intel/fs: Add fields to wm_prog_data for SIMD32 dispatch
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117 /**
118 * We use a constant subgroup size of 32. It really only needs to be a
119 * maximum and, since we do SIMD32 for compute shaders in some cases, it
120 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
121 * subgroup size of 32 but will act as if 16 or 24 of those channels are
122 * disabled.
123 */
124 #define BRW_SUBGROUP_SIZE 32
125
126 /**
127 * Program key structures.
128 *
129 * When drawing, we look for the currently bound shaders in the program
130 * cache. This is essentially a hash table lookup, and these are the keys.
131 *
132 * Sometimes OpenGL features specified as state need to be simulated via
133 * shader code, due to a mismatch between the API and the hardware. This
134 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
135 * in the program key so it's considered when searching for a program. If
136 * we haven't seen a particular combination before, we have to recompile a
137 * new specialized version.
138 *
139 * Shader compilation should not look up state in gl_context directly, but
140 * instead use the copy in the program key. This guarantees recompiles will
141 * happen correctly.
142 *
143 * @{
144 */
145
146 enum PACKED gen6_gather_sampler_wa {
147 WA_SIGN = 1, /* whether we need to sign extend */
148 WA_8BIT = 2, /* if we have an 8bit format needing wa */
149 WA_16BIT = 4, /* if we have a 16bit format needing wa */
150 };
151
152 /**
153 * Sampler information needed by VS, WM, and GS program cache keys.
154 */
155 struct brw_sampler_prog_key_data {
156 /**
157 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
158 */
159 uint16_t swizzles[MAX_SAMPLERS];
160
161 uint32_t gl_clamp_mask[3];
162
163 /**
164 * For RG32F, gather4's channel select is broken.
165 */
166 uint32_t gather_channel_quirk_mask;
167
168 /**
169 * Whether this sampler uses the compressed multisample surface layout.
170 */
171 uint32_t compressed_multisample_layout_mask;
172
173 /**
174 * Whether this sampler is using 16x multisampling. If so fetching from
175 * this sampler will be handled with a different instruction, ld2dms_w
176 * instead of ld2dms.
177 */
178 uint32_t msaa_16;
179
180 /**
181 * For Sandybridge, which shader w/a we need for gather quirks.
182 */
183 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
184
185 /**
186 * Texture units that have a YUV image bound.
187 */
188 uint32_t y_u_v_image_mask;
189 uint32_t y_uv_image_mask;
190 uint32_t yx_xuxv_image_mask;
191 uint32_t xy_uxvx_image_mask;
192 };
193
194 /**
195 * The VF can't natively handle certain types of attributes, such as GL_FIXED
196 * or most 10_10_10_2 types. These flags enable various VS workarounds to
197 * "fix" attributes at the beginning of shaders.
198 */
199 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
200 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
201 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
202 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
203 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
204
205 /**
206 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
207 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
208 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
209 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
210 */
211 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
212 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
213
214 /** The program key for Vertex Shaders. */
215 struct brw_vs_prog_key {
216 unsigned program_string_id;
217
218 /**
219 * Per-attribute workaround flags
220 *
221 * For each attribute, a combination of BRW_ATTRIB_WA_*.
222 *
223 * For OpenGL, where we expose a maximum of 16 user input atttributes
224 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
225 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
226 * expose up to 28 user input vertex attributes that are mapped to slots
227 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
228 * enough to hold this many slots.
229 */
230 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
231
232 bool copy_edgeflag:1;
233
234 bool clamp_vertex_color:1;
235
236 /**
237 * How many user clipping planes are being uploaded to the vertex shader as
238 * push constants.
239 *
240 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
241 * clip distances.
242 */
243 unsigned nr_userclip_plane_consts:4;
244
245 /**
246 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
247 * are going to be replaced with point coordinates (as a consequence of a
248 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
249 * our SF thread requires exact matching between VS outputs and FS inputs,
250 * these texture coordinates will need to be unconditionally included in
251 * the VUE, even if they aren't written by the vertex shader.
252 */
253 uint8_t point_coord_replace;
254
255 struct brw_sampler_prog_key_data tex;
256 };
257
258 /** The program key for Tessellation Control Shaders. */
259 struct brw_tcs_prog_key
260 {
261 unsigned program_string_id;
262
263 GLenum tes_primitive_mode;
264
265 unsigned input_vertices;
266
267 /** A bitfield of per-patch outputs written. */
268 uint32_t patch_outputs_written;
269
270 /** A bitfield of per-vertex outputs written. */
271 uint64_t outputs_written;
272
273 bool quads_workaround;
274
275 struct brw_sampler_prog_key_data tex;
276 };
277
278 /** The program key for Tessellation Evaluation Shaders. */
279 struct brw_tes_prog_key
280 {
281 unsigned program_string_id;
282
283 /** A bitfield of per-patch inputs read. */
284 uint32_t patch_inputs_read;
285
286 /** A bitfield of per-vertex inputs read. */
287 uint64_t inputs_read;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 /** The program key for Geometry Shaders. */
293 struct brw_gs_prog_key
294 {
295 unsigned program_string_id;
296
297 struct brw_sampler_prog_key_data tex;
298 };
299
300 enum brw_sf_primitive {
301 BRW_SF_PRIM_POINTS = 0,
302 BRW_SF_PRIM_LINES = 1,
303 BRW_SF_PRIM_TRIANGLES = 2,
304 BRW_SF_PRIM_UNFILLED_TRIS = 3,
305 };
306
307 struct brw_sf_prog_key {
308 uint64_t attrs;
309 bool contains_flat_varying;
310 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
311 uint8_t point_sprite_coord_replace;
312 enum brw_sf_primitive primitive:2;
313 bool do_twoside_color:1;
314 bool frontface_ccw:1;
315 bool do_point_sprite:1;
316 bool do_point_coord:1;
317 bool sprite_origin_lower_left:1;
318 bool userclip_active:1;
319 };
320
321 enum brw_clip_mode {
322 BRW_CLIP_MODE_NORMAL = 0,
323 BRW_CLIP_MODE_CLIP_ALL = 1,
324 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
325 BRW_CLIP_MODE_REJECT_ALL = 3,
326 BRW_CLIP_MODE_ACCEPT_ALL = 4,
327 BRW_CLIP_MODE_KERNEL_CLIP = 5,
328 };
329
330 enum brw_clip_fill_mode {
331 BRW_CLIP_FILL_MODE_LINE = 0,
332 BRW_CLIP_FILL_MODE_POINT = 1,
333 BRW_CLIP_FILL_MODE_FILL = 2,
334 BRW_CLIP_FILL_MODE_CULL = 3,
335 };
336
337 /* Note that if unfilled primitives are being emitted, we have to fix
338 * up polygon offset and flatshading at this point:
339 */
340 struct brw_clip_prog_key {
341 uint64_t attrs;
342 bool contains_flat_varying;
343 bool contains_noperspective_varying;
344 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
345 unsigned primitive:4;
346 unsigned nr_userclip:4;
347 bool pv_first:1;
348 bool do_unfilled:1;
349 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
350 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
351 bool offset_cw:1;
352 bool offset_ccw:1;
353 bool copy_bfc_cw:1;
354 bool copy_bfc_ccw:1;
355 enum brw_clip_mode clip_mode:3;
356
357 float offset_factor;
358 float offset_units;
359 float offset_clamp;
360 };
361
362 /* A big lookup table is used to figure out which and how many
363 * additional regs will inserted before the main payload in the WM
364 * program execution. These mainly relate to depth and stencil
365 * processing and the early-depth-test optimization.
366 */
367 enum brw_wm_iz_bits {
368 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
369 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
370 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
371 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
372 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
373 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
374 BRW_WM_IZ_BIT_MAX = 0x40
375 };
376
377 enum brw_wm_aa_enable {
378 BRW_WM_AA_NEVER,
379 BRW_WM_AA_SOMETIMES,
380 BRW_WM_AA_ALWAYS
381 };
382
383 /** The program key for Fragment/Pixel Shaders. */
384 struct brw_wm_prog_key {
385 /* Some collection of BRW_WM_IZ_* */
386 uint8_t iz_lookup;
387 bool stats_wm:1;
388 bool flat_shade:1;
389 unsigned nr_color_regions:5;
390 bool replicate_alpha:1;
391 bool clamp_fragment_color:1;
392 bool persample_interp:1;
393 bool multisample_fbo:1;
394 bool frag_coord_adds_sample_pos:1;
395 enum brw_wm_aa_enable line_aa:2;
396 bool high_quality_derivatives:1;
397 bool force_dual_color_blend:1;
398 bool coherent_fb_fetch:1;
399
400 uint64_t input_slots_valid;
401 unsigned program_string_id;
402 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
403 float alpha_test_ref;
404
405 struct brw_sampler_prog_key_data tex;
406 };
407
408 struct brw_cs_prog_key {
409 uint32_t program_string_id;
410 struct brw_sampler_prog_key_data tex;
411 };
412
413 /* brw_any_prog_key is any of the keys that map to an API stage */
414 union brw_any_prog_key {
415 struct brw_vs_prog_key vs;
416 struct brw_tcs_prog_key tcs;
417 struct brw_tes_prog_key tes;
418 struct brw_gs_prog_key gs;
419 struct brw_wm_prog_key wm;
420 struct brw_cs_prog_key cs;
421 };
422
423 /*
424 * Image metadata structure as laid out in the shader parameter
425 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
426 * able to use them. That's okay because the padding and any unused
427 * entries [most of them except when we're doing untyped surface
428 * access] will be removed by the uniform packing pass.
429 */
430 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
431 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
432 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
433 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
434 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
435 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
436 #define BRW_IMAGE_PARAM_SIZE 24
437
438 struct brw_image_param {
439 /** Surface binding table index. */
440 uint32_t surface_idx;
441
442 /** Offset applied to the X and Y surface coordinates. */
443 uint32_t offset[2];
444
445 /** Surface X, Y and Z dimensions. */
446 uint32_t size[3];
447
448 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
449 * pixels, vertical slice stride in pixels.
450 */
451 uint32_t stride[4];
452
453 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
454 uint32_t tiling[3];
455
456 /**
457 * Right shift to apply for bit 6 address swizzling. Two different
458 * swizzles can be specified and will be applied one after the other. The
459 * resulting address will be:
460 *
461 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
462 * (addr >> swizzling[1])))
463 *
464 * Use \c 0xff if any of the swizzles is not required.
465 */
466 uint32_t swizzling[2];
467 };
468
469 /** Max number of render targets in a shader */
470 #define BRW_MAX_DRAW_BUFFERS 8
471
472 /**
473 * Max number of binding table entries used for stream output.
474 *
475 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
476 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
477 *
478 * On Gen6, the size of transform feedback data is limited not by the number
479 * of components but by the number of binding table entries we set aside. We
480 * use one binding table entry for a float, one entry for a vector, and one
481 * entry per matrix column. Since the only way we can communicate our
482 * transform feedback capabilities to the client is via
483 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
484 * worst case, in which all the varyings are floats, so we use up one binding
485 * table entry per component. Therefore we need to set aside at least 64
486 * binding table entries for use by transform feedback.
487 *
488 * Note: since we don't currently pack varyings, it is currently impossible
489 * for the client to actually use up all of these binding table entries--if
490 * all of their varyings were floats, they would run out of varying slots and
491 * fail to link. But that's a bug, so it seems prudent to go ahead and
492 * allocate the number of binding table entries we will need once the bug is
493 * fixed.
494 */
495 #define BRW_MAX_SOL_BINDINGS 64
496
497 /**
498 * Binding table index for the first gen6 SOL binding.
499 */
500 #define BRW_GEN6_SOL_BINDING_START 0
501
502 /**
503 * Stride in bytes between shader_time entries.
504 *
505 * We separate entries by a cacheline to reduce traffic between EUs writing to
506 * different entries.
507 */
508 #define BRW_SHADER_TIME_STRIDE 64
509
510 struct brw_ubo_range
511 {
512 uint16_t block;
513 uint8_t start;
514 uint8_t length;
515 };
516
517 /* We reserve the first 2^16 values for builtins */
518 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
519
520 enum brw_param_builtin {
521 BRW_PARAM_BUILTIN_ZERO,
522
523 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
555
556 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
557 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
558 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
559 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
560 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
561 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
562
563 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
564 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
565 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
566 BRW_PARAM_BUILTIN_SUBGROUP_ID,
567 };
568
569 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
570 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
571
572 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
573 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
574 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
575
576 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
577 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
578
579 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
580 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
581
582 struct brw_stage_prog_data {
583 struct {
584 /** size of our binding table. */
585 uint32_t size_bytes;
586
587 /** @{
588 * surface indices for the various groups of surfaces
589 */
590 uint32_t pull_constants_start;
591 uint32_t texture_start;
592 uint32_t gather_texture_start;
593 uint32_t ubo_start;
594 uint32_t ssbo_start;
595 uint32_t image_start;
596 uint32_t shader_time_start;
597 uint32_t plane_start[3];
598 /** @} */
599 } binding_table;
600
601 struct brw_ubo_range ubo_ranges[4];
602
603 GLuint nr_params; /**< number of float params/constants */
604 GLuint nr_pull_params;
605
606 unsigned curb_read_length;
607 unsigned total_scratch;
608 unsigned total_shared;
609
610 unsigned program_size;
611
612 /**
613 * Register where the thread expects to find input data from the URB
614 * (typically uniforms, followed by vertex or fragment attributes).
615 */
616 unsigned dispatch_grf_start_reg;
617
618 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
619
620 /* 32-bit identifiers for all push/pull parameters. These can be anything
621 * the driver wishes them to be; the core of the back-end compiler simply
622 * re-arranges them. The one restriction is that the bottom 2^16 values
623 * are reserved for builtins defined in the brw_param_builtin enum defined
624 * above.
625 */
626 uint32_t *param;
627 uint32_t *pull_param;
628 };
629
630 static inline uint32_t *
631 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
632 unsigned nr_new_params)
633 {
634 unsigned old_nr_params = prog_data->nr_params;
635 prog_data->nr_params += nr_new_params;
636 prog_data->param = reralloc(ralloc_parent(prog_data->param),
637 prog_data->param, uint32_t,
638 prog_data->nr_params);
639 return prog_data->param + old_nr_params;
640 }
641
642 static inline void
643 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
644 unsigned surf_index)
645 {
646 /* A binding table index is 8 bits and the top 3 values are reserved for
647 * special things (stateless and SLM).
648 */
649 assert(surf_index <= 252);
650
651 prog_data->binding_table.size_bytes =
652 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
653 }
654
655 enum brw_barycentric_mode {
656 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
657 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
658 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
660 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
661 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
662 BRW_BARYCENTRIC_MODE_COUNT = 6
663 };
664 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
665 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
666 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
667 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
668
669 enum brw_pixel_shader_computed_depth_mode {
670 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
671 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
672 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
673 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
674 };
675
676 /* Data about a particular attempt to compile a program. Note that
677 * there can be many of these, each in a different GL state
678 * corresponding to a different brw_wm_prog_key struct, with different
679 * compiled programs.
680 */
681 struct brw_wm_prog_data {
682 struct brw_stage_prog_data base;
683
684 GLuint num_varying_inputs;
685
686 uint8_t reg_blocks_8;
687 uint8_t reg_blocks_16;
688 uint8_t reg_blocks_32;
689
690 uint8_t dispatch_grf_start_reg_16;
691 uint8_t dispatch_grf_start_reg_32;
692 uint32_t prog_offset_16;
693 uint32_t prog_offset_32;
694
695 struct {
696 /** @{
697 * surface indices the WM-specific surfaces
698 */
699 uint32_t render_target_read_start;
700 /** @} */
701 } binding_table;
702
703 uint8_t computed_depth_mode;
704 bool computed_stencil;
705
706 bool early_fragment_tests;
707 bool post_depth_coverage;
708 bool inner_coverage;
709 bool dispatch_8;
710 bool dispatch_16;
711 bool dispatch_32;
712 bool dual_src_blend;
713 bool persample_dispatch;
714 bool uses_pos_offset;
715 bool uses_omask;
716 bool uses_kill;
717 bool uses_src_depth;
718 bool uses_src_w;
719 bool uses_sample_mask;
720 bool has_render_target_reads;
721 bool has_side_effects;
722 bool pulls_bary;
723
724 bool contains_flat_varying;
725 bool contains_noperspective_varying;
726
727 /**
728 * Mask of which interpolation modes are required by the fragment shader.
729 * Used in hardware setup on gen6+.
730 */
731 uint32_t barycentric_interp_modes;
732
733 /**
734 * Mask of which FS inputs are marked flat by the shader source. This is
735 * needed for setting up 3DSTATE_SF/SBE.
736 */
737 uint32_t flat_inputs;
738
739 /* Mapping of VUE slots to interpolation modes.
740 * Used by the Gen4-5 clip/sf/wm stages.
741 */
742 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
743
744 /**
745 * Map from gl_varying_slot to the position within the FS setup data
746 * payload where the varying's attribute vertex deltas should be delivered.
747 * For varying slots that are not used by the FS, the value is -1.
748 */
749 int urb_setup[VARYING_SLOT_MAX];
750 };
751
752 /** Returns the SIMD width corresponding to a given KSP index
753 *
754 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
755 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
756 * kernel start pointer (KSP) indices that is based on what dispatch widths
757 * are enabled. This function provides, effectively, the reverse mapping.
758 *
759 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
760 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
761 */
762 static inline unsigned
763 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
764 bool simd16_enabled, bool simd32_enabled)
765 {
766 /* This function strictly ignores contiguous dispatch */
767 switch (ksp_idx) {
768 case 0:
769 return simd8_enabled ? 8 :
770 (simd16_enabled && !simd32_enabled) ? 16 :
771 (simd32_enabled && !simd16_enabled) ? 32 : 0;
772 case 1:
773 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
774 case 2:
775 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
776 default:
777 unreachable("Invalid KSP index");
778 }
779 }
780
781 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
782 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
783 (wm_state)._16PixelDispatchEnable, \
784 (wm_state)._32PixelDispatchEnable)
785
786 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
787 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
788
789 static inline uint32_t
790 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
791 unsigned simd_width)
792 {
793 switch (simd_width) {
794 case 8: return 0;
795 case 16: return prog_data->prog_offset_16;
796 case 32: return prog_data->prog_offset_32;
797 default: return 0;
798 }
799 }
800
801 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
802 _brw_wm_prog_data_prog_offset(prog_data, \
803 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
804
805 static inline uint8_t
806 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
807 unsigned simd_width)
808 {
809 switch (simd_width) {
810 case 8: return prog_data->base.dispatch_grf_start_reg;
811 case 16: return prog_data->dispatch_grf_start_reg_16;
812 case 32: return prog_data->dispatch_grf_start_reg_32;
813 default: return 0;
814 }
815 }
816
817 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
818 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
819 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
820
821 static inline uint8_t
822 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
823 unsigned simd_width)
824 {
825 switch (simd_width) {
826 case 8: return prog_data->reg_blocks_8;
827 case 16: return prog_data->reg_blocks_16;
828 case 32: return prog_data->reg_blocks_32;
829 default: return 0;
830 }
831 }
832
833 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
834 _brw_wm_prog_data_reg_blocks(prog_data, \
835 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
836
837 struct brw_push_const_block {
838 unsigned dwords; /* Dword count, not reg aligned */
839 unsigned regs;
840 unsigned size; /* Bytes, register aligned */
841 };
842
843 struct brw_cs_prog_data {
844 struct brw_stage_prog_data base;
845
846 unsigned local_size[3];
847 unsigned simd_size;
848 unsigned threads;
849 bool uses_barrier;
850 bool uses_num_work_groups;
851
852 struct {
853 struct brw_push_const_block cross_thread;
854 struct brw_push_const_block per_thread;
855 struct brw_push_const_block total;
856 } push;
857
858 struct {
859 /** @{
860 * surface indices the CS-specific surfaces
861 */
862 uint32_t work_groups_start;
863 /** @} */
864 } binding_table;
865 };
866
867 /**
868 * Enum representing the i965-specific vertex results that don't correspond
869 * exactly to any element of gl_varying_slot. The values of this enum are
870 * assigned such that they don't conflict with gl_varying_slot.
871 */
872 typedef enum
873 {
874 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
875 BRW_VARYING_SLOT_PAD,
876 /**
877 * Technically this is not a varying but just a placeholder that
878 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
879 * builtin variable to be compiled correctly. see compile_sf_prog() for
880 * more info.
881 */
882 BRW_VARYING_SLOT_PNTC,
883 BRW_VARYING_SLOT_COUNT
884 } brw_varying_slot;
885
886 /**
887 * We always program SF to start reading at an offset of 1 (2 varying slots)
888 * from the start of the vertex URB entry. This causes it to skip:
889 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
890 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
891 */
892 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
893
894 /**
895 * Bitmask indicating which fragment shader inputs represent varyings (and
896 * hence have to be delivered to the fragment shader by the SF/SBE stage).
897 */
898 #define BRW_FS_VARYING_INPUT_MASK \
899 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
900 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
901
902 /**
903 * Data structure recording the relationship between the gl_varying_slot enum
904 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
905 * single octaword within the VUE (128 bits).
906 *
907 * Note that each BRW register contains 256 bits (2 octawords), so when
908 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
909 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
910 * in a vertex shader), each register corresponds to a single VUE slot, since
911 * it contains data for two separate vertices.
912 */
913 struct brw_vue_map {
914 /**
915 * Bitfield representing all varying slots that are (a) stored in this VUE
916 * map, and (b) actually written by the shader. Does not include any of
917 * the additional varying slots defined in brw_varying_slot.
918 */
919 uint64_t slots_valid;
920
921 /**
922 * Is this VUE map for a separate shader pipeline?
923 *
924 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
925 * without the linker having a chance to dead code eliminate unused varyings.
926 *
927 * This means that we have to use a fixed slot layout, based on the output's
928 * location field, rather than assigning slots in a compact contiguous block.
929 */
930 bool separate;
931
932 /**
933 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
934 * not stored in a slot (because they are not written, or because
935 * additional processing is applied before storing them in the VUE), the
936 * value is -1.
937 */
938 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
939
940 /**
941 * Map from VUE slot to gl_varying_slot value. For slots that do not
942 * directly correspond to a gl_varying_slot, the value comes from
943 * brw_varying_slot.
944 *
945 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
946 */
947 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
948
949 /**
950 * Total number of VUE slots in use
951 */
952 int num_slots;
953
954 /**
955 * Number of per-patch VUE slots. Only valid for tessellation control
956 * shader outputs and tessellation evaluation shader inputs.
957 */
958 int num_per_patch_slots;
959
960 /**
961 * Number of per-vertex VUE slots. Only valid for tessellation control
962 * shader outputs and tessellation evaluation shader inputs.
963 */
964 int num_per_vertex_slots;
965 };
966
967 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
968
969 /**
970 * Convert a VUE slot number into a byte offset within the VUE.
971 */
972 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
973 {
974 return 16*slot;
975 }
976
977 /**
978 * Convert a vertex output (brw_varying_slot) into a byte offset within the
979 * VUE.
980 */
981 static inline
982 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
983 {
984 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
985 }
986
987 void brw_compute_vue_map(const struct gen_device_info *devinfo,
988 struct brw_vue_map *vue_map,
989 uint64_t slots_valid,
990 bool separate_shader);
991
992 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
993 uint64_t slots_valid,
994 uint32_t is_patch);
995
996 /* brw_interpolation_map.c */
997 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
998 struct nir_shader *nir,
999 struct brw_wm_prog_data *prog_data,
1000 const struct gen_device_info *devinfo);
1001
1002 enum shader_dispatch_mode {
1003 DISPATCH_MODE_4X1_SINGLE = 0,
1004 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1005 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1006 DISPATCH_MODE_SIMD8 = 3,
1007 };
1008
1009 /**
1010 * @defgroup Tessellator parameter enumerations.
1011 *
1012 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1013 * as part of the tessellation evaluation shader.
1014 *
1015 * @{
1016 */
1017 enum brw_tess_partitioning {
1018 BRW_TESS_PARTITIONING_INTEGER = 0,
1019 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1020 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1021 };
1022
1023 enum brw_tess_output_topology {
1024 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1025 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1026 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1027 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1028 };
1029
1030 enum brw_tess_domain {
1031 BRW_TESS_DOMAIN_QUAD = 0,
1032 BRW_TESS_DOMAIN_TRI = 1,
1033 BRW_TESS_DOMAIN_ISOLINE = 2,
1034 };
1035 /** @} */
1036
1037 struct brw_vue_prog_data {
1038 struct brw_stage_prog_data base;
1039 struct brw_vue_map vue_map;
1040
1041 /** Should the hardware deliver input VUE handles for URB pull loads? */
1042 bool include_vue_handles;
1043
1044 GLuint urb_read_length;
1045 GLuint total_grf;
1046
1047 uint32_t clip_distance_mask;
1048 uint32_t cull_distance_mask;
1049
1050 /* Used for calculating urb partitions. In the VS, this is the size of the
1051 * URB entry used for both input and output to the thread. In the GS, this
1052 * is the size of the URB entry used for output.
1053 */
1054 GLuint urb_entry_size;
1055
1056 enum shader_dispatch_mode dispatch_mode;
1057 };
1058
1059 struct brw_vs_prog_data {
1060 struct brw_vue_prog_data base;
1061
1062 GLbitfield64 inputs_read;
1063 GLbitfield64 double_inputs_read;
1064
1065 unsigned nr_attribute_slots;
1066
1067 bool uses_vertexid;
1068 bool uses_instanceid;
1069 bool uses_is_indexed_draw;
1070 bool uses_firstvertex;
1071 bool uses_baseinstance;
1072 bool uses_drawid;
1073 };
1074
1075 struct brw_tcs_prog_data
1076 {
1077 struct brw_vue_prog_data base;
1078
1079 /** Number vertices in output patch */
1080 int instances;
1081 };
1082
1083
1084 struct brw_tes_prog_data
1085 {
1086 struct brw_vue_prog_data base;
1087
1088 enum brw_tess_partitioning partitioning;
1089 enum brw_tess_output_topology output_topology;
1090 enum brw_tess_domain domain;
1091 };
1092
1093 struct brw_gs_prog_data
1094 {
1095 struct brw_vue_prog_data base;
1096
1097 unsigned vertices_in;
1098
1099 /**
1100 * Size of an output vertex, measured in HWORDS (32 bytes).
1101 */
1102 unsigned output_vertex_size_hwords;
1103
1104 unsigned output_topology;
1105
1106 /**
1107 * Size of the control data (cut bits or StreamID bits), in hwords (32
1108 * bytes). 0 if there is no control data.
1109 */
1110 unsigned control_data_header_size_hwords;
1111
1112 /**
1113 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1114 * if the control data is StreamID bits, or
1115 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1116 * Ignored if control_data_header_size is 0.
1117 */
1118 unsigned control_data_format;
1119
1120 bool include_primitive_id;
1121
1122 /**
1123 * The number of vertices emitted, if constant - otherwise -1.
1124 */
1125 int static_vertex_count;
1126
1127 int invocations;
1128
1129 /**
1130 * Gen6: Provoking vertex convention for odd-numbered triangles
1131 * in tristrips.
1132 */
1133 GLuint pv_first:1;
1134
1135 /**
1136 * Gen6: Number of varyings that are output to transform feedback.
1137 */
1138 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1139
1140 /**
1141 * Gen6: Map from the index of a transform feedback binding table entry to the
1142 * gl_varying_slot that should be streamed out through that binding table
1143 * entry.
1144 */
1145 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1146
1147 /**
1148 * Gen6: Map from the index of a transform feedback binding table entry to the
1149 * swizzles that should be used when streaming out data through that
1150 * binding table entry.
1151 */
1152 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1153 };
1154
1155 struct brw_sf_prog_data {
1156 uint32_t urb_read_length;
1157 uint32_t total_grf;
1158
1159 /* Each vertex may have upto 12 attributes, 4 components each,
1160 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1161 * rows.
1162 *
1163 * Actually we use 4 for each, so call it 12 rows.
1164 */
1165 unsigned urb_entry_size;
1166 };
1167
1168 struct brw_clip_prog_data {
1169 uint32_t curb_read_length; /* user planes? */
1170 uint32_t clip_mode;
1171 uint32_t urb_read_length;
1172 uint32_t total_grf;
1173 };
1174
1175 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1176 union brw_any_prog_data {
1177 struct brw_stage_prog_data base;
1178 struct brw_vue_prog_data vue;
1179 struct brw_vs_prog_data vs;
1180 struct brw_tcs_prog_data tcs;
1181 struct brw_tes_prog_data tes;
1182 struct brw_gs_prog_data gs;
1183 struct brw_wm_prog_data wm;
1184 struct brw_cs_prog_data cs;
1185 };
1186
1187 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1188 static inline struct brw_##stage##_prog_data * \
1189 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1190 { \
1191 return (struct brw_##stage##_prog_data *) prog_data; \
1192 }
1193 DEFINE_PROG_DATA_DOWNCAST(vue)
1194 DEFINE_PROG_DATA_DOWNCAST(vs)
1195 DEFINE_PROG_DATA_DOWNCAST(tcs)
1196 DEFINE_PROG_DATA_DOWNCAST(tes)
1197 DEFINE_PROG_DATA_DOWNCAST(gs)
1198 DEFINE_PROG_DATA_DOWNCAST(wm)
1199 DEFINE_PROG_DATA_DOWNCAST(cs)
1200 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1201 DEFINE_PROG_DATA_DOWNCAST(clip)
1202 DEFINE_PROG_DATA_DOWNCAST(sf)
1203 #undef DEFINE_PROG_DATA_DOWNCAST
1204
1205 /** @} */
1206
1207 struct brw_compiler *
1208 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1209
1210 unsigned
1211 brw_prog_data_size(gl_shader_stage stage);
1212
1213 unsigned
1214 brw_prog_key_size(gl_shader_stage stage);
1215
1216 /**
1217 * Compile a vertex shader.
1218 *
1219 * Returns the final assembly and the program's size.
1220 */
1221 const unsigned *
1222 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1223 void *mem_ctx,
1224 const struct brw_vs_prog_key *key,
1225 struct brw_vs_prog_data *prog_data,
1226 const struct nir_shader *shader,
1227 int shader_time_index,
1228 char **error_str);
1229
1230 /**
1231 * Compile a tessellation control shader.
1232 *
1233 * Returns the final assembly and the program's size.
1234 */
1235 const unsigned *
1236 brw_compile_tcs(const struct brw_compiler *compiler,
1237 void *log_data,
1238 void *mem_ctx,
1239 const struct brw_tcs_prog_key *key,
1240 struct brw_tcs_prog_data *prog_data,
1241 const struct nir_shader *nir,
1242 int shader_time_index,
1243 char **error_str);
1244
1245 /**
1246 * Compile a tessellation evaluation shader.
1247 *
1248 * Returns the final assembly and the program's size.
1249 */
1250 const unsigned *
1251 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1252 void *mem_ctx,
1253 const struct brw_tes_prog_key *key,
1254 const struct brw_vue_map *input_vue_map,
1255 struct brw_tes_prog_data *prog_data,
1256 const struct nir_shader *shader,
1257 struct gl_program *prog,
1258 int shader_time_index,
1259 char **error_str);
1260
1261 /**
1262 * Compile a vertex shader.
1263 *
1264 * Returns the final assembly and the program's size.
1265 */
1266 const unsigned *
1267 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1268 void *mem_ctx,
1269 const struct brw_gs_prog_key *key,
1270 struct brw_gs_prog_data *prog_data,
1271 const struct nir_shader *shader,
1272 struct gl_program *prog,
1273 int shader_time_index,
1274 char **error_str);
1275
1276 /**
1277 * Compile a strips and fans shader.
1278 *
1279 * This is a fixed-function shader determined entirely by the shader key and
1280 * a VUE map.
1281 *
1282 * Returns the final assembly and the program's size.
1283 */
1284 const unsigned *
1285 brw_compile_sf(const struct brw_compiler *compiler,
1286 void *mem_ctx,
1287 const struct brw_sf_prog_key *key,
1288 struct brw_sf_prog_data *prog_data,
1289 struct brw_vue_map *vue_map,
1290 unsigned *final_assembly_size);
1291
1292 /**
1293 * Compile a clipper shader.
1294 *
1295 * This is a fixed-function shader determined entirely by the shader key and
1296 * a VUE map.
1297 *
1298 * Returns the final assembly and the program's size.
1299 */
1300 const unsigned *
1301 brw_compile_clip(const struct brw_compiler *compiler,
1302 void *mem_ctx,
1303 const struct brw_clip_prog_key *key,
1304 struct brw_clip_prog_data *prog_data,
1305 struct brw_vue_map *vue_map,
1306 unsigned *final_assembly_size);
1307
1308 /**
1309 * Compile a fragment shader.
1310 *
1311 * Returns the final assembly and the program's size.
1312 */
1313 const unsigned *
1314 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1315 void *mem_ctx,
1316 const struct brw_wm_prog_key *key,
1317 struct brw_wm_prog_data *prog_data,
1318 const struct nir_shader *shader,
1319 struct gl_program *prog,
1320 int shader_time_index8,
1321 int shader_time_index16,
1322 int shader_time_index32,
1323 bool allow_spilling,
1324 bool use_rep_send, struct brw_vue_map *vue_map,
1325 char **error_str);
1326
1327 /**
1328 * Compile a compute shader.
1329 *
1330 * Returns the final assembly and the program's size.
1331 */
1332 const unsigned *
1333 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1334 void *mem_ctx,
1335 const struct brw_cs_prog_key *key,
1336 struct brw_cs_prog_data *prog_data,
1337 const struct nir_shader *shader,
1338 int shader_time_index,
1339 char **error_str);
1340
1341 static inline uint32_t
1342 encode_slm_size(unsigned gen, uint32_t bytes)
1343 {
1344 uint32_t slm_size = 0;
1345
1346 /* Shared Local Memory is specified as powers of two, and encoded in
1347 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1348 *
1349 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1350 * -------------------------------------------------------------------
1351 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1352 * -------------------------------------------------------------------
1353 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1354 */
1355 assert(bytes <= 64 * 1024);
1356
1357 if (bytes > 0) {
1358 /* Shared Local Memory Size is specified as powers of two. */
1359 slm_size = util_next_power_of_two(bytes);
1360
1361 if (gen >= 9) {
1362 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1363 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1364 } else {
1365 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1366 slm_size = MAX2(slm_size, 4096) / 4096;
1367 }
1368 }
1369
1370 return slm_size;
1371 }
1372
1373 /**
1374 * Return true if the given shader stage is dispatched contiguously by the
1375 * relevant fixed function starting from channel 0 of the SIMD thread, which
1376 * implies that the dispatch mask of a thread can be assumed to have the form
1377 * '2^n - 1' for some n.
1378 */
1379 static inline bool
1380 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1381 gl_shader_stage stage,
1382 const struct brw_stage_prog_data *prog_data)
1383 {
1384 /* The code below makes assumptions about the hardware's thread dispatch
1385 * behavior that could be proven wrong in future generations -- Make sure
1386 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1387 * the NIR front-end before changing this assertion.
1388 */
1389 assert(devinfo->gen <= 11);
1390
1391 switch (stage) {
1392 case MESA_SHADER_FRAGMENT: {
1393 /* The PSD discards subspans coming in with no lit samples, which in the
1394 * per-pixel shading case implies that each subspan will either be fully
1395 * lit (due to the VMask being used to allow derivative computations),
1396 * or not dispatched at all. In per-sample dispatch mode individual
1397 * samples from the same subspan have a fixed relative location within
1398 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1399 * general and we should return false.
1400 */
1401 const struct brw_wm_prog_data *wm_prog_data =
1402 (const struct brw_wm_prog_data *)prog_data;
1403 return !wm_prog_data->persample_dispatch;
1404 }
1405 case MESA_SHADER_COMPUTE:
1406 /* Compute shaders will be spawned with either a fully enabled dispatch
1407 * mask or with whatever bottom/right execution mask was given to the
1408 * GPGPU walker command to be used along the workgroup edges -- In both
1409 * cases the dispatch mask is required to be tightly packed for our
1410 * invocation index calculations to work.
1411 */
1412 return true;
1413 default:
1414 /* Most remaining fixed functions are limited to use a packed dispatch
1415 * mask due to the hardware representation of the dispatch mask as a
1416 * single counter representing the number of enabled channels.
1417 */
1418 return true;
1419 }
1420 }
1421
1422 /**
1423 * Computes the first varying slot in the URB produced by the previous stage
1424 * that is used in the next stage. We do this by testing the varying slots in
1425 * the previous stage's vue map against the inputs read in the next stage.
1426 *
1427 * Note that:
1428 *
1429 * - Each URB offset contains two varying slots and we can only skip a
1430 * full offset if both slots are unused, so the value we return here is always
1431 * rounded down to the closest multiple of two.
1432 *
1433 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1434 * part of the vue header, so if these are read we can't skip anything.
1435 */
1436 static inline int
1437 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1438 const struct brw_vue_map *prev_stage_vue_map)
1439 {
1440 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1441 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1442 int varying = prev_stage_vue_map->slot_to_varying[i];
1443 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1444 return ROUND_DOWN_TO(i, 2);
1445 }
1446 }
1447
1448 return 0;
1449 }
1450
1451 #ifdef __cplusplus
1452 } /* extern "C" */
1453 #endif
1454
1455 #endif /* BRW_COMPILER_H */