem_ctx,
1189 const struct brw_sf_prog_key *key,
1190 struct brw_sf_prog_data *prog_data,
1191 struct brw_vue_map *vue_map,
1192 unsigned *final_assembly_size);
1193
1194 /**
1195 * Compile a clipper shader.
1196 *
1197 * This is a fixed-function shader determined entirely by the shader key and
1198 * a VUE map.
1199 *
1200 * Returns the final assembly and the program's size.
1201 */
1202 const unsigned *
1203 brw_compile_clip(const struct brw_compiler *compiler,
1204 void *mem_ctx,
1205 const struct brw_clip_prog_key *key,
1206 struct brw_clip_prog_data *prog_data,
1207 struct brw_vue_map *vue_map,
1208 unsigned *final_assembly_size);
1209
1210 /**
1211 * Compile a fragment shader.
1212 *
1213 * Returns the final assembly and the program's size.
1214 */
1215 const unsigned *
1216 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1217 void *mem_ctx,
1218 const struct brw_wm_prog_key *key,
1219 struct brw_wm_prog_data *prog_data,
1220 const struct nir_shader *shader,
1221 struct gl_program *prog,
1222 int shader_time_index8,
1223 int shader_time_index16,
1224 bool allow_spilling,
1225 bool use_rep_send, struct brw_vue_map *vue_map,
1226 char **error_str);
1227
1228 /**
1229 * Compile a compute shader.
1230 *
1231 * Returns the final assembly and the program's size.
1232 */
1233 const unsigned *
1234 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1235 void *mem_ctx,
1236 const struct brw_cs_prog_key *key,
1237 struct brw_cs_prog_data *prog_data,
1238 const struct nir_shader *shader,
1239 int shader_time_index,
1240 char **error_str);
1241
1242 static inline uint32_t
1243 encode_slm_size(unsigned gen, uint32_t bytes)
1244 {
1245 uint32_t slm_size = 0;
1246
1247 /* Shared Local Memory is specified as powers of two, and encoded in
1248 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1249 *
1250 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1251 * -------------------------------------------------------------------
1252 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1253 * -------------------------------------------------------------------
1254 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1255 */
1256 assert(bytes <= 64 * 1024);
1257
1258 if (bytes > 0) {
1259 /* Shared Local Memory Size is specified as powers of two. */
1260 slm_size = util_next_power_of_two(bytes);
1261
1262 if (gen >= 9) {
1263 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1264 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1265 } else {
1266 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1267 slm_size = MAX2(slm_size, 4096) / 4096;
1268 }
1269 }
1270
1271 return slm_size;
1272 }
1273
1274 /**
1275 * Return true if the given shader stage is dispatched contiguously by the
1276 * relevant fixed function starting from channel 0 of the SIMD thread, which
1277 * implies that the dispatch mask of a thread can be assumed to have the form
1278 * '2^n - 1' for some n.
1279 */
1280 static inline bool
1281 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
1282 gl_shader_stage stage,
1283 const struct brw_stage_prog_data *prog_data)
1284 {
1285 /* The code below makes assumptions about the hardware's thread dispatch
1286 * behavior that could be proven wrong in future generations -- Make sure
1287 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1288 * the NIR front-end before changing this assertion.
1289 */
1290 assert(devinfo->gen <= 10);
1291
1292 switch (stage) {
1293 case MESA_SHADER_FRAGMENT: {
1294 /* The PSD discards subspans coming in with no lit samples, which in the
1295 * per-pixel shading case implies that each subspan will either be fully
1296 * lit (due to the VMask being used to allow derivative computations),
1297 * or not dispatched at all. In per-sample dispatch mode individual
1298 * samples from the same subspan have a fixed relative location within
1299 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1300 * general and we should return false.
1301 */
1302 const struct brw_wm_prog_data *wm_prog_data =
1303 (const struct brw_wm_prog_data *)prog_data;
1304 return !wm_prog_data->persample_dispatch;
1305 }
1306 case MESA_SHADER_COMPUTE:
1307 /* Compute shaders will be spawned with either a fully enabled dispatch
1308 * mask or with whatever bottom/right execution mask was given to the
1309 * GPGPU walker command to be used along the workgroup edges -- In both
1310 * cases the dispatch mask is required to be tightly packed for our
1311 * invocation index calculations to work.
1312 */
1313 return true;
1314 default:
1315 /* Most remaining fixed functions are limited to use a packed dispatch
1316 * mask due to the hardware representation of the dispatch mask as a
1317 * single counter representing the number of enabled channels.
1318 */
1319 return true;
1320 }
1321 }
1322
1323 /**
1324 * Computes the first varying slot in the URB produced by the previous stage
1325 * that is used in the next stage. We do this by testing the varying slots in
1326 * the previous stage's vue map against the inputs read in the next stage.
1327 *
1328 * Note that:
1329 *
1330 * - Each URB offset contains two varying slots and we can only skip a
1331 * full offset if both slots are unused, so the value we return here is always
1332 * rounded down to the closest multiple of two.
1333 *
1334 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1335 * part of the vue header, so if these are read we can't skip anything.
1336 */
1337 static inline int
1338 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1339 const struct brw_vue_map *prev_stage_vue_map)
1340 {
1341 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1342 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1343 int varying = prev_stage_vue_map->slot_to_varying[i];
1344 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1345 return ROUND_DOWN_TO(i, 2);
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352 #ifdef __cplusplus
1353 } /* extern "C" */
1354 #endif
1355
1356 #endif /* BRW_COMPILER_H */